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Abstract. We consider multistage stochastic optimization models containing nonconvex constraints, e.g.,
due to logical or integrality requirements. We study three variants of Lagrangian relaxations and of the cor-
responding decomposition schemes, namely, scenario, nodal and geographical decomposition. Based on
convex equivalents for the Lagrangian duals, we compare the duality gaps for these decomposition schemes.
The first main result states that scenario decomposition provides a smaller or equal duality gap than nodal
decomposition. The second group of results concerns large stochastic optimization models with loosely cou-
pled components. The results provide conditions implying relations between the duality gaps of geographical
decomposition and the duality gaps for scenario and nodal decomposition, respectively.
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1. Introduction

Stochastic dynamic programs arise as optimization models of systems driven by some
discrete-time stochastic process

���������
	���
���
��������
, defined on some probability space����
���
����

with values in some finite-dimensional Euclidean space. Our modeling time
horizon includes  time periods, and we make sequential decisions ! �#"%$'& at every
time interval

�(	)�*
��+
������,
  on the basis of the information available at that time. We
shall denote the information available at time period

�
by - �.��	/�0�213
���4�
�������
��5�6�

. The
condition that ! � may depend only on - � is known as nonanticipativity condition. This
property is equivalent to the measurability of ! � with respect to the 7 -algebra

� �
8 �
,

which is generated by - � . Clearly, the set
��� � �

forms a filtration, i.e.,
� �98 � �0:;1

, and
we assume that

� 1 	<�>=�
��?�
and

�A@B	C�
. Nonanticipativity can be briefly expressed

by the equality constraints

! �D	%EGF ! ��H ���JIJ
D��	K�*
������5
  
+�ML a.s. (1)

The dynamics of the system is described by the inequalities
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where
N � � � - � � , � 	 �'L%��
6�

, and
V5� � - � � are matrices and vectors, respectively, of appro-

priate dimension and depending measurably on - � , �X	Y��
�������
  .
The remaining constraints associated with each time period are expressed in the form

! � "�� � � - �6� 
D��	Y��
������5
  
(�ML a.s.



(3)

where it is assumed that the sets
� �,� - �6� , �?	 ��
�������
  , are measurable w.r.t. � "Y�

and compact
�

-a.s. We do not assume that these sets are convex. Typical examples are
mixed-integer stochastic programs, where some integrality requirements are incorpo-
rated into the definition of the sets

� � � - � � . The presence of nonconvex functions in the
description of these sets is possible as well.

In this paper, we consider the following stochastic optimization model:

Minimize
E�� @� �	�;1�
 � � - � 
 ! � �
� subject to the constraints

��� � 
��J�*�
and

�����,�
(4)

Here, we assume that all functions 
 � � - � � � � 
 � � , � 	 ��
�������
  , are finite normal inte-
grands on

���M$X&
. Then the problem (1) – (4) is well defined.

In order to solve such a model, the stochastic process
�2�2�6� @�	�;1

is approximated by
a process having a finite number of scenarios. In this way a deterministic optimiza-
tion problem is generated, which replaces the stochastic problem. We shall refer to the
scenario-based deterministic problem as a multistage problem. The approximation typ-
ically leads to a model of very large dimensions. The large size, the combination of
different types of constraints, and the nonconvexity (e.g., integrality requirements) turn
the multistage problem into a theoretical and numerical challenge. In recent years vari-
ous decomposition methods for solving multistage problems were suggested (see [6,28]
for an overview). These include the primal nested Benders decomposition and the regu-
larized decomposition methods (see [4,26]). Dual decomposition techniques associate
Lagrange multipliers with some group of the constraints and make use of the solution
of some “dual” problem. Most of the dual approaches such as progressive hedging [22],
and the augmented Lagrangian decomposition suggested in [27,19], relax the nonantic-
ipativity constraints (1). Some dual problems are investigated in [21], where Lagrange
multipliers are associated with some inequality constraints describing the sets

� �,� - �6� .
Nodal decomposition is a technique that associates Lagrange multipliers with dynam-
ics constraints (2) (see [25]). Another decomposition approach was suggested for the
unit commitment problem in power generation under uncertain load in [10,18] (see
also [2,9,32] for related work). The decomposition exploits the specific structure of
many large systems that each component has a separate model. The joint operation is
then coordinated by coupling constraints. Therefore, to a large extent the model of the
whole system has a separable structure. We shall pay special attention to this decom-
position approach, which we call geographical decomposition. For further advances in
duality in stochastic programming problems we refer the interested reader to [20]. De-
composition methods for stochastic programming models with integrality constraints
were suggested in a few papers. Primal methods based on Benders and test sets for the
two-stage situation are presented in [8] and [15]. Dual schemes for the multistage case
are discussed in [7] and [24].
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Estimates of duality gaps for mixed-integer programs, and comparisons of some re-
laxation techniques are found in [1,3,13,12,14,17]. The results and techniques of these
papers require separation of constraints into two or more groups, while the decompo-
sition methods in stochastic programming lead to subproblems where certain sets of
constraints are copied, and others are separated. Moreover, the process of duplicating
constraints within each decomposition scheme is complicated. The specific structure of
the multistage models requires a special approach. Some relevant research on duality
gaps in stochastic programming is contained in [5,30,31]. The authors of [5,31] try to
establish quantitative estimates for the duality gap arising when the scenario decom-
position approach is applied to solving mixed-integer multistage stochastic programs.
The relative duality gap per scenario term is estimated in [31]. In [5] the authors state
sufficient conditions that lead to the vanishing of the duality gap in the scenario de-
composition if the number of scenarios tends to infinity. However, an example with
non-vanishing duality gap while increasing the number of scenarios is constructed in
[30].

Our analysis will focus on comparing the duality gaps for the three established
dual decomposition techniques in stochastic programming: scenario, nodal and geo-
graphical decomposition. We derive convex programs whose duals are equivalent to
the dual problems associated with three different Lagrangian relaxations. This analysis
for the scenario and nodal decomposition is presented in Section 3. The main result
presented in Section 4 shows that the scenario decomposition provides a better lower
bound (smaller or equal duality gap) than the nodal decomposition. The precise descrip-
tion and the analysis of the geographical decomposition are presented in Section 5. The
geographical decomposition is compared to the nodal and scenario decomposition in
Section 6. For a general optimization problem we introduce a measure of sensitivity to
relaxation of constraints. This sensitivity measure is used to characterize the relative
effectiveness of the decomposition approaches. Finally, sufficient conditions implying
how the duality gap for geographical decomposition relates to the corresponding gaps
for scenario and nodal decomposition are provided. The latter conditions are discussed
for stochastic integer programs.

2. Formulations of multistage problems

We consider the multistage problem based on an approximation of the stochastic pro-
cess

�
by finitely many scenarios. We may think of it as a special case of the stochastic

program in which the set
�

is finite, i.e.,
�)	 �*��
 �+
������,
��
�

and each scenario is rep-
resented by its index � . We denote the value of the process

�
for the scenario � at

�
by����� �

. Correspondingly, ! ��� � will denote the value of the decision for the scenario � at
�
,

where � 	Y��
���
������5
��
and

�D	Y�*
���
������,
  . Setting
� � � � � �X	��	�2
 � 	K�*
��+
������5
��

, with
��� �;1 �
�#	 �
, the nonanticipativity constraint corresponds to the following system of

equations

!�� � � 	 ! ��� � whenever -�� � � 	 - ��� � �
For

�X	Y�
the latter condition reads ! 1�� 1�	 ! 4�� 1�	 ����� 	 ! � � 1 .

The nonanticipativity constraints require the decisions to belong to a certain subspace.
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The particular algebraic representation of this subspace is inessential to our study, and,
therefore, we adopt the following general form:

��
� �'1�� ��� � ! ��� � 	���
 �X	K��
 �+
������5
  
 (5)

where the � ��� �
denote matrices of appropriate dimensions. For particular forms of � ��� �

see [22] and [19].
To simplify notation we set 
 ��� � ��	 
 � - ��� � 
 � � , N � ��� � ��	 N � � � - ��� � � , � 	/��LK�*
6�

, and� ��� � ��	 � � � - ��� � � for � 	Y��
 �+
������,
��
and

�X	Y��
 �+
�������
  .
Then the multistage stochastic program is of the form�����	�
 � ��
 @�

�	�;1
��
� �;1 � ��� ��� � (6)

subject to N � ��� � ! ��� �SO N
� ��� �RQ 1 ! ��� �RQS1UT%V���� � 
 ��	 ��
������5
  
 � 	Y��
������5
��X


(7)

! ��� � "�� ��� � 
 
 ��� � � ! ��� � ��� � ��� � 
 �X	Y��
������5
  
 � 	K�*
������5
��X

(8)

��
� �'1 � ��� � ! ��� �X	���
 �X	Y��
 �+
������,
  
 (9)

where additional variables
� 	 � � ��� �6�

were introduced to arrive at a model with linear
objective and with all potential nonconvexities contained in (8).

A graphical representation of the relations between the atoms in the filtration leads
to a tree. We can associate nodes of the tree with the realizations of the process as well
as with the decisions. We enumerate the nodes setting � 	 �

for the root node. Any
other node � has a unique predecessor node � � � � . Every node � has a set of successors� � � � , which is empty for the terminal nodes (leaves). We denote the number of all nodes
by � . There is a unique correspondence � � � � 
6����� � assigning a node � to a scenario
� at a certain time

�
. Furthermore, if � is a terminal node, then the correspondence� � � � � is well defined by setting � � � �
	 � if � 	 � � � 
  � . Using the probabilities

of the scenarios, we may associate probabilities with the nodes of the tree according to
the following recursive procedure:

��� 	�� �! 	 � 
 for all � such that
� � � �D	 =


"$#&% 	 � 
 � " for all other nodes � � (10)

By setting ! � 	 ! ��� � , � � 	 � ��� �
,
� � 	 � ��� �

, 
 � 	 
 ��� � , V � 	 V ��� �
,
N � � � 	 N � ��� �

andN � � ' 	 � 
 	 N � ��� �RQ 1
, respectively, if � 	 � � � 
���� , and by using the node probabilities (10),

we arrive at the following scenario-tree-based formulation of the multistage problem:�����	�
 � ��
)(�� �;1 � � � � (11)

subject to N � � � ! � O N � � ' 	 � 
 ! ' 	 � 
 TWV � 
 � 	C�+
������5
 � 
 (12)

! � "�� � 
 
 � � ! � �*� � � 
 � 	 ��
 �+
�������
 � � (13)
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The latter form of the multistage problem is commonly called a primal formulation. By
splitting the decision variables in (11)-(13), i.e., by setting ! ��� � � 	 ! � for each node� at time

�
and each � " ����
�������
��
�

satisfying � � � 
6��� 	 � , and by reformulating
the constraints for all splitted variables and introducing the explicit nonanticipativity
constraint (9), we arrive again at the scenario-based formulation (6)–(9). The constraint
(9) is omitted in the model (11)-(13) because it is reflected in the tree structure of the
decisions.

3. Lagrangian relaxation approaches and their dual equivalent convex problems

We can distinguish three relaxation ideas that lead to the decomposition of the multi-
stage optimization model:

– Lagrange multipliers are associated with the nonanticipativity constraints (9). This
relaxation is frequently called scenario decomposition or scenario disaggregation.

– Lagrange multipliers are associated with the dynamic constraints (12). This tech-
niques is called nodal decomposition in [25].

– Lagrangian relaxation by decoupling system components when the multistage prob-
lem has a loosely coupled structure. This approach will be called geographical de-
composition.

For more information about the scenario and nodal decomposition the reader is
referred to [25,22]. In the next subsections we shall review some features of the first
two relaxation approaches. The third approach requires a more precise description, and
we defer its discussion to Section 5.

Recall that the conjugate function 
�� � $
� � $

of a function 
 �
$ � � $
is

defined as follows:


 � ��� ��	����	��

��� 
 !�� L 
 � ! �
� ! " $ ��� �

Here
$ 	 $��.�����W�

. We assume that 
 is not identical to
O �

and that there exists an
affine minorant of 
 . The latter condition implies that 
 � ! ���CL��

for all ! "M$ � . The
biconjugate function 
���� of 
 is defined by


 ��� � ! �D	<� 
 � � � � ! �G	����	� 
 ��� 
 !�� L 
 � ��� �
���." $ � � �

It is known that this operation provides the close-convexification of 
 , that is,

epi 
 � � 	 co
�
epi 
 �

(cf. [16, Chapt. X, Theorem 1.3.5], [23, Theorem 11.1]). Here ! � � 
 refers to the epi-
graph of 
 and co denotes the operation of taking the convex hull and closure.

The following fact can be proved easily and will be used repeatedly.

Lemma 1. Assume that 
 � $ � � $
has an affine minorant. If 
 is a sum of a linear

and of an extended real-valued nonlinear function " , i.e., 
 � ! ��	 � @ ! O " � ! � for some� "M$ � , then 
 ��� � ! �G	 � @ ! O " � � � ! � .
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The indicator of a nonempty set
N

will be denoted by

��� � ! �D	�� � if ! " NO �
otherwise.

Clearly, it holds that
F � � I ��� 	 � ����� , where

N ��� 	 co
N

.
Consider the optimization problem� ��� 
 � ! � subject to ! " � 
 �	� ! ��
 � 

��	K�*
������5
���


(14)

where 
 is a finite lower semicontinuous function on
$ �

,
�

a subset of
$ �

and � � "M$ � ,
 � ")$
for

�M	 ��
�������
��
. When relaxing the linear constraints, the dual function is

denoted by � , i.e.,

� ��� ��	 ������� 
 � ! �XL ��
� �;1

� � ��
 � L �	� ! � � ! "����;
 � "M$ � : �
Further, we collect the nonlinearities and nonconvexities of 
 and

�
into 
 using the

indicator function of
�

. We define


�� 	 
 O � � �
Next we recall a result on convex programs that are dually equivalent to (14). It is due
to the pioneering work in [11] and also formulated in a more general version in [17].

Theorem 1. Assume that
�

is compact. The function � is also the dual function asso-
ciated with the following problem:� ��� F 
�� I ��� � ! � subject to � � ! ��
 � 

��	 ��
������5
����

(15)

Moreover, assume that there is a feasible point �! lying in the relative interior of dom
F 
 � I � � .

Then � attains its maximum, which is equal to the infimal value of (15).

3.1. Scenario decomposition

We consider the scenario-based formulation (6)–(9) of the multistage problem and as-
sociate a Lagrange multiplier � "B$ 	 @ � Q ( 
 & with the nonanticipativity constraint (9).
Then the Lagrange function reads

� � ' � ! 
 � 
 � �D	 ��
� �;1

@�
�	�;1 � � ��� ��� �SO � � � ��� � ! ��� �"! �

The dual function is given by

� � ' � � ��	 ����� � � � ' � ! 
 � 
 � �
� � ! 
 � �
" ��� �'1$# � '� � 
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where the set of feasible solutions # � ' 	 � �� �;1 # � '� is defined by setting # � '� , for each
scenario � 	Y��
 �+
�������
��

, to be the set

# � '� 	 � � � "M$ @ 	 & :;1 
 � ! ��� �
" � ��� � 
 
 ��� �,� ! ��� �6�*� � ��� � 
 ��	K�*
������  

N � ��� � ! ��� � O N

� ��� �RQ 1 ! ��� �RQ 1 T%V���� � 
D��	 ��
������  � 

where

� � 	K� ! ��� 1 
�������
 ! ��� @ 
 � ��� 1 
�������
 � ��� @'� . The dual problem is����� 
 � � ' � � �
� � "�$ 	 � @ Q ( 
 & � � (16)

The dual function decomposes into
�

scenario subproblems. Each subproblem opti-
mizes the operation of the system when the stochastic process follows a particular sce-
nario. For each scenario � we introduce its objective

� � ��� ��� � 	
@�
�	�;1 �
� � ��� � �

Next we show that the convex program

� ��� ��
� �'1 � � ����	�
 � ��� ��� � � subject to

�����
(17)

is equivalent to the Lagrangian dual (16).

Proposition 1. The function � � ' is also the dual function of problem (17). Moreover,
assume that the problem (6)-(9) has a feasible solution lying in the relative interior of
the set

F # � ' I ��� . Then � � ' attains its supremum, which is equal to the infimal value of
(17).

Proof: According to Theorem 1 the function � � ' is also a dual function to the
problem � ��� ��
 ��

� �;1 � ��� � �	� � ��� ��� � subject to
��� � �

Due to the linearity of the functions
� �

we obtain from Lemma 1 that

��
 ��
� �;1 � ��� ����� � � � ��� ��	<F ��

� �;1 � � O � � �	� I ��� ��� ��	 ��
� �;1 � � ��� � � O F � � ��� I ��� ��� � �

Further, due to the separability of the set # � ' , the biconjugate of its indicator function
is of the form

F � � ��� I ��� ��� ��	 ��� � �	��� �$� ������	 ��
� �;1 ��� � �	�
 � �$� ��� � ��	 ��

� �;1 � � � ���
 � ��� ��� � � �
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Combining the two equations, we obtain

��
 ��
� �;1 � � � ����� � ��� ��� ��	

��
� �;1 � � ��� � � O

��
� �;1 F � � ���
 I ��� ��� � ��	

��
� �;1 � � � � O � � ���
 � � ��� ��� � �

	 ��
� �;1 � � ������
 � ��� ��� ��� �

Furthermore, it holds that dom
� 
 
��� �;1 � � � � ��� � ��� 	 � # � ' � ��� . Thus, the constraint

qualification of Theorem 1 is satisfied and we may conclude that the dual function � � '
attains its supremum, which is equal to the infimum value of (17).

�

This result demonstrates that the relaxation of the nonanticipativity constraints is
equivalent to the “convexification” of the objective function and feasible set separately
for each scenario.

3.2. Nodal decomposition

The next relaxation is associated with the primal formulation (11)–(13) of the multi-
stage problem. The nodal decomposition associates Lagrange multipliers �

"M$ 	 ( QS1 
 "with the dynamic constraints (12), where � is the dimension of
V � for each � . The set

of feasible solutions #�� becomes

# � 	 ( �� �'1 # �� 	 ( �� �;1 
 � ! � 
 � � � "�$ & :;1 � ! � "�� � 
 
 � � ! � �*� � � � �
The Lagrange function and the dual function are given by

� � � ! 
 � 
 � �D	 �*1DO (�� �S4 ��� � � � O � � � V � L N � � � ! � L N � � ' 	 � 
 ! ' 	 � 
 � ! and

� � � � �G	 ����� � � � � ! 
 � 
 � �
� � ! 
 � �(" # � ��

respectively, and the dual problem is

� �	� � � � � � �
� � "M$ ( ": ���
(18)

The dual problem decomposes across nodes, i.e., into � L �
subproblems of dimension

� O � . Each subproblem models the optimal operation of the system under the conditions
determined by the relevant node. It is worth noting that the dimension of #�� is much
smaller than that of # � ' as �	�
� �  .
We introduce the notation

�� � ��� � ��	 � � � � , where
� � 	 � ! � 
 � � � , and consider the

convex optimization problem

����� (�� �;1 � �� ��
�� � ��� ��� � � subject to
���2���

(19)

and show that it is equivalent to the dual problem in the Lagrange relaxation of the
dynamic constraints.



Duality gaps in nonconvex stochastic optimization 9

Proposition 2. The function � � is also the dual function of problem (19). Moreover,
assume that there is a feasible solution of the problem (11) – (13) lying in the relative
interior of the set

F # � I ��� . Then � � attains its maximum, which is equal to the infimal
value of (19).

Proof: We follow the same line of arguments as in the proof of Proposition 1. According
to Theorem 1 the dual function � � is also a dual function to the problem

� ��� ��
 (�� �;1 �� � � � � � ��� ��� � subject to
���2�*�,�

Arguing analogously to the proof of Proposition 1, we obtain

��
 (�� �;1 �� � � � � � ��� ��� �D	 (�� �;1 �� � ��� � � O (�� �;1 F � � �� I � � ��� � ��	 (�� �'1 � �� �� �� � ��� ��� � �
Since the constraint qualification of Theorem 1 is satisfied, the second assertion fol-
lows, too.

�

The proposition demonstrates that this relaxation is equivalent to the “convexifica-
tion” of the objective function and of the feasible set separately for each node of the
scenario tree.

4. Scenario versus nodal decomposition

Now, we are ready to compare the duality gap of the introduced Lagrangian relaxations
for multistage stochastic programs.

Theorem 2. Assume that the convex hull of the feasible set of the problem (11) – (13)
has nonempty relative interior, then the scenario decomposition provides a better bound
for the optimal value of the multistage problem than the nodal decomposition, i.e., the
following inequality holds true:

� �	�
� � � � � ��� � �	�

� � � ' � � � �
Proof: Let us introduce the following notation, which will simplify the presentation.

The following set is associated with the dynamics constraints:

� 	 
 � 	Y� ! 
 � ��"�$ ( 	 & :;1 
 � N � � � ! � O N � � ' 	 � 
 ! ' 	 � 
 T V � 
 � 	C�+
�������
 � � �
For each scenario � set ! � � 	Y� ! ��� �6� and

� �(	<� � ��� ���
. We consider the sets

� � 	 
�� � 	Y� ! � 
 � � � " $ @ 	 & :;1 
 � N � ��� � ! ��� � O N � ��� �RQS1 ! ��� �RQ 1 T V���� � 
��D	 ��
������5
  �

and � ��� ��	 
 � ! ��� �,
 � ��� �6� "M$ & :;1 � ! ��� �
"�� ��� �,
 
 ��� � � ! ��� �6��� � ��� � � �
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Furthermore, let
� � 	 � @�	�;1 � ��� �

. Clearly, it holds for each scenario � that

# � '� 	 � ��� � �'�
Furthermore, if the problem (11)-(13) has a feasible solution in the relative interior of
the set

F #�� � � I ��� , then this solution is contained in the set
�

and in the relative interior
of the larger set

F #�� I ��� . Consequently, the constraint qualification of Proposition 2 is
satisfied. Moreover, we can split the variables as described shortly after (13) and obtain
a feasible solution of the problem (6) – (9). This solution will be contained in the relative
interior of

F # � ' I ��� by construction. Therefore, the assumptions of Proposition 1 are
satisfied as well. By relaxing the nonanticipativity constraints one obtains a lower bound�� � ' of the objective function, where

�� � ' 	 �����
� � � ' � � � � (20)

According to Proposition 1 there exists a solution �� 	Y� �! 
 �� � "M$ @ � 	 & :;1 
 of the convex
equivalent problem (17) such that

�� � ' 	 ����� � ��
� �;1 � � �� ���
 � ��� ��� � � � subject to

��� ���U	 ��
� �'1 � � �� �	�
 � � � � �� � � (21)

and �� satisfies the nonanticipativity constraint. Using the linearity of
� �

and the sepa-
rability of the set # � ' , we continue (21) and obtain

�� � ' 	 ��
� �;1 � � � O ��� 
���� 
 � ��� � �� � ��	 ��

� �;1 � � � � �� � � O ��� � 
 ��� 
 � ��� � � �� � �,� (22)

Observe that
F � � � � � I ��� 8 � � � � ��� � � � � � ��� 	 � � � � � � � ��� and, thus,��� � 
 ��� 
 � ��� � �� � � T � � 
 � 	 � 
 
 ��� � �� � ��	 �	� 
 � �� � � O � 	 � 
 
 ��� � �� � �

holds. Hence, we may continue the chain (22) of transformations as follows

��
� �'1 � � � � �� � � O ��� � 
 ��� 
 � ��� � �� � � � T ��

� �;1 � � � � �� � � O ��� 
 � �� � � O � 	 � 
 
 ��� � �� � � �
	 ��
� �;1 � � � �� � � O � 	�
�

��� � 
 
 � �� � O � 
�

��� 	 � 
 
 �$� � ����,� (23)

Let us define an element
�� 	 � �! 
 �� � "%$ ( 	 & :;1 
 by setting

�� � ��	 �� ��� � if � 	 � � � 
6��� .
This definition is non ambiguous because �� satisfies the nonanticipativity constraint.
We also set � � 	 
 ��� � 	 ��� � 
	� � �
� and obtain

��
� �;1 � � � �� � ��	 (�� �;1 �� � � �� � � �

The set
� �� �;1 � �

can be represented in the form
� �� �;1 � ��	 � �� �;1 � @�	�;1 � ��� �X	?� � ��� � � ��� �

.
Furthermore, due to the definition of the models (11)-(13) and (6)-(9), the sets

� ��� �
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satisfy the condition
� ��� � 	 �

� � � whenever - ��� � 	 -�� � � for all � 
 7 	 ��
���
������5
��
and�D	<��
���
������,
  . Therefore, we may replace

� ��� �
by # �� for the node � 	 � � � 
���� . Since�� � " F # � '� I ��� holds, we have

�� � "BF # � I ��� and
�	� � �� ��	 � �

(24)

Thus, we obtain that

��
� �;1 � � � �� �5� O � � 
�� � 	 � 
�� � 
 ��� � �� � O � � 

 � � � 
 � �� ��	 (�� �;1 �� � � �� � � O � ���� � � � ���� � ���� O � � � �� �

	 (�� �;1 � �� � O � � � � ��� � �� � � O � � � �� �D	 (�� �;1 � �� � � � � ��� � �� � � O � � � �� �
T � ��� � (�� �;1 � �� � � � � ��� ��� � � O � � ��� � � � (25)

According to Proposition 2 the right-hand side of the latter inequality is equal to the
optimal value ����� � � � � � � of the dual problem associated with the relaxation of the
dynamic constraints. From the chain of inequalities (22), (23), and (25), we obtain

�����
� � � ' � � �G	 ��

� �;1 F � ������
 I � � � �� � � T (�� �'1 � �� � � � � ��� � �� � � O �	� � �� � T �����
� � � � � � 


which is the desired inequality.
�

In general, the estimate in Theorem 2 is strict, as we will see in the next example.

Example 1. We consider a two-stage model with two scenarios (three nodes in the sce-
nario tree) in a primal formulation:� ��� L � � � ! 1 L �

� ! 4 L !��
subject to

! 1 O ! 4 �C�����
(dynamics in the first scenario)

! 1 O ! � �C��� �
(dynamics in the second scenario)

! � " F ��
 �>IR
 � 	K��
���
 ��	 ! 4 
 !
� integer (local constraints)

The feasible set of the problem is: � ! " $ � � ! 4 " � � 
����*
 !
� " � � 
��3��
 ! 1 "
F ��
 � ��� �*�*� ��L ! 4 
���� ��L !�� ��I � . The optimal solution of this problem is obtained for

! 1A	 ��� �
, ! 4 	 ! � 	Y�

and the optimal value is
L �*� ���

. The relaxation of the nonantic-
ipativity yields the same optimal value and, therefore, no duality gap. The same optimal
solution can be obtained by solving the convex problem equivalent to the dual of the
scenario decomposition according to Proposition 1. The feasible set of the latter prob-

lem is � ! " $ � � ! 4 " F ��
���IJ
 !�� " F � 
��5IR
 ! 1 " F ��
 � ��� �*�*� �.L ! 4 
��*� �.L !
� ��I � .

In contrast, the nodal decomposition results in a smaller optimal value
L �*� �
�

, which
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creates a duality gap of
� � � �

. The convex problem equivalent to the dual of the nodal
decomposition according to Proposition 2 has a larger feasible set, namely


 ! "B$ � �
! 4�" F ��
 �>IR
 ! � " F ��
 �>IR
 ! 1 " F � 
 � ��� �*�*� �UL ! 43
��*� � L ! � ��I � , which creates the gap in
this example.

5. Geographical decomposition

In this section, we turn to complex systems with loosely coupled components. We shall
assume that system components require their own models, which are coordinated by
several linking constraints. Furthermore, we assume that the objective function is sep-
arable with respect to components. We would like to associate geographical locations
with the components and refer to them as locations in the following. Let us assume that
the modeling system comprises � locations and ! �� "Y$'&��

is the decision at node �
associated with location

�
,
�'	K�*
���
������5
 � , and


��� �;1 � � 	 � .
We shall deal with the following multistage stochastic optimization problem, writ-

ten in a primal formulation with the transformations we have adopted in the previous
section

�����	�
 � ��
 (�� �;1 �� � �'1 ��� � �� (26)

subject to (27)N �� � � � ! �� � O N �� � ' 	 � 
 ! �' 	 � 
 T%V �� 
 � 	C�+
�������
 � 
 �X	K�*
������5
 � 
 (28)

! �� "�� �� 
 
 �� � ! �� �*� � �� 
 � 	K�*
������5
 � 
 �'	Y��
������5
 � 
 (29)
��
� �;1 � �� ! �� T�� � 
 � 	 �*
������5
 � � (30)

Here
� �� are � � � � -dimensional matrices and

� � are � -dimensional vectors. Thus,
there are � constraints (30) for each sequential decision that are coupling the models
of the locations. The assumption that the modeled system consists of loosely coupled l
ocations means that � �
�	� .

As the third decomposition approach we consider the decoupling of locations. Let
us associate Lagrange multipliers 
 "%$ ( � with the coupling constraints (30). Then
we obtain the following Lagrangian and dual function

�
� � ! 
 � 
 
 �G	 (�� �;1 � �� � �;1 � � � �� O � � 
 � � � � L
��
� �;1 � �� ! �� � � and

� � � 
 �D	 ����� � � � � ! 
 � 
 
 �(��� " # � ��

respectively. Here the set of feasible solutions # � 	 � �� �;1 # �� decomposes into � com-
ponents, defined by

# �� 	 
�� � 	<� ! � 
 � � �
"M$ ( 	 & :;1 
 � ! �� " � �� 
 
 �� � ! �� �*� � �� 
 � 	 �*
��+
������5
 � 
N �� � � � ! �� � O N �� � ' 	 � 
 ! �' 	 � 
 TWV �� 
 � 	C�+
�������
 � � �
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The dual problem reads � �	��
 � � � 
 �
� 
 "M$ � (: � �
(31)

The dual function decomposes into � subproblems representing the operation models
of each location. For each

��	K�*
������5
 � we introduce the functions

�� � ��� � � ��	 (�� �;1 ��� � �� �
The following convex optimization problem will turn out to be the dual equivalent to
the Lagrangian relaxation of the coupling constraints.

� ��� ��
� �'1

� �� ����� � ��� ��� � � subject to
� �&� � �

(32)

Proposition 3. The function � � is also the dual function of problem (32). Moreover,
assume that there is a feasible solution of the problem (26)-(30) lying in the relative
interior of

F # � I ��� . Then � � attains its maximum, which is equal to the infimal value of
(32).

Proof: The proof follows the same lines of arguments as the proofs of the Proposi-
tion 1 and Proposition 2.

�

The proposition shows that the Lagrange relaxation of the coupling constraints is
equivalent to the convexification of the objective function and of the feasible set, sepa-
rately for each geographical location.

6. Geographical decomposition versus scenario and nodal decomposition

We shall derive necessary and sufficient conditions for comparing the geographical de-
composition with the two other approaches. For this purpose we need a measure of
stability of a problem with respect to Lagrange relaxations when its feasible set (and
possibly also its objective function) is nonconvex. Given a real-valued function on

$ �
and subsets

�
and � of

$ �
, we consider the problem � ��� 
�� ��� . We can evaluate

the change of the optimal value of the Lagrangian dual problems when the constraints
defining the set � are relaxed, i.e., ����� F � 
 � � ��� O � � ��� I , compared to the optimal value
of the dual problem with no relaxation, i.e., ����� F 
 � ��� I � � . It provides us also with some
measure of effectiveness of the particular relaxation.

Definition 1. The measure of sensitivity of the problem � ��� 
 � ��� with respect to the
relaxation of the constraint set � is given by

� � 
 
 � 	
�
��	 ����� F 
	� ��� I ��� L ����� F � 
	� � ��� O � � �$� IR


where it is assumed that at least one of the infima is finite.
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Obviously, problems where 
 is a convex function and
�

and � are closed convex
sets satisfying a constraint qualification, are insensitive to relaxations by virtue of the
strong duality theorem. One can easily see that in this case also � � 
 
 � 	

�
��	 �

.
In [14] the notion of “convexity with respect to a set” is introduced for a similar purpose.
There, a set

�
is called � -convex if

� � �
�
� ��� 	 � ��� �

� ��� . Note that if the set
�

is � -convex, then also the set � is
�

-convex. This property is a kind of constraint
qualification as we will see in the following example.

Example 2. First, let us consider convex subsets
�

and � of some Euclidean space.
Then the � -convexity of

�
translates into the condition

��� � � �
�
�'	 ��� � � ��� � 


which is valid if � � � � � � ���	 =
[16, Proposition 2.1.10], where ��� and � � denote closure

and relative interior, respectively.
Secondly, let

�
be the set of all � -dimensional integral vectors, i.e,

� ��	��U&
, and � be

a polyhedral subset of
$�&

. Then � -convexity of
�

reads
�	� & �

�
� ��� 	 � (33)

and means that the integer hull of � , i.e., the closed convex hull of the set of all in-
tegral vectors contained in � , coincides with � . The integer hull of � is polyhedral if
� is a rational polyhedron [29, Theorem 16.1]. If � is rational and condition (33) is
satisfied, � is said to be an integral polyhedron. The polyhedron � is integral iff each
face of � contains an integral vector. Important concepts for detecting the integrality
of a polyhedron are the total unimodularity of matrices and the total dual integrality of
rational linear inequalities (see [29, Part IV]). Here, we briefly recall the first concept.
A matrix

�
is called totally unimodular if each subdeterminant of

�
is
�
,
O �

or
L �

.
In particular, each entry in a totally unimodular matrix is

�
,
O �

or
L �

. A polyhedron
�
	 � ! � � ! � 
2�

is integral if
�

is totally unimodular and



is integral (cf. [29,
Theorem 19.1]). A complete characterization of total unimodularity is provided by the
Hoffman–Kruskal theorem: If

�
is an integral matrix, then

�
is totally unimodular if

and only if for each integral vector



the polyhedron �
	 � ! � ! T ��
 � ! � 
>� is in-

tegral (cf. [29, Corollary 19.2a]). In particular, network matrices are totally unimodular
[29, Section 19.3].

Lemma 2. For any linear function 
 the sensitivity measure �
� 
 
 � 	

�
�

is nonnegative
if it is finite, and it vanishes if the set

�
is � -convex.

Proof: Using Lemma 1 and the inclusion
� � �

�
� ��� 8 � � � �

� ��� we have����� F 
	� ��� I ��� 	 ����� F 
 O � � ��� I ��� 	 ����� F 
 O � �
� ���

� ��� IT ����� F 
 O � �
�
� ��� O � �

�
� ��� I 	 ����� F � 
	� � ��� O � � ��� IR�

If
�

is � -convex, the only inequality in this chain becomes an equality.
�

In order to compare the relaxations, we shall need a dual formulation of the model
(26) – (30), where the variables are split for all scenarios as described after (13), and the
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nonanticipativity is formulated as a system of equality constraints. We introduce the set�
of points in

$ @ � 	 & : � 

that satisfy the coupling constraints, and the set � of points

in
$ @ � 	 & : � 


satisfying the nonanticipativity constraints. We define

� � 	 � � 	K� ! 
 � ��"�$ @ � 	 & : � 
 � �� � �;1 � ���� � ! � ��� � T	� ��� � 
 ��	 ��
�������
  � 


� � 	 � ��	<� ! 
 � �
" $ @ � 	 & : � 
 � ��
� �'1 �� ���� � � ���� � 	���
 �X	Y��
������5
  � 


� 	 ��� �;1 � �
and � 	 ��� �;1 � � �

Here the matrices
�� ���� � give the corresponding algebraic formulation of the nonan-

ticipativity subspace for the vectors
� ���� � . For each scenario � 	 �*
�������
��

and each
location

��	K�*
������5
 � we define the cylindrical sets
�� �� 	 
�� 	<� ! 
 � �
"�$ @ � 	 & : � 
 � ! � ��� � " � ���� � 
 
 ���� � � ! � ��� � �*� � ���� � 
 ��	Y��
���
������,
  
N � � ���� � ! � ��� � O N � � ���� �RQ 1 ! � ��� �RQS1 T%V � ��� � 
 �X	 �+
������5
  � �

Furthermore, for each
��	 ��
������5
 � and � 	K��
�������
��

we set

� � 	 ��� �;1 �� �� 
 � � 	 ��� �;1 �� ��
and

� 	 ��� �;1 � � �
We denote the objective function of the multistage problem by

� ��$ @ � 	 & : � 
 � $
, i.e.,

� ������	 ��
� �;1

��
� �'1

@�
�	�'1 �
� � ���� � �

Theorem 3. Assume that the convex hull of the feasible set for the problem (26)-(30) has
nonempty relative interior. The geographical decomposition provides a better bound for
the optimal value than the scenario decomposition, i.e.,

���
�
� � � ' � � � � � �	�

� � � � 
 �
if and only if the following inequality holds true:

� � � 
 � � � 
 � �XL � � � 
 � � � 
 � � T ���
Proof: According to the Propositions 3 and 1 by relaxing the coupling and nonan-

ticipativity constraints, one obtains a lower bound
�� � and

�� � ' , respectively, of the
objective function such that

�� � 	 � �	�
� � � � 
 �D	 ��� � � ��

� �'1
� �� � ���� � ��� � subject to

��� ��� � 

�� � ' 	 � �	�

� � � ' � � �D	 ����� � ��
� �;1 � � ������
 � ��� � subject to

��� � � �



16 Darinka Dentcheva, Werner Römisch

The latter problem is transformed by using the definition of the sensitivity measure. Let�
denote the optimal value of the multistage problem before relaxation. Then

�� � ' 	 �����
� ��
� �;1 � � ������
 � ��� O ��� �

	 � L � � � 
 � � � 
 � �
	 �����
� ��

� �;1 �
��
� �;1

@�
�	�;1 �
� � ���� � O � 	�� 
 
 �$� � O � � ���

�
O � � � 
 � 
 � � � �;L � � � 
 � � � 
 � �

	 ����� � ��
� �;1

��
� �;1

@�
�	�;1 � ��� ���� � O ��

� �;1 � 	�� 
 
 �$� O � � O ��� �
O � � � 
 � 
 � � � �;L � � � 
 � � � 
 � � �

We claim that ��
� �;1 � 	�� 
 
 ��� 	 ��

� �;1
��
� �;1 � 		�� �
 
 �$� 	

��
� �;1 � 	�� � 
 ��� � (34)

Indeed, the sum

 �� �;1 � 	�� 
 
 ��� ����� on the left hand side vanishes for the point

� "
$ � @ 	 & : � 


if and only if
�K" � ���� for all � . Furthermore, the

� �
are cylindrical sets

of the form
$ @ 	 & : � 
 	 ��Q 1 
 ��
 � � $ @ 	 & : � 
 	 � Q	� 


for some set

 �

. Consequently, we
have

� ���� 	 $ @ 	 & : � 
 	 � Q 1 
 ��
 ���� � $ @ 	 & : � 
 	 � Q
� 

. Using the separability of the sets


 �
this implies that

� ��� 	 
 ��� �'1 � � � ��� 	 
 ��� �;1 
 � � ��� 	 ��� �;1 
 � �� 	 ��� �'1 � ���� �

We obtain by the same arguments

� ��� 	
��
� �'1

��
� �'1 � 		�� �
 
 ��� and

� ��� 	
��
� �'1 � 	�� � 
 ��� �

In case
�
� �;1 � 	�� 
 
 ��� ��� �U	 �

, then
� �" � ���� for some � which implies the the equality

(34). Therefore, we can continue the transformation of the dual equivalent problem as
follows:

�� � ' 	 ����� � ��
� �;1

��
� �'1

@�
�	�;1 �
� � ���� � O ��

� �;1 � 	�� � 
 ��� O � � O � � �
(35)

O � � � 
 � 
 � � � �'L � � � 
 � � � 
 � �
	 ����� � ��

� �;1
� ��
� �;1

@�
�	�;1 � ��� ���� � O � 	�� � 
 ��� O � � � � O � � �

O � � � 
 � 
 � � � �'L � � � 
 � � � 
 � � �
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On the other hand, with each
��	<� ! 
 � �
" $ � @ 	 & : � 
 such that

� "B� � � � � � � � � we can
associate a point

���	<� �! 
 �� � " $ ( 	 & :;1 
 having the property

��
� �;1

� ��
� �;1

@�
�	�;1 � � � ���� � O � 	�� � � � � 
 ��� � �����G	 ��

� �;1
� (�� �;1 � � � �� O � ���� ��� � �� � � � 	 ��

� �;1
�� � � �� � �� � �,


where � 	 � � � 
6��� because the nonanticipativity is satisfied. Using again the measure
of sensitivity we obtain

�� � 	 ����� � ��
� �;1

� ��
� �;1

@�
�	�;1 � � � ���� � O � 	�� � � � � 
 ��� � O � � � (36)

	 � L � � � 
 � � � 
 � �
	 ����� � ��

� �;1
� ��
� �;1

@�
�	�;1 � � � ���� � O � 	�� � 
 �$� O � � � � O � � �

O � � � 
 � 
 � � � �'L � � � 
 � � � 
 � � �
Putting the two equalities (35) and (36) together yields

�� � ' 	 �� � O � � � 
 � � � 
 � �'L � � � 
 � � � 
 � � �
This completes the proof.

�

The next corollary is an immediate consequence of Theorem 3 and Lemma 2.

Corollary 1. Assume that the convex hull of the feasible set for the problem (26)-(30)
has nonempty relative interior.

(1) If the set
� � � is

�
-convex, then the geographical decomposition provides a better

bound for the optimal value than the scenario decomposition, i.e.,
���	�

� � � � 
 � T � �	�
� � � ' � � � �

(2) If the set
� � �

is � -convex, then the scenario decomposition provides a better
bound for the optimal value than the geographical decomposition, i.e.,

���	�
� � � � 
 ��� � �	�

� � � ' � � � �
Now, we turn to the relations between the geographical and the nodal decomposi-

tion. We shall use the relations and properties of the following sets:


 � 	 � � 	Y� ! 
 � �("M$ ( 	 & : � 
 � �� � �;1 � �� ! �� T � � �;

� � 	 � � 	<� ! 
 � �
"M$ ( 	 & : � 
 � N �� � � � ! �� � O N �� � ' 	 � 
 ! �' 	 � 
 TWV �� 
 � 	 �+
�������
 � �;



 	 ( �� �;1 
 � and
� 	 ��� �;1 � � �
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For each node � 	 �*
������5
 � and each location
�X	K�*
������5
 � , we define the sets:

�� �� 	 � � 	K� ! 
 � ��"�$ ( 	 & :;1 
 � ! �� " � �� 
 
 �� � ! �� ��� � �� � 

� � 	 ( �� �'1 �� �� 
 � � 	 ��� �;1 �� �� 
 and

� 	 ��� �;1 � � �
Abusing notation, we denote the objective function of the multistage problem in the
primal form by

� �*$ ( 	 & : � 
 � $
:

� ��� ��	 ��
� �;1 (�� �;1 ��� � �� �

Theorem 4. Assume that the convex hull of the feasible set for the problem (26)-(30) has
nonempty relative interior. The geographical decomposition provides a better bound for
the optimal value than the nodal decomposition, i.e.,

���
�
� � � � � ��� ���
�

� � � � 
 � 

if and only if the following inequality holds true:

� � � 
 � � 
U
 � �XL � � � 
 � � � 
 
#� T ���
Proof: According to Propositions 3 and 2 by relaxing the coupling and dynamic

constraints one obtains a lower bound of the objective functions
�� � and � � , respec-

tively, such that

�� � 	�� �	�
� � � � 
 �D	 �$����� �� � �;1 � �� � � �� � ��� ��� � � � subject to

��� ��� �;

�� � 	����	�

� � � � � �D	 � ����� (�� �;1 � �� �� �� � � � ��� � � � subject to
� � � � � �

We shall transform the latter problem by using the definition of the sensitivity measure.
Observe that #��� 	 � � � 
 � and #�� 	 � � 


. Let
�

denote the optimal value of the
multistage problem before relaxation. Then we have

�� � 	 ��� � � (�� �;1 � �� �� �� � ��� O � � �
	 ��� � � (�� �;1 � �� � �;1 � � � �� O � � � ��� � � ��� O � � �
	 ��� � � (�� �;1 �� � �;1 � � � �� O (�� �;1 � 	 � � ��� � 
 ��� O � � �	 � L � � � 
 � � 
U
 � �
	 ��� � � (�� �;1 �� � �;1 ��� � �� O (�� �;1 � 	 � � 
 ��� O � � O �	� �O � � � 
 � 
 � � 
#�'L � � � 
 � � 
U
 � �
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On the other hand,

�� � 	 ��� � � ��
� �;1

� �� � ���� � ��� O � � �
	 ��� � � ��

� �;1
� (�� �;1 ��� � �� O � � � � � � � ��� O � � �

	 ��� � � ��
� �;1 (�� �;1 ��� � �� O ��

� �;1 � 	 � � � � � 
 ��� O � � �	 � L � � � 
 � � � 
 
#�
	 ��� � � (�� �;1 �� � �;1 ��� � �� O

��
� �;1 � 	 � � 
 ��� O � � O �	� �O � � � 
 � 
 � � 
#�'L � � � 
 � � � 
 
#�,�

By using the same arguments as in the previous proof, we obtain that

(�� �;1 � 	 � � 
 ��� 	 (�� �;1 �� � �;1 � 	 �� �� 
 ��� 	
��
� �;1 � 	 � � 
 ���

Therefore, we arrive at the following chain of equalities:

�� � 	 ����� � (�� �;1 �� � �;1 � � � �� O (�� �;1 � 	 � � 
 ��� O � � O � � �O � � � 
 � 
 � � 
#�'L � � � 
 � � 
U
 � �
	 ����� � (�� �;1 �� � �;1 ��� � �� O

��
� �;1 � 	 � � 
 ��� O � � O �	� �O � � � 
 � 
 � � 
#�'L � � � 
 � � 
U
 � �

	 �� � O � � � 
 � 
 � � 
#�XL � � � 
 � � 
U
 � �'L � � � 
 � 
 � � 
#� O � � � 
 � � � 
 
#�
	 �� � L � � � 
 � � 
U
 � � O � � � 
 � � � 
 
#� �

This proves the assertion.
�

Analogously to the comparison of scenario and geographical decomposition we
obtain the following corollary.

Corollary 2. Assume that the convex hull of the feasible set for the problem (26)-(30)
has nonempty relative interior.

(1) If the set
� � �

is



-convex, then the geographical decomposition provides a better
bound for the optimal value than the nodal decomposition, i.e.,

� �	�
� � � � 
 � T ���	�

� � � � � � �
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(2) If the set
� � 


is
�

-convex, then the nodal decomposition provides a better bound
for the optimal value than the geographical decomposition, i.e.,

� �	�
� � � � � � T � �	�

� � � � 
 � �
In general, the calculation or estimation of the measure � is a difficult task. A general
method for evaluating the measure is beyond the scope of this paper. However, the
sufficient conditions in terms of set-convexity provided in both corollaries are verifiable
for some stochastic integer optimization problems.

Example 3. We consider a multistage stochastic integer program with a linear objective
function and loosely coupled locations. Since there is no need to introduce the variable�

, the set
�

in Theorem 3 is of the form

� 	 � � � 	 ���	�'1 ��� �;1 � �
@
��	�;1 � ���� � � � � � � ! 


where
� � � � 	 
 ! "W$ @ � & � N � � ���� � ! � ��� � O N � � ���� �RQ 1 ! � ��� �RQ 1 T V � ��� � 
 � 	 �+
������5
  �

. Let
�

denote the polyhedron given by the coupling constraints and � be the nonanticipativity
subspace of

$ @ � &
. We assume that

� � � � � is a rational and bounded polyhedral
subset of

$ @ � &
. Then we may assume that

�
is a bounded subset of the set

� @ � &
of all

integral vectors of dimension  � � having the property
� @ � & � � � � � � 	 � � � � � � � �

If the polyhedron
� � � � � is integral (cf. Example 2), we have
� � @ � & � � � � � ��� ��� 	 � � � � � �

In this case, both set-convexity conditions of Corollary 1 are satisfied. Hence, if the rel-
ative interior of

� � � � � is nonempty, the duality gaps of scenario and geographical
decomposition are identical and both are smaller than for nodal decomposition (Theo-
rem 2).
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27. A. Ruszczyński: On convergence of an augmented Lagrangian decomposition method for sparse convex
optimization, Mathematics of Operations Research 20 (1995) 634–656.
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