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An optimal control problem arising in the context of 3D electromagnetic induc-
tion heating is investigated. The state equation is given by a quasilinear stationary
heat equation coupled with a semilinear time-harmonic eddy current equation. The
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1 Introduction

In the recent past, there has been growing interest in the analysis and numerical modeling of
electromagnetic induction heating. Generally speaking, its mathematical model is given by
nonlinear heat equations coupled with Maxwell equations. From among many contributions
to this topic, we only mention Bossavit and Rodrigues [6], Bodart et al. [4], Clain and
Touzani [9], Hömberg [15], Parietti and Rappaz [21], Rappaz and Swierkosz [22]. An
important issue arising in the context of electromagnetic induction heating in modern
industry is mainly how to control the process in a way that a desired temperature of the
targeted object can be achieved optimally. In addition, in order to avoid undesired damage
or melting, the temperature (state of the system) has to be uniformly bounded during
the heating process. Thus, it is necessary to include pointwise inequality state constraints
in the optimal control problem. From the theoretical and numerical point of view, the
treatment of such a problem is challenging. There are two main reasons for this: On the
one hand, higher regularity of the state is required for the existence of Lagrange multipliers.
On the other hand, Lagrange multipliers associated with pointwise state constraints are in
general only Borel measures (cf. [1, 7, 8, 23]).

Eddy current equations

Neglecting the electrical displacement and free charges in the full Maxwell equations leads
to the eddy current equations (cf. [5]). For a fixed angular frequency ω > 0, the time-
harmonic eddy current equations read as follows

∇×H = J in D (Ampère’s law) (1)
∇× E = −iωB in D (Faraday’s law) (2)
∇ · B = 0 in D (Gauss’s law for magnetism) (3)

J = σDE in D (Ohm’s law) (4)
B = µH in D (Constitutive relation). (5)

In the above setting, E and H denote the electric field intensity and the magnetic field
intensity occupying some bounded domain D ⊂ R3. The vector field B describes the
magnetic induction, J represents the total current density, and i denotes the imaginary
unit. Further, µ is the magnetic permeability and σD is the electrical conductivity of D.
Let us remark that Gauss’s law for magnetism (3) implies the existence of a magnetic
vector potential A satisfying

∇×A = B in D ∇ · A = 0 in D. (6)

Then, applying (6) to the system (1)–(5), a second-order equation for A can be derived
(see [12, 15]). The corresponding formulation for our model will be presented shortly.
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Figure 1: Illustration of electromagnetic induction heating.

Induction heating process

In principle, an electromagnetic induction heating system consists of two essential com-
ponents: an induction coil connected to an alternating current (AC) power supply and
an electrically conductive workpiece (heated material). See Figure 1 for an illustration of
induction heating. The AC power supply injects alternating current into the induction coil
which produces in turn an alternating magnetic field. Since the workpiece is electrically
conductive, the magnetic field generates an eddy current within it. Then, the resistance to
the eddy current induces heat in the workpiece (cf. the monograph [16]). A 3D electromag-
netic induction heating model involving a thermomechanical effect for induction hardening
has been recently investigated by Hömberg in [15]. We follow his model with a further sim-
plification which does not involve the thermomechanical effect. Let Ω, R ⊂ D denote the
workpiece and the induction coil, respectively, and we suppose that Ω∩R = ∅. The region
D \

(
Ω ∪R

)
is assumed to be the surrounding air and hence, as air is non-conducting, σD

can be decomposed into:

σD =


σ in Ω
σR in R

0 in D \
(
Ω ∪R

)
,

where σ and σR represent the electrical conductivities of Ω and R, respectively. In our
model, we suppose that the induction coil R is connected to some external source and
there is no impressed current source in the workpiece Ω so that we arrive at the following
magnetic vector potential formulation:

∇×
(
µ−1∇×A

)
+ iωσ A = 0 in Ω

∇×
(
µ−1∇×A

)
+ iωσRA = Jsource in R

∇×
(
µ−1∇×A

)
= 0 in D \ (Ω ∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D.

(7)
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Here and in what follows, ~n denotes the outward unit normal to the corresponding surface
and Jsource is the impressed current source. Note that the boundary condition A× ~n = 0
on ∂D physically means that ∂D is a perfect conductor. In addition to this boundary
condition, we also include the following interface conditions:

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R and [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω, (8)

where [·]∂R and [·]∂Ω denote the jumps of a quantity across the interfaces ∂R and ∂Ω,
respectively. By (5) and (6), the above interface conditions are equivalent to

[H × ~n]∂R = 0 on ∂R [H × ~n]∂Ω = 0 on ∂Ω.

In other words, the tangential trace of the magnetic field intensity H is assumed to be
continuous across the interfaces ∂Ω and ∂R.

Let us now explain, how the impressed current source Jsource in (7) looks like: Through-
out the paper, we assume that:

• The induction coil R is given by the union R =
n⋃
i=1

Ri (n ≥ 1) where R1, . . . , Rn are

assumed to be pairwise disjoint rings.

• For every j = 1, . . . , n, the voltage uj ∈ R+ in every coil Rj can be maintained
constant and the current source Jsource in every coil Rj is assumed to be influenced
only by applying the voltage uj .

Based on the above assumption, the impressed current source Jsource can be written as
follows

Jsource(x) =
n∑
j=1

ujJj(x). (9)

The control parameter for our system is given by uj ∈ R+, j = 1, . . . , n. On the other
hand, every vector field Jj : Rj −→ R3 is fixed given data and, as Jsource represents current,
it has to satisfy the physical consistency assumption:

∇ · Jj = 0 in Rj Jj · ~n = 0 on ∂Rj . (10)

An example for Jj is given as follows:

Jj(x) = (−x2/
√
x2

1 + x2
2 , x1/

√
x2

1 + x2
2 , 0)T ∀x = (x1, x2, x3)T ∈ Rj . (11)

As every Rj is a ring (torus), it is straightforward to show that Jj as given above satisfies
(10). Further examples for Jj can be found in Druet et al. [11].
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Stationary induction heating

Assuming that the oscillation period 2π/ω of the electromagnetic fields is much smaller
than the heat diffusion time, the Joule heat source can be approximated by its averaged
value over one oscillation period (see [9]). This approximation leads to the following sta-
tionary induction heating system:

−∇ · (κ(x, y)∇y) + d(x, y) = 1
2ω

2σ(x, y)|A|2 in Ω

y = 0 on ∂Ω

∇×
(
µ−1∇×A

)
+ iωσ(x, y)A = 0 in Ω

∇×
(
µ−1∇×A

)
+ iωσRA =

n∑
j=1

ujJj in R

∇×
(
µ−1∇×A

)
= 0 in D \ (Ω ∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω.

(12)

In this setting, y denotes the temperature and κ is the thermal conductivity of Ω. The
two-way nonlinear coupling between the quasilinear stationary heat equation and the time-
harmonic eddy current equation arises from the dependence of σ on the temperature y.
In fact, the temperature dependence effect of thermal and electrical conductivities cannot
be ignored as it has been confirmed by many experimental studies (see e.g. [10, 16]).
Notice that, instead of the homogeneous Dirichlet-type boundary condition, the subsequent
analysis applies also to the nonlinear Neumann- or Robin-type boundary conditions such
as ∂y

∂~n + b(x, y) = y0 on ∂Ω with a sufficiently regular right hand side y0 and nonlinearity b
satisfying some local boundedness and monotonicity assumptions. The author is moreover
convinced that the subsequent considerations can be extended to the associated system
with nonlocal boundary radiation conditions arising from heat transfer problems in crystal
growth (cf. [11, 17, 18]).

Optimal control

Let yd ∈ L2(Ω) be a desired temperature and zd ∈ L2(Ω)3 be a desired temperature
gradient. In addition, let α ≥ 0 and β > 0. Our focus is set on the following optimal
control problem:

minimize
1
2

∫
Ω
|y − yd|2 dx+

α

2

∫
Ω
|∇y − zd|2 dx+

β

2
|u|2 (P)

subject to (12) and the following inequality control- and state-constraints:{
uaj ≤ uj ≤ ubj for all j = 1, . . . , n

ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω.
(13)
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The lower and upper control-bounds ua, ub ∈ Rn satisfy 0 ≤ uaj < ubj for all j = 1, . . . , n.
Further, the lower and upper state-bounds ya, yb ∈ C(Ω) satisfy ya(x) < yb(x) for all x ∈ Ω.

It should be underlined that optimal control of 3D stationary induction heating prob-
lems in the decoupled case has been recently investigated by Druet et al. [11]. In this work,
we considered a temperature-independent electrical conductivity such that the stationary
heat equation and the eddy current equation could be investigated separately. However,
the results in [11] cannot be directly transferred to (P) due to the two-way nonlinear cou-
pling in (12). Also, the linearized system associated with (12) is nonstandard (see (40) on
p. 16). Therefore, the analysis of (P) represents the genuine contribution of the present
paper and requires us to extend the analysis of the aforementioned reference. Note that
the very first results on optimality conditions for optimal control of quasilinear elliptic
equations have been recently obtained by Casas and Tröltzsch (see [8]). We shall follow
their technique to prove the existence result of the coupled forward problem (12).

The main results of the paper are summarized as follows: First, the existence of solu-
tions to (12) is established in Section 3 (Theorem 1). Then, by means of the maximum
elliptic regularity result by Elschner et al. [13], we derive the state regularity in W 1,q

0 (Ω)
(Proposition 2) which plays a significant role in our analysis. Section 4 is devoted to the
analysis of the linearized system associated with (12). Some sufficient conditions shall be
established which guarantee the solvability of the linearized system (Theorem 3). A con-
sequence of this result is the uniqueness of the solution to (12) (Corollary 1). Finally, the
first-order necessary optimality condition of (P) is derived in Section 5.

2 General assumptions and notation

Let us introduce the mathematical setting including the notation used throughout this
paper. We denote by c a generic positive constant which can take different values on
different occasions. If X is a linear normed function space, then we use the notation ‖ · ‖X
for a standard norm used in X. Furthermore, we set X3 := X ×X ×X. The dual space
of X is denoted by X∗ and, for the associated duality pairing, we write 〈·, ·〉X∗,X . If it
is obvious in which spaces the respective duality pairing is considered, then the subscript
is occasionally neglected. Given another linear normed space Y , the space of all bounded
linear operators from X to Y is denoted by L(X,Y ) and if X is continuously embedded
in Y , then the corresponding injection is denoted by X ↪→ Y . For the Fréchet derivative
of a differentiable operator B : X → Y at x ∈ X in the direction h ∈ X, we write B′(x)h.
Moreover, the kernel and the image of B : X → Y are denoted by kerB and ranB,
respectively.

Throughout the paper, for every 1 ≤ q ≤ ∞ we denote its conjugate exponent by q′. The
Sobolev space on a bounded Lipschitz domain O ⊂ R3 is as usual denoted by Wm,q(O) and
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the corresponding space of complex-valued functions is denoted by Wm,q(O; C). Further,

H(curl;O) := {K ∈ L2(O; C)3 | ∇ ×K ∈ L2(O; C)3}
H(div;O) := {K ∈ L2(O; C)3 | ∇ · K ∈ L2(O; C)},

where the curl- and div-operators are understood in the distribution sense. Notice that
every vector field K ∈ H(curl;O) has the tangential trace K × ~n in H−1/2(∂O; C)3 satis-
fying

〈K×~n, ψ〉H−1/2(∂O;C)3,H1/2(∂O;C)3 =
∫
O
K ·
(
∇×ψ

)
dx−

∫
O

(
∇×K

)
·ψ dx ∀ψ ∈ H1(O; C)3.

(14)
We further point out that the real- and imaginary-parts of an element z ∈ C are denoted
by Re z and Imz, respectively. Further, its complex conjugate is written as z. Let us now
state the general assumption for the data involved in (12).

Assumption 1

(i) The domain D ⊂ R3 is bounded and simply connected with a connected boundary ∂D.
The domain D is either of class C1,1 or convex. The subdomain Ω is assumed to be
Lipschitz in the appropriate sense of Grisvard [14].

(ii) The functions d : Ω × R → R and κ : Ω × R → R are Carathéodory functions: For
almost all fixed x ∈ Ω the functions d(x, ·) and κ(x, ·) are continuous and, for each
fixed y ∈ R, the functions d(·, y) and κ(·, y) are Lebesgue measurable. Also, assume
that the function d(x, ·) for almost all fixed x ∈ Ω is monotone non-decreasing and
there exists a constant κl > 0 such that

κl ≤ κ(x, y) for a.a. x ∈ Ω and all y ∈ R. (15)

For every M > 0, there exists CM > 0 such that

|d(x, y)|+ |κ(x, y)| ≤ CM for a.a. x ∈ Ω and all y ∈ [−M,M ]. (16)

(iii) The function σ : Ω×R→ R is also a Carathéodory function. There exist an exponent
q > 3, a positive function σ∗ ∈ Lq(Ω) and a constant σl > 0 such that

σl ≤ σ(x, y) ≤ σ∗(x) for a.a. x ∈ Ω and all y ∈ R. (17)

Finally, we assume that µ ∈ L∞(D), σR ∈ L∞(R) and there exists a constant C0 > 0
such that C0 ≤ σR(x) for all x ∈ R and C0 ≤ µ(x) for all x ∈ D.
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3 Existence and regularity of solutions to (12)

This section addresses the existence and regularity of the solution to the nonlinear coupled
system (12).

Definition 1 The space XN,0(D) is defined by

XN,0(D) := {K ∈ H(curl;D) ∩H(div;D) | ∇ · K = 0 in D, K × ~n = 0 on ∂D}.

The upcoming lemma shows that the L2-norm of a function in XN,0(D) can be estimated
by the L2-norm of its curl (cf. [19] and the references cited there).

Lemma 1 ([19, Corollary 3.51]) Let D ⊂ R3 be a bounded Lipschitz domain. If D is
simply connected and has a connected boundary ∂D, then there exists a constant cD > 0
such that

‖K‖L2(D;C)3 ≤ cD‖∇ ×K‖L2(D;C)3 ∀K ∈ XN,0(D).

Another well-known important result ensuring that the space XN,0(D) is continuously
embedded in H1(D; C)3 is summarized in the following lemma:

Lemma 2 ([3, Theorem 2.12 and Theorem 2.17]) Let D ⊂ R3 be a bounded domain.
If D is of class C1,1 or convex, then the injection XN,0(D) ↪→ H1(D; C)3 holds.

In the upcoming definition, we introduce the notion of (weak) solution to (12), which
is derived formally using (14).

Definition 2 A pair (y,A) ∈ H1
0 (Ω)×XN,0(D) is said to be a solution to (12) if and only

if it satisfies ∫
Ω
κ(x, y)∇y · ∇φdx+

∫
Ω
d(x, y)φdx =

∫
Ω

ω2

2
σ(x, y)|A|2 φdx∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y)A · ψ dx+

∫
R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx

∀(φ, ψ) ∈ H1
0 (Ω)×XN,0(D).

Proposition 1 Let Assumption 1 be satisfied and let u ∈ Rn. Then, for every y ∈ L2(Ω),
the variational problem

αy(A,ψ) :=
∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y)A · ψ dx+

∫
R
σRA · ψ dx)

=
n∑
j=1

uj

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D)

(18)
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admits a unique solution A = A(y) ∈ XN,0(D). Furthermore, the solution satisfies the
following a priori estimate:

‖A(y)‖XN,0(D) ≤ c|u|, (19)

with a constant c > 0 independent of A, y and u. If yk → y strongly in L2(Ω), then
A(yk)→ A(y) strongly in XN,0(D).

Proof. By virtue of Lemma 1, we may use the following norm

‖ψ‖XN,0(D) := ‖∇ × ψ‖L2(D;C)3 ∀ψ ∈ XN,0(D).

Consequently, the sesquilinear form αy is coercive and bounded in XN,0(D) such that the
Lax-Milgram lemma implies that (18) admits a unique solution A = A(y) ∈ XN,0(D).

Suppose that {yk}∞k=1 ⊂ L2(Ω) such that yk → y strongly in L2(Ω). We set A = A(y)
and Ak = A(yk) for all k ∈ N. Then, the difference Ak −A satisfies∫

D

1
µ
∇× (Ak −A) · ∇ × ψ dx+ iω

( ∫
Ω
σ(x, yk)Ak · ψ dx−

∫
Ω
σ(x, y)A · ψ dx

)
+iω

∫
R
σR(Ak −A) · ψ dx = 0 ∀ψ ∈ XN,0(D)

which is equivalent to∫
D

1
µ
∇× (Ak −A) · ∇ × ψ dx+ iω(

∫
Ω
σ(x, yk)(Ak −A) · ψ dx+

∫
R
σR(Ak −A) · ψ dx)

= iω

∫
Ω

(σ(x, y)− σ(x, yk))A · ψ dx ∀ψ ∈ XN,0(D).

Setting ψ = Ak −A in the above equality results in

|
∫
D

1
µ
|∇ × (Ak −A)|2 dx+ iω(

∫
Ω
σ(x, yk)|Ak −A|2 dx+

∫
R
σR|Ak −A|2 dx)|

= |iω
∫

Ω

(
σ(x, y)− σ(x, yk)

)
A · (Ak −A) dx|.

Consequently, Hölder’s inequality along with the injection XN,0(D) ↪→ H1(D; C)3 ↪→
L6(D; C)3 implies that

‖µ‖−1
L∞(D)‖Ak −A‖

2
XN,0(D) ≤ |iω

∫
Ω

(
σ(x, y)− σ(x, yk)

)
A · (Ak −A) dx|

≤ ω‖σ(·, y)− σ(·, yk)‖L2(Ω)‖A‖L4(D;C)3‖Ak −A‖L4(D;C)3

≤ c‖σ(·, y)− σ(·, yk)‖L2(Ω)‖Ak −A‖XN,0(D).
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Thus, there exists a constant c > 0 independent of k such that

‖Ak −A‖XN,0(D) ≤ c‖σ(·, y)− σ(·, yk)‖L2(Ω). (20)

On the other hand, in view of Lebesgue’s dominated convergence theorem (see e.g. [23,
Section 4.2.3]), (17) along with the convergence yk → y in L2(Ω) yields the convergence
σ(·, yk)→ σ(·, y) in L2(Ω) as k →∞. This convergence together with (20) completes the
proof.

For the remainder of the presentation, the norm ‖ψ‖XN,0(D) = ‖∇×ψ‖L2(D;C)3 is used.
With Lemma 2 and Proposition 1 at hand, we establish the existence of solutions to (12)
in the following theorem:

Theorem 1 Let Assumption 1 be satisfied and let u ∈ Rn. Then, the state equation (12)
admits a solution (y,A) ∈ H1

0 (Ω)∩C(Ω)×XN,0(D) satisfying the following a priori estimate:

‖y‖H1
0 (Ω)∩C(Ω) ≤ c(|u|

2 + 1) and ‖A‖XN,0(D) ≤ c|u| (21)

with a constant c > 0 independent of y,A and u.

Proof. To prove the assertion, we follow the lines of [8]. First of all, for every y ∈ L2(Ω),
let A(y) ∈ XN,0(D) be the unique solution of (18). Note that Proposition 1 and the
embedding

XN,0(D) ↪→ H1(D; C)3 ↪→ L6(D; C)3 (22)

imply that the mapping y 7→ A(y) is continuous from L2(Ω) to L6(D; C)3. Now the state
equation (12) can equivalently be expressed as−∇ · (κ(·, y)∇y) + d(·, y) =

1
2
ω2σ(·, y)|A(y)|2 in Ω

y = 0 on ∂Ω.
(23)

For the time being let M > 0 and we introduce the following truncated functions κM and
dM :

κM (x, y) :=


κ(x, y) |y| ≤ M

κ(x,M) y > M

κ(x,−M) y <−M
dM (x, y) :=


d(x, y) |y| ≤ M

d(x,M) y > M

d(x,−M) y <−M.

Then, in view of (16), there exists a constant CM > 0 such that

|dM (x, y)|+ |κM (x, y)| ≤ CM for all y ∈ R and almost all x ∈ Ω. (24)

Let us introduce an operator F : L2(Ω)→ H1
0 (Ω) where F(v) = y is defined by the unique

solution of −div(κM (·, v)∇y) + dM (·, v) =
1
2
ω2σ(·, v)|A(v)|2 in Ω

y = 0 on ∂Ω.
(25)
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According to (17) and (24)

−dM (·, v) +
1
2
ω2 σ(·, v)︸ ︷︷ ︸
∈L2(Ω)

|A(v)|2︸ ︷︷ ︸
∈L3(Ω)

∈ L
6
5 (Ω).

Hence, by (15) and the embedding L
6
5 (Ω) ↪→ H−1(Ω), the Lax-Milgram lemma immediately

implies that (25) admits a unique solution y = y(v) ∈ H1
0 (Ω). In addition, by virtue of

(17), (19), (22) and (24), the solution satisfies

‖y(v)‖H1
0 (Ω) ≤ c‖

1
2
ω2σ(·, v)|A(v)|2 − dM (·, v)‖

L
6
5 (Ω)

≤ c(‖σ∗‖L2(Ω)‖|A(v)|2‖L3(Ω) + ‖dM (·, v)‖
L

6
5 (Ω)

)

≤ c(‖A(v)‖2L6(D;C)3 + 1) ≤ c(|u|2 + 1) ∀v ∈ L2(Ω)

(26)

with a constant c > 0 independent of v, y, u,A.
Let us now consider the operator F as an operator in L2(Ω). In the following, we

verify that F : L2(Ω) → L2(Ω) is continuous. Suppose that a sequence {vk}∞k=1 ⊂ L2(Ω)
converges strongly to a v ∈ L2(Ω). The solution of (25) associated with vk is denoted by
y(vk) = yk ∈ H1

0 (Ω) for all k ∈ N and y(v) = y ∈ H1
0 (Ω). By (26), {yk}∞k=1 is uniformly

bounded in the H1
0 (Ω)–topology and hence there exists a subsequence {ykj

}∞j=1 ⊂ {yk}∞k=1

converging strongly in L2(Ω) to a ỹ ∈ L2(Ω). Let us show that ỹ = y. First, the difference
ykj
− y satisfies∫

Ω
κM (x, vkj

)∇(ykj
− y) · ∇φdx =

∫
Ω

(
κM (x, v)− κM (x, vkj

)
)
∇y · ∇φdx

+
∫

Ω

(
dM (x, v)− dM (x, vkj

)
)
φdx+

ω2

2

∫
Ω

(
σ(x, vkj

)− σ(x, v)
)
|A(v)|2φdx

+
ω2

2

∫
Ω
σ(x, vkj

)
(
|A(vkj

)|2 − |A(v)|2
)
φdx ∀φ ∈ H1

0 (Ω).

Setting φ = ykj
− y ∈ H1

0 (Ω) in the latter variational equality, taking (15) and (17) into
account and using Hölder’s inequality in the resulting inequality, we infer that

κl‖ykj
− y‖2H1

0 (Ω) ≤ ‖(κM (·, v)− κM (·, vkj
))∇y‖L2(Ω)‖ykj

− y‖H1
0 (Ω)

+‖dM (·, v)− dM (·, vkj
)‖L2(Ω)‖ykj

− y‖L2(Ω) +
(
ω2

2
‖σ(·, vkj

)− σ(·, v)‖L2(Ω)‖|A(v)|2‖L3(Ω)

+
ω2

2
‖σ∗‖L3(Ω)‖ |A(vkj

)|2 − |A(v)|2‖L2(Ω)

)
‖ykj

− y‖L6(Ω).
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Hence, it follows that

κl‖ykj
− y‖H1

0 (Ω) ≤ c
(
‖(κM (·, v)− κM (·, vkj

))∇y‖L2(Ω) + ‖dM (·, v)− dM (·, vkj
)‖L2(Ω)

+‖σ(·, vkj
)− σ(·, v)‖L2(Ω) + ‖|A(vkj

)|2 − |A(v)|2‖L2(Ω)

)
(27)

holds with a constant c > 0 independent of k. Analogously to an argument in the proof of
Proposition 1, (17) and (24) ensure that

dM (·, vkj
) → dM (·, v) in L2(Ω) as j →∞

σ(·, vkj
) → σ(·, v) in L2(Ω) as j →∞. (28)

In addition, as mentioned previously, Proposition 1 and the embedding (22) imply that

|A(vkj
)|2 → |A(v)|2 in L2(Ω) as j →∞. (29)

By standard arguments, there exists a subsequence of {vkj
}∞j=1 denoted w.l.o.g. again by

{vkj
}∞j=1 such that vkj

(x) → v(x) for a.a. x ∈ Ω as j → ∞. Consequently, since κM
is continuous with respect to the second variable, we immediately obtain the following
pointwise convergence:

κM (x, vkj
(x))2|∇y(x)|2 → κM (x, v(x))2|∇y(x)|2 for a.a. x ∈ Ω as j →∞.

Hence, thanks to the uniform boundedness (24), Lebesgue’s dominated convergence theo-
rem implies that

κM (·, vkj
)∇y → κM (·, v)∇y in L2(Ω) as j →∞. (30)

Applying (28)–(30) to (27) implies that ykj
→ ỹ = y strongly in L2(Ω). In conclusion,

every L2–converging subsequence of {yk}∞n=1 converges strongly to y in L2(Ω) so that,
by a standard result, we gain the desired continuity of F : L2(Ω) → L2(Ω). Moreover,
the compactness of F is an immediate consequence of (26) and the fact that the injection
H1

0 (Ω) ↪→ L2(Ω) is compact. Hence, along with (26), the Schauder fixpoint theorem implies
that F admits a fixed point yM . In other words, yM ∈ H1

0 (Ω) is a solution to−div(κM (·, yM )∇yM ) + dM (·, yM ) =
1
2
ω2σ(·, yM )|A(yM )|2 in Ω

yM = 0 on ∂Ω.
(31)

We show now that yM solves the original problem (23). On account of (17),

1
2
ω2 σ(·, yM )︸ ︷︷ ︸

∈Lq(Ω)

|A(yM )|2︸ ︷︷ ︸
∈L3(Ω)

∈ L
3q

3+q (Ω).
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Since q > 3, we have 3q
3+q >

3
2 . Consequently, taking (15) into account, the application of

Stampacchia technique (see Tröltzsch [23, Theorem 7.3]) implies that yM is bounded and
there exists a constant c > 0 independent of yM , A(yM ), κM (·, yM ) and dM such that

‖yM‖L∞(Ω) ≤ c‖
ω2

2
σ(·, yM )|A(yM )|2 − d(·, 0)‖

L
3q

3+q (Ω)
.

Thus, (17) and (19) yield
‖yM‖L∞(Ω) ≤ c∞(|u|2 + 1) (32)

with a constant c∞ > 0 independent of yM , A(yM ), κM (·, yM ), dM and u. To show that
yM ∈ H1

0 (Ω)∩L∞(Ω) is a solution to the original problem (23), we choose M > c∞(|u|2+1),
then (32) implies

κM (x, yM (x)) = κ(x, yM (x)), dM (x, yM (x)) = d(x, yM (x)) for a.a. x ∈ Ω.

In conclusion, yM ∈ H1
0 (Ω) ∩ L∞(Ω) solves the original problem (23) for sufficiently large

M . Finally, the continuity yM ∈ C(Ω) follows from a well-known regularity result for
elliptic linear problems (see e.g. [1]).

Let us address the W 1,q
0 (Ω)–regularity result for the y-solution of (12). For this purpose,

we need a further regularity assumption on the domain Ω and κ:

Assumption 2 The boundary ∂Ω is assumed to be of class C1. Further, there exist disjoint
subdomains Ωj ⊂ Ω, j = 1, . . . , s. Each boundary ∂Ωj does not touch ∂Ω and is of class

C1. The heat conductivity κ is assumed to be continuous on Ω \ {
s⋃
j=1

Ωj} × R and Ωj × R

for all j = 1, . . . , s.

Proposition 2 Let Assumption 1 and Assumption 2 be satisfied and let u ∈ Rn. Then,
every solution (y,A) ∈ H1

0 (Ω) ∩ C(Ω)×XN,0(D) of (12) has extra regularity y ∈ W 1,q
0 (Ω)

with q > 3 as in Assumption 1. Further, the following a priori estimate

‖y‖
W 1,q

0 (Ω)
≤ c(|u|2 + 1) (33)

holds with a constant c > 0 independent of A, y and u.

Proof. Let (y,A) ∈ H1
0 (Ω) ∩ C(Ω) ×XN,0(D) be a solution to the state equation (12).

Then, y satisfies∫
Ω
κ(x, y)∇y · ∇φdx =

∫
Ω

(
− d(x, y) +

ω2

2
σ(x, y)|A|2

)
φdx ∀φ ∈ H1

0 (Ω). (34)

We introduce the elliptic operator B(y) : W 1,q
0 (Ω)→W−1,q(Ω) defined by

〈B(y)ζ, φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
=
∫

Ω
κy∇ζ · ∇φdx ∀φ ∈W 1,q′

0 (Ω)
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where the function κy defined by

κy(x) = κ(x, y(x)) for a.a. x ∈ Ω.

Thanks to the regularity y ∈ C(Ω) and Assumption 2 , κy is continuous on Ω \ {
s⋃
j=1

Ωj}

and Ωj for all j = 1, . . . , s. Hence, by the regularity assumption on the interfaces stated
in Assumption 2 , the elliptic regularity result [13, Theorem 1.1] immediately implies that
B(y) : W 1,q

0 (Ω) → W−1,q(Ω) is an isomorphism. In the proof of Theorem 1, we have

mentioned that −d(·, y) + ω2

2 σ(·, y)|A|2 belongs to L
3q

3+q (Ω). For this reason, on account of

the embedding L
3q

3+q (Ω) ↪→W−1,q(Ω) (see e.g. Nečas [20, Theorem 3.4]), we can define the
element

ζ := B(y)−1

(
− d(·, y) +

ω2

2
σ(·, y)|A|2

)
∈W 1,q

0 (Ω). (35)

Then, according to the definition of B(y), it follows that ζ is the unique solution of∫
Ω
κ(x, y)∇ζ · ∇φdx =

∫
Ω

(
− d(x, y) +

ω2

2
σ(x, y)|A|2

)
φdx ∀φ ∈W 1,q′

0 (Ω). (36)

By classical bootstrapping arguments, (34) and (36) together with (15) yield y = ζ in W 1,q
0 (Ω).

Finally, the a priori estimate (33) follows from (35) along with the continuity of B(y)−1,
(17) and (21).

We point out that the variational form associated with (12) can be concisely written
as an operator equation in an appropriate dual space. Later on, this formulation will be
interpreted as an equality PDE-constraint in the control problem (P). The corresponding
operator is introduced in the upcoming definition. For the remainder of the paper, let
q > 3 be as in Assumption 1.

Definition 3

(i) The operator A : Rn ×W 1,q
0 (Ω) → XN,0(D) assigns to every element (u, y) ∈ Rn ×

W 1,q
0 (Ω) the unique solution A ∈ XN,0(D) of∫
D

( 1
µ
∇×A

)
·
(
∇×ψ

)
dx+ iω(

∫
Ω
σ(x, y)A ·ψ dx+

∫
R
σRA ·ψ dx) =

n∑
j=1

uj

∫
R
Jj ·ψ dx

for all ψ ∈ XN,0(D).

(ii) The operator C : Rn ×W 1,q
0 (Ω)→W−1,q(Ω) is defined by

〈C(u, y), φ〉 :=
∫

Ω
κ(x, y)∇y · ∇φdx+

∫
Ω
d(x, y)φdx− ω2

2

∫
Ω
σ(x, y)|A (u, y)|2φdx

for all (u, y) ∈ Rn ×W 1,q
0 (Ω) and all φ ∈W 1,q′

0 (Ω).
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In what follows, we only concentrate on the temperature-reduced system in the sense
that the magnetic vector potential A is written in terms of A (u, y). Thus, taking the
operator C into account, the weak formulation of (12) can be equivalently expressed as the
following operator equation with respect to the W−1,q(Ω)–topology:

C(u, y) = 0 in W−1,q(Ω). (37)

According to Theorem 1 and Proposition 2, for every given control u ∈ Rn, there exists at
least one state y ∈W 1,q

0 (Ω) satisfying (37).

4 Linearized equation

This section deals with the linearized system associated with (12). Our goal is to establish
the surjectivity of the derivative of the operator C at any given reference point (u∗, y∗)
which is specified later as an optimal solution to (P). This issue is complicated by the non-
monotonic structure of the corresponding linearized system, in which case the theorem
on monotone operators or the Lax-Milgram lemma are not applicable. Notice that the
surjectivity property is mainly important in order to derive the existence of Lagrange
multipliers associated with the control problem (P). Once the surjectivity is established,
the existence of multipliers can be directly derived by means of the classical result of
Kurcyusz and Zowe [24]. In the following, additional assumptions on the functions κ, σ
and d are made:

Assumption 3 The functions κ, σ and d are continuously differentiable with respect to
the second variable. There exists a constant c0 > 0 and, for every M > 0, there exists a
constant L(M) such that

|∂κ
∂y

(x, 0)|+ |∂d
∂y

(x, 0)|+ |∂σ
∂y

(x, 0)| ≤ c0

|∂κ
∂y

(x, y1)− ∂κ

∂y
(x, y2)|+ |∂σ

∂y
(x, y1)− ∂σ

∂y
(x, y2)|+ |∂d

∂y
(x, y1)− ∂d

∂y
(x, y2)| ≤ L(M)|y1 − y2|

hold for a.a. x ∈ Ω and all y1, y2 ∈ [−M,M ].

Thanks to Assumption 3 and the embedding W 1,q
0 (Ω) ↪→ C(Ω), the operators A : Rn×

W 1,q
0 (Ω)→ XN,0(D) and C : Rn ×W 1,q

0 (Ω)→W−1,q(Ω) are continuously differentiable.
In what follows, let (u∗, y∗) ∈ Rn×W 1,q

0 (Ω) be a reference point and A∗ = A (u∗, y∗) ∈
XN,0(D). The derivative of C at (u∗, y∗) in an arbitrary direction (u, y) ∈ Rn×W 1,q

0 (Ω) is
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given by

〈C ′(u∗, y∗)(u, y), φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
=
∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇φdx

+
∫

Ω

∂d

∂y
(x, y∗)yφ dx− ω2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2φdx

−ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(
A ′(u∗, y∗)(u, y)

)
+ ImA∗ · Im

(
A ′(u∗, y∗)(u, y)

))
φdx

∀φ ∈W 1,q′

0 (Ω),

(38)

where A ′(u∗, y∗)(u, y) = A ∈ XN,0(D) is given by the unique solution of

∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

+iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx =

n∑
j=1

uj

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D).

(39)

Note that, for any given G ∈ W−1,q(Ω), C ′(u∗, y∗)(u, y) = G corresponds to the following
(strong) PDE-formulation:



−∇ ·
(
κ(·, y∗)∇y + ∂κ

∂y (·, y∗) y∇y∗
)

+ ∂d
∂y (·, y∗)y − ω2

2
∂σ
∂y (·, y∗)y|A∗|2

= G+ ωσ(· , y∗)
(
ReA∗ · ReA+ ImA∗ · ImA

)
in Ω

y = 0 on ∂Ω

∇×
(
µ−1∇×A

)
+ iωσ(·, y∗)A = −iω ∂σ∂y (·, y∗)yA∗ in Ω

∇×
(
µ−1∇×A

)
+ iωσRA =

n∑
j=1

ujJj in R

∇×
(
µ−1∇×A

)
= 0 in D \ (Ω ∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω.

(40)
Our first goal is to establish a condition such that, for every given G ∈ W−1,q(Ω), the

operator equation

∂C

∂y
(u∗, y∗)y = G in W−1,q(Ω) (41)
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admits a solution y ∈ W 1,q
0 (Ω). The variational form associated with (41) is given by the

following linear coupled system:∫
Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇φdx+

∫
Ω

∂d

∂y
(x, y∗)yφ dx

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2φdx = 〈G,φ〉

W−1,q(Ω),W 1,q′
0 (Ω)

(42)

+ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · ReA+ ImA∗ · ImA

)
φdx

∀φ ∈W 1,q′

0 (Ω)

∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

= −iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx ∀ψ ∈ XN,0(D). (43)

To devise the existence, we exploit first the regularity structure involved in (42)–(43). Since
y∗ ∈W 1,q

0 (Ω) ↪→ C(Ω) holds for q > 3, Assumption 3 yields

∂κ

∂y
(·, y∗) ∈ L∞(Ω),

∂d

∂y
(·, y∗) ∈ L∞(Ω),

∂σ

∂y
(·, y∗) ∈ L∞(Ω). (44)

We now introduce the following operators:

B(y∗) : W 1,q
0 (Ω)→W−1,q(Ω) 〈B(y∗)v, ξ〉 =

∫
Ω

κ(x, y∗)∇v · ∇ξ dx

Q(y∗) : L∞(Ω)→W−1,q(Ω) 〈Q(y∗)v, ξ〉 =
∫
Ω

∂κ
∂y (x, y∗)v∇y∗ · ∇ξ dx

D(y∗) : L∞(Ω)→W−1,q(Ω) 〈D(y∗)v, ξ〉 =
∫
Ω

∂d
∂y (x, y∗)vξ dx

K(y∗, A∗) : L∞(Ω)→W−1,q(Ω) 〈K(y∗, A∗)v, ξ〉 = ω2

2

∫
Ω

∂σ
∂y (x, y∗)v|A∗|2ξ dx.

(45)
Note that these operators appear in the left hand side of the variational form (42). On
account of (44) as well as the regularity y∗ ∈ W 1,q

0 (Ω) and |A∗|2 ∈ L3(Ω), they are well-
defined, continuous and linear in their respective spaces.

Next, let us define the operator associated with the right hand side of (42). For this
purpose, we introduce the operator R(y∗, A∗) : L2(Ω) → XN,0(D) associated with the
variational form (43). In other words, for every v ∈ L2(Ω), R(y∗, A∗)v = A ∈ XN,0(D) is
given by the unique solution of∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

= −iω
∫

Ω

∂σ

∂y
(x, y∗)vA∗ · ψ dx ∀ψ ∈ XN,0(D).

(46)
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Thanks to the regularity ∂σ
∂y (·, y∗) ∈ L∞(D) and the embedding XN,0(D) ↪→ L6(D; C)3, the

right hand side of (46) given by

Fv(ψ) := −iω
∫

Ω

∂σ

∂y
(x, y∗)vA∗ · ψ dx ∀ψ ∈ XN,0(D)

is well-defined as an element of XN,0(D)∗. As a consequence, the Lax-Milgram lemma
implies that the operator R(y∗, A∗) : L2(Ω) → XN,0(D) is well-defined, continuous and
linear. Having established the operator R(y∗, A∗), we define the operator T (y∗, A∗) :
L2(Ω)→W−1,q(Ω) by

〈T (y∗, A∗)v, φ〉 := ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(
R(y∗, A∗)v

)
+ ImA∗ · Im

(
R(y∗, A∗)v

))
φdx

∀φ ∈W 1,q′

0 (Ω)
(47)

Let us remark that, due to σ(·, y∗) ∈ Lq(Ω), A∗ ∈ XN,0(D), R(y∗, A∗) ∈ L(L2(Ω), XN,0(D))
and the embedding XN,0(D) ↪→ L6(D; C)3, we have

σ(x, y∗)
(
ReA∗ · Re

(
R(y∗, A∗)v

)
+ ImA∗ · Im

(
R(y∗, A∗)v

))
∈ L

3q
3+q (Ω) ∀v ∈ L2(Ω)

and hence, by virtue of the embedding L
3q

3+q (Ω) ↪→ W−1,q(Ω), the operator T (u∗, y∗) :
L2(Ω)→W−1,q(Ω) is well-defined, linear and continuous.

Employing all the operators defined previously, (41) can be equivalently written as:

∂C

∂y
(u∗, y∗)y =

(
B(y∗) +

(
Q(y∗) +D(y∗)−K(y∗, A∗)

)
I∞,q − T (y∗, A∗)I2,q

)
y = G. (48)

In the above setting, the operators I∞,q and I2,q denote the injections W 1,q
0 (Ω) ↪→ L∞(Ω)

and W 1,q
0 (Ω) ↪→ L2(Ω), respectively.

In the proof of Theorem 1, we already mentioned that the elliptic operator B(y∗) :
W 1,q

0 (Ω) → W−1,q(Ω) is a topological isomorphism. Consequently, applying B(y∗)−1 to
(48) results in

B(y∗)−1∂C

∂y
(u∗, y∗)y =

(
I −Ψ(y∗, A∗)

)
y = B(y∗)−1G in W 1,q

0 (Ω) (49)

where Ψ(y∗, A∗) : W 1,q
0 (Ω)→W 1,q

0 (Ω) is given by

Ψ(y∗, A∗) := −B(y∗)−1
(
(Q(y∗) +D(y∗)−K(y∗, A∗))I∞,q − T (y∗, A∗)I2,q

)
. (50)

This motivates the following assumption:
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Assumption 4 Suppose that λ = 1 is not an eigenvalue of Ψ(y∗, A∗) : W 1,q
0 (Ω) →

W 1,q
0 (Ω).

Theorem 2 Let Assumptions 1, 2 and 3 be satisfied. Further, let (u∗, y∗) ∈ Rn×W 1,q
0 (Ω)

and A∗ = A (u∗, y∗). If Assumption 4 is satisfied, then ∂C
∂y (u∗, y∗) : W 1.q

0 (Ω) → W−1,q(Ω)
is an isomorphism and consequently, for every G ∈ W−1,q(Ω), the equation (41) has a
solution (y,A) ∈W 1,q

0 (Ω)×XN,0(D).

Proof. Since q > 3, the injections I∞,q : W 1,q
0 (Ω) ↪→ L∞(Ω) and I2,q : W 1,q

0 (Ω) ↪→
L2(Ω) are compact such that Ψ(y∗, A∗) : W 1,q

0 (Ω) → W 1,q
0 (Ω) is in turn compact. Con-

sequently, Fredholm’s theorem along with Assumption 4 implies that the operator
(
I −

Ψ(y∗, A∗)
)

: W 1,q
0 (Ω)→ W 1,q

0 (Ω) is continuously invertible and hence the assertion imme-
diately follows.

Remark 1 The regularity y∗ ∈ W 1,q
0 (Ω) with q > 3 is the key point of the whole argu-

mentation. Without such regularity, we would not have the compactness of the operator
Ψ(y∗, A∗) and the Fredholm alternative would not be applicable. Notice that, as every
compact operator possesses only countably many eigenvalues, Assumption 4 seems to be
reasonable.

An immediate consequence of Theorem 2 is the following uniqueness result for solutions
to the state equation (12):

Corollary 1 (Uniqueness result for (12)) Let Assumptions 1, 2 and 3 be satisfied and
let u∗ ∈ Rn. Further, let y∗ ∈ W 1,q

0 (Ω) satisfy C(u∗, y∗) = 0 and A∗ = A (u∗, y∗). If
Assumption 4 is fulfilled, then there exists an open neighborhood Bu∗ of u∗ in Rn such that
for every u ∈ Bu∗ there exists a unique y ∈W 1,q

0 (Ω) satisfying C(u,y)=0. In conclusion, for
every u ∈ Bu∗, the state equation (12) admits a unique solution (y,A) ∈W 1,q

0 (Ω)×XN,0(D).

Proof. Thanks to Theorem 2, ∂C∂y (u∗, y∗) : W 1.q
0 (Ω)→W−1,q(Ω) in continuously invert-

ible. Then, the assertion follows immediately from the implicit function theorem.
In the following, we establish a fairly simple example which meets the condition that

λ = 1 is not an eigenvalue of the compact operator Ψ(y∗, A∗) : W 1,q
0 (Ω)→W 1,q

0 (Ω).

Example 1 Let Assumptions 1, 2 and 3 be satisfied and let (u∗, y∗) ∈ Rn ×W 1,q
0 (Ω). If

∂σ
∂y (·, y∗) = 0, then λ = 1 is not an eigenvalue of the operator Ψ(y∗, A∗) : W 1,q

0 (Ω) →
W 1,q

0 (Ω).

Proof. We justify that (
I −Ψ(y∗, A∗)

)
y = 0 in W 1,q

0 (Ω) (51)
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admits only the trivial solution y = 0. Let y ∈ W 1,q
0 (Ω) be a solution to (51) and hence,

by the definition of Ψ(y∗, A∗) in (50), y satisfies(
B(y∗) +

(
Q(y∗) +D(y∗)−K(y∗, A∗)

)
I∞,q − T (y∗, A∗)I2,q

)
y = 0.

Since ∂σ
∂y (·, y∗) = 0, if follows that

(
B(y∗) + Q(y∗) + D(y∗)

)
y = 0. Hence, according to

(45), y satisfies∫
Ω
κ(x, y∗)∇y · ∇φdx+

∂κ

∂y
(x, y∗)y∇y∗ · ∇φdx+

∫
Ω

∂d

∂y
(x, y∗)yφ dx = 0 ∀φ ∈W 1,q′

0 (Ω).

(52)

From the above equation, the comparison principle of Casas and Tröltzsch [8] implies that
y = 0.

Let us now turn to the case where λ = 1 is an eigenvalue of Ψ(y∗, A∗) : W 1,q
0 (Ω) →

W 1,q
0 (Ω) which implies that

(
I − Ψ(y∗, A∗)

)
is not an isomorphism. As the continuous

invertibility of
(
I − Ψ(y∗, A∗)

)
is not necessary for the surjectivity of C ′(u∗, y∗), we shall

derive another condition ensuring that C ′(u∗, y∗) is surjective. If λ = 1 is an eigenvalue of
Ψ(y∗, A∗) : W 1,q

0 (Ω) → W 1,q
0 (Ω), then, by virtue of the Riesz-Schauder theorem (see e.g.

[2]), the compactness of Ψ(y∗, A∗) implies that

W 1,q
0 (Ω) = ran

(
I −Ψ(y∗, A∗)

)l ⊕ ker
(
I −Ψ(y∗, A∗)

)l (53)

with some l ∈ N (Riesz-index), and the kernel ker
(
I − Ψ(y∗, A∗)

)l ⊂ W 1,q
0 (Ω) is finite-

dimensional. Next, straightforward computations yield

〈∂C
∂u

(u∗, y∗)u, φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
= −ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(∂A

∂u
(u∗, y∗)u

)
+ImA∗ · Im

(∂A

∂u
(u∗, y∗)u

))
φdx ∀φ ∈W 1,q′

0 (Ω),

where A∗ = A (u∗, y∗) and ∂A
∂u (u∗, y∗)u = A ∈ XN,0(D) is given by the solution of∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx

∀ψ ∈ XN,0(D).
(54)

In view of the superposition principle, the operator ∂A
∂u (u∗, y∗) can be simplified by making

use of the following vector fields:
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Definition 4 For every j = 1, . . . , n, let A∗j ∈ XN,0(D) be the unique solution of∫
D

( 1
µ
∇×A∗j

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A∗j · ψ dx+

∫
R
σRA

∗
j · ψ dx) =

∫
R
Jj · ψ dx

∀ψ ∈ XN,0(D).

Further, for every j = 1, . . . , n, let N ∗j ∈W−1,q(Ω) be defined by

〈N ∗j , φ〉W 1,−q(Ω),W 1,q′
0 (Ω)

= −ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · ReA∗j + ImA∗ · ImA∗j

)
φdx

∀φ ∈W 1,q′

0 (Ω).

Invoking these vector fields in (54), the superposition principle implies that

∂A

∂u
(u∗, y∗)u =

n∑
j=1

ujA
∗
j ∀u ∈ Rn. (55)

By this formula, we can in turn express ∂C
∂u (u∗, y∗) as

∂C

∂u
(u∗, y∗)u =

n∑
j=1

ujN ∗j ∀u ∈ Rn, (56)

where N ∗j ∈W−1,q(Ω) is defined as in Definition 4.

Assumption 5 In the case where λ = 1 is an eigenvalue of Ψ(y∗, A∗) : W 1,q
0 (Ω) →

W 1,q
0 (Ω), let l ≥ 1 be the Riesz-index associated with the corresponding Riesz-decomposition

(53). We assume that for every g ∈ ker
(
I − Ψ(y∗, A∗)

)l there exists a vector u(g) ∈ Rn

such that

g =
n∑
j=1

u
(g)
j B(y∗)−1N ∗j︸ ︷︷ ︸

∈W 1,q
0 (Ω)

.

Theorem 3 Let Assumptions 1, 2 and 3 be satisfied and let (u∗, y∗) ∈ Rn × W 1,q
0 (Ω).

If either Assumption 4 or Assumption 5 is satisfied, then C ′(u∗, y∗) : Rn × W 1,q
0 (Ω) →

W−1,q(Ω) is surjective.

Proof. We only need to show that Assumption 5 leads to the surjectivity of C ′(u∗, y∗).
Let G ∈W−1,q(Ω) be arbitrarily fixed. We prove that the following operator equation

C ′(u∗, y∗)(u, y) =
∂C

∂y
(u∗, y∗)y +

∂C

∂u
(u∗, y∗)u = G in W−1,q(Ω) (57)
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admits a solution (u, y) ∈ Rn ×W 1,q
0 (Ω). Applying B(y∗)−1 : W−1,q(Ω)→W 1,q

0 (Ω) to the
above equation results in

B(y∗)−1∂C

∂y
(u∗, y∗)y +B(y∗)−1∂C

∂u
(u∗, y∗)u = B(y∗)−1G in W 1,q

0 (Ω)

which is, by (49) and (56), equivalent to

(I −Ψ(y∗, A∗))y +
n∑
j=1

ujB(y∗)−1N ∗j = B(y∗)−1G in W 1,q
0 (Ω). (58)

In view of the Riesz decomposition (53), the right hand side of (58) can be uniquely
decomposed into

B(y∗)−1G = r + g (59)

with r ∈ ran
(
I − Ψ(y∗, A∗)

)l and g ∈ ker
(
I − Ψ(y∗, A∗)

)l. On the one hand, we have
r ∈ ran

(
I −Ψ(y∗, A∗)

)l ⊂ ran
(
I −Ψ(y∗, A∗)

)
and hence there exists a y(r) ∈W 1,q

0 (Ω) such
that

(I −Ψ(y∗, A∗))y(r) = r. (60)

On the other hand, since g ∈ ker
(
I − Ψ(y∗, A∗)

)l, Assumption 5 ensures the existence of
a u(g) ∈ Rn such that

g =
n∑
j=1

u
(g)
j B(y∗)−1N ∗j . (61)

In conclusion, (58)–(61) imply that (u(g), y(r)) is a solution to (57) and hence the assertion
immediately follows.

5 Optimal control

Having established the theoretical framework for the state equation and its linearization,
we now turn to the optimal control problem (P) (see p. 5). Let us first define the convex
set of all points satisfying the control constraints associated with (P) by

Uad := { (u, y) ∈ Rn ×W 1,q
0 (Ω) | uaj ≤ uj ≤ ubj for all j = 1, . . . , n }. (62)

Using this set, (P) can also be equivalently written as
min

(u,y)∈Uad

J(u, y)

subject to C(u, y) = 0 in W−1,q(Ω)

ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω.

(P)
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For the remainder of the presentation, a pair (u, y) ∈ Rn ×W 1,q
0 (Ω) is said to be feasible

if and only if (u, y) ∈ Uad and it satisfies the equality constraint C(u, y) = 0 in W−1,q(Ω)
as well as the inequality constraints ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω. The set of all
feasible pairs associated with (P) is then given by

U := {(u, y) ∈ Uad | C(u, y) = 0 and ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω }.

By classical arguments (cf. [23]), (P) admits a solution if U 6= ∅. We summarize the
existence result in the following theorem:

Theorem 4 Let Assumptions 1 and 2 be satisfied. Further, suppose that U 6= ∅. Then,
(P) admits a solution (u∗, y∗) ∈ Rn ×W 1,q

0 (Ω).

Notice that the solution to (P) is not necessarily unique due to the nonlinearities in-
volved in the state equation. We therefore concentrate in our analysis on local solutions in
the following sense: A feasible pair (u∗, y∗) is called a local solution to (P) if there exists
some r > 0 such that

J(u∗, y∗) ≤ J(u, y)

for all feasible pairs (u, y) satisfying |u− u∗| ≤ r and ‖y− y∗‖
W 1,q

0 (Ω)
≤ r. Next, byM(Ω),

we denote the space of all regular Borel measures on the compact set Ω. According to the
Riesz-Radon theorem, the space M(Ω) can be isometrically identified with the dual space
C(Ω)∗ with respect to the duality pairing

〈µ, η〉C(Ω)∗,C(Ω) :=
∫

Ω
η dµ, η ∈ C(Ω), µ ∈M(Ω).

Now we are about to derive the first-order necessary optimality conditions of (P). Let us
now introduce the notion of the Lagrange functional associated with (P).

Definition 5 (Lagrange functional) The Lagrange functional associated with (P) L :
Rn ×W 1,q

0 (Ω)×W 1,q′

0 (Ω)×M(Ω)×M(Ω)→ R is defined by

L (u, y, ϕ, µa, µb) := J(u, y)− 〈C(u, y), ϕ〉
W−1,q(Ω),W 1,q′

0 (Ω)
+
∫

Ω
(ya − y)dµa +

∫
Ω

(y − yb)dµb.

Definition 6 Let (u∗, y∗) be a local solution to (P). We say (µa, µb) ∈M(Ω)×M(Ω) and
ϕ ∈ W 1,q′

0 (Ω) a pair of Lagrange multipliers and an adjoint state associated with the local
solution (u∗, y∗) if and only if

∂L

∂(u, y)
(u∗, y∗, ϕ, µa, µb)(u− u∗, y − y∗) ≥ 0 ∀ (u, y) ∈ Uad (63)

µa, µb ≥ 0
∫

Ω
(ya − y∗) dµa =

∫
Ω

(y∗ − yb) dµb = 0. (64)



24 IRWIN YOUSEPT

Note that if µ ∈M(Ω), then we write

µ ≥ 0 ⇔
∫

Ω
y dµ ≥ 0 ∀y ∈ {y ∈ C(Ω) | y(x) ≥ 0 ∀x ∈ Ω}.

We observe that the adjoint state ϕ belongs only to W 1,q′

0 (Ω) with 1 ≤ q′ < 3
2 since

q > 3. Such weak regularity is typical when dealing with state-constrained optimal control
problems (cf. Casas [7]).

Definition 7 (Constraint qualification) We say that (u∗, y∗) ∈ Uad satisfies the con-
straint qualification if there exists (ũ, ỹ) ∈ Uad and some constant ρ > 0 such that

C ′(u∗, y∗)(ũ, ỹ) = 0 in W−1,q(Ω) ya(x) + ρ ≤ ỹ(x) ≤ yb(x)− ρ ∀x ∈ Ω.

Theorem 5 Let Assumptions 1, 2 and 3 be satisfied. Further, let (u∗, y∗) be a local solution
to (P) and A∗ = A (u∗, y∗). Suppose that (u∗, y∗) satisfies the constraint qualification in
the sense of Definition 7 and either Assumption 4 or Assumption 5 is satisfied. Then,
there exist ϕ ∈W 1,q′

0 (Ω) and (µa, µb) ∈M(Ω)×M(Ω) such that

−∇ · (κ(·, y∗)∇ϕ) +
∂κ

∂y
(·, y∗)∇y∗ · ∇ϕ+

∂d

∂y
(·, y∗)ϕ− T (u∗, y∗)∗ϕ

−ω
2

2
∂σ

∂y
(·, y∗)|A∗|2ϕ = y∗ − yd + α(−∆y∗ +∇ · zd) + (µb − µa)|Ω in Ω

ϕ = (µb − µa)|∂Ω + αzd · ~n on ∂Ω

(65)

µa, µb ≥ 0
∫

Ω
(ya − y∗) dµa =

∫
Ω

(y∗ − yb) dµb = 0 (66)

u∗ = P[ua,ub]

(
1
β
t∗(ϕ)

)
(67)

t∗(ϕ)j = 〈N ∗j , ϕ〉W−1,q(Ω),W 1,q′
0 (Ω)

j = 1, . . . , n, (68)

where P[ua,ub] in (67) denotes the projection from Rn onto [ua1, u
b
1]× . . .× [uan, u

b
n]. Further,

for j = 1, . . . , n, N ∗j ∈W−1,q(Ω) is defined as in Definition 4.

Proof. Either Assumption 4 or Assumption 5 implies that C ′(u∗, y∗) : Rn×W 1,q
0 (Ω)→

W−1,q(Ω) is surjective. This fact together with the constraint qualification guarantees
the existence of Lagrange multipliers (µa, µb) ∈ M(Ω) ×M(Ω) and an adjoint state ϕ ∈
W 1,q′

0 (Ω) in the sense of Definition 6 (see Kurcyusz and Zowe [24] or Tröltzsch [23, p. 251]).
We demonstrate that (63)–(64) imply (65)–(67). First, by virtue of (62), (63) implies that

0 =
∂L

∂y
(u∗, y∗, ϕ, µa, µb)y =

∫
Ω

(y∗ − yd)y dx+ α

∫
Ω

(∇y∗ − zd) · ∇y dx

−〈∂C
∂y

(u∗, y∗)y, ϕ〉+ 〈µb − µa, y〉C∗(Ω),C(Ω)

(69)
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for all y ∈W 1,q
0 (Ω). We recall from (38) that

〈∂C
∂y

(u∗, y∗)y, ϕ〉 =
∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇ϕdx+

∫
Ω

∂d

∂y
(x, y∗)yϕ dx

−ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(∂A

∂y
(u∗, y∗)y

)
+ ImA∗ · Im

(∂A

∂y
(u∗, y∗)y

))
ϕdx

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2ϕdx ∀y ∈W 1,q

0 (Ω),

(70)

where ∂A
∂y (u∗, y∗)y = A ∈ XN,0(D) is given by the solution of∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx) =

− iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx ∀ψ ∈ XN,0(D).

(71)

Using the operator T (u∗, y∗) : L2(Ω) → W−1,q(Ω) defined in (47) on p. 18, we observe
that (70) can be expressed as follows:

〈∂C
∂y

(u∗, y∗)y, ϕ〉 =
∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇ϕdx+

∫
Ω

∂d

∂y
(x, y∗)yϕ dx

−〈T (u∗, y∗)y, ϕ〉
W−1,q(Ω),W 1,q′

0 (Ω)︸ ︷︷ ︸
=(y,T (u∗,y∗)∗ϕ)L2(Ω)

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2ϕdx

∀y ∈W 1,q
0 (Ω).

(72)

Setting (72) in (69) yields∫
Ω

(
κ(x, y∗)∇ϕ · ∇y dx+

∫
Ω

∂κ

∂y
(x, y∗)∇ϕ · ∇y∗y dx+

∫
Ω

∂d

∂y
(x, y∗)ϕy dx

−
∫

Ω
T (u∗, y∗)∗ϕy dx− ω2

2

∫
Ω

∂σ

∂y
(x, y∗)|A∗|2ϕy dx =

∫
Ω

(y∗ − yd)y dx

+α
∫

Ω
(∇y∗ − zd) · ∇y dx+ 〈µb − µa, y〉C∗(Ω),C(Ω) ∀y ∈W 1,q

0 (Ω).

The above variational form is exactly the weak formulation for (65).
To demonstrate the projection formula (67), we note that (62) yields

0 ≤ ∂L

∂u
(u∗, y∗, ϕ, µa, µb)(u− u∗)

= β(u∗, u− u∗)Rn − 〈∂C
∂u

(u∗, y∗)(u− u∗), ϕ〉 ∀u ∈ [ua1, u
b
1]× . . .× [uan, u

b
n].

(73)
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We recall from (56) that ∂C
∂u (u∗, y∗)(u− u∗) =

∑n
j=1(uj − u∗j )N ∗j where N ∗j ∈W−1,q(Ω) is

as defined in Definition 4. Using this identity in (73) results in

(−t∗(ϕ) + βu∗, u− u∗)Rn ≥ 0 ∀u ∈ [ua1, u
b
1]× . . .× [uan, u

b
n], (74)

where t∗(ϕ) ∈ Rn as in (68). By classical arguments, cf. [23], a componentwise evaluation
of (74) yields the desired projection formula (67).
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