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Abstract. This paper is concerned with a PDE-constrained optimization problem of induction heating, where
the state equations consist of 3D time–dependent heat equations coupled with 3D time–harmonic eddy current
equations. The control parameters are given by finite real numbers representing applied alternating voltages which
enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that,
under certain constraints on the voltages and the temperature, a desired temperature can be optimally achieved.
As there are finitely many control parameters but the state constraint has to be satisfied in an infinite number of
points, the problem belongs to a class of semi–infinite programming problems. We present a rigorous analysis of the
optimization problem and a numerical strategy based on our theoretical result.
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1. Introduction. Electromagnetic induction heating is a well-known technique used widely
in many industrial applications to heat electrically conducting materials such as metals. A typical
induction heating system involves at least the following two main parts: a set of induction coils
connected to a power supply and an electrically conducting workpiece. The power supply induces
a high–frequency alternating current (AC) in the induction coil which in turn generates a magnetic
field. Then, the resistance to the eddy current in the workpiece induces heat (cf. [15]). The
underlying mathematical model for electromagnetic induction heating consists of coupled PDEs
involving a nonlinear heat equation and Maxwell’s equations. The analysis and numerical modeling
of induction heating have been studied by many authors. We refer to Bossavit and Rodrigues [5],
Clain and Touzani [8], Clain, Rappaz, Swierkosz, and Touzani [7], Hömberg [12, 13], Parietti and
Rappaz [19, 20], and Rappaz and Swierkosz [21].

For our mathematical model, we consider a bounded domain D ⊂ R3 containing a set of
induction coils I ⊂ D and a workpiece Ω ⊂ D satisfying I ∩ Ω = ∅. The region D \ (Ω ∪ I)
represents the surrounding air (see Figure 1.2 for an exemplary geometry). The precise assumptions
on geometry and given data will be specified later. As a simplified model for induction heating in
the workpiece Ω, we consider the following 3D parabolic initial-boundary value problem:

(1.1)


∂y

∂t
− div (α∇y) = σ|∂A

∂t
|2τ in Q := Ω× (0, T )

ν · α∇y = 0 in Σ := ∂Ω× (0, T )
y(·, 0) = y0 in Ω.

Here, y = y(x, t) denotes the temperature distribution, A = A (x, t) the magnetic vector potential,
ν = ν(x) the outward unit normal at x ∈ ∂Ω, α = α(x) the thermal diffusity, σ = σ(x) the electrical

conductivity and y0 = y0(x) initial data. The heat source σ|∂A

∂t
|2 arises from the Joule heating
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Fig. 1.1. Illustration of electromagnetic induction heating. Fig. 1.2. Exemplary 3D geometry.

effect; see for instance [13]. Further, τ is a function of time satisfying

(1.2) τ(t) =
{

1 if t ∈ [0, TE ]
0 if t ∈ (TE , T ],

with some TE ∈ (0, T ). Thus, in the time interval (TE , T ], the AC power supply is turned off.
The magnetic vector potential A in (1.1) is given by the time harmonic ansatz

(1.3) A (x, t) = Im(A(x) exp (iωt)),

with a fixed angular frequency ω > 0, and the complex-valued vector function A : D → C3 solves
the following eddy current equations:

(1.4)

 ∇×
(
µ−1∇×A

)
+ iωσA = jg in D

divA = 0 in D
A× ν = 0 on ∂D.

Here, jg = jg(x) is the impressed alternating current, µ = µ(x) the magnetic permeability, and i
the imaginary unit. In general, the eddy current equations (1.4) need to be posed in the whole
space R3 since they involve electromagnetic fields that cannot be easily measured on boundaries of
given bounded domains. However, the parts of the electromagnetic fields sufficiently far from the
conductors I and Ω are rather negligible. Therefore, to simplify the problem, we suppose that the
boundary ∂D is far from I and Ω and consider the eddy current model in a large ”hold all” domain
D along with a standard electric boundary condition (cf. the monograph by Alonso and Valli [1]).

We explain now how jg in our situation looks like. Let I = I1 ∪ . . .∪In, with n ∈ N, satisfying
Ii∩Ij = ∅ for i 6= j. For each j ∈ {1, . . . , n}, Ij is a torus, i.e., there exist real numbers dj,1, dj,2 > 0
such that

Ij =

zj +

 (dj,1 + s cos η) cos θ
(dj,1 + s cos η) sin θ
s sin η

 : s ∈ [0, dj,2], η, θ ∈ [0, 2π]

 , zj ∈ R3.
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The alternating voltages uj in the induction coils Ij (j = 1, . . . , n) are our controls. We assume
that, in each coil Ij , the voltage uj ∈ R can be kept constant, and there is no coupling effect
between the voltages. Then, the current jg in each induction coil Ij is obtained from Ohm’s law by
the associated electrical resistance of Ij as the voltage uj is applied. Summarizing, the impressed
alternating current jg is given by the ansatz

(1.5) jg(x) =
n∑
j=1

ujJj(x),

where

(1.6) Jj(x) =

{
1/Rj

(
− x3/

√
x2

1 + x2
3, 0, x1/

√
x2

1 + x2
3

)T if x ∈ Ij
0 if x /∈ Ij .

Here, Rj denotes the electrical resistance of Ij which is assumed to be a positive constant. Note
that the construction (1.5) implies in particular that

(1.7) div jg = 0 in I, ν · jg = 0 on ∂I.

The choice of Jj is not restricted to (1.6). Our analysis is also true for all vector fields Jj satisfying
divJj = 0 in I and ν · Jj = 0 on ∂I for all j = 1, . . . , n. Further, we should underline that the
counteraction of the magnetic field on the current in the induction coils is included in this model.
Our simplifying assumption concerns only the voltages in the coils.

In induction heating, the oscillatory period of the magnetic vector potential A is significantly

smaller than the diffusion time. Therefore, we approximate the Joule heat source σ|∂A

∂t
|2 by its

average value over one period (0, 2π/ω), i.e., by

ω

2π

∫ 2π
ω

0

σ|∂A

∂t
(x, t)|2 dt =︸︷︷︸

(1.3)

σω2

2
|A(x)|2.

Our paper is concerned with an optimization problem of finding optimal voltages to achieve a
desired temperature at the final time t = T under certain constraints on the voltages and the
temperature. More precisely, we consider the following optimal control problem:

(P) min
1
2

∫
Ω

|y(x, T )− yd(x)|2 dx

subject to

(1.8a)


∇×

(
µ−1∇×A

)
+ iωσA =

n∑
j=1

ujJj in D

divA = 0 in D
A× ν = 0 on ∂D,

(1.8b)


∂y

∂t
− div (α∇y) =

τσω2

2
|A|2 in Q

ν · α∇y = 0 in Σ
y(·, 0) = y0 in Ω,
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and to the following control- and state-constraints

ua ≤ uj ≤ub for all j = 1, . . . , n,(1.9a)
y(x, t) ≤ ymax for almost all (x, t) ∈ Q.(1.9b)

In (P), yd ∈ L2(Ω) is the desired temperature. The real lower and upper bounds ua, ub ∈ R satisfy
0 ≤ ua < ub and represent the minimum and maximum voltage allowed for the induction heating.
To avoid undesired damage or melting of the material Ω during the heating process, it is particularly
significant to include the pointwise state constraint (1.9b). Here, ymax ∈ R+ stands for the allowed
maximum temperature which may not be exceeded during the heating process. Note that the
optimal control problem (P) belongs to a class of semi–infinite programming problems (SIP) as
it involves finitely many control parameters but the state constraint (1.9b) needs to be satisfied
in an infinite number of points. Here we do not include a Tikhonov regularization term in the
objective functional of (P). Let us also remark that our results remain true for the heat equations
involving Dirichlet– or Robin–type boundary conditions instead of the homogeneous Neumann–type
boundary condition. This causes only minor and obvious modifications.

In literature, there are some contributions towards the mathematical analysis and the numerical
investigation of optimal control of induction heating problems. We mention Bodart et al. [3]
concerning a numerical study in a two–dimensional setting without pointwise state constraints. We
also refer to [9, 24] for the analysis of optimal control of 3D stationary induction heating problems
(see also [25] for the numerical analysis of optimal control problems of Maxwell’s equations). To our
best knowledge, the mathematical analysis and the numerical treatment for optimal control of 3D
induction heating problems with time-dependent temperature and pointwise state constraints have
not been investigated in literature. The mathematical analysis and the numerical investigation of
(P) represent therefore the main contributions of this paper.

To derive Karush–Kuhn–Tucker (KKT) type optimality conditions for (P), we need the conti-
nuity of the temperature. Due to the squared term in the right hand side of the parabolic equation
in (1.8), this is not obvious. We show the continuity of the temperature by a recent parabolic
regularity result of Griepentrog [10] (Lemma 3.2 and Theorem 3.3). Then, as a consequence of the
continuity, KKT type optimality conditions for local optima of (P) can be established relying on a
standard regularity assumption on the optimal solution. Furthermore, employing a superposition
principle, we provide a simplified expression for the mapping u 7→ y. Based on this expression, we
obtain optimality conditions for (P), in a simplified form, which do not involve an adjoint state and
reveal a more specific structural property for the Lagrange multiplier (Theorem 4.5). After investi-
gating the first–order analysis of (P), we present a second–order sufficient optimality condition for
a feasible control of (P) which ensures its local optimality. We close this paper by considering a
specific test example and present our numerical strategy for solving this problem.

2. General assumptions and notation. Let us introduce the mathematical setting includ-
ing the notation used throughout this paper. We denote by c a generic positive constant which can
take different values on different occasions. If V is a linear normed function space, then we use
the notation ‖ · ‖V for a standard norm used in V . Furthermore, we set V 3 := V × V × V . The
dual space of V is denoted by V ∗ and, for the associated duality pairing, we write 〈·, ·〉V ∗,V . A
continuous embedding of V in another linear normed function space Y is denoted by V ↪−→ Y . For
the Fréchet derivative of a differentiable operator B : V −→ Y at v ∈ V in the direction h ∈ V , we
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write B′(v)h. We recall the curl– and div–spaces:

H(curl;D) :=
{
K ∈ L2(D; C)3

∣∣ ∇×K ∈ L2(D; C)3
}
,

H(div;D) :=
{
K ∈ L2(D; C)3

∣∣ divK ∈ L2(D; C)
}
,

where the curl–operator (∇×·) and div–operator are understood in the distribution sense (cf. [2]).
In the above definition, L2(D; C) denotes the space of complex–valued Lebesgue square–integrable
functions defined on D. For the solution of the parabolic problem, we use the space

W (0, T ) =
{
y ∈ L2(0, T ;H1(Ω))

∣∣ ∂y
∂t
∈ L2(0, T ;H1(Ω)∗)

}
;

see Lions and Magenes [14]. The space of regular Borel measures on the compact set Q is denoted in
this paper byM(Q). Based on the Riesz-Radon theorem, the dual space C(Q)∗ can be isometrically
identified with M(Q). We further set

M(Q)+ =
{
λ ∈M(Q)

∣∣ ∫
Q

y dλ ≥ 0 ∀ y ∈ C(Q) with y(x, t) ≥ 0 ∀(x, t) ∈ Q
}
.

We now state the mathematical assumptions on geometry and given data involved in (P):
Assumption 2.1 (General assumptions).
(i) We assume that D ⊂ R3 is a simply connected convex domain satisfying Ω, I ⊂ D. The

subdomain Ω is assumed to be Lipschitz in the sense of Grisvard [11].

(ii) The initial temperature y0 is a continuous function satisfying 0 ≤ y0(x) < ymax for all
x ∈ Ω. Further, we assume that µ, σ ∈ L∞(D), and α ∈ L∞(Ω) satisfy

(2.1)


0 < µmin ≤ µ(x) ≤ µmax <∞ for a.a. x ∈ D,
0 < αmin ≤ α(x) ≤ αmax <∞ for a.a. x ∈ Ω,
0 < σmin ≤ σ(x) ≤ σmax <∞ for a.a. x ∈ I ∪ Ω,
σ(x) = 0 for all x ∈ D \ (I ∪ Ω).

Note that σ vanishes in the subset D \ (I ∪ Ω) as it represents the air surrounding the
conductors Ω and I, which is electrically nonconducting.

3. Analysis of (P). We start by introducing the Banach space

X =
{
K ∈ H(curl;D) ∩H(div;D)

∣∣ divK = 0 in D, K × ν = 0 on ∂D
}
,

which is endowed with the norm

‖ψ‖X = ‖ψ‖H(curl;D) = (‖ψ‖2L2(D;C)3 + ‖∇ × ψ‖2L2(D;C)3)
1
2 ∀ψ ∈ X.

Definition 3.1. The pair (A, y) ∈ X×W (0, T ) is called a (weak) solution to (1.8) if and only
if y(0) = y0 and∫

D
(µ−1∇×A) · (∇× ψ) dx+ iω

∫
I∪Ω

σA · ψ dx =
n∑
j=1

uj

∫
Ij
Jj · ψ dx ∀ψ ∈ X(3.1a)

∫ T

0

〈∂y
∂t
, φ〉H1(Ω)∗,H1(Ω) dt+

∫∫
Q

α∇y · ∇φdxdt =
∫∫

Q

τσω2

2
|A|2φdxdt ∀φ ∈W (0, T ).(3.1b)
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In other words: A is a weak solution to (1.8a) and y is a weak solution of (1.8b) in the standard
sense.

Notice that ψ in (3.1a) denotes the complex conjugate of ψ. This should not lead to any
confusion with the notation Q, Ω, I, etc., which denotes the closure of these sets.

In the upcoming lemma, we provide a parabolic regularity result. Here, instead of Ω ⊂ D ⊂ R3,
we consider a general bounded Lipschitz–domain Ω in RN with N ∈ N. For the proof of this lemma,
we refer to [10, Theorem 6.8] or [22, Lemma 7.12] (cf. also Casas [6]).

Lemma 3.2. Let Ω ∈ RN , N ∈ N, be a bounded Lipschitz–domain in the sense of Grisvard [11]
and let v ∈ Lr(Q) with r > N

2 + 1. Then, the weak solution z ∈ W (0, T ) to the linear parabolic
initial-boundary value problem

(3.2)


∂z

∂t
− div (α∇z) = v in Q

ν · α∇z = 0 in Σ

z(·, 0) = y0 in Ω

belongs to W (0, T ) ∩ C(Q). Moreover, the mapping v 7→ z is continuous.
The main consequence of Lemma 3.2 is the following result on existence and regularity:
Theorem 3.3. Let Assumption 2.1 be satisfied. Then, for every u ∈ Rn, (1.8) admits a

unique solution (A, y) ∈ X ×W (0, T ) ∩ C(Q). The mapping u 7→ (A, y) is continuous from Rn to
X ×W (0, T ) ∩ C(Q).

Proof. We introduce first a sesquilinear form a : X ×X → C defined by

a(A, ψ) =
∫
D

(µ−1∇×A) · (∇× ψ) dx+ iω

∫
I∪Ω

σA · ψ dx.

Since every vector function from X is divergence–free, there exists a constant c > 0 depending only
on the domain D such that

‖ψ‖L2(D)3 ≤ c‖∇ × ψ‖L2(D)3 ∀ψ ∈ X;

see [16, Corollary 3.51]. By the latter inequality and (2.1), we have

|a(ψ,ψ)| ≥ µ−1
max

∫
D

(∇×ψ)·(∇×ψ) dx = µ−1
max‖∇×ψ‖2L2(D;C)3 ≥ c‖ψ‖2H(curl;D) = c‖ψ‖2X ∀ψ ∈ X,

with a constant c > 0 depending only on D and µmax. Thus, the sesquilinear form a is coercive in
X. Further, by (2.1), it is also clear that a is bounded. For this reason, the Lax-Milgram lemma
implies that the variational problem

a(A, ψ) = F (ψ) ∀ψ ∈ X

admits a unique solution A for every F ∈ X∗. This guarantees in particular the existence of a
unique solution to (3.1a) for every control u ∈ Rn.

Let now u ∈ Rn and A ∈ X be the associated unique solution to (3.1a). Since D is convex, the
embedding

X ↪−→ H1(D; C)3
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holds (see Amrouche et al. [2]) and for this reason

A ∈ X ↪−→ L6(D; C)3.

The latter regularity implies that

τσω2

2
|A|2 ∈ L3(Q).

Then, as Ω ⊂ D ⊂ R3, Lemma 3.2 yields that (3.1b) admits a unique solution y ∈ W (0, T ) ∩ C(Q)
and the mapping A 7→ y is continuous from X to W (0, T ) ∩ C(Q). Hence, thanks to the continuity
of the mapping u 7→ A from Rn to X, we obtain the continuity of the mapping u 7→ y.

In what follows, the control–to–state mapping u 7→ y, which assigns to every control u ∈ Rn
the solution y of (1.8), is denoted by G : Rn → W (0, T ) ∩ C(Q). Using this operator, the optimal
control problem (P) can be equivalently written as

(P)

 min
u∈Uad

f(u) :=
1
2
‖ETG(u)− yd‖2L2(Ω)

s.t. G(u)(x, t) ≤ ymax for all (x, t) ∈ Q.

Here, ET : W (0, T ) → L2(Ω), y(·) 7→ y(T ), and Uad := {u ∈ Rn | ua ≤ uj ≤ ub ∀j = 1, . . . , n}. In
what follows, a vector u ∈ Rn is said to be a feasible control of (P) if and only if

u ∈ Ufeas :=
{
u ∈ Uad

∣∣ G(u)(x, t) ≤ ymax ∀(x, t) ∈ Q
}
.

We assume that Ufeas 6= ∅. Then, as Ufeas is compact and f is continuous, the Weierstrass theorem
implies that (P) admits an optimal solution. Note that the control space is finite–dimensional.

Definition 3.4. Let U,Z be Banach spaces and let Z be partially ordered by ≤Z . An operator
F : U → Z is called convex if

F (su+ (1− s)û) ≤Z sF (u) + (1− s)F (û) ∀s ∈ [0, 1], ∀u, û ∈ U.

In our case U = Rn and Z = C(Q) is partially ordered by its natural ordering y ≤Z 0 if and
only if y(x, t) ≤ 0 for all (x, t) ∈ Q.

Theorem 3.5. The solution operator G : Rn →W (0, T ) ∩ C(Q) is convex.
Proof. Let A(u) denote the weak solution to (1.8a) for u ∈ Rn. Then, the solution opearator

G can also be written as

(3.3) G(u) = S

(
τσω2

2
|A(u)|2

)
.

Here, S : Lr(Q)→W (0, T )∩C(Q), with r > 3
2 + 1, is a linear bounded operator defined by Sv = z,

where z ∈W (0, T ) ∩ C(Q) is the unique solution of

(3.4)


∂z

∂t
− div (α∇z) = v in Q

ν · α∇z = 0 in Σ

z(·, 0) = y0 in Ω;
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see Lemma 3.2. It is well–known that S is a nonnegative operator in the following sense:

(3.5) v ∈ Lr(Q) with r >
3
2

+ 1 and v(x, t) ≥ 0 a.e. in Q =⇒ (Sv)(x, t) ≥ 0 ∀(x, t) ∈ Q.

Notice that y0(x) ≥ 0 ∀x ∈ Ω was postulated in our general assumption (see Assumption 2.1).
Therefore, the solution of (3.4) satisfies z(x, t) ≥ 0 for all (x, t) ∈ Q, if the right hand side v is
nonnegative.

As u 7→ A(u) is linear from Rn to X ↪−→ L6(D; C)3 and thanks to the nonnegativity of the
functions τ : [0, T ]→ R and σ : D → R, the mapping u 7→ τσω2

2 |A(u)|2 is convex from Rn to L3(Q).
Let now u, û ∈ Rn and s ∈ [0, 1]. According to (3.3), we have

G(su+ (1− s)û) = S

(
τσω2

2
|A(su+ (1− s)û)|2

)
.

By the linearity of S and the convexity of u 7→ τσω2

2 |A(u)|2, it follows from the latter equality that

G
(
su+ (1− s)û

)
= sS

(
τσω2

2
|A(u)|2

)
+ (1− s)S

(
τσω2

2
|A(û)|2

)
+ S

(
τσω2

2
|A(su+ (1− s)û)|2 −

(
s
τσω2

2
|A(u)|2 + (1− s)τσω

2

2
|A(û)|2

)
︸ ︷︷ ︸

≤0 a.e. in Q

)

≤ sS
(
τσω2

2
|A(u)|2

)
+ (1− s)S

(
τσω2

2
|A(û)|2

)
= sG(u) + (1− s)G(û),

where we used (3.5) in the last inequality. In conclusion, G : Rn →W (0, T ) ∩ C(Q) is convex.

An immediate consequence of Theorem 3.5 is the convexity of the feasible set Ufeas as we
summarize in the following corollary:

Corollary 3.6. The feasible set Ufeas associated with (P) is convex.
We should underline that both Theorem 3.5 and Corollary 3.6 do not necessarily imply the

convexity of (P). Indeed, x2 is convex but (x2− c2)2 for c > 0 is not convex and hence the objective
functional f : Rn → R is not convex due to the presence of yd. For this reason, uniqueness of
the optimal solution of (P) cannot be guaranteed. In the sequel, we focus on the analysis of local
optima of (P).

Definition 3.7 (Local optima). A feasible control u∗ ∈ Ufeas is said to be a local solution to
(P) if and only if there exists an ε > 0 such that f(u∗) ≤ f(u) holds true for all feasible controls u
of (P) satisfying |u− u∗| < ε.

3.1. Optimality conditions for (P). We introduce first the following functions:
Definition 3.8.
(i) For j = 1, . . . , n, let Aj ∈ X be the unique solution of∫

D
(µ−1∇×Aj) · (∇× ψ) dx+ iω

∫
I∪Ω

σAj · ψ dx =
∫
Ij
Jj · ψ dx ∀ψ ∈ X.
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(ii) For k, l ∈ {1, . . . , n}, we define functions Ak,l by

(3.6) Ak,l :=
τσω2

2
(
Re(Ak) · Re(Al) + Im(Ak) · Im(Al)

)
,

where Re(Ak) and Im(Ak) are the real and imaginary parts of Ak, respectively. Note that
Ak,l ∈ L3(Q) holds for all k, l ∈ {1, . . . , n} thanks to the embedding X ↪−→ L6(D; C)3.

We recall that A(u) denotes the weak solution to (1.8a) for u ∈ Rn. By the superposition
principle, A(u) admits the following form:

(3.7) A(u) =
n∑
j=1

ujAj ∀u ∈ Rn.

Thus, the Joule heat source in the right hand side of (3.1b) can be written as

τσω2

2
|A(u)|2 =

τσω2

2
|
n∑
j=1

ujAj |2 =
τσω2

2

n∑
k,l=1

ukul(Re(Ak) · Re(Al) + Im(Ak) · Im(Al))

=︸︷︷︸
(3.6)

n∑
k,l=1

ukulAk,l.
(3.8)

We define a symmetric (n, n)-matrix function A : Q→ Rn×n by

(3.9) A(x, t) = [Ak,l(x, t)].

Using this matrix function in (3.8), it follows that

(3.10)
τσω2

2
|A(u)|2 = uTAu,

from which we deduce that G(u) = y is given by the unique solution of

(3.11)


∂y

∂t
− div (α∇y) = uTAu in Q

ν · α∇y = 0 in Σ

y(·, 0) = y0 in Ω.

Remark 3.9. Notice that the matrix function A : Q → Rn×n is positive semidefinite. This
follows immediately from (3.10).

The mapping u 7→ uTAu has the derivative 2Au. Hence, we obtain for any u, h ∈ Rn that
zh = G′(u)h, where zh solves

(3.12)


∂zh
∂t
− div (α∇zh) = 2uTAh in Q

ν · α∇zh = 0 in Σ

zh(·, 0) = 0 in Ω.
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Further, for given u ∈ Rn, the adjoint state ϕ ∈ W (0, T ) associated with u is introduced as the
unique solution of

(3.13)


−∂ϕ
∂t
− div (α∇ϕ) = 0 in Q

ν · α∇ϕ = 0 in Σ

ϕ(·, T ) = y(·, T )− yd in Ω,

with y = G(u). Then, in view of (3.12), the derivative of f at u ∈ Rn in the direction h ∈ Rn can
be expressed as follows:

(3.14) f ′(u)h =
∫∫

Q

ϕ(x, t)2uTA(x, t)h dxdt =
∫∫

Q

∂H

∂u
(x, t, u, ϕ(x, t))h dxdt.

Here, the Hamiltonian H : Ω× (0, T )× Rn × R→ R is defined by

H(x, t, u, ϕ) = ϕuTA(x, t)u.

To obtain first–order necessary optimality conditions for (P), we assume the existence of an
interior (Slater) point with respect to the state constraint (1.9b):

Assumption 3.10. Let u∗ ∈ Ufeas be a local solution to (P). We assume that there exists a
vector u0 ∈ Uad such that(

G(u∗) +G′(u∗)(u0 − u∗)
)
(x, t) ≤ ymax − ε ∀(x, t) ∈ Q,

with some fixed ε > 0.
In what follows, Assumption 3.10 is referred to as the linearized Slater condition.
Theorem 3.11. Let u∗ ∈ Ufeas be a local solution to (P) and y∗ = G(u∗). Suppose that u∗

satisfies the linearized Slater condition. Then, there exist λ ∈M(Q)+ and ϕ∗ ∈ Lξ((0, T ),W 1,η(Ω))
with ξ, η ∈ [1, 2) and 2/ξ + 3/η > 4 such that

−∂ϕ
∗

∂t
− div (α∇ϕ∗) = λ|Q in Q

ν · α∇ϕ∗ = λ|Σ in Σ

ϕ∗(·, T ) = y∗(·, T )− yd + λ|Ω×{T} in Ω,

(3.15a)

∫
Q

(y∗ − ymax) dλ = 0,(3.15b)

∫∫
Q

∂H

∂u
(x, t, u∗, ϕ∗(x, t))(u− u∗)dxdt ≥ 0 ∀u ∈ Uad,(3.15c)

where λQ, λΣ and λΩ×{T} denote the restrictions of λ to the sets Q, Σ and Ω× {T}.
We refer to Casas [6] for the method to prove Theorem 3.11. As a consequence of Theorem

3.11, we obtain a further characterization for the local solution u∗.
Theorem 3.12. Let u∗ ∈ Ufeas be a local solution to (P) and y∗ = G(u∗). Suppose

that u∗ satisfies the linearized Slater condition. Then, there exists a pair (λ, ϕ∗) ∈ M(Q)+ ×
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Lξ((0, T ),W 1,η(Ω)) with ξ, η ∈ [1, 2) and 2/ξ + 3/η > 4 satisfying (3.15), and u∗ solves the follow-
ing linear–quadratic optimization problem:

(3.16) min
u∈Uad

1
2

(Φu, u)Rn ,

where Φ ∈ Rn×n is a symmetric matrix defined by

(3.17) Φkl =
∫∫

Q

ϕ∗(x, t)Ak,l(x) dxdt ∀l, k ∈ {1, . . . , n}.

Proof. Using the symmetric matrix Φ, we deduce that∫∫
Q

∂H

∂u
(x, t, u∗, ϕ∗(x, t))h dxdt =

∫∫
Q

ϕ∗(x, t)2u∗TA(x, t)h dxdt

=
∫∫

Q

ϕ∗(x, t)2
n∑

k,l=1

u∗khlAk,l(x, t) dxdt

= 2
n∑

k,l=1

u∗khl

∫∫
Q

ϕ∗(x, t)Ak,l(x, t) dxdt

= 2(Φu∗, h)Rn ∀h ∈ Rn.

(3.18)

Then, the variational inequality (3.15c) is equivalent to

(Φu∗, u− u∗)Rn ≥ 0 ∀u ∈ Uad.

The latter variational inequality is exactly the sufficient and necessary optimality condition for the
convex optimization problem (3.16). In conclusion, the assertion is valid.

Notice that the matrix Φ in Theorem 3.12 depends on the adjoint state ϕ∗. From this theorem,
we finally arrive at the following projection formula:

Theorem 3.13. Let u∗ ∈ Ufeas be a local solution to (P) and y∗ = G(u∗). Suppose
that u∗ satisfies the linearized Slater condition. Then, there exists a pair (λ, ϕ∗) ∈ M(Q)+ ×
Lξ((0, T ),W 1,η(Ω)), with ξ, η ∈ [1, 2) and 2/ξ + 3/η > 4, satisfying (3.15). For every j = 1, . . . , n,
u∗j obeys the following projection formula:

u∗j = P[ua,ub]

(
−

n∑
k=1
k 6=j

Φjk
Φjj

u∗k
)

if Φjj 6= 0,(3.19a)

u∗j = ua if Φjj = 0 and
n∑
k=1

Φjku∗k > 0,(3.19b)

u∗j = ub if Φjj = 0 and
n∑
k=1

Φjku∗k < 0,(3.19c)

with Φ ∈ Rn×n defined as in (3.17).
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Remark 3.14. The projection P[ua,ub] : R→ [ua, ub] is defined by

P[ua,ub](s) =

 ua if s ≤ ua
s if s ∈ (ua, ub)
ub if s ≥ ub.

Proof. According to Theorem 3.12, we know that

(3.20) (Φu∗, u− u∗)Rn ≥ 0 ∀u ∈ Uad.

We define a vector v ∈ Rn by

vl = u∗l for all l ∈ {1, . . . , n} \ {j} and vj ∈ [ua, ub] arbitrary.

It is obvious that v ∈ Uad. Then, setting u = v in (3.20) yields

(3.21)
( n∑
k=1

Φjku∗k
)(
vj − u∗j

)
≥ 0 ∀vj ∈ [ua, ub],

or equivalently

(3.22) (
n∑
k=1
k 6=j

Φjku∗k + Φjju∗j )(vj − u∗j ) ≥ 0 ∀vj ∈ [ua, ub].

Then, if Φjj 6= 0, a standard evaluation of (3.22) implies that

u∗j = P[ua,ub]

(
−

n∑
k=1
k 6=j

Φjk
Φjj

u∗k
)
.

Thus, (3.19a) is valid. Now, if Φjj = 0, then (3.22) gives

( n∑
k=1

Φjku∗k
)(
vj − u∗j

)
≥ 0 ∀vj ∈ [ua, ub],

from which we deduce that

u∗j =


ua if

n∑
k=1

Φjku∗k > 0

ub if
n∑
k=1

Φjku∗k < 0.

In conclusion, the assertion is valid.
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4. Reformulation of (P) using the superposition principle. In the previous section,
we have derived optimality conditions for (P) using techniques from the optimal control theory.
In the following, we demonstrate that the optimal control problem (P) can be transformed into a
(pure) semi–infinite optimization problem without explicit use of PDEs. Then, by the theory of
semi–infinite programming, we can derive optimality conditions for (P) which do not involve any
adjoint state. In addition, we also obtain a more specific structural property for the associated
Lagrange multiplier.

Definition 4.1.
(i) For k, l ∈ {1, . . . , n}, we define yk,l ∈W (0, T ) ∩ C(Q) as the unique solution of∫ T

0

〈∂yk,l
∂t

, φ〉H1(Ω)∗,H1(Ω) dt+
∫∫

Q

α∇yk,l · ∇φdxdt =
∫∫

Q

Ak,lφdxdt ∀φ ∈W (0, T ),

yk,l(0) = 0.

(ii) Let ŷ ∈W (0, T ) ∩ C(Q) be the unique solution of
∂ŷ

∂t
− div (α∇ŷ) = 0 in Q

ν · α∇ŷ = 0 in Σ

ŷ(·, 0) = y0 in Ω.

Notice that existence and uniqueness of yk,l ∈W (0, T )∩C(Q) and ŷ follows from Theorem 3.3.
Lemma 4.2. The solution operator G : Rn →W (0, T ) ∩ C(Q) admits the following decomposi-

tion:

(4.1) G(u) =
n∑

k,l=1

ukul yk,l + ŷ ∀u ∈ Rn.

Proof. The assertion follows immediately from (3.11).

Thanks to (4.1), the optimal control problem (P) can be rephrased as follows:

(P)


min
u∈Uad

f(u) :=
1
2

∫
Ω

( n∑
k,l=1

ukul yk,l(x, T ) + ŷ(x, T )− yd(x)
)2

dx

s.t.
n∑

k,l=1

ukul yk,l(x, t) + ŷ(x, t) ≤ ymax ∀(x, t) ∈ Q.

Remark 4.3. The latter formulation is particularly important for an efficient numerical com-
putation. The functions ŷ and yk,l for all k, l = 1, . . . , n are independent of u. Therefore we only
have to compute them once. After determining these quantities, we do not need to solve any PDEs
to find an optimal solution to (P).

For a given feasible control u ∈ Ufeas, we define the active set F(u) ⊂ Q associated with u by

F(u) =
{

(x, t) ∈ Q
∣∣ n∑
k,l=1

ukul yk,l(x, t) + ŷ(x, t) = ymax

}
.
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In the upcoming theorem, we state the necessary optimality conditions for (P) obtained from the
theory of semi–infinite programming. See the monograph by Bonnans and Shapiro [4, Theorem
4.101]. In what follows, we denote by δq the Dirac measure concentrated at a point q ∈ Q.

Theorem 4.4. Let u∗ ∈ Ufeas be a local solution to (P) satisfying the linearized Slater condition

and assume that F(u∗) 6= ∅. Then, there exists λ =
m∑
j=1

µjδ{(xj ,tj)} such that

m ≤ n, µ1, . . . , µm ≥ 0 with
m∑
j=1

µj 6= 0,(4.2a)

(x1, t1), . . . , (xm, tm) ∈ F(u∗),(4.2b)

f ′(u∗)(u− u∗) +
∫
Q

G′(u∗)(u− u∗) dλ ≥ 0 ∀u ∈ Uad.(4.2c)

Taking now Lemma 4.2 into account, it follows from Theorem 4.4 the following result:
Theorem 4.5. Let u∗ ∈ Ufeas be a local solution to (P) and y∗ = G(u∗). Assume that

F(u∗) 6= ∅ and u∗ satisfies the linearized Slater condition. Then, there exists λ =
m∑
j=1

µjδ{(xj ,tj)}

satisfying (4.2), and u∗ solves the following linear–quadratic optimization problem:

min
u∈Uad

1
2

(Bu, u)Rn ,

where B ∈ Rn×n is a symmetric matrix defined by

(4.3) Bkl =
∫

Ω

(y∗(x, T )− yd(x))yk,l(x, T ) dx+
m∑
j=1

µjyk,l(xj , tj) ∀l, k ∈ {1, . . . , n}.

Proof. As yk,l = yl,k holds for all k, l ∈ {1, . . . , n}, (4.1) yields

(G′(u∗)h)(x, t) = 2
n∑

k,l=1

u∗khl yk,l(x, t) ∀h ∈ Rn, ∀(x, t) ∈ Q.

Thus, since λ =
m∑
j=1

µjδ(xj ,tj), we deduce that

f ′(u∗)h+
∫
Q

G′(u∗)h dλ =
∫

Ω

(y∗(x, T )− yd(x))(G′(u∗)h)(x, T ) dx+
m∑
j=1

µj
(
G′(u∗)h

)
(xj , tj)

=
∫

Ω

(y∗(x, T )− yd(x))(2
n∑

k,l=1

u∗khlyk,l(x, T )) dx+
m∑
j=1

µj 2
n∑

k,l=1

u∗khl yk,l(xj , tj)

= 2
n∑

k,l=1

u∗khl

(∫
Ω

(y∗(x, T )− yd(x))yk,l(x, T ) dx+
m∑
j=1

µjyk,l(xj , tj)
)

︸ ︷︷ ︸
=Bkl

= 2 (Bu∗, h)Rn .

(4.4)
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For this reason, (4.2c) is equivalent to

(4.5) (Bu∗, u− u∗)Rn ≥ 0 ∀u ∈ Uad,

from which we deduce that the assertion is valid.
Corollary 4.6. Let u∗ ∈ Ufeas be a local solution to (P) and y∗ = G(u∗). Assume that

F(u∗) 6= ∅ and u∗ satisfies the linearized Slater condition. Then, there exists λ =
m∑
j=1

µjδ{(xj ,tj)}

satisfying (4.2). Furthermore, for every j = 1, . . . , n, u∗j obeys the following projection formula:

u∗j = P[ua,ub]

(
−

n∑
k=1
k 6=j

Bjk
Bjj

u∗k
)

if Bjj 6= 0,(4.6a)

u∗j = ua if Bjj = 0 and
n∑
k=1

Bjku
∗
k > 0,(4.6b)

u∗j = ub if Bjj = 0 and
n∑
k=1

Bjku
∗
k < 0,(4.6c)

with B ∈ Rn×n defined as in (4.3).
The proof is completely analogous to the one for Theorem 3.13.

4.1. Second–order sufficient optimality conditions. Let us now turn to second–order
sufficient optimality conditions for (P). We introduce the cone of critical directions for feasible
controls of (P) in the following definition:

Definition 4.7 (Cone of critical directions). Let u∗ ∈ Ufeas and suppose that u∗ together with

λ =
m∑
j=1

µjδ(xj ,tj) satisfies the first–order optimality system (4.2). Further, let B ∈ Rn×n be defined

as in (4.3). We recall from (4.4) that

(4.7) f ′(u∗) +
∫
Q

G′(u∗) dλ = 2Bu∗.

(i) The subset Cu∗ ⊂ Rn is defined by Cu∗ = {h ∈ Rn | h satisfies (4.8)− (4.10)}

hj =


≥ 0 if u∗j = ua,

= 0 if (Bu∗)j 6= 0,
≤ 0 if u∗j = ub,

(4.8)

zh(x, t) ≤ 0 if y∗(x, t) = ymax,(4.9) ∫
Q

zh(x, t) dλ = 0,(4.10)

where zh = G′(u∗)h = 2
n∑

k,l=1

u∗khl yk,l.
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(ii) We say that u∗ satisfies the second order sufficient condition (SSC) if

(SSC) hT
∂2L

∂u2
(u∗, λ)h > 0 ∀h ∈ Cu∗ \ {0},

where L : Rn ×M(Q)→ R denotes the Lagrangian of (P) defined by

L (u, λ) = f(u) +
∫
Q

(G(u)− ymax)dλ.

The upcoming theorem provides a second–order sufficient condition for (P); we refer the reader
to [4] for the method of the proof.

Theorem 4.8. Let u∗ ∈ Ufeas and suppose that u∗ together with λ =
m∑
j=1

µjδ(xj ,tj) satisfies the

first–order optimality system (4.2). If u∗ satisfies (SSC), then there exist positive real numbers ε1

and ε2 such that

f(u∗) +
ε2

2
|u− u∗|Rn ≤ f(u)

holds true for every feasible control u of (P) satisfying |u− u∗|Rn < ε1. In particular, u∗ is a local
solution of (P) according to Definition 3.7.

In general, it is very difficult and even impossible to deduce (SSC) for the continuous problem
(P) from those associated with the discretized optimal control problems (Ph) (see the next section
for the details of the discretization). The numerical verification of second order sufficient conditions
was investigated by Rösch and Wachsmuth [23]. The analysis is however very technical and only
true for a few very special classes of elliptic problems. In our numerical algorithm, we compute the
reduced Hessian associated with (Ph) as an indicator for local optimality of the numerical solution.
The Hessian can be easily computed as we only deal with finitely many control parameters. If the
Hessian is positive definite, then this is some indication that (SSC) might hold for (P), from which
we can expect local optimality. However, this is not a rigorous proof.

5. Numerical test. Throughout the experiment, the domain D is given by (−0.75, 0.75)3.
The workpiece Ω is located in the center of D and is given by a block of height 0.3, width 0.1, and
length 0.1. Further, we consider two induction coils I1 and I2 given by

I1 =


 0

0
−0.04

+

 (0.1 + s cos η) cos θ
(0.1 + s cos η) sin θ

s sin η

 : s ∈ [0, 0.015], η, θ ∈ [0, 2π]



I2 =


 0

0
0.04

+

 (0.1 + s cos η) cos θ
(0.1 + s cos η) sin θ

s sin η

 : s ∈ [0, 0.015], η, θ ∈ [0, 2π]

 .

Both I1 and I2 are made of copper (Cu), whereas the workpiece Ω is made of silver (Ag). The
corresponding material parameters are presented in Table 5.1. The other data used in the numerical
test are summarized in the following:

T = 360 (s), TE = 120 (s), y0 = 293 (K), ω = 1000 (Hz), ua = 100 (V), ub = 1000 (V).
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Fig. 5.1. Computational domain D Fig. 5.2. Workpiece Ω and coils I1, I2 inside D

Table 5.1
Material parameter (left: Cu and right: Ag)

µ
(

H
m

)
σ
(

S
m

)
1, 256 · 10−6 5.96 · 107

µ
(

H
m

)
σ
(

S
m

)
α
(

m2

s

)
1.257 · 10−6 6.3 · 107 1.6563 · 10−4

We recall that the heat source is set to be zero in the time interval (TE , T ] (see (1.2)). The
computational domain D is divided into a mesh that is refined on the interface ∂Ω (see Figures
5.3–5.4). The mesh consists of 30433 tetrahedral, where 13262 tetrahedron are located in Ω.

Fig. 5.3. Discretization mesh Fig. 5.4. Mesh refinement on ∂Ω

As we only consider two induction coils and due to our setting, the optimal control problem
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(P) becomes

(5.1)


min
u∈R2

1
2

∫
Ω

(u2
1 y1,1(x, T ) + 2u1u2y1,2(x, T ) + u2

2 y2,2(x, T ) + 293− yd(x))2 dx

s.t. 100 ≤ u1 ≤ 1000
100 ≤ u2 ≤ 1000

u2
1 y1,1(x, t) + 2u1u2y1,2(x, t) + u2

2 y2,2(x, t) + 293 ≤ ymax ∀(x, t) ∈ Q.

To solve (5.1) numerically, we need to determine the functions y1,1, y1,2, y2,2 (see Definition 4.1) as
well as the vector fields A1, A2 (see Definition 3.8). These quantities were numerically computed
by the commercial software COMSOL Multiphysics (3D AC/DC Module). More precisely, the
variational equalities forAj , j = 1, 2, were discretized using second–order Nédélec’s curl–conforming
edge elements (cf. [17]). Hereafter, the PDEs for the quantities y1,1, y1,2, y2,2 were discretized using
P1–elements (with backward Euler in time).

We denote by yh1,1, yh1,2, yh2,2 the FEM approximations to y1,1, y1,2, y2,2, respectively. As pointed
out in Remark 4.3, these FEM approximations have to be solved only once. We found numerically
that the mappings

t 7→ ‖yh1,1(·, t)‖C(Ω), t 7→ ‖yh1,2(·, t)‖C(Ω), t 7→ ‖yh2,2(·, t)‖C(Ω)

are monotone increasing in [0, TE ] and monotone decreasing in [TE , T ]. For this reason

u2
1 y

h
1,1(x, t) + 2u1u2y

h
1,2(x, t) + u2

2 y
h
2,2(x, t) + 293 ≤ ymax ∀(x, t) ∈ Q

can be equivalently written as

u2
1 y

h
1,1(x, TE) + 2u1u2y

h
1,2(x, TE) + u2

2 y
h
2,2(x, TE) + 293 ≤ ymax ∀x ∈ Ω,

for all u1, u2 ∈ R+. Using the FEM approximations yh1,1, yh1,2, yh2,2, we formulate the discrete
approximation of the optimization problem (5.1) as follows:

(5.2)


min
u∈R2

fh(u) :=
1
2

∫
Ω

(u2
1 y

h
1,1(x, T ) + 2u1u2y

h
1,2(x, T ) + u2

2 y
h
2,2(x, T ) + 293− yd(x))2 dx

s.t. 100 ≤ u1 ≤ 1000
100 ≤ u2 ≤ 1000

u2
1 y

h
1,1(xj , TE) + 2u1u2y

h
1,2(xj , TE) + u2

2 y
h
2,2(xj , TE) + 293 ≤ ymax ∀xj ∈ Nh,

where Nh ⊂ Ω denotes the set of all nodes of the discretization mesh. In (5.1), the minimizing
procedure is restricted to the mesh nodes, as we use P1–elements for the discretization of the
temperature. Thus, the extrema are located on the nodes. In general, this is not the case, if we use
P2–elements. The problem (5.2) belongs to a class of nonlinear constrained programming problems.
We solved it by a quasi-Newton-SQP algorithm (cf. [18, Chapter 8]).

Example 5.1. We choose yd ≡ 500 and ymax = 600.
In Table 5.2, we provide a detailed insight into the convergence behavior of the algorithm for

solving Example 5.1. Here L denotes the Lagrangian associated with the optimization problem
(5.2). The algorithm converged to the solution

(5.3) uh = (2.1547566e+02 , 2.1559095+02)T .
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Fig. 5.5. Example 5.1: optimal temperature yh at different times

In Figure 5.5, we depict the computed optimal temperature yh := u2
h,1 y

h
1,1+2uh,1uh,2yh1,2+u2

h,2 y
h
2,2+

293. As visualized in this figure, yh does not hit the maximum temperature ymax, i.e., all inequality
constraints at the optimal solution (5.3) are inactive. Hence, Example 5.1 is equivalent to a un-
constrained optimization problem. At the final time t = T , the temperature yh approximates the
desired temperature yd satisfactorily (see Figure 5.5). In fact, the value of the objective functional
at the optimal solution is almost zero (see Table 5.2).

Table 5.2
Convergence history (Example 5.1)

it. fh(uk) |∇uL(uk, λk)|
1 39.486 0.218
2 7.45342 31.9
3 0.0503673 8.41
4 0.00692233 0.00624
5 3.14349e-06 0.000132
6 3.47882e-10 1.02e-06
7 1.60682e-10 1.26e-09
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As mentioned in the previous section, to check (SSC) numerically, we employ the reduced
Hessian

∇2
uL(uh, λh) = ∇2fh(uh) +

∑
xj∈Nh

2λh,j

(
yh1,1(xj , TE) yh1,2(xj , TE)
yh1,2(xj , TE) yh2,2(xj , TE)

)
,

where uh and λh are the solution and the Lagrange multiplier computed by our algorithm. In this
example, uh is given by (5.3) and λh = 0. The reduced Hessian computed by our algorithm is given
by (

5.0510257e− 01 −4.9675116e− 01
−4.9675116e− 01 4.9947607e− 01

)
.

This matrix is positive definite, which indicates that the computed solution (5.3) is a local solution
of the continuous problem.

Example 5.2. We choose yd ≡ ymax = 500.
In the second example, ymax is set to be the same as the desired temperature 500 K. In this

case, the algorithm converged to the following solution

(5.4) uh = (1.9650389e+02 , 1.9941333e+02)T .

The convergence history of the algorithm is presented in Table 5.3, and we display the computed
optimal temperature yh at the final time t = 360 in the plot next to Table 5.3.

Table 5.3
Convergence history (Example 5.2)

it. fh(uk) |∇uL(uk, λk)|
1 39.486 0.218
2 8.23604 19.8
3 1.30785 0.523
4 1.60629 0.0166
5 1.60721 0.0159
6 1.57124 0.00354
7 1.57162 6.16e-06
8 1.57162 2.64e-13

Monitoring the above plot, we find that the desired temperature 500 K is not completely
achieved (cf. the value of the objective functional in Table 5.3). This is due to the presence of the
temperature constraint yh(x, t) ≤ ymax = 500 that has to be satisfied for all (x, t) ∈ Q. In fact, at
the time t = TE , the optimal temperature yh hits the bound ymax (cf. Figure 5.6) at the following
two nodal points:

xa = (0.05,−0.05,−0.030079)T , xb = (0.05,−0.05, 0.01504)T .

In Figure 5.7, we depict the cross sections of yh (at t = 120) in the x1-x2 plane passing through
the points xa and xb, respectively. We monitor that the heat is concentrated at the square edges.
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Fig. 5.6. Example 5.2: optimal temperature yh at different times

Fig. 5.7. Cross-section of yh in the x1-x2 plane: left plot x3 = −0.030079 and right plot x3 = 0.01504

Further, the heat on the surface of the conductor Ω is greater than that in the region around its
core. This effect occurs due to the skin effect, well–known for induction heating processes (see [15]).

The computed Lagrange multiplier λh associated with the solution (5.4) is positive at the nodal
points xa, xb with the values

2.8176312e-02, 5.3745619e-02.

Then, the approximation to the Lagrange multiplier for the undiscretized problem (5.1) is given by

λ = µ1δ(xa,TE) + µ2δ(xb,TE),

with µ1 := 2.8176312e-02 and µ2 := 5.3745619e-02. Finally, as in the previous example, the reduced
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Hessian for Example 5.2 is positive definite:(
2.3406088e− 03 2.3187394e− 03
2.3187394e− 03 2.3740902e− 03

)
.

This provides an indication for local optimality of the computed solution (5.4).
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