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Abstract
In many fields of physics, chemistry and biology the characterization of dynamical processes

between states or species is of fundamental interest. The central mathematical function in such sit-

uations is the committor probability - a generalized reaction coordinate that measures the progress

of the process of interest as the probability of proceeding towards the target state rather than re-

lapsing to the source state. Here, we present methodology for the efficient computation of com-

mittor probabilities for large-scale systems, such as, for example simuations of biomolecular fold-

ing. A method is derived for computing the committor for discrete state spaces using eigenvectors

with expressions for the sensitivity and a Bayesian error model for the committor. The concepts

are illustrated on two examples of diffusive dynamics with a very large number of states: a two-

dimensional model potential with three minima, and a three-dimensional model representing

protein-ligand binding. The method can finally be used to compute committor probabilities in-

cluding error estimations for medium and large system sizes allowing access to the apparatus of

transition path theory and its applications.
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INTRODUCTION

The essential features of dynamical systems can often be understood in terms of the

transitions between substates of special interest. This is particularly true where the dy-

namics itself points to the substates being metastable. Examples of this include protein

folding or misfolding [19, 21], molecular association [26], chemical reactions [7], phase

transitions in spin systems [12, 20, 22] or liquids [27], climate systems [9] and trend

changes in financial systems [10]. In many cases, characterizing the dynamics between

two substates A,B of configurational space Ω provides a satisfactory picture of the pro-

cess (e.g. in protein folding A being unfolded and B native [19]), whereas in other cases

the simultaneous consideration of multiple substates is necessary.

It is now widely recognized that the committor probability, also called splitting prob-

ability or probability of folding in some contexts, is the central mathematical object that

allows intersubstate processes to be characterized [2–6, 11, 13, 14]. The committor q(x)

is a state function that provides the probability at any state x ∈ Ω of next moving to B
next rather than toA under the action of the system dynamics. By definition q(x) = 0 for

x ∈ A and q(x) = 1 for x ∈ B. The committor thus defines a dynamical reaction coordi-

nate, which has the advantage over ad hoc reaction coordinates that it does not bring the

danger of concealing relevant dynamics of the system. In the present work, we investi-

gate how the committor probability can be efficiently computed for large-scale systems

and study its sensitivity as well as its uncertainty in cases where the full dynamics has

been inferred from a finite set of observations.

We concentrate here on dynamical systems which can be modeled as Markov pro-

cesses between a finite (but possibly large) number m of discrete states. This includes

systems which are discrete and Markovian by definition, such as spin glasses and on-

lattice Go models [29] or resulting from a space discretization of a continuous generator or

propagator [23]. In the latter case, the spacial discretization will cause the discretized sys-

tem to be no longer exactly Markovian. The unintentionally introduced memory can in

principle be described by the Mori-Zwanzig projection formalism of the full-dimensional

dynamics onto a basis set defining the discrete states [16, 31, 32], but, from a numerical

point of view the error made by using a Markov model in the discrete state space can in

principle be rendered as small as desired by using a fine enough discretization, a small
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enough time resolution [23], or, alternatively, embedding the dynamics in an extended

discrete state space as proposed in Ref. [28].

The system dynamics is then described by a discrete-time transition matrix T(τ) ∈
Rm×m, giving rise to the Chapman-Kolmogorov equation,

p(kτ) = p(0)Tk(τ), (1)

which propagates state probabilities p ∈ Rm in time, or by the rate matrix K ∈ Rm×m

and the corresponding master equation

dp(t)
dt

= p(t)K

with the formal solution:

p(t) = p(0) exp(tK) (2)

yielding the formal relationship

T(τ) = exp (τK) .

A large number of studies treat the estimation of T or K from observation data in cases

where they are not defined by the model itself or can be derived from the discretization

of a continuous operator, but this estimation problem is not further considered here.

Given such a dynamical model, let us examine a number of aspects of the system

dynamics that can be accessed via the committor probability. Firstly, all sets of constant

committor probability in the state space Ω

I(q∗) = {x ∈ Ω | q(x) = q∗}, ∀q∗ ∈ [0, 1] (3)

are hypersurfaces that partition the state space into the two disjoint subsets IA(q∗) =

{x ∈ Ω | q(x) < q∗} with A ⊂ IA(q∗), ∀q∗ > 0 and IB(q∗) = {x ∈ Ω | q(x) > q∗} with

B ⊂ IB(q∗), ∀q∗ < 1. The committor is thus a measure for the progress of a process or

reaction, i.e. it is the ideal reaction coordinate for the process A → B [2, 6, 13]. Of special

interest in this context is the isocommittor surface I(0.5), which can be interpreted as the

transition state ensemble in protein folding theory [21].
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Once the committor has been computed, the change of any state variable a(x) along

the A → B process may be monitored by projecting onto this reaction coordinate using

a(q∗) = E(a(x) | x ∈ I(q∗)) =

∫
x∈I(q∗) dx π(x) a(x)∫

x∈I(q∗) dx π(x)
, (4)

with π(x) proportional to the statistical weight of state x and also the stationary distribu-

tion of state x, if this exists. In the latter case, one can define a dimensionless potential of

mean force (PMF) along the A → B process given by

F(q∗) = − log

∫
x∈I(q∗) dx π(x)∫

x∈Ω dx π(x)
. (5)

The transport properties from A to B can be be computed via transition path theory

(TPT) [15, 30]. In particular, the reactive flux fij between two states i and j is given by

fij = πiq−i kijq+j (6)

for rate matrices [15], or

fij(τ) = πiq−i Tij(τ)q+j (7)

if the transition probability matrix is used [19]. Here, q− is the backward committor

which is the probability that of the two states A has been visited last and not B which

is equal to 1− q+ if the dynamics is reversible. The reactive flux fij is proportional to

the probability that a reactive trajectory, that is, a trajectory directly connecting A and B,

passes through the transition i→ j. The net transport through i→ j is given by

f+ij = max{ fij − f ji, 0}, (8)

which defines a network flow out of A and into B that can be decomposed into a set of

A → B reaction pathways along with their probabilities [15, 19, 30].

Finally the A → B reaction rate is given by [19]:

kAB =
∑i∈A,j/∈A f+aj

∑i∈Ω q−i
. (9)

Given the fundamental relevance of the committor probability in the characterization

of dynamical processes, it is important to be able to compute q(x) efficiently, and also

to understand its sensitivity to perturbations, especially in cases where the system dy-

namics can be computed only approximately, e.g., by some sampling scheme such as
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molecular dynamics simulations or Monte-Carlo dynamics. The remainder of the paper

will concentrate on these numerical questions together with the illustration of the meth-

ods process on a simple 2-dimensional energy surface with metastable states and on a 3D

model reminiscent of protein-ligand association.

COMMITTOR EQUATIONS

The committor is defined as the probability of reaching state B before stateA is visited

and thus corresponds to the result of a hypothetical experiment which starts a large num-

ber of Monte Carlo simulations in state s and measures qs as the fraction of simulations,

that reach B first.

Transition Matrix

We first derive the committor equations via the hitting times hA of given subsets, which

corresponds to the average number of steps a stochastic process needs to reach a set A, if

started at state x. Let hA be the hitting time of set A ⊂ Ω: hA : Ω → N ∪ {∞} and Xi a

time-discrete trajectory Xi : i→ Ω with initial starting point X0 = x given by

hA(ω) = inf{n > 0 : Xn(ω) ∈ A},

Now consider the committor probability, q+i pertaining to two sets A and B, which is

the probability that, starting in state i, the system goes to B next rather than to A using

the hitting times h

q+i = Pi(hB < hA) ≡ Pi(hB < hA)

where Pi indicates the probability for all trajectories X, that originate in state i.

In order to compute q+i , we use a recursive relation in the committor between con-

nected points in configurational space Ω which states that the committor probability of

a state i /∈ A ∪ B is given by the sum of all products of the probabilities of reaching a

neighboring state j given from the transition probability Tij and the committor probabil-

ity at state j while for states A and B we set the given solution to be in correspondence

with the boundary conditions
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q+i =


0 if i ∈ A

1 if i ∈ B

∑j Tijq+j if i /∈ A,B

. (10)

The backward committor probability, q
−
i is defined respectively as the probability that

being in state i, the system was in B last rather than inA. In order to obtain the backward

committor, we use the backward propagator

T−ij :=
πj

πi
Tji

which contains the probabilities that if the system is in state i then it came from state j.

Proceeding in analogy to the forward committor we get

q
−
i =


0 if i ∈ A

1 if i ∈ B

∑j∈I T−ij q
−
j if i /∈ A,B

.

For reversible dynamics the forward and backward propagators are equal , Tij =
πj
πi

Tji = T−ij from which it follows immediately that

q
−
i = 1− q

+

i .

Rate Matrix

Given the rate matrix K ∈ Rm×m, we can use a similar arguments as for the time

discrete case and derive expressions for the committor

q+i = 0 if i ∈ A

q+i = 1 if i ∈ B

∑
j∈I

Kijq+j = 0 if i /∈ A ∪ B.

and the same equations hold also for the backward committor. A proof is given in the

Appendix.
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Transforming between Rate and Transition Matrices

It turns out that there is a simple way to transform rate matrices into transition matri-

ces and vice versa that leaves the committor probabilities unchanged. This transformation

is useful when a method is available to compute the committor from the transition ma-

trices, but not for rate matrices, or vice versa.

Theorem 1. Let T(K) ∈ Rm×m be a stochastic matrix and K ∈ Rm×m be a rate matrix related

by the transformation:

T(K) =
c

||K||∞
K + Id, 0 < c < 1. (11)

with ||K||∞ being the maximum norm representing the largest entry in the rate matrix. Then

T(K) and K have the same committor probabilities for any choice of A, B.

The choice of c assures, that Tij ∈ [0, 1] and with the row sum of zero for rate matrices

T(K) is a stochastic matrix. Scaling of matrices by a constant factor does not change the

eigenvectors, as does the addition of a multiple of the identity matrix. Both operations,

however, change the eigenvalues, which can be seen by writing down the expression

for the characteristic polynomial, thus TK inherits the same eigenvectors as K, but with

different eigenvalues. Note that although this transformation will leave the committor

invariant, it will affect other dynamical properties of the matrix. In particular, T(K) will

not reproduce the dynamical behaviour of the rate matrix on any but infinite timescales.

Numerical Solution

The committor equations above can be solved with any linear systems solver. When

the system is very large and sparse, a sparse linear systems solver may still be able to

handle them efficiently. An alternative approach to computing the committor probability

from K has been proposed in [12]. However, this approach requires the K-matrix to be

inverted, which effectively limits its applicability to systems of ≤ 104 states.
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EIGENVECTOR FORMULATION

An alternative view is obtained when formulating the committor problem in terms of

the dominant eigenvectors of either K or T(τ). This is useful from a numerical point of

view, because efficient solvers, such as the Power method or Krylov subspace methods,

exist for dominant Eigenvectors. Moreover, it is useful from a physical standpoint as it

allows the committor to be understood in terms of the slowest relaxation process of the

system.

An approach to approximate q(x) in terms of the second eigenvector of K or T(τ) has

been proposed in [1]. This approach is valid only if the second eigenvector is similar

to the A → B committor and the second and third eigenvalues are well separated. In

molecular processes, this is often referred to as “two-state” process, where there exists

one slow process that is clearly separated from all other processes in terms of timescales.

In the following, we will derive equations that allow the committors to be computed

exactly in terms of its dominant eigenvectors for any Markovian system.

A → B Committor

We construct the transition matrix T̂ with absorbing states A and B from T by

T̂ij =


Tij i /∈ A ∪ B, j ∈ X

1 i ∈ A ∪ B, j = i

0 i ∈ A ∪ B, j 6= i

. (12)

and then define a transition matrix T̂∞ that transports any distribution infinitely into the

future:

T̂∞ = lim
n→∞

T̂n (13)

and thus directly into either state A or B. Thus the committor is given by

qs = ∑
k∈B

((es)T T̂∞)k = ∑
k∈B

T̂∞
sk (14)

In the following we will show that T̂∞ and thus q are computationally fast and robust to

derive.
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Without loss of generality, we treat here the case where the sets A = {a} and B = {b}
consist of only one state each. In cases where the sets are larger, they can simply be

aggregated into a single state in the definition of T̂ and finally be diagonalized, obtaining:

T̂∞ = R · lim
n→∞

diag(λn
1 , λn

2 , . . . , λn
N) · R−1·, (15)

with R := [r1, ..., rN] being the matrix of right eigenvectors of T̂ and λi are the corre-

sponding eigenvalues, sorted from the largest to the smallest modulus of the eigenvalue.

It follows from the Perron-Frobenius theorem that there exist exactly two left1 eigen-

vectors with eigenvalue one, ea and eb. The modulus of all other eigenvalues is strictly

smaller than one. As a result,

lim
n→∞
|λn

i | = 0, ∀λi < 1, (16)

and thus

T̂∞ = R · diag (1, 1, 0, . . . , 0) · R−1. (17)

We now define L := R−1 to be the inverse of the eigenvector matrix. L is a matrix of

left eigenvectors since all of its rows fulfil the requirement for a left eigenvector with the

same diagonalized eigenvalue matrix

L · T̂∞ = L Λ. (18)

This means that once we have the basis of left eigenvectors that equal R−1 we can avoid

the expensive calculation of the inverse. Although general this is no advantage, in the

present case the left eigenvectors of T̂∞ take a particularly simple form. We choose the

following representation by row vectors for L := [l1, ..., lN]
T and get

T̂∞ = [r1, ..., rN] · diag (1, 1, 0, . . . , 0) · [l1, ..., lN]
T (19)

= [r1, r2] · [l1, l2]
T. (20)

As mentioned before the left eigenvectors to the eigenvalue of one are a linear combina-

tion of ea and eb

[l1, l2]
T =

 s11 s12

s21 s22

 [ea, eb]T. (21)

1 The number of left and right eigenvectors to the same eigenvalue are equal.
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Exploiting the fact that T̂∞ is still a stochastic matrix and thus has a constant right Perron

Eigenvector, we can choose without loss of generality 1 := r1 = (1, . . . , 1). Thus, only

one second linear independent right eigenvector r2 needs to be computed:

T̂∞ = [1, r2] · S · [ea, eb]T, (22)

Our goal was to compute the committor using (14) which leads us to the following rela-

tion for qA and qB respectively

[qA, qB] = T̂∞ · [ea, eb] (23)

= [1, r2] · S (24)

Thus we have shown that the committor is a linear combination of the right eigenvectors

of T̂∞. To compute the mixing matrix S we make use of the fact that the solution is known

already, by definition, for the two states A and B: qA
k

qB
k

 =

 δak

δbk

 =
(

1kr2
k

)
· S, k ∈ {a, b} (25)

Writing this as a matrix equation leads to

S =

 1 r2
a

1 r2
b

−1

, (26)

yielding the solutions

[qU, qF] = [1, r2] ·

 (1)a (r2)a

(1)b (r2)b

−1

(27)

qi = (eiT̂∞) f =

(
r2)

i −
(
r2)

a
(r2)b − (r2)a

. (28)

Finally we have avoided the inversion of the matrix R required in Eq. (17) and instead

reduced the effort to computing one largest right eigenvalue.

Based on Eq. (28), the committor probability can be easily computed for large sparse

transition matrices using e.g. the Power method. When, instead, the system dynamics

is specified in terms of the rate matrix, this computation can be performed by using the

transformation (11). In the case of the Power method for solving for r2, the parameter

c should be as large as possible, but smaller than one. This will maximize the rate of

convergence, since it maximizes the relative gap between the Perron-Eigenvalues and

the next smaller eigenvalues.
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Extension to multiple states

In many applications, it is desirable to compute more than one committor probability.

Consider a system for which a number M ≥ 2 of core sets have been defined, and for

which at each state we wish to evaluate the probability that the system dynamics will hit

the core i rather than any other core. This defines a set of M committors, [qy1 , . . . , qyM ],

where qyi indicates the vector of committor probabilities of going to core i next rather

than any other core, and each row sums up to 1 (qy1 + . . . + qyM = 1), thus forming a

membership probability.

To solve this general case, all states [Y1, . . . , YM] are made absorbing in the transition

matrix, and a basis for all eigenvectors of the eigenvalue of one is computed. The pa-

rameters for the eigenvectors can then be computed using a simple matrix inversion in

analogy to the two state case by

[qy1 , . . . , qyM ] = [1, . . . , rM] ·


1y1 · · · (rx)y1

... . . . ...

1yM · · · (rM)yM


−1

, (29)

where y1, . . . , yM are the states, r2, . . . , rx the eigenvectors of the eigenvalue of one and 1

is again the constant right Perron-Eigenvector.

SENSITIVITY AND UNCERTAINTY

We now characterize the sensitivity of the committor q to changes in the transition

matrix given by ∂qi
∂Tab

and also examine how the sensitivity leads to a first-order estimate

of the uncertainty of the committor δq in cases where the transition matrix T is not ex-

actly known, but is for example estimated from simulation data such as from molecular

dynamics [24, 25].

Sensitivity analysis

We are interested in ∂q
∂Tab

, i.e. the sensitivity of the committor with respect to perturba-

tions in the transition matrix and define Â := T̂− Id , so that the null space of Â is the
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space spanned by the eigenvectors to the eigenvalue of λ1 = λ2 = 1, i.e.

Âq = 0. (30)

First, we start with the derivative of (30) with respect to Tab

∂Âq
∂Tab

= Â · ∂q
∂Tab

+
∂Â

∂Tab
· q = 0. (31)

and make the convention that all derivatives are taken at Tab, if not specified otherwise.

Since Â does not have full rank and its inverse is not defined, so that we use

∂Âij

∂Tab
=

∂T̂ij

∂Tab
=

δiaδjb i /∈ A,B

0 i ∈ A,B
(32)

and then rewrite this (31) as

∑
k

Âik ·
∂qk
∂Tab

= −qb

δia i /∈ A,B

0 i ∈ A,B
.

Since ∂qk
∂Tab

= 0 for k ∈ A,Bwe can exclude these from the calculation and define a reduced

inverse Ã−1 given by

Ã−1 =



0 · · · 0

...


T22 − 1 · · · T2,M−1

... . . . ...

TM−1,2 · · · TM−1,M−1 − 1


−1

...

0 · · · 0


which is inverted only on the subset of states neither in A or B, and the remaining tran-

sitions are set to zero, thus assuring the correct boundary conditions for ∂qi
∂Tab

. This yields

the sensitivity matrix Sa
ib defined by

Sa
ib :=

∂qi

∂Tab
= −∑

l
Ã−1

il δlaqb = −Ã−1
ia qb. (33)
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Uncertainty / Sampling Error of the Committor

Let us now consider the case where the transition matrix T is not known exactly but

is instead sampled by a finite number of observations, as is the case, for example, in

molecular dynamics simulations. [17, 18, 24, 25]. We will be interested in the question

of how the uncertainty involved in this finite sampling translates into uncertainty of the

committor. Let Z ∈ Rm×m be a count matrix with Zij being the number of independently

observed transitions from state i to state j. The likelihood of transition matrices pertaining

to this observation is given by:

P(C | T) = ∏
i,j

T
Zij
ij

When restricting the Prior distribution to the conjugate Dirichlet prior, the posterior

distribution can be expressed as:

P(T | C) ∝ P(T)P(C | T) = ∏
i,j

T
Bij+Zij
ij = ∏

i,j
T

Cij
ij

where Bij are prior counts. Comparing to the Dirichlet distribution

∏
i

∏
j

T
αij−1
ij = ∏

i
Dir(αi)

with αi := {αi1, . . . , αiM} results in the equivalence

αij = Cij + 1 = Bij + Zij + 1. (34)

The maximum likelihood transition matrix T̂ij is given by

T̂ij =
Zij

∑k Zik

and the mean of the posterior distributions T̄ij by:

T̄ij =
αij

∑k αik
=

Bij + Zij + 1

∑k (Bik + Zik + 1)

and both are equivalent for the Null prior Bij = −1. Eq. 34 shows that the prior can

be regarded as counts additional to the actual observed counts Zij. Thus, to obtain an
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expectation based mainly on observations the number of real observations Zij must be

larger than the number of prior counts

∑
k

Zik �∑
k
(Bik + 1).

This forces us to be careful about the choice of the prior, which, in principle, compensates

for the lack of information in states with few of in none observed transitions.

One choice is the Null prior, which adds no additional counts and thus the mean and

maximum of the posterior probability distribution are equal. Another choice is a uniform

prior probability distribution P(T) ∝ 1 ⇔ Bij = 0, which will prove inadequate in the

cases we consider, since ∑k Zik � m . A further choice might be to distribute one addi-

tional count per state by Bij = 1/m and thus request ∑k Zik � 1. Yet another approach is

to use a prior that has counts restricted to a certain subset of elements. We will address

this issue again in the application section.

As we have shown before, the probability distribution can be written as a product of

independent Dirichlet distributions for each state. Hence, the covariance between entries

in the transition matrix is zero between elements from different rows and we can define a

set of reduced covariance matrices Σi
ab for each state or equivalently row in the transition

matrix i separately by the expression

Σi
ab := Cov (Tia, Tib) =

αia (αiδab − αib)

α2
i (αi + 1)

. (35)

This leads finally to an expression for the standard deviation of each entry of the tran-

sition matrix

δTia =
√

Cov (Tia, Tia)=

√
αia(αi−αia)
α2

i (αi+1)

with

αi :=
m

∑
j=1

αij.

A simple and often used approach for propagating the uncertainty in T to the uncer-

tainty of the committor (or any other property derived from T), is to sample the posterior
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distribution of transition matrices and compute the committor for each sample of this dis-

tribution [18, 25]. However, this procedure involves sampling itself and thus uncertainty

in the estimation of the uncertainty, which may be undesirable in situations where the

uncertainty estimation is conducted repeatedly, e.g. within an adaptive sampling scheme

[24, 25].

An alternative is to propagate the covariance from the transition matrix elements lin-

early to the covariance in the committor using the computed sensitivity Si
ab by

Cov (qa, qd) =
m

∑
i,b,c=1

Si
abΣi

bc

(
ST
)i

cd

m

∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m

∑
b,c=1

qb
αib (αiδbc − αic)

α2
i (αi + 1)

qc

and finally we can compute the variance in the elements of the committor by

δ2qa = Cov (qa, qa) (36)

=
m

∑
i=1

1
α2

i (αi + 1)

(
Ã−1

)2

ai

(
αi

m

∑
b=1

qbαibqb −
(

m

∑
b=1

qbαib

)(
m

∑
c=1

αicqc

))
. (37)

A complete derivation can be found in the Appendix. Clearly, the variance can be

separated into contributions from each state i and we define a uncertainty contribution

vector wi by the norm of the single contributions

wi =

∣∣∣∣∣
∣∣∣∣∣ 1
α2

i (αi + 1)

(
Ã−1

ai

)2
(

αi

m

∑
b=1

qbαibqb −
(

m

∑
b=1

qbαib

)(
m

∑
c=1

αicqc

))∣∣∣∣∣
∣∣∣∣∣
2

(38)

which can then be used in order to direct new simulations that are most promising in

reducing the error [24].

APPLICATIONS

Diffusion in a 2D Three-Well Potential

To illustrate an application of the above equations we use a simple model of a parti-

cle diffusing in a two-dimensional potential with three wells (Fig. 1), partitioned into a
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Figure 1. Energy Landscape for diffusion in a 2D potential with 3 basins discretized into a grid of

30x30 bins. The minima in each basin are indicated by the letters A, B and C. Blue indicates low

energies, red high energies.

grid of m = 30 · 30 = 900. The minima and their associated regions of configurational

space will be referred to as A, B and C. Transition probabilities are defined based on the

potential energies Ui on each gridpoint using a Metropolis acceptance criterion given by

Tij =
P (i→ j)

∑k P (i→ k)
=

min
(
1, exp

(
−β

(
Uj −Ui

)))
∑k min (1, exp (−β (Uk −Ui)))

, (39)

with β = 1, which has the correct invariant distribution πi ∝ exp (−βUi). Only tran-

sitions between horizontal or vertical neighboring microstates are allowed, resulting in a

maximum of five nonzero entries per row in the 900x900 transition matrix. This matrix

is used as the reference for the dynamics of the system. The committor from state A to C,

as given in Eq. (28), is shown in Fig. 2.

To investigate the dependence of the committor and its uncertainty on the actual num-

ber of observations and the chosen prior probability distribution, we computed the ex-

pected number of observed transitions in an equilibrium simulation as

Z̄ij = L πi T̂ij,

which is the product of the total number of simulation steps L , the invariant density of a

state πi and the true transition probabilities T̂ij. Four different types of prior distributions

are considered here (see Tab. I).
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Figure 2. 2D three-well model: Committor from state A to C computed directly from the reference

transition probability matrix Tij.

Prior Bij

Null Prior −1

1/m Prior 1/m− 1

Neighbor Prior


0 if (i, j) neighbors

−1 else

Uniform Prior 0

Table I. Prior probability distributions used for the 2D example

The committors computed for different simulation lengths L =
{

101, 103, 105, 107}
and all prior sets except the null prior are presented in Fig. 3. The null prior was omitted

since in this case the committor does not depend on the simulation length L and equals

the exact committor (Fig. 2). It is important to note that this equivalence is only true on

average and not for every possible simulation outcome. The influence of the full uniform

prior is so strong that the computed committor differs from the true committor vastly

even for L = 107. The other two priors behave similarly while the neighbor prior has the

general advantage over the null prior that it always provides a transition matrix that can

numerically be evaluated.

Eq. 36 gives the expression for the uncertainty in the computed average committor

from a given number of observations. For the same set of total observations L and all
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Figure 3. 2D three-well model: Committor from state A to C computed for different prior

choices (rows: neighbor prior, 1/m prior, full uniform) and simulation lengths (columns: L ={
101, 103, 105, 107}). Isocommittor surfaces for q = {0.25, 0.33, 0.5, 0.67, 0.75} are given in black.

priors in Table I the covariance was computed and is shown in Fig. 4. The main uncer-

tainty is always greatest in the transition region, and depends strongly on the choice of

the prior, especially when few observations have been made.

Fig. 6 show the difference in the predicted committors compared to the reference

committor given in Fig. 2. The quality of the average predicted committor depends

mainly on the amount of prior information put into the predictions: Priors with few

information (null prior, neighbor prior) allow for better predictions, while priors with

much information (1/m prior, uniform prior) give worse committor prediction, but are

less sensitive to perturbations in the transition matrix elements which is depicted in Fig.
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Figure 4. 2D three-well model: Total variance in the entries of the committor probability

Cov (qi, qi) in Eq. (36) from state A to C for different prior choices (rows: null prior, neighbor

prior, 1/m prior, full uniform) and simulation lengths (columns: L =
{

101, 103, 105, 107}). Iso-

committor surfaces from Fig. (3) shown in black. Blue indicates no variance, red indicates high

change. All plots have been normalized per row, so absolute comparison between plots is possible

only for the same prior configuration. The related absolute error development is given in Fig. (5).

States A and C are fixed by definition, thus at this points the change vanishes. The highest varia-

tion is found in the transition region, the size of which depends strongly on the prior information.

With increasing simulation length, the error in the low energy states reduces fastest.19



Figure 5. 2D three-well model: Theoretical average uncertainty in the estimated committor for

different prior probability distributions (null prior, neighbor prior, 1/m prior, full uniform) versus

simulation length L. The initial erratic behaviour of the 1/m prior and uniform prior is caused by

a wrong committor prediction due to the high impact of these prior, when only few transitions

have been observed.

5. The fact, that the 1/m prior and the uniform prior have a smaller uncertainties for small

simulation lengths is due to the wrong committor predictions discussed before which are

less sensitive to changes in the transition matrix elements. This behavior changes once

the simulation length is long enough for the estimated committors to be similar.

The effects of differences in the prior probabilities are also visible in the contribution

to the uncertainty from each state i by wi in Eq. (38) as shown in Fig. 7. In general

the main contributions to the uncertainty is located in states inside the transition region.

For small simulation lengths L the contribution is more widely distributed and mainly in

regions that have also a significant equilibrium probability. With increasing simulation

time, the uncertainty contributing states shift towards the outer perimeter of the energy

landscape, where the uncertainty remains mostly unchanged since these parts of phase

space are hardly visited at all.

The net flux for the system as given by Eq. (8) is shown in Fig. (8). The opacity of the

arrows indicates the intensity of the flux in the direction of the arrow. The main fraction

of the flux traverses the barrier between A and C, while a minor fraction travels over state

B.

Finally, the 3-state committor, given by Eq. (29) was computed for states A, B and C (s.

Fig. 9), thus partitioning the configurational space into three subsets divided by the main
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Figure 6. 2D three-well model: Norm of the difference of the computed committor for different

prior probability distributions (null prior, neighbor prior, 1/m prior, full uniform) versus simu-

lation length L. The uniform estimation is about six orders of magnitude slower in convergence

since the amount of prior information is also about six orders of magnitude larger compared to

the other priors.

barriers. In this manner the multistate committor can be used to partition the configu-

rational space into subsets, that are dynamically close to one state of a set of predefined

states which can be regarded as cluster centers.

3D MODEL

The method is now further examined on a simple model system that mimics diffu-

sional protein:ligand association. For this, a 3-dimensional potential was defined by a

potential function U

U(x) = ∑
i

bi√
2πσ2

exp

(
− (x− x̄i)

2σ2
i

)
as the sum of five 3D-Gaussian functions as an exemplary electrical field in which the

ligand diffuses (for parameters see table II).

The potential was coarse-grained on a grid with a total of m = 100 · 100 · 100 = 106

states in the range of [−1, 1]× [−1, 1]× [−1, 1]. The dynamics was modeled as a diffu-

sional process under the influence of the potential as in the previous 2D case (see Eq.

(39)). Figure (10) shows equipotential surfaces for a set of 19 exponentially spaced values
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Figure 7. 2D three-well model: Sensitivity vector wi in Eq. (38) for different prior choices

prior choices (rows: null prior, neighbor prior, 1/m prior, full uniform) and simulation lengths

(columns: L =
{

101, 103, 105, 107}). Isocommittor surfaces from Fig. (3) shown in black. Blue in-

dicates vanishing sensitivity, red maximal sensitivity for each plot separately, thus absolute com-

parison is not possible between plots. This was chosen to better indicate the highest uncertainty

contributions. The absolute sensitivity is given in Fig. (5). The figure shows that in the case of the

uniform prior a length of L = 107 is insufficient for an accurate description of the sensitivity.
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Figure 8. 2D three-well model: Net Flux between states A and C computed from the reference

transition matrix T̂ij. The underlying colors represent the reference committor. Arrows indicate

the direction of the flux and the opacity the intensity. Most flux travels over the direct barrier from

state A to state C.

Figure 9. Committor Computed for 3 states from Eq. (29). The committor clearly shows a clear

separation of the configurational space into 3 subsets divided by the potential barriers.

i Sign Mean x̄ Std Dev σ

1 - {0.0, 0.0,−0.2} 0.10

2 - {−0.6, 0.2,−0.6} 0.08

3 - {−0.6, 0.4, 0.4} 0.08

4 + {0.4,−0.6,−0.6} 0.05

5 - {−0.6,−0.6,−0.6} 0.05

Table II. 3D Ligand:protein model: Parameters for the manually defined potential U.
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Figure 10. 3D Ligand:protein model: Equipotential surfaces.

Figure 11. 3D Ligand:protein model: Isocommittor surfaces for the potential U.

of the potential U, effectively depicting surfaces of equal equilibrium probability.

The outer boundary of the grid is defined as the “unbound” state A while all states

inside a sphere at the center of the grid with a radius of 0.2 define the “bound” state B.

The committor probability was computed using the procedure described in the theory

section, employing the Power method to solve for the dominant eigenvector of the ab-

sorbing process [8]. The isocontours of the committor are shown in Fig. 11. It is seen that

these contours are roughly spherical around the binding site B, but have protrusions due

to the existence of local energy minima.

Fig. (12) shows some paths integrated along the normals to the isocommittor hyper-

surfaces. To compute these the committor function, given on each grid point, was inter-
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Figure 12. 3D Ligand:protein model: Bundle of path lines starting at the virtual binding site along

the normals to the isocommittor surfaces.

polated by linear polynomials between each neighboring grid point and computed the

normals from the continuous interpolation. As initial points a set of 20 circularly posi-

tioned points on the inner B state were chosen which were directed toward the potential

minimum at Point 5 in Tab. II. The integrated paths define a bundle of field lines connect-

ing the outer perimeter and the binding site, depicting the most probable paths towards

the virtual binding site on the protein.

Using the committor also the reactivity g [15], i.e. the probability that a state con-

tributes to a reactive trajectory, was computed using

gi = q+i πiq−i (40)

The results are shown in Fig. 13. Due to the higher equilibrium probability in Eq. (40),

the density of reactive trajectories increases towards the binding site and especially in the

local minima.

CONCLUSIONS

In this paper we introduced an alternative way to compute the committor for space

discrete system with dynamics given by both transition or rate matrices.

The method presented allows to retrieve efficiently, fast and easy to implement com-

mittor information for dynamical systems with a very large discrete configurational state
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Figure 13. 3D Ligand:protein model: Density of reactive trajectories gi as given in Eq. (40).

spaces. If the considered transition matrix is sparse enough even very large systems can

be investigated with computational effort roughly proportional to the number of states

and is thus limited only by memory constraints. In addition, the method in principle

allows to compute the committor for the environment of a large protein with sufficient

resolution to display folding bundles as we have demonstrated with the 3D example.

The sensitivity analysis provides a detailed error measure of the computed committor

and also allows to an adaptive algorithm to be defined for fast computation of the com-

mittor by collecting information from different parts of the configurational space sepa-

rately and combining this to produce more accurate estimations than possible from one

single long simulation. Computation of the sensitivity requires the inversion of a matrix

of the size of the number of states which is in general of cubic order, but can be made

quadratic if the matrix is sufficiently sparse. The other computations are also maximally

of quadratic order, which in principle also allows a sensitivity analysis for medium sys-

tem sizes.
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APPENDIX

Derivation of the committor from rate matrices

From the rate matrix K we can compute transition matrices for arbitrary timescales by

T(τ) = exp (τK)

and from the Taylor expansion of the matrix exponential

T(τ) =
∞

∑
n=0

1
n!

(τK)n

it is easy to see that T(τ) and K have the same eigenvectors. That means the commit-

tor is independent of the lagtime chosen and is a static property of the dynamic of our

system. This is consistent with the fact that the hitting times h scales linearly with the

lagtime τ but not the relative probability Pi(hB < hA) that defines the committor. Thus,

the lagtime can be chosen arbitrarily and in the limit of vanishing lagtimes only the linear

term in the expansion of T(τ) survives

T(τ) = 11 + τK +O
(

τ2
)
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which we use in Eq. (10) yielding

q+i = ∑
j

(
δij + τKij +O

(
τ2
))

q+j

q+i = ∑
j

δijq+j + τ ∑
j

Kijq+j +O
(

τ2
)

q+i = q+i + τ ∑
j

Kijq+j +O
(

τ2
)

0 = ∑
j

Kijq+j +O (τ)

for all states i /∈ A ∪ B.

Derivation of the Committor Covariance

To derive the committor covariance we start with the linear error propagation for the

committor and use the sensitivity S, given in Eq. (33), to extend the error in the transition

matrix Σ as follows:

Cov (qa, qd) =
m

∑
i,b,c=1

Si
abΣi

bc

(
ST
)i

cd

=
m

∑
i,b,c=1

∂q̃a

∂Tib
Σi

bc
∂q̃d
∂Tic

=
m

∑
i,b,c=1

(
Ã−1

)
ai

qbΣi
bc

(
Ã−1

)
di

qc

=
m

∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m

∑
b,c=1

qbΣi
bcqc.

We then insert the analytical expression for the uncertainty in the transition matrix in

Eq. (35) to obtain

Cov (qa, qa) =
m

∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m

∑
b,c=1

qb
αib (αiδbc − αic)

α2
i (αi + 1)

qc.

This can be rewritten in a form that is quadratic in the number of states

Cov (qa, qa) =
m

∑
i=1

1
α2

i (αi + 1)

(
Ã−1

)2

ai

(
αi

m

∑
b=1

qbαibqb −
(

m

∑
b=1

qbαib

)(
m

∑
c=1

αicqc

))
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leaving us with the inversion of A as the most expensive operation of cubic order.
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