
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd. Selection and/or peer-review 
under responsibility of Prof. Mitsuhisa Sato and Prof. Satoshi Matsuoka
doi:10.1016/j.procs.2011.04.150

Procedia Computer Science 4 (2011) 1393–1402

International Conference on Computational Science, ICCS 2011

A flat Dirichlet process switching model for Bayesian estimation of

hybrid systems

H. Wu, F. Noé∗
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Abstract

Hybrid systems are often used to describe many complex dynamic phenomena by combining multiple modes of

dynamics into whole systems. In this paper, we present a flat Dirichlet process switching (FDPS) model that defines

a prior on mode switching dynamics of hybrid systems. Compared with the classical Markovian jump system (MJS)

models, the FDPS model is nonparametric and can be applied to the hybrid systems with an unbounded number of

potential modes. On the other hand, the probability structure of the new model is simpler and more flexible than the

recently proposed hierarchical Dirichlet process (HDP) based MJS. Furthermore, we develop a Markov chain Monte

Carlo (MCMC) method for estimating the states of hybrid systems with FDPS prior. And the numerical simulations

of a hybrid system in different conditions are employed to show the effectiveness of the proposed approach.
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Notation

Let R, R
n and R

m×n denote the sets of real numbers, real n-vectors and real m × n matrices, respectively. For

a, b ∈ R, a ∧ b = min{a, b}. The cardinality of a set S is denoted by |S |. Given a sequence {xt}, we denote the

{xk, xk+1, . . . , xl} by xk:l, and xk:l = y means xk = xk+1 = . . . = xl = y. For a finite sequence x1:T , the notation x−t

stands for (x1:t−1, xt+1:T ), x−(t:s) stands for (x1:t−1, xs+1:T ), and the set of distinct values of x1:T is denoted by SD (x1:T ).

D (α1, . . . , αk) denotes the Dirichlet distribution of order k with parameters α1, . . . , αk, B (α, β) denotes the Beta

distribution with parameters α, β, G (α, β) denotes the Gamma distribution with parameters α, β,U (α, β) denotes the

uniform distribution over the interval
[
α, β
]
,N (μ,Σ) denotes the multivariate normal (MVN) distribution with mean μ

and covariance matrix Σ, and pN (·|μ,Σ) denotes the probability density function (pdf) ofN (μ,Σ). Given a probability

measure G on a measurable space (T ,A), the product measure G2 on (T × T ,A×A) is defined by

G2 (A × B) = G (A) G (B) , ∀A, B ∈ A.
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1. Introduction

Hybrid systems (also known as multiple model systems) [1] are a very important class of models, which are

widely used in several fields of signal processing, including maneuvering target tracking [2], fault detection [3],

model reduction of molecular dynamics [4] and so on. The major difference between the hybrid systems and standard

dynamic systems with continuous state space is that a hybrid system combines hierarchically discrete/continuous state

spaces, and each discrete state (or called mode) is associated with a continuous-state dynamical process. The state

space model of the class of discrete-time hybrid systems under study here is given as below, and many hybrid systems

(e.g., the systems considered in [5, 6]) can be represented in this form:{
xt+1 = f (θt+1, xt,wt+1)

yt = g (θt, xt, vt)
, t = 1, 2, . . . ,T (1)

where f is the transition function, g is the measurement function, xt ∈ R
nx is the base (continuous) state variable,

yt ∈ R
ny is the available measurement, wt ∈ R

nw and vt ∈ R
nv are process and measurement noise, and θt ∈ R

nθ is the

modal (discrete) state variable. Neither the base state process x1:T nor the modal state process θ1:T is observed, and

only the noisy measurement process y1:T is available. The major challenge of estimation for hybrid systems arises

from the mode uncertainty, for it is impossible to investigate all the possible combinations of the modal states at

different times.

In the research of hybrid systems, the most popular assumption concerning the mode is that the modal state process

is a Markov chain (MC), and the systems satisfying this assumption are called Markovian jump systems (MJSs)

[1, 7]. In the past, a variety of algorithms have been proposed for solving the state estimation problem of MJSs with

completely known transition probabilities of modal states. such as generalized pseudo-Bayes (GPB) [8], interacting

multiple model (IMM) [9] and expectation propagation (EP) [10] algorithms. And some researchers have proposed

the Bayesian estimation algorithms for the unknown transition probability matrices (TPMs) within the framework of

IMM [11, 7]. These algorithms approximate the posterior distributions of states by finite mixture models, and are able

to get the estimates with low computation costs. But they may fail if the mixture models cannot approximate the true

distributions accurately, especially when the system contains nonlinear/nonGaussian modes. To solve the problem of

estimation of more general hybrid systems, some Monte Carlo estimation techniques including Markov chain Monte

Carlo (MCMC) [12] and sequential Monte Carlo (SMC) [6, 13] have attracted much attention in this field. They

provide a flexible framework to incorporate the heuristic approaches developed previously, and allow the Bayesian

estimation without any model approximation or linearization.

In recent years, the Dirichlet Process (DP) [14] approach has been one of the most important approaches to

nonparametric statistics. As a prior model of discrete distributions with infinite components, DP provides a powerful

tool for Bayesian clustering and multiple model analysis. And the original DP has been used to estimate the Gaussian

mixture noise density of dynamic systems [15]. But only a few studies have investigated the application of DP in

general hybrid systems, and most of them are based on the hierarchical DPs (HDPs) proposed by Teh [16]. An HDP

model consists of multiple DPs which are organized in a hierarchical structure, and can be used to develop an infinite

discrete-state hidden Markov model (HMM). Fox [17, 18] modified the HDP-HMM and presented the HDP based

MJS. The major advantage of the HDP-MJS model is that both the number and the values of modes appearing in the

processes can be estimated in a purely Bayesian manner.

In this paper, we present an alternative and more flexible DP prior model for hybrid systems with unknown mode

sets, and develop an MCMC algorithm for the Bayesian estimation of states. In comparison with the HDP-MJS, the

new model contains only one DP, which greatly simplifies the probability model structure and makes the sampling

easier. The remaining part of the paper is organized as follows. Section 2 reviews the basics of DPs and HDPs.

In Section 3, we propose the new DP model for mode switching of hybrid systems. After describing the model, in

Section 4 we present a Metropolis-within-Gibbs (MG) approach for state estimation, and in Section 5 provide results

from an example problem. In Section 6, we briefly discuss the online estimation problem. Section 7 is a summary of

the work in this paper.

2. Background

In order to make the paper self-contained, we provide a brief overview of DPs and HDPs in this section.
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2.1. Dirichlet processes
A DP is a probability measure on the space of probability measures. Let G0 be a probability measure on (T ,A)

and α be a positive real number. We say a random measure G is distributed according to a DP with scaling parameter

α and base distribution G0, denoted G ∼ DP (α,G0), if for any finite measurable partition {A1, . . . , Ak} of T ,

(G (A1) , . . . ,G (Ak)) ∼ D (αG0 (A1) , . . . , αG0 (Ak)) .

From the definition of DP, one can obtain two important equivalent descriptions of the DP model:

1. Stick-breaking representation. Sethuraman [19] proved that a G ∼ DP (α,G0) can be written in the explicit form

G =
∞∑

k=1

πkδηk , πk = π
′
k

k−1∏
l=1

(
1 − π′l

)
(2)

with

π′k |α,G0
iid∼ B (1, α) , ηk |α,G0

iid∼ G0.

According to (2), a realization of DP is discrete with probability one.

2. Blackwell-MacQueen urn scheme. Suppose we draw a G from DP (α,G0), and independently draw random vari-

ables {θt} from G:

G|α,G0 ∼ DP (α,G0) ,

θt |G
iid∼ G.

Integrating out G, the distributions of θ1, θ2, . . . can be provided by the Blackwell-MacQueen urn scheme [20]:

θt |θ1:t−1, α,G0 ∼
1

t − 1 + α

t−1∑
l=1

δθl +
α

t − 1 + α
G0. (3)

(In this paper we denote the joint distribution of θ1:t defined in (3) by pMDP (θ1:t |α,G0).) Thus, {θt} forms a stochastic

process. At each time t, θt takes a value from θ1:t−1 with a positive probability, and the probability is proportional

to the number of times the value has occurred.

2.2. Hierarchical Dirichlet processes
The HDP is an extension DP model for solving problems involving groups of data. The generative model for an

HDP is represented as

G0|γ,H ∼ DP (γ,H) ,

Gi|αi,G0
ind∼ DP (αi,G0) , i = 1, 2, . . .

Under this hierarchical structure, the base distribution for each Gi is also a realization of DP. Therefore all the Gi

share the common set of mixture components. The HDP can be applied to the Bayesian inference of HMMs, and the

resulting model is called HDP-HMM [16, 21]. Suppose that {θt} is the state sequence of an HMM with countable state

set Φ = {φ1, φ2, . . .} and Markov kernel K (φi, ·) = Pr (θt+1 ∈ ·|θt = φi). Then the HDP can be used to construct the

prior models of {K (φi, ·)} under the case that both Φ and K are unknown, since all the K (φi, ·) have the same support

within the HDP prior model constraints.

3. Flat Dirichlet process switching model for hybrid systems

It is clear that the dynamics of the hybrid system defined in (1) relies on the probability distribution of θ1:T , but

which is generally unknown in practical applications. As mentioned above, the HDP-HMM can be used to construct

a prior model for p(θ1:T ), if the total number of modes appearing in the process is uncertain. However, the HDP-

HMM involves multiple DPs which are associated with each other and form a hierarchical structure. It causes that the

estimation procedure is very complex with a large number of auxiliary variables. In this section, we develop a more

simple DP model for handling the mode switching dynamics.
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3.1. Flat Dirichlet process switching model
Unlike the HDP-HMM, here we consider applying the DP model with base distribution G2

0 to the sequence of

transition pairs θ̄1:T instead of θ1:T , where G0 is a continuous distribution on R
nθ and θ̄t =

(
θ′t , θt
)

denotes the transition

pair from time t − 1 to time t. Certainly θ′t should satisfy

θ′t+1 = θt. (4)

However, the realization of pMDP

(
θ̄1:T |α,G2

0

)
does not satisfy (4) in the general case. Therefore we adopt the following

modified prior model of θ̄1:T :

θ̄1:T |α,G0, σ
2
d ∼ pFDPS

(
θ̄1:T |α,G0, σ

2
d

)
∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−
V
(
θ̄1:T

)
σ2

d

⎞⎟⎟⎟⎟⎟⎟⎠ pMDP

(
θ̄1:T |α,G2

0

)
(5)

where

V
(
θ̄1:T

)
=

1

2

T−1∑
t=1

(
θt − θ′t+1

)T
D−1
(
θt − θ′t+1

)
.

is an energy function which we use to impose the soft constraints θ′t+1 ≈ θt on the values of θ̄1:T , D ∈ R
nθ×nθ is a

positive definite matrix, and σ2
d is a small positive number. The model based on this prior with σ2

d small enough tends

to make θ′t+1 and θt be approximately equal and could be therefore appropriate for describing the switching dynamics

of θ1:T .

Remark 1. Compared to the HDP-HMM, the structure of the prior defined in (5) is “flat” and only a single DP is

required. In this sense, we call the proposed model the flat DP switching (FDPS) model.

This prior model can also explained by the following virtual modelM:

G|α,G0 ∼ DP
(
α,G2

0

)
,

θ̄t |G
iid∼ G,

ut
iid∼ N

(
0, σ2

dD
)

,

y′t = θt − θ′t+1 + ut,

where ut is virtual noise and y′t is a virtual noisy measurement of the difference between θt and θ′t+1. It is obvious that

PFDPS is equal to the marginal conditional distribution of θ̄1:T given all y′t = 0 under the virtual model, i.e.,

pFDPS

(
θ̄1:T |α,G0, σ

2
d

)
= pM

(
θ̄1:T |α,G0, σ

2
d, y
′
1:T−1 = 0

)

where pM denotes the distribution under modelM.

Remark 2. If the discrete distribution G is given in the modelM, the conditional distribution of θ̄1:T can be written

as

pM
(
θ̄1:T |G, σ2

d, y
′
1:T−1 = 0

)
∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−
V
(
θ̄1:T

)
σ2

d

⎞⎟⎟⎟⎟⎟⎟⎠
T∏

t=1

G
(
θ̄t
)

.

The right-hand-side (rhs) of the equation consists of two terms. The first term stands for the soft constraints. And the

second term is the product of weights of all the transition pairs defined by the G, which is equivalent to a Boltzmann

chain model [22], which is an extension of MC. Therefore the proposed FDPS model can be treated as a prior for the

approximate Boltzmann chain model, and the resulted hybrid system model has more flexibility than common MJS

models.

Remark 3. For simplicity, we assume that G0 = N(μ0,Σ0) and D = Σ0 in this paper. Then θ′1:T can be integrated out

in analysis and estimation.



H. Wu, F. Noé. / Procedia Computer Science 4(2011) 1393–1402 1397

3.2. Marginal distribution of FDPS model

We now consider the marginal distribution of the FDPS prior model:

pMFDPS

(
θ1:T |α,G0, σ

2
d

)
=

∫
pFDPS

(
θ̄1:T |α,G0, σ

2
d

)
dθ′1:T = pM

(
θ1:T |α,G0, σ

2
d, y
′
1:T−1 = 0

)
. (6)

Suppose that a given θ1:T has m distinct values {φ1, . . . , φm}. Let ct denote the corresponding indicators with

ct = i ⇐⇒ θt = φi. It is obvious that the corresponding θ̄1:T also has m distinct values
{(
φ′1, φ1

)
, . . . ,

(
φ′m, φm

)}
and

satisfies θ̄t =
(
φ′ct
, φct

)
with probability one under modelM. From the above, we have

pM
(
θ1:T |α,G0, σ

2
d, y
′
1:T−1 = 0

)
∝ pM

(
y′1:T−1 = 0, θ1:T |α,G0, σ

2
d

)
= pMDP (θ1:T |α,G0) pM

(
y′1:T−1 = 0|φ1:m, c1:T ,G0, σ

2
d

)
= pMDP (θ1:T |α,G0)

·
∫ ⎛⎜⎜⎜⎜⎜⎝

m∏
i=1

(
pN
(
φ′i |μ0,Σ0

))⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

T−1∏
t=1

pN
(
φct − φ′ct+1

|0, σ2
dΣ0

)⎞⎟⎟⎟⎟⎟⎟⎠ dφ′1:m.

Note that the function integrated in the second term on the rhs represents an MVN distribution of
(
φ1:m, φ

′
1:m

)
. There-

fore we can get

pMFDPS

(
θ1:T |α,G0, σ

2
d

)
= pM

(
θ1:T |α,G0, σ

2
d, y
′
1:T−1 = 0

)
=

1

Z
(
α, σ2

d,G0

) pMDP (θ1:T |α,G0) pN (φ1:m|μr,Σr) (7)

where μr ∈ R
mnθ and Σr ∈ R

mnθ×mnθ are both functions of
(
c1:T , σ

2
d, μ0,Σ0

)
which can be easily computed by the

Kalman filter (KF) in practice, and Z
(
α, σ2

d,G0

)
denotes the normalized constant.

4. MCMC estimation

4.1. State estimation

In this subsection, we consider the Bayesian inference of both base and modal states of the hybrid system condi-

tioned on the measurements under the FDPS prior with hyperparameters of the FDPS model assumed to be known.

(In the rest paper we will drop the hyperparameters of the FDPS model from the notation where there is no ambiguity.)

From the above results, the Bayesian inference relies on the posterior distribution

p (θ1:T , x1:T |y1:T ) ∝ γ (θ1:T , x1:T ) = pMFDPS (θ1:T )

T∏
t=1

ψt (θt, xt, xt−1) (8)

where

ψt (θt, xt, xt−1) =

{
px1

(x1|θ1) pg (y1|x1, θ1) , t = 1

p f (xt |xt−1, θt) pg (yt |xt, θt) , t > 1
,

p f denotes the transition probability density with xt |xt−1, θt ∼ p f (xt |xt−1, θt), pg denotes the measurement probability

density with yt |xt, θt ∼ pg (yt |xt, θt), and px1 denotes the distribution of the initial state x1 with x1|θ1 ∼ px1
(x1|θ1).

And the posterior can be approximated by MCMC methods based on MG sampling [23] method, which uses the

Metropolis sampling technique to draw each variable (or group of variables) from its conditional distribution while

holding all the other variables fixed. For the estimation problem in this section, each iteration of the MG sampler

draws the following samples:

θt:t+1|θ−(t:t+1), x1:T , y1:T for t = 1, . . . , T − 1. From (8), we have

p
(
θt:t+1|θ−(t:t+1), x1:T , y1:T

)
∝ pMFDPS

(
θt:t+1|θ−(t:t+1)

)
ψt (θt, xt, xt−1)ψt+1 (θt+1, xt+1, xt)
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where pMFDPS

(
θt:t+1|θ−(t:t+1)

)
is a finite mixture distribution of a discrete distribution and multiple MVN distributions,

and can be easily derived from the expression for pMFDPS (θ1:T ) in (7). Then we generate a new sample for θt:t+1 as

θnew
t:t+1 ∼ pMFDPS

(
θt:t+1|θ−(t:t+1)

)
and let θt:t+1 ← θnew

t:t+1
with probability

ψt
(
θnew

t , xt, xt−1

)
ψt+1

(
θnew

t+1
, xt+1, xt

)
ψt (θt, xt, xt−1)ψt+1 (θt+1, xt+1, xt)

∧ 1.

Remark 4. Here we sample θt and θt+1 instead of a single θt at each time. The reason is that the variance of

pMFDPS (θt |θ−t) is often very small during the sampling procedure due to the soft constraint θt ≈ θ′t+1, and the sampler

thereafter may be inefficient if we only sample a single θt at each time.

xt:t+L−1|θ1:T , x−(t:t+L−1), y1:T for t = 1, 1 + L, 1 + 2L, . . .. Here we adopt the similar strategy as in sampling θt,
i.e., divide x1:T into blocks with length L and sample a block at each step. The conditional distribution of xt:t+L−1 is

p
(
xt:t+L−1|θ1:T , x−(t:t+L−1), y1:T

)
∝

t+L∏
k=t

ψk (θk, xk, xk−1) .

And we can get an MVN distribution qxt which is an approximation of the conditional distribution by KF or unscented

Kalman filter (UKF) [24, 25]. Then we draw

xnew
t:t+L−1 ∼ qxt:t+L−1

(xt:t+L−1)

and let xt:t+L−1 ← xnew
t:t+L−1

with probability

ψt
(
θt, xnew

t , xt−1

)
ψt+L

(
θt+L, xt+L, xnew

t+L−1

)∏t+L−1
k=t+1 ψk

(
θk, xnew

k , x
new
k−1

)
qxt:t+L−1

(xt:t+L−1)

ψt (θt, xt, xt−1)ψt+L (θt+L, xt+L, xt+L−1)
∏t+L−1

k=t+1 ψk (θk, xk, xk−1) qxt:t+L−1

(
xnew

t:t+L−1

) ∧ 1.

φ1:m|c1:T , x1:T , y1:T . Here the definitions of φ1:m and c1:T are the same as in Subsection 3.2, and we will sample the

values of θ1:T with c1:T fixed in this step. According to (7) and (8), the conditional distribution of φ1:m can be written

as

p (φ1:m|c1:T , x1:T , y1:T ) ∝
⎛⎜⎜⎜⎜⎜⎝

m∏
i=1

pN (φi|μ0,Σ0)

⎞⎟⎟⎟⎟⎟⎠ · pN (φ1:m|μr,Σr) ·
⎛⎜⎜⎜⎜⎜⎝

T∏
t=1

ψt
(
φct , xt, xt−1

)⎞⎟⎟⎟⎟⎟⎠ . (9)

Then we draw

φnew
1:m ∼ qφ (φ1:m)

where qφ is a proposal distribution, and let φ1:m ← φnew
1:m with probability

(∏m
i=1 pN

(
φnew

i |μ0,Σ0

))
· pN
(
φnew

1:m |μr,Σr

)
·
(∏T

t=1 ψt

(
φnew

ct
, xt, xt−1

))
qφ (φ1:m)(∏m

i=1 pN (φi|μ0,Σ0)
)
· pN (φ1:m|μr,Σr) ·

(∏T
t=1 ψt

(
φct , xt, xt−1

))
qφ
(
φnew

1:m

) ∧ 1.

According to (9), we can also use KF or UKF to develop an MVN proposal qφ such that qφ (φ1:m) ≈ p (φ1:m|c1:T , x1:T , y1:T )

After M′ + M iterations of the MG sampling (including M′ burn-in iterations), the minimum mean-square error

(MMSE) estimates of states can be computed as

x̂t = E
[
xt |y1:T

]
≈

1

M

M′+M∑
i=M′+1

x(i)
t , θ̂t = E

[
θt |y1:T

]
≈

1

M

M′+M∑
i=M′+1

θ(i)t

where
(
θ(i)

1:T , x
(i)
1:T

)
denotes the sample of i-th iteration.
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4.2. Estimation of α and σ2
d

We now consider the case that the hyperparameters α and σ2
d are unknown. It seems reasonable to jointly estimate

hyperparameters and states by MG sampling based on

p
(
α, σ2

d |θ1:T , x1:T , y1:T

)
= p
(
α, σ2

d |θ1:T

)
∝

p
(
α, σ2

d

)
Z
(
α, σ2

d,G0

) pMDP (θ1:T |α,G0) pN (φ1:m|μr,Σr)

where p
(
α, σ2

d

)
denotes the prior distribution of α and σ2

d. But it is impossible to sample directly for Z
(
α, σ2

d,G0

)
is

intractable. So here we approximate the p
(
α, σ2

d

)
by a discrete distribution

p̂
(
α, σ2

d

)
=

Nh∑
i=1

1

Nh
δαi,σ

2
d,i

(
α, σ2

d

)

and draw (
α, σ2

d

)
∼ p̂
(
α, σ2

d |θ1:T

)
∝

Nh∑
i=1

1

Zi
pMDP (θ1:T |αi,G0) pN (φ1:m|μr,Σr) δαi,σ

2
d,i

(
α, σ2

d

)

where
{(
αi, σ

2
d,i

)}
are Nh samples from p

(
α, σ2

d

)
and Zi = Z

(
αi, σ

2
d,i,G0

)
. Although the values of Zi are still unknown,

the modified Wang-Landau algorithm [26] can be utilized to get the approximates Ẑi ≈ Zi/
(∑

j Z j

)
through sampling.

(Due to space limitations, we omit details of the algorithm.)

Remark 5. Generally speaking, Nh should be large enough such that the discrete distribution can well approximate

the true distribution. If we apply the proposed method to estimate (μ0,Σ0), which contains O
(
n2
θ

)
random numbers,

the required value of Nh may be so large that the estimation approach implemented here is impractical. So how to

achieve the Bayesian inference of all the hyperparameters of FDPS model remains an open problem. And μ0,Σ0 are

set by trials and errors in this paper.

5. Simulations

In this section, the approach proposed in this paper will be applied to a hybrid system described by

⎧⎪⎪⎨⎪⎪⎩
xt+1 = at+1xt + bt+1 + 25 xt

1+x2
t
+ wt+1

yt =
x2

t
20
+ vt

, t = 1, 2, . . . ,T

with T = 300, x ∼ N (0, 1), wt ∼ N (8 cos (1.2 (t − 1)) , 0.1), vt ∼ N (0, 1). And θt = (at, bt) switches between three

modes φ1 = (1, 0), φ2 = (1, 3) and φ3 = (0.5, 0). In simulations, θ1:T are generated according to the following two

models, denoted M1 and M2.

• M1: θ1:T is an MC with

Pr
(
θt+1 = φ j|θt = φi

)
=

{
0.8, i = j
0.1, i � j and Pr (θ1 = φi) =

1

3
.

• M2: The duration of the i-th mode follows the Poisson distribution with parameter εi, Pr (θ1 = φi) =
1
3

and

Pr
(
θt+1 = φ j|θt = φi, θt+1 � θt

)
= wi j, where

(ε1, ε2, ε3) = (10, 20, 35) and w12 = w23 = w31 = 0.2, w13 = w21 = w32 = 0.8.

This is a nonMarkovian model (see [27] for details).
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Table 1: State estimation results based on the FDPS and classical MJS models. This plot shows the mean and variance

of the MSEs calculated over 50 independent runs.

M1 M2

MSEx MSEθ MSEx MSEθ
mean variance mean variance mean variance mean variance

FDPS 0.3913 0.0198 0.2483 0.0054 0.4588 0.0182 0.0498 0.0016

Classical MJS 0.2614 0.0079 0.2016 0.0077 0.5687 0.0268 0.2492 0.0084

The parameters of our algorithm/model are chosen as M′ = 1000, M = 3000, L = 10, μ0 = (0, 0), Σ0 = diag (1, 5),

and
{(
αi, σ

2
d,i

)}
with Nh = 200 are sampled according to α ∼ G (2, 2) and logσ ∼ U

(
log 10−3, log 0.5

)
. For comparison

we also perform the Bayesian estimation based on the classical MJS model with 3 modes by the MG sampling method

[28], where the iteration number is the same. (For this case, the classical MJS model is “more exact” than the HDP-

HMM based model since the number of modes is set correctly.)

We repeated the simulation and estimation procedures 50 times. Table 1 summarizes the performance of the FDPS

and classical MJS models. The table shows the means and variances of the mean square errors (MSEs) of the state

estimates, where

MSEx =
1

T

T∑
t=1

‖x̂t − xt‖2, MSEθ =
1

T

T∑
t=1

‖θ̂t − θt‖2.

Fig. 1 shows the estimation results of modal states obtained from a single run of M1 and M2. Note that the MJS

model with 3 modes is an “exact” prior model of M1. By contrast, the proposed FDPS model achieves the similar

estimation performance for M1 with the number of modes unknown. For the nonMarkovian jump system model M2,

the FDPS model outperforms the MJS model, especially in the mode estimation. This demonstrates the robustness

and flexibility of the FPF, (see Remark 2). Moreover, in the simulations in Fig. 1, there are 9 different transition pairs

in {θ1:T } (φ1 → φ1, φ1 → φ2, . . . , φ3 → φ3), and the FDPS model can get the correct number in most samples.

6. SMC for online estimation

In some applications, the states of the systems are required to be estimated online. For these cases, we can apply

the SMC method to sampling sequentially from distributions {p (θ1:t, x1:t |y1:t) ∝ γ (θ1:t, x1:t) |t = 1, 2, . . .}.
For the general JMS model, the SMC method performs online sampling based on the following recursive equation:

p (θ1:t, x1:t |y1:t) ∝ ψ (θt, xt, xt−1) p (θt |θ1:t−1) p (θ1:t−1, x1:t−1|y1:t−1) .

However, in the proposed FDPS based hybrid system model, pMFDPS (θ1:t) cannot be expressed as pMFDPS (θ1:t) =

pMFDPS (θ1:t−1) pMFDPS (θt |θ1:t−1) for
∫

pMFDPS (θ1:t) dθt � pMFDPS (θ1:t−1). Therefore (8) is not a generative but a dis-

criminative probabilistic model, and the estimates cannot be calculated by the ordinary SMC method for JMS models

directly. Fortunately, the posterior distributions of states can be converted into a generative form by applying the

virtual modelM. From (6), we have

γ (θ1:t, x1:t) ∝ pM
(
θ1:t, x1:t |y1:t, y′1:t−1 = 0

)
∝ ψ (θt, xt, xt−1) pM

(
θt, y′t−1 = 0|θ1:t−1

)
pM
(
θ1:t−1, x1:t−1|y1:t−1, y′1:t−2 = 0

)

and the pM
(
θt, y′t−1 = 0|θ1:t−1

)
can be recursively computed by KF. Then we can develop the SMC method for FDPS

based hybrid system models (details will be given elsewhere).

7. Conclusions

In this paper, we have developed a Bayesian nonparametric model and estimator for hybrid systems with unknown

mode sets. The main difference between our approach and other nonparametric approaches is that we utilize the DP
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Figure 1: Mode estimation results for data generated by M1 and M2. (a) and (b) Estimates of a1:T using the FDPS

model and classical MJS model. (c) and (d) Estimates of b1:T . (e) and (f) Histograms of the numbers of distinct

transition pairs θ̄t appearing in the samples of FDPS model. (Although the complete transition pairs θ̄t are not sampled

in our method, we have
∣∣∣∣SD
(
θ̄(i)

1:T

)∣∣∣∣ =
∣∣∣∣SD
(
θ(i)

1:T

)∣∣∣∣.)
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to model the distribution of mode transition pairs instead of individual modes. Consequently the proposed FDPS

prior does not need multiple DPs as the HDP prior, and the corresponding probability model of hybrid systems is

greatly simplified and more flexible. Using the MCMC method, we may efficiently compute state estimates from

noisy measurements. Future work will concentrate on schemes for Bayesian inference of the whole hyperparameters

of FDPS model. It would also be important to improve the estimation performance by some new sampling techniques.
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