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Abstract

We consider a shape implant design problem that arises in the context of
facial surgery. We introduce a reformulation as an optimal control problem,
where the control acts as a boundary force. The state is modelled as a min-
imizer of a polyconvex hyperelastic energy functional. We show existence of
optimal solutions and derive — on a formal level — first order optimality condi-
tions. Finally, preliminary numerical results are presented.
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1 Introduction

As in many parts of modern medicine the design of implants is today more de-
pendent on the experience of medical scientists than on technical tools. In most
cases the determination of an implant’s shape is done by visually comparing CT
scans with implant models, choosing a model that seems to fit and possibly correct
its shape during the insertion procedure. This approach is very sensitive to the
surgeon’s skills and the geometry of the implant. Especially in the case of heavy
fractures or congenital deformations of the oral and maxillofacial bone structure
it is often difficult to accurately predict the shape of the patients face after the
medical treatment. Consequently it would be of advantage if one could delegate
the determination of an implant’s shape from a given desired shape of the skin to
a computer-assisted tool. This would allow to give reliable assistance regarding the
training, preparation and verification of implant insertions. In order to provide such
a tool it is necessary to develop appropriate mathematical models and numerical
schemes for the calculation of the implant’s shape.

In Section 2 such a model will be derived, leading to an optimal control problem
with constraints arising from elastostatics:

min J(u,g) s.t. u € argmin&(u,g) (1)
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where ¢ is the control and u the corresponding state (the material’s displacement).
The explicit description of the constraint u € argmin £(u, g) is determined by the
chosen material law(s) for the soft tissue(s). As large strains in facial soft tissue
should be allowed in the model, various nonlinear effects must be considered.

First of all there is the geometric nonlinearity, whose neglection leads to well-
known overestimation of the displacements (for an illustration we refer to Fig. 4
in [34]). Then there are constitutive nonlinearities that possibly must be taken into
account. The latter is to a great portion a consequence of the distribution of colla-
gen in most types of human soft tissue. Being the main load carrying element and
the most common protein in human soft tissue with particularly high concentration
in the skin and, in contrast to other muscles, the facial muscle tissue, the high
amount of collagen strongly determines the material behaviour [15, 17, 18]. On the
one hand, the collagen distribution leads to a nonlinear stress-strain relationship,
mainly dependent on the collagen fibre morphology corresponding to the current
stress state. This observation is outlined in [17] and reflected by Fung-elastic ma-
terial laws [15]. On the other hand, the distribution of the collagen fibres endows
the material with directional properties, i.e. while the stiffness increases with mus-
cle contraction in direction of the collagen fibres it remains constant in orthogonal
directions [10, 17], thus leading to a strongly anisotropic behaviour. This is com-
plemented by the observation that these fibre directions may change during the
deformation. Thus the accurate modeling of anisotropic effects is not trivial and
requires the knowledge of collagen fibre orientations and distributions in the consid-
ered materials. There also is a constitutive nonlinear inequality that is associated
with limited compressibility and takes the form

det(V®(z)) = det((I + Vu)(z)) >0 (2)

where ® = I + u is the deformation. In the case that ® € C! this inequality serves
as a local ”orientation-preserving” condition that locally, not globally, prevents self-
penetration of the considered material (see [11] and references therein).

Finally, normal pressure boundary conditions imposed on the deformed domain lead
to nonlinear boundary conditions on the undeformed domain [5, 11].

The currently most general class of stationary material laws that can incorpo-
rate the mentioned nonlinearities and is accessible to mathematical analysis are
hyperelastic constitutive laws given by polyconvex stored energy functions [5]. This
class, that will be considered in this paper, includes popular material laws for large
strains such as Neo-Hookean, Mooney-Rivlin [23, 29]), Ogden-type ([26, 27]) as
well as anisotropic, Fung-elastic material laws as in [17]. Moreover polyconvexity is
closely related to the Legendre-Hadamard condition [13, 24], which guarantees the
ellipticity of the differential operator of linearized elasticity. For physical interpre-
tations of the Legendre-Hadamard condition we refer to [11, 22, 28] and references
therein. Eventually it is also related to (weak) lower semi-continuity [11, 24, 33|,
and thus admits John Ball’s elegant proof of the existence problem in elasticity [5].
A generalization of these results by P.G. Ciarlet [11] will be used in Section 3 to



prove the existence of solutions of the corresponding optimal control problem in the
subset of WP 2 < p < oo, that is associated with elastic, compressible deforma-
tions. Section 4 is concerned with first order optimality conditions. As in general
hyperelastic theory it is not even clear if a local minimizer of the elastic energy
functional satisfies the weak form of the corresponding Euler-Lagrange equation
(see [7, Problems 5 & 6] and [11, 22]), the rigorous derivation of general first order
optimality conditions currently appears to be out of reach. Despite of being related
to the regularity of minimizers [6, 19], polyconvexity and coercivity are not suffi-
cient for the determination of the desired regularity results. This will be illustrated
and discussed for a compressible Mooney-Rivlin material in Section 4. Finally the
formally derived optimality system will be solved numerically in Section 6.
The used notation follows the conventions of elasticity theory:

Notation.

1. The (right) Green-St.Venant strain tensor is denoted by
1
E(u) = 3 (Vu' + Vu+ Vu' Vu)

2. M"™ denotes the set of n X n matrices and
MY = {A e M"| det(A) > 0}
3. The scalar product on M is defined via
F:G=) F;Giy for F,GeM"
1,3
and induces the Frobenius norm || - ||ar.

4. For derivatives subscripts will be used, i.e.

0
Eu—%ﬁ

5. For invertible matrices F' € M"™ the adjugate matriz is defined via

adj(F) = det(F)F~T

2 Modeling

In this section, we will derive from medical requirements a precise mathematical
formulation of the implant shape design problem. We start with formulating the
forward problem of finding the facial shape induced by a given implant shape as a
contact problem in Section 2.1. In Section 2.2 we will see that the direct transcrip-
tion of the forward problem into the inverse problem of finding an optimal implant
shape such as to approximate a desired facial shape leads to quite difficult opti-
mization problem. Surprisingly, a simple reformulation turns out to be a standard
optimal control problem.



Figure 1: Cross-section of the reference configuration (left) and the deformed state
due to the normal force gn defining the implant volume in gray (right).

2.1 Forward problem

The facial shape is determined by the elastic deformation of the soft tissue. In
contrast, bone and implant are considered as rigid, such that only the soft tissue
domain € is considered. We will restrict the attention to implants of limited geo-
metric complexity and hence assume its manifold shape to be parametrized over I'.
as a continuous normal displacement

y—y+sy)n(y) foryel,,

where n(y) is the unit outer normal of Q at y € I'.. Here, I'c is the part of the
interior soft tissue boundary where it normally is in contact with bone, see Fig. 1.
The implant displaces the soft tissue, which can freely glide over the implant surface
but may not penetrate it. Hence, an obstacle condition has to be imposed on I'..
In a ring I'y, around the implant region I'. we assume the soft tissue to be attached
to the bone.

Due to the quickly vanishing Green’s function of elastomechanics, the soft tissue
domain may be restricted to a bounded region in the vicinity of the implant by
introducing an artificial boundary I'y cutting the soft tissue. Here, transparent
boundary conditions [20] might be imposed. For simplicity, we just assume the
tissue to be fixed on I'y. On the skin surface I't, natural boundary conditions hold.

The forward problem is therefore to find the minimizer of the stored strain
energy

ES:/QW(JC,VU(:E))dx, (3)

where W is a stored energy function of hyperelasticity, subject to the constraints
given by the boundary conditions:

mgn £%(u) (4a)
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subject to

u=0 on I'gUTYy, (4b)
n(y) [z +u(z) —y] > s(y) for all z,y € T, with z + u(z) € y + Rn(y) (4c)

In particular the global non-penetration condition (4c) is difficult to address al-
gorithmically, as a direct mapping from y to x in I'. depends on the solution, is
potentially multi-valued, and usually not readily available. Note that W may also
be heterogeneous, i.e. W = W(xz,Vu(x)). Here we restricted the discussion to
homogeneous stored energy functions,

This problem can also be written in strong form, if we introduce, the first Piola-
Kirchhoff tensor o(u) = 6(Vu), using the definition of hyperelasticity, i.e. the
point-wise relation

ow

5(F) = S

,F) re€Q, FeM . (5)

Then we obtain as usual by formal partial integration

—div(o(u)) =0 in (6a)
u=20 on 'y UT'y (6b)
n(y) [z +u(z) —y] > s(y) for all z,y € T with z + u(z) € y + Rn(y) (6¢)

2.2 Inverse problem

Now the optimization problem consists of finding an implant shape given by the
normal displacement s(y), such that a desired facial shape is well approximated.
Again for simplicity, we will consider the mismatch

1
J(u) = 5”“ - UrefHQL?(Ft)

of displacement u and a desired displacement u,.f on the facial surface, which is to be
minimized subject to the obstacle problem (4). This formulation of the optimization
problem as an MPEC (mathematical program with equilibrium constraints) has two
mathematical drawbacks: it is algorithmically challenging, and the solutions are in
general not unique (not even locally).

Moreover, additional medical requirements need to be satisfied. For instance
no gaps should occur between soft tissue and implants since voids tend to be the
source of infections. Such gaps can occur between soft tissue and implant surface
wherever (4c) is a strict inequality. Consequently, the set of feasible implant shapes
has to be restricted to those leading to contact everywhere in I'., such that inequal-
ity (4c) can be replaced by the simpler corresponding equality. Taking into account
that the soft tissue is not attached to the implant, thus being free to move in tangen-
tial directions at the contact surface, yields that the force, which is exerted by the



implant on the soft tissue, can only act in the surface’s normal direction. In addi-
tion the implant cannot pull the soft tissue, eventually leading to pressure boundary
conditions, i.e. the exerted force must be a negative multiple of the surface unit
outer normal. In the reference configuration, the normal stress then assumes the
form

o(uyn = —gadj(I + Vu)'n, ¢g>0 onT.. (7)

Interpreting the nonnegative normal force g exerted by the implant as control vari-
able instead of the implant shape itself leads to a significantly simplified optimiza-
tion problem. In particular, the obstacle condition (4c¢) is replaced by (7).

Due to the change of control variable from normal displacement s to normal
force g, an explicit mapping between different points in ', as required in (4c) is no
longer needed. Moreover, in applications large boundary forces are unwanted, thus
motivating the expansion of the cost functional J by the penalization term

o
5”9“%2(&)’ a > 0. (8)

Note that the applied penalization coincides with the well-known Tikhonov regu-
larization for inverse problems.

Then we end up with the control constrained optimal control problem subject
to the following equations of elasticity in strong form:

. o 2
min J(u) + Sllgl72r,) (9)
subject to —div(o(u)) =0 in Q (9b)
u =0 on 'y Ul'y (90)
o(u)n = —gadj(I + Vo)Tn, g>0 onT, (9d)

Eventually, from an optimal soft tissue displacement u solving (9), the implant
shape can be reconstructed by filling the gap between reference and deformed inner
soft tissue boundary. Again it is parametrized over I';, but now in the form

rz—z+u(r) forxzel..

By construction, no undesirable voids can occur, and no explicit a priori represen-
tation of the implant’s shape is required. In the following, for sake of clarity, we
will concentrate the parts of the boundary where homogeneous Dirichlet boundary
conditions are imposed: I'y = T3 UT.

3 Existence of solutions

Our first step in the analysis of problem (9) is the study of existence of optimal
controls g and corresponding deformations u. Our approach heavily relies on the



model assumption that for given g, the corresponding v is a minimizer of the hy-
perelastic energy functional. Thus, of necessity, there must be an energy functional
that corresponds to the equilibrium of forces, imposed at the boundary, which reads
in our case

on = —gadj(I + Vu)n. (10)

Unfortunately, except for the case of spatially constant control g(x) = const. on T,
a conservative formulation of these boundary conditions is in general not available
([5, 9]), leaving it as an open issue to model these conditions correctly.

For this reason, we will switch to a simplified setting, namely we will replace (10)
by one of the following two dead load boundary conditions:

on=—-gn ¢g:I':—R

on=—-g g:I'.—R3

Both conditions naturally enter linearly into the energy functional (see (14)) and can
be augmented by a positivity constraint, such as g > 0 in the first case or ¢”n > 0in
the second case. In the context of nonlinear elasticity even this simplified problem
is already a delicate issue, since there is hardly more analytical structure available
than weak lower semi-continuity of the energy functional. To render the discussion
precise, we will now state a list of assumptions for the stored energy functional and
the objective functional. Note that the assumptions on the stored energy functional
are quite standard in non-linear elasticity (see [5, 11, 22, 28]).

Assumption 3.1.

1. Q is a bounded Lipschitz-domain and 0Q = TgUT, UL, [T¢| > 0,|T] >0 a
measurable partition of its boundary.

2. The space for of admissible deformations is contained in
U:={uec W'(Q): adj(Vu) € LY(Q), det(I + Vu) € L"(Q)},
where p > 2, q>p/(p—1), and r > 1.

3. On Ty Dirichlet boundary conditions are imposed:
p—1
U|Fd =ug € W r ’p(Fd)

4. The stored energy function W : Q x M® — RU{+oo} exhibits the following
properties:

Polyconvexity: For almost all x € Q there exists a convex lower semi-
continuous function

W(z,-,-,-): M> x M? x R = RU{+o0}



such that
W (2, F,adj(F),det(F)) = W (z,F) VF e M}

and
W(., F,H,d): Q = RU{+o0}
is measurable for all (F, H,§) € M? x M3 x]0, oo|.
Non-self penetration: For almost all x € § it holds that

lim W(z, F)=+o0 (11)
det(F)—0+
and
W (x, F) = 400 for all F € M?\ M3 . (12)

Coercivity: There exist constants o > 0, € R3, such that
Wz, F) = a (|F[5, + [ adj(F)[|5, + [det(F)[") + 8 (13)
for all F € Mi and almost all © € €.

The elastic strain energy is given by
£5(u) = / W (2,1 + Vu(z)) de,
Q

and there exists at least one admissible deformation T such that £%(T) < oc.

In view of Section 2 we will impose the following assumptions on the control
and the objective functional:

Assumption 3.2.

1. The control g is taken to be an element of G = L2(T'.) and enters the total
elastic energy functional via

E(u,g9) = £%(u) = E7(u, g) (14)
with E¢(u, g) = ch g(s)u(s)ds.

2. The cost functional J(u,g) : U x G — R is weakly lower semicontinuous and
there exist a constant ay > 0 such that

JI(u,9) = allglZ (15)

Remark 3.1. Ezstending dom(W) to M? and ran(W) to Ry U{oo}, compared with
its classical definition in the context of elasticity theory, allows to reduce the length
of the following proofs, as the orientation-preserving property det(I + Vu) > 0 a.e.
is a direct consequence of the assumption &E(u,g) < 0o



Remark 3.2. Note that the above assumptions include mized displacement-traction
as well as pure traction problems. With respect to the latter adequate choices of the
cost functional may remove the “indeterminacy up to rigid translations” [11, 12].

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then the optimal
control problem

min  J(u,g) s.t. u € argminé(v,g) (16)
(u,9)eUXG vel

has at least one solution.

Before turning to the proof of this theorem we will first state two important lemmas
that will be required therein. We start with a result on compensated compactness,
which has been stated in [5, Section 6] and in a clearer version in [11, Chapter 7].
It can be viewed as the main step in the proof of existence of energy minimizers in
nonlinear elasticity.

Lemma 3.2. Let ® € WYP(Q), p>2 and r,q > 0 such that v =p~t+¢71 < 1.
Then the following implication holds:

dF ~ @ in WHP(Q), p>2

11 = adj(V®
adj(VO*) — p in LIQ), — + - <1 p=adj(Ve)
poq § = det(VP)
det(V®*) — 6 in L™ (Q),r > 1
Proof. See [11, Thm. 7.6-1]. O

Using the above result and the theorem of Mazur one can prove the sequential
weak lower semi-continuity of £ with respect to sequences uy, for which £ remains
bounded (see [11, Proof of Thm. 7.7-1]). This result can be extended in the following
way:

Lemma 3.3. Let Assumptions 3.1 and 3.2 hold. Consider a weakly converging
sequence (ug, gi) — (u,g) in U x G such that

ug € argmin &€ (v, gx)
velU

and E(uk, gr) is bounded from above. Then

k—o0 vel
Proof. First of all, we show the weak lower semi-continuity of £ for sequences that
leave the energy bounded from above.
Weak lower semi-continuity of the first part £ with respect to uy, follows as in
[11, Proof of Thm. 7.7-1] from Lemma 3.2 and convexity of the functional W with
respect to its arguments. The second part

5F°(Uk,gk)=/ ugy ds

(&



is even weakly continuous. This follows via compactness of the trace mapping
WLP(Q) < L2(T..), by strong convergence uy|r, — @|r, in L?(T'.) and weak conver-
gence g; — § in L?(I'.). In summary, we can conclude weak lower semi-continuity

of &:
E(u,g) < liminf & (uy, gr),
k—o0

and, if u is fixed,
lim &(u,gx) = E(u, g).
k—o0

Next, by the minimizing property of uj, we obtain &(uk, gr) < E(u, gx) and

lim sup & (ug, gx) < limsup &(a, gy) = lim E(a, gx) = £(a, 9),
k—o0 k—o0 k—o00
implying
limsup € (uy, gr) < (@, §) < lminf & (uy, gi)
k—o00 k—oo

and thus
lim &(ug, gx) = £(a, g).
k—o0

The fact that @ is again an energy minimizer of £(-, ) follows from the minimizing
property of ug and the established convergence result. To this end let u be a
minimizer of £(-, §). Then

Observe the two structural properties that make this proof work. First, linearity
of & with respect to g, second compactness of the trace mapping Wir(Q) —
L?(T'.). Our proof extends to any &l with the same abstract properties.

Proof of Theorem 3.1: First we show that we can apply Lemma 3.3. Then, using
the weak lower semicontinuity of J, we will show that there exists an admissible
minimizing sequence (ug, gx)ken converging weakly in U x G to a minimizer (@, §) of
the optimal control problem. Eventually exploiting the coerciveness of £ will lead
to the admissibility of the weak limit (4, §), i.e.

adj(Vi) e LY(Q) and det(I + Vi) € L™(Q).

Ezistence of a weakly convergent subsequence:

As has been shown in [5, Thm. 7.3&7.6],[11, Thm. 7.7-1] for every g € G there
exists a displacement u; € U such that w, € argmin,c;; E(v, gx). Thus, as the
energy functional J(u, g) is bounded from below, there exists a minimizing sequence
(uk, gk )ken of J with g € G, ug, € U and uy, being a minimizer of £(-, gi). From (15)
we deduce that the sequence {gy}ren is bounded in G by some constant Cy and by
reflexivity of G there exists a weakly convergent subsequence which will again be
denoted as {gi }ren with weak limit g € G.

First, we have to show that the sequence {&(ug,gr)}ren is bounded from above.

10



Setting || - v == || - lwrr(@), | - [l6 == || - llL2(r.), using Holder’s inequality and the
continuity of the trace operator we get an estimate for the sensitivity of the elastic
energy functional with respect to changes in the Neumann boundary conditions:

E(uy gu) — E(u,0) = / w(0 - go)ds < Jullvlgnle < Collully  (18)

c

Thus as u minimizes &(, gi), the boundedness of {&(uk, gr) }ren is a consequence
of (18), inserting u = u as defined at the end of Assumption 3.1:

g(ukagk) < S(E, gk) < CQHHHU + 5(ﬂ7 O) < o0.

Now the boundedness of {ug }ren follows from the coercivity of &£, i.e. there exist
constants ¥ > 0, 6 € R such that

Allukllfy < E(ur, gi) + 5 < Cylall + (@, 0) +

Again reflexivity implies the existence of a subsequence uy — @ in U.
Admissibility of (4, g):
Now we can apply Lemma 3.3 to get

klir&g(uk7gk) = 5(u7 g) = E}Iélélg(v, g)

Thus the pair (4, §) is an admissible candidate for a minimizer of J and a weak
limit of the minimizing sequence (ug, gi) of J. As J is weakly lower semicontinuous
(i, g) indeed minimizes .J. Moreover the coercivity inequality (13) in combination
with Lemma 3.2 guarantees that

adj(I + Va) € LYQ) and  det(I + Va) € L™(Q)
and condition (12) assures that det(I + V@) > 0 a.e. in Q. O

Remark 3.3.

1. The argumentation in [11, Thm. 7.9-1] shows that the incorporation of the
additional restriction [odet(V®)dz < vol(®(Q2)) allows to prove the weak
injectivity condition card ((I)_I(CC)> =1 for almost all x € ®(Q) if p > 3.

2. In general the admissible set U is not weakly closed. Here this is compensated
by the coerciveness of £ in combination with Lemma 3.2.

4 Weak formulation

In the following we discuss weak formulations, corresponding to the energy mini-
mization problem min, ey €(u, g). This means that we derive first order necessary
optimality conditions for the constraint of the optimal control problem under con-
sideration. For sake of clarity we will from now on suppress the dependence on

11



x, i.e. we will assume that the material under consideration is homogeneous. The
derived results also hold for heterogeneous materials.

As noted in the introduction it is, in general, not clear whether a local mini-
mizer of the elastic energy functional satisfies the weak formulation (see [7, Prob-
lems 5 & 6])

E'(u,g)h =0 Vhe C®(Q)

In the context of compressible material laws the main difficulties are caused by
condition (11). While being necessary in order to avoid local self-penetration and to
model the observed material behaviour in a qualitatively correct way the introduced
singularity leads to severe analytical difficulties.

In particular, it implies for the strain energy that

E%(u) = /QW(U) dz = o0

on a dense subset of W1P() for any p < oo and thus also on a dense subset of U,
i.e. for every u € U with &(u,g) < 0o one can construct a sequence uy — u in U
such that

E(ug,g) =00, VkeN

Thus, we cannot expect differentiability in spaces weaker than W1>°(Q).

To make this discussion concrete, in the following we consider a compressible
Mooney-Rivlin material law. This widely used constitutive relation is a special
case of a compressible Ogden-type material. It is polyconvex, isotropic and may
be written in terms of the left Cauchy-Green strain tensor F and the deformation
gradient V® = I + Vu:

W(u) = atr(E) 4+ b(tr(E))? 4 ctr(E?) + T (det(I + Vu))
where

E = % (VuT +Vu+ VuTVu)

and lim,_,g+ I'(s) = co. Setting o = a —2b, f = —c¢, W can be represented in the
following way

W(u) = W(V®) = %HVPHQ + gu adj V®||2 + T (det(V®)) + const.

Popular choices for I' take the forms (see [25, 26])

1 1
I(t) = 561t2 —eoIn(t) or T(t) = §e1752 + %t*’“, E>0 (19)
In both cases the first summand ¢? guarantees, with o« > 0,3 > 0,e1,ez > 0,
the validity of the coerciveness inequality (13) with p = ¢ = r = 2. Moreover,
for small strain, the material behaves like a St.Venant-Kirchhoff material. Thus,
near ¥ = 0 the stored energy function W should be a second order approximation

12



of the stored energy function of a St.Venant-Kirchhoff material. In the case of
[(t) = e1t? — eaIn(t) it is always possible to determine o > 0,3 > 0,e1 > 0,e3 > 0
such that this is the case [11, Thm. 4.10-2]. This property comes at the expense of
the model’s quality, restricting its validity to rather academic questions. Thus we
will focus on a non-logarithmic form as proposed in [25]. In this case the choice of

parameters is dependent on the Poisson ratio v = m More precisely a lengthy
computation shows that the following inequality
k
k< -1 ivalentl —_— 20
< —1+ ;—— or equivalen yl/>2(k+1) (20)

restricts the possible range for k for given v and vice versa, i.e. k > 9 requires
v > 0.45, thus possibly implying the risk of constitutive locking (Poisson locking
[8]). While being independent of Young’s modulus, this inequality becomes less
restrictive with growing v.

With respect to the weak formulation we first focus on the energy minimization
problem

mi(r]l E(u, g) for given, fixed g € G. (21)
ue

In the following we study the derivatives of £ with respect to u, starting with a
pointwise computation of the derivatives of W at non-singular F' in direction §F":

W/(F)SF = oF :6F + Badj F:adj (F)0F +T"(det F) (adj F:6F).  (22)

Here we used the differentiation rule det’(F)dF = adj F':§F. Further, we may also
compute the second derivative:

W"(F)(6F1,0F) =
adFy:6F + Badj (F)0F; : adj' (F)6Fy + Badj F : adj’ (F)(6F1, 0 F»)
+T'(det F) (adj’(F)5F1 :(5F2) +T"(det F) (adj F: 6 Fy)(adj F: 5 Fy) (23)
The validity of the above pointwise formulae follows, for F € M2, 6F),0F, €
M? directly from the definitions of det, adj and I'. Having stated differentiability
properties of W as a nonlinear function of the matrix F € M?, we now turn to its
study as superposition operators.
To this end, we consider the space LP(2) of p-integrable matrix valued functions
F : Q — M3, insert the matrix valued function F € LP(Q) pointwise into W
and consider the result in another LP-space. For this purpose we first need some

properties of adj, ' and an additional assumption on local minimizers of the energy
functional £.

Lemma 4.1. Let F € LP(S2). Then the mapping
adj'(F) : LP(Q) — LY(Q) (24)
is linear and continuous for p~* + (p')~' < 1. Moreover, the mapping

adj”(F) : L*1(Q) x L*2(Q) — L'(Q) (25)

13



1s independent of F and bilinear and continuous for sfl + 551 <1.
For N > 2 we have adj(N) =0.

Proof. The assertion follows from the observation that adj is a second order poly-
nomial in the entries of F' and from Holder’s inequality. O

Definition 4.1. Let ® € W1P(Q) with p > 1. We call ® non-degenerate if there
exists a constant € > 0 such that

det(V®) > € a.e. in Q. (26)

Remark 4.1.

e In the context of elasticity theory we will also call the displacement w € U
non-degenerate if ® = I + u is non-degenerate.

e Suppose there exists a local minimizer uw € U of £, that is degenerate , i.e.
there exists a sequence

(k) peny CQ, 2 = 2 €Q such that  det(I + Vu(xy)) — 0

Physically this corresponds to a deformation that becomes singular at x € €,
thus being only reasonable in the modeling of cutting or piercing processes.
In this cases other effects, like plasticity become dominant. In the context of
applications like implant shape design the elastic behaviour is predominant,
justifying the non-degeneracy assumption on minimizers of £.

o In the similar framework of barrier regularizations of optimal control problems
examples can be given, where the violation of an analogue to non-degeneracy
in the above sense yields minimizers that do not satisfy the formal optimality
conditions [30].

Lemma 4.2. Assume that F' € LP(Q) is non-degenerate, adj F' € L%(R2), and
det ' € L"(Q2). Assume that the integrability indices s; € [1,00],4 = 1,--- N
satisfy

1: siE<1—(r g h
2: s7t syt <1 —max(rt+pt2¢7h)
3:

Z =2 =
I

sfl + 851 + sgl <1-—max(r—tp t+¢1 3¢,

which is only possible if the expressions on the corresponding right hand sides are
non-negative.
Then, for the choice

0F; e L% (), s; € [1,00], i=1,--- N

we obtain
N

d
—T'(det F)(6Fy, ..., 0F LY(Q) N=1,23.
dEN (det )(5 1) ;0 N)e ( ) 2,3
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Proof. Differentiating I" from (19) we get

IV (t) = ert — eat=*D D) = ey + eg(k + 1)t~ F+2)
T7(t) = —ea(k + 1) (k + 2)t~*+3).

Thus under our assumption of non-degeneracy follows that %F(det F) grows lin-
early in det F' and dd—;I’(det F) is bounded independent of det F'. Then, using
Holder’s inequality, inspection of the relevant terms in (22) and (23) yields our

results for N =1 and N = 2. For N = 3, we compute

3
L L (det F)(OF, 6By, 6Fy) = T'(det F)(adi” (F)(OFy, 6F) : 6Fy)

dF3
+ 31" (det F)(adj' (F)0Fy : 6Fy)(adj F : 0F3)
+T"(det F)(adj F : §F1)(adj F : 6F)(adj F : §F%)

and use again Holder’s inequality. O

Now we can turn to the study of the derivatives of W.

Proposition 4.3. Assume that F € LP(QQ) is non-degenerate, adj F € L1(Q),
and det F' € L"(Q2). (In the following, we take s; € [1,00], and assume that the
inequalities for the s; are non void.)

IfO<s7' <1— (¢ +max(r~t,p1)) then

W/(F)6F € LY()  for all 6F € L*1(9)

and W'(F) is linear and continuous in §F .
Ifo< 81_1 + 82_1 <1-—max(2p~t,r~ 1 +p71 2¢71) then

W"(F)(6Fy,0F) € LYQ)  for all 5F; € L% (Q), i =1,2

and W"(F) is bilinear and continuous in (0Fy,0F3).
IFO<si +sy;t +s3t =1—max(r—',p~' +¢71,3¢7") then

W"(F)(§Fy,6F, 6F3) € LY(Q)  for all 6F; € L%(R), i =1,2,3
and W"'(F) is trilinear and continuous in (0Fy,0F5, 0F3).

Proof. The assertion follows from inspection of the particular terms. In (22) for W’
and in (23) for W”. For W a similar term can be computed. Well definedness
of the derivatives of I' in suitable L, spaces has been shown in Lemma 4.2, the
remaining terms are second and fourth order polynomials in the coefficients of F'.
With this information, our result follows from repeated application of the Holder
inequality. O
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Finally we can study conditions under which the formal directional derivatives
of the strain energy

E5(u)vy = / W'(I + Vu)Vu dz (27)
)

E3 (u)(vy,v9) == / W'(I + Vu)(Vovy, Vug) dz (28)
Q

£ (w)(v1,v2,v3) := / W"(I + Vu)(Vovy, Vg, Vus) dz (29)
Q

are well-defined. Moreover we have to verify if the remainder terms vanish, i.e.
under which conditions the defined functionals really are the directional derivatives
of the strain energy. For given v € W12(Q) this is a delicate issue. Fortunately, the
coerciveness inequality (13) implies that adj(I + Vu) € L?(Q) and det(I + Vu) €
L?(2) if u is a minimizer of £. Therefore

Corollary 4.4. Assume that u € U is non-degenerate and Es(u) is finite. Then
E3(u) and £5,(u) are well defined in WH™(Q), resp. Wh°(Q) x Wh0(€Q).

If further u € WHo°(Q), then (27), (28), and (29) are well defined for v; € Whsi(Q)
with " 57" = 1, respectively.

Proof. By coercivity of £% we conclude p = 2, ¢ = 2, r = 2. Thus, we can apply
Proposition 4.3 for s; = co to obtain our first result for (27), (28)

Since adj and det are polynomials, it follows in the case of u € W™ and
non-degeneracy that p = ¢ = r = oo, such that ) sl-_1 =1 can be chosen. ]

Proposition 4.5. Ifu € U is non-degenerate, then E° is directionally differentiable
for each u € W1°(Q) with derivative given by (27). The corresponding remainder
term is uniform in du.

If in addition u € WH*(Q), then ES is twice directionally differentiable with
second derivative given by (28). For sufficiently small ||dul|yy1,« the corresponding
remainder term can be estimated by

ro(u, du) < ef|dul e || 6u]|F 2

Proof. In order to prove the statement we consider for ju € WH*°(€) the remainder
term
E(u+ Su, g) — E(u, g) — Eu(u, 9)0ul = 5 |Ewulu + Ebu, ) (5u)?|

<

N — DN -

| €+ &80, ) | [[6ully1.00

By Corollary 4.4 we know that &, (u, g)(0u)? is finite, and since £, is continuous
at u in WH(Q), €y (u + £0u, g)(6u)? is bounded.

The proof for the second derivative runs analogously, using the properties of
W ]
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Combination of these results allows us to prove the main theorem of this section:

Theorem 4.6. Let u € U be a non-degenerate local minimizer of € with €(u) < co.
Then it satisfies the following weak formulation

Eu(u,9)ou=0 for all bu € WH2(Q). (30)

If, in turn, u € W5 satisfies (30), and Eu(u, g)v? > 5”7)”%/‘/1,2 for all v € W™,
then for sufficiently small du € WH®(Q) and some ¢ > 0 we have the growth
condition

E(u+ du) > E(u) + el|dul[f.e-

In particular, v is a WH™>-local minimizer of &.

Proof. The proof is standard: to show that &,(u, g)du = 0, we compute

Eu(u, g)(£ou) = lim E(u£tou,9) = E(u,9) >0,
t—0 t

since u is a local minimizer of £.
For our second assertion, we note that

E(u+ o) — E(u) = % E (it 9)502 + 1(50)
> SloulBns -+ r(ow).
Due to proposition 4.5
r(u, 6u) < cl|ullyre || 6ullfy 2,

so that, for [|dully1,0 — 0 we obtain

1)
E(u+ du) — E(u) > (2 - c||(5uHW1,oo> [0ullZe > elldull3 . O

5 Formal first order optimality conditions

Next we discuss first order optimality conditions of our optimal control problem.
As we have seen above, differentiability of the equality constraints £,(u,g) = 0
requires the choice of W1°°(Q) (or stronger) as a topological framework. Thus
we have to restrict our discussion to a formal level, as on one side we lack an
existence result in this space, and on the other hand existing regularity results do
not admit the application of the implicit function theorem in order to show that
the set €,(u,g) = 0 is a smooth manifold. Its application requires continuous
invertibility of the linearized weak formulation in suitable spaces. One possible
framework would be to consider

Euu : WP = L,
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for W2P < Who (cf. e.g. [11, Chapter 6]). However, the class of problems for
which suitable regularity results hold is small.

Formally the first order optimality conditions of (16) can be derived via the
Lagrangian function

L(u, g,p) = J(u, g) + p(Eulu, g)).

Computing the formal derivatives of L with respect to u, g, and p yields the system

Ju(t, 9) + Euul(u, g)'p =0 inU” (31a)
Jg(u, g9) + Eug(u, 9)'p=0 in G* (31b)
Eulu,g) =0 inU" (31c)

If J is the sum of a measure of the error and a Tikhonov regularization term, i.e. if J
is of the form J(u, g) = J*"(u)+§ HQH%%FC)’ where « is the Tikhonov regularization
parameter (as in (9a)), then these conditions can be written down explicitly:

J(w) + Euu(u,g)'p=0 inU" (32a)
ag(z) + (adj(I + Vu)'n) p(z) =0 ae. onT. (32b)
Eulu,g9)=0 inU" (32¢)

Elimination of g via (32b) reduces system (32) to

Jut () + Eyu(u)'p =0 (33a)
£ (u, _ (adj(1 —i-aVu)Tn) p) 0 (33b)

6 Numerical Results
In order to perform first numerical experiments we consider the cost functional
B 2 Q2
J(u,g) = 5”” - uref“LQ(Ft) + §||9||L2(Fc)a (34)
where the additional parameter 5 €]0, 1] is introduced in order to establish a numer-
ical continuation scheme 8 — 1. In a direct approach the occurring nonlinearities

would lead to too small Newton steps in the solution of nonlinear problem for 5 = 1.
Then, setting 7 = adj(I + Vu)Tn the reduced optimality system reads

/ W"(Vu)VpVodr + | B(u — uwer)vds =0 Yo e U (35a)
Q Tt

/ W!(Vu)Vw dz +/ %fzw ds=0 YweU (35b)
Q e
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Further, in view of possibly large values for Young’s modulus E we perform a rescal-
ing of the problem via

We—E'W and o— E’a (36)

This is a problem formulation that is invariant with respect to Young’s modulus,
being of advantage as, in the presence of large E, appropriate Tikhonov parameters
satisfy a ~ E~2 (see [21]) and thus may become very small. This in turn affects
the condition number of the Newton matrix and thus the numerical accuracy of the
Newton steps. As the coefficients of W depend linearly on Young’s modulus, the
application of the transformations (36) is equivalent to setting E = 1.

In summary, we solve a sequence of problems

W"(Vu)VpVodz + | Br(u — tpef)vdr =0
Iy

Q

(Pr) (37)

/W’(Vu)hdx—i—/ "Prihds =0
9) e O

with 0 < g < --- < By =1, N >0, E=1. The second material parameter of
linearized elasticity, the Poisson ratio v, is close to % in order to correspond to a
quasi-incompressible material, as encountered in soft tissue models. As constitutive
locking is a commonly observed phenomenon for v — % [4, 8], that should be
excluded in order to monitor the influences of the nonlinearities, we set v = 0.45.
This choice keeps the risk of constitutive locking small while staying reasonable
from a modelling point of view. In general, in order to allow the Poisson ratio to
attain all values in the admissible range [0, 0.5] mixed formulations and /or adjusted
discretization schemes for the forward problem of elastostatics [3, 31, 32] must be
used and adapted to the optimal control problem.
As noted in Section 4 a logarithmic dependence of I" on the volume change is not
sufficient to accurately model the soft tissue’s behaviour. For sake of numerical
simplicity we nevertheless choose the logarithmic penalty term I'(s) = s? + log(s).
The systems (Py) have been discretized on the cuboid [—1, 1] x[—1, 1] x[-0.1,0.1]
with the finite element toolbox Kaskade7.1 [16] using linear elements. The resulting
finite dimensional, nonlinear equations are solved with a covariant damped Newton-
method as presented in [14, Chapter 3|. For the solution of the arising linear systems
of equations we use the distributed multifrontal solver MUMPS [1, 2].

7 Conclusion

In this work, basic analytical and numerical results for the mathematical treatment
of an implant design problem have been established. The design problem was
formulated as an optimal control problem, and existence of optimal solutions was
shown in the context of polyconvex hyperelastic materials. Optimality conditions
were derived on a formal level and first numerical results were computed.

19



(a) computed deformation (b) comparison between computed solution and
desired deformation (white)

Figure 2: first numerical results for o = 0.1

These results indicate that our problem is numerically very challenging, and

refined algorithmic ideas are necessary to treat the nonlinear shape implant problem
to full satisfaction. This includes on one hand globalization techniques for the
nonlinear solver, and on the other hand adaptivity and iterative solution techniques
for the linear systems.
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