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I. INTRODUCTION

Conformational transitions are essential to the func-
tion of proteins, nucleic acids and other macromolecules.
These transitions span large ranges of length scales,
time scales and complexity, and include folding1,2, com-
plex conformational rearrangements between native pro-
tein substates3,4, and ligand binding5. Molecular Dy-
namics (MD) simulations are becoming increasingly ac-
cepted as a tool to investigate both the structural and
the dynamical features of these transitions at a level
of detail that is beyond that accessible in laboratory
experiments6–8. Modern computing technology, such
as massively parallel simulation9, special-purpose high-
performance computers10 and high-performance GPUs11

permit to generate MD data in amounts too large to be
grasped by traditional “look and see” analyses. This calls
for robust and automated methods to extract the essen-
tial structural and dynamical properties from these data
in a manner that is little or not depending on human
subjectivity.

To this end, a decade of work has led to the devel-
opment of analysis techniques which rely on the parti-
tioning of the conformation space into discrete substates
and reduce the molecular kinetics to transitions between
these states12–25. A particular successful class of meth-
ods of this type are Markov State Models (MSMs), in
which the transitions between the states in the partition
are assumed to be memoryless jumps. Their kinetics is
then described fully in terms of the transition probabili-
ties that the system will have jumped from one state to
another after a prescribed lag time τ21,23,24,26–32. These
probabilities are estimated from the MD simulation data.

As yet, most MSMs have been based on discretizations
that fully partition the molecular state space. Thorough
analysis13,33–35 has shown that these full-partition MSMs
can approximate the original dynamics arbitrarily well,
and their accuracy can be improved in two ways: (i) by

increasing the lag time τ34, or (ii) by increasing the num-
ber of states in the partition13,33–35. Both procedures,
however, have caveats: (i) reduces the time resolution of
the model, whereas (ii) can be difficult to achieve in prac-
tice because the number of states is practically limited by
available trajectory statistics.

For systems with strongly dominant metastable
states31,33, a different approach to model the essential
kinetic properties of the system may be adequate. In
these systems the energy landscape is such that there are
regions (the metastable states) in the vicinity of which
a typical MD trajectory will remain for a long time be-
fore making a transition towards another such region.
In these situations, Buchete and Hummer19 have pro-
posed to avoid a full partition and instead define a few
cores, one for each dominant metastable state. Instead
of finely subdividing the intervening transition regions,
one only considers transitions of the MD trajectories be-
tween these cores and constructs a statistical model of
the molecular kinetics from this information. Recent
mathematical research35,36 has shown that Markov mod-
els based on such cores may indeed approximate accu-
rately the essential kinetic features of the MD system,
and in some cases may even be superior to full partition
Markov models.

The aim of this paper is to give a solid theoretical
foundation to MSMs based on cores by treating these
sets as milestones in the sense of Elber37–40. Specifically,
we show how the framework of Markovian milestoning41

can be combined with maximum estimation techniques
and Bayesian sampling methods to construct a new type
of core MSMs. This viewpoint helps the estimation of
the statistical error of these new core MSMs due to finite
sampling. It also permits to interpret the various quan-
tities in these core MSMs using Transition Path Theory
(TPT)42–46, which indicates how the core MSMs can be
used not only to estimate the rate of transitions between
the cores, but also to approximate the evolution of certain
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key observables in the system and, in particular, calcu-
late phenomenological rate constants. These issues are
discussed in detail below, and the performances of the
new core MSMs in comparison to standard full-partition
MSMs are illustrated on a test system and a small pep-
tide example.

The outline of the paper is illustrated in Fig. 1. In
Sec. II, we first show how to estimate the milestoning

rates k̂ij , i.e. the average number of transitions between
core sets per unit time, from a given trajectory of finite
length T . Furthermore, we outline how to convert these

milestoning rates to phenomenological rates k̂∗ij , which
are related to the measurable relaxation timescales of the
process (see top level in Fig. 1). In Sec. III we derive
equations for the exact milestoning rates kij for T →∞,
i.e., for the case of perfect sampling. On one hand, these
equations allow to explain the formula for extraction of
phenomenological rates from the milestoning rates. On
the other hand, they allow to be understood when and
why the milestoning process is approximately Markov.
In Sec. IV all the different quantities from Fig. 1 will be
illustrated in numerical examples.

FIG. 1. Schematic illustration of the main quantities em-
ployed in this study. The exact dynamics described by the
continuous generator L with stationary distribution µ gives
rise to exact transition rates between milestones, kij which
can be reweighted to phenomenological rates, k∗ij . These
quantities can also be approximated by proper counting based
on trajectory data.

II. TRANSITION RATES BETWEEN CORE
SETS FROM MILESTONING

In this section we assume that a few disjoint sets of
state space have been identified as “cores”, each one as-
signed to one of the dominant metastable states of the
system. A core is the center of some metastable set in
state space so that the system stays in the vicinity of
this core for relatively long periods of time before mak-
ing a transition towards another core. Below we de-
rive an unbiased estimator for the transition rates be-
tween these core sets which is based on treating them
as milestones19,37,41. Note that the magnitude of these
transition rates may be sensitive to the precise defini-
tion of the core sets and are thus not phenomenolog-

ical transition rates as e.g. obtained by reactive flux
theory47 or comparable approaches. In order to calcu-
late phenomenological rates the transition rates between
the cores must be reweighted as described in Sec. II F.

We emphasize that the following considerations do not
depend on the dimensionality of the system, and that the
accuracy only depends on the choice of the core sets and
on the extend of sampling available.

A. Microscopic dynamics and core sets

Consider a state space Ω which contains all dynami-
cal variables needed to describe the instantaneous state
of the system. Ω may be discrete or continuous, and we
treat the more general continuous case here. For molec-
ular systems, Ω usually contains both positions and ve-
locities of the species of interest and surrounding bath
particles. x(t) ∈ Ω will denote the microscopic dynam-
ical process considered, which is continuous in space,
and may be either time-continuous or time-discrete (e.g.,
when considering time-stepping schemes for computa-
tional purposes). We will adapt our notation to the
time-continuous case and will add short remarks if the
time-discrete case differs in some important aspect.

It is required that x(t) is uniformly ergodic, i.e. for
t → ∞ the trajectory will come arbitrarily close to each
state x infinitely often. The fraction of time that the sys-
tem spends in any of its states during an infinitely long
trajectory can then be estimated from its unique, positive
stationary density µ(x) that in molecular processes cor-
responds to the equilibrium probability density for some
associated thermodynamic ensemble (e.g. NVT, NpT).
For molecular dynamics at constant temperature T , the
dynamics above yield a stationary density µ(x) that
is a function of T , namely the Boltzmann distribution
µ(x) = Z(β)−1 exp (−βH(x)) with Hamiltonian H(x)
and β = 1/kBT where kB is the Boltzmann constant and
kBT is the thermal energy. Z(β) =

∫
dx exp (−βH(x))

is the partition function.
At this point we do neither assume that x(t) is Marko-

vian nor that it fulfills detailed balance. However, when
both these properties are fulfilled, then some particularly
simple formal statements relating the microscopic and
macroscopic dynamics can be made (see Sec. III).

In the following, x(t) shall also indicate a realization
(trajectory) of the process under investigation. While it
is assumed for simplicity that a single long trajectory is
studied, the procedure is straightforwardly applicable to
multiple trajectories provided that they are “sufficiently
long” (see below for details).

B. Set-up: core sets and milestoning

We are interested particularly in metastable dynamical
systems and want to quantify the statistics of rare events
in such systems. For this, we introduce disjoint core sets
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B1, B2, ... , BN that will act as milestones19,37,41. The
core sets form a subset of state space,

⋃
iBi ⊂ Ω, but in

general they do not partition state space. The basic idea
is that in order to describe the rare event statistics, it is
sufficient to know which milestones the system has visited
at which times. Implicit in this idea are two assumptions:

1. The time to equilibrate within (the vicinity of) any
one core set Bi is much faster than the mean time
to transition between any two core sets Bi and Bj .
That is, no core set must contain multiple subsets
that are metastable on the timescale of interest.

2. When x(t) is outside any core (x(t) 6∈
⋃
iBi), it

will “quickly” (compared to the slow timescales of
interest) hit one of the cores. That is to say that
all dominant metastable states of the system are
characterized by core sets (there may be lots of ad-
ditional metastable states whose life time is well
below the timescales of interest).

Some comments on how to find good core sets in practice
will be given below. For now, we assume that a trajectory
x(t) and the core sets are given. Next, x(t) is mapped
onto the core states by defining a coarse-grained trajec-
tory b(t) which contains, at any time t, the index of the
last milestone x(t) hit:

b(t) = index of the last milestone hit by x(t). (1)

Thus b(t) is a piecewise constant function taking values in
{1, 2, . . . , N} which jumps from one value to another each
time the trajectory x(t) hits a new milestone (successive
hits of the same milestone without hit of another one in
between do not change b(t)).

The key assumption made in milestoning is that the
evolution of b(t) can be modeled by a continuous-time
Markov jump process. The validity of this assumption
will be discussed in Sec. III. For now we assume that
b(t) is a Markov process and explore the consequences of
this assumption.

The evolution of some Markov process b(t) in dis-
crete, finite state space is completely specified by a set
of rates ki,j ≥ 0 with i 6= j, each of which gives the av-
erage number of jumps from state i and into state j per
unit time. For example, the probability that b(t) = i,
which we denote as ρi(t), evolves according to the Mas-
ter equation48

dρi(t)

dt
= −

∑
j 6=i

ρi(t)ki,j +
∑
j 6=i

ρj(t)kj,i (2)

The first term at the right hand side of this equation
accounts for changes in ρi(t) due to the probability flux
out of state i whereas the second one accounts for changes
due to the flux into this state.

For later use, let us also characterize the probability
that b(t) follows a particular path

path = [(b0,∆0), (b1,∆1), ..., (bM ,∆M )] (3)

i.e. b(t) was in state b0 during the interval [0, t1) for a
time ∆0 = t1, then jumped to state b1 where it stayed
during [t1, t2) for a time ∆1 = t2 − t1, etc., and then
finally jumped to state bM at time tM where it stayed
during [tM , T ) for a time ∆M = T − tM .

As we assume that b(t) is a Markov process, the prob-
ability of this realization can be written as a product of
probabilities of single jumps:

P(path|rates) = ρb0,b1(∆0)ρb1,b2(∆1) · · · ρbM−1,bM (∆M−1)
(4)

with the individual probabilities ρi,j given by the rates
ki,j :

ρi,j(∆) = e−
∑

l6=i ki,l∆ki,j (i 6= j), (5)

as the basic theory of Poisson processes tells us48. For-
mula (4) is normalized such that if we sum the indices
b1, b2, . . . , bM from 1 to N and integrate all ∆i from 0 to
∞, we obtain 1.

Formula (4) gives the probability P(path|rates) to ob-
serve a specific path of b(t) given the rates ki,j . These
rates, however, are unknown a priori. In order to esti-
mate them from the available MD data what we need
instead of (4) is the probability of the rates ki,j given the
path. This inversion can be done via Bayes formula given
in Sec. II C. The Bayes formula is the basis both for the
maximum likelihood estimation (MLE) procedure pre-
sented in Sec. II D and the sampling strategy presented
in Sec. II E.

C. Bayesian formalism

Suppose that we have observed the MD trajectory x(t)
over times [0, T ] and thereby deduced a path b(t) between
core sets as given by (3). Neglecting the last step waiting
time which is undetermined due to the termination of the
trajectory at T , the probability of the path P is given by
the product in (4), which can be rewritten as

P(path|rates) =

N∏
i,j=1
i 6=j

k
NT

i,j

i,j e−ki,jR
T
i (6)

HereNT
i,j is the number of transitions from state i to state

j observed along b(t) during the time interval [0, T ] and
RTi is the total time during which b(t) = i in [0, T ], i.e.:

RTi =
∫ T

0
dtχi[b(t)] where χi is the indicator function of

set Bi. As we will see shortly, NT
i,j and RTi are the only

quantities needed to estimate the rates.
The notation P(path|rates) in (6) stresses that this

quantity is the probability of the path b(t), t ∈ [0, T ]
given the rates ki,j . As explained before, what we need
to estimate these rates is the probability of ki,j given the
specific, observed path, P(rates|path). The two proba-
bilities P(path|rates) and P(rates|path) can be related to
each other via Bayes formula

P(path|rates)P(rates) = P(rates|path)P(path) (7)
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where P(rates) and P(path) are the probabilities of the
rates ki,j and of the path b(t), t ∈ [0, T ), respectively.
P(rates) is usually referred to as the prior probability
and it incorporates any a priori information we have
about the rates ki,j . P(path) does not depend on ki,j ,
and so it can be incorporated in a normalization con-
stant as far as sampling P(rates|path) over the rates is
concerned. Therefore combining (6) and (7) we obtain
that P(rates|path) is simply given by

P(rates|path) ∝ P(rates)

N∏
i,j=1
i6=j

k
NT

i,j

i,j e−ki,jR
T
i (8)

In the limit of poor statistics, the choice of the prior
significantly influences the results. Hummer19 has pro-
posed to use a prior that is uniform in the logarithm
of the rates. Here, we assume for simplicity a uniform
prior (P(rates) ∝ 1), which is acceptable in the limit of
good statistics, and work out the results based on this
choice. For a uniform prior, the posterior probability (8)
is proportional to the likelihood, and is thus maximized
by maximizing the likelihood.

D. Maximum likelihood estimate (MLE)

The larger the amount of available data (i.e. the
larger T and thus the longer the observed path), the
larger NT

i,j and RTi become – both these quantities grow
linearly in T when T → ∞, see Section III B. Since
P(rates) is fixed (it does not depend on T ) this implies
that (8) becomes increasingly peaked around the values
of ki,j that maximizes the product in (8). It is easy to
see by differentiation of this product over ki,j and direct
solution of the resulting equations that it is maximized
by

k̂i,j =
NT
i,j

RTi
, i 6= j. (9)

This is the so-called maximum likelihood estimate (MLE)

for the rates ki,j . The MLE k̂i,j is unbiased, i.e. it con-
verges to the exact rates of this process when T → ∞.
In practice, however, the available data is always finite,
T < ∞, that is, we have to consider the finiteness of

the sampling that underlies the MLE k̂i,j . As usual this
finite sampling introduces some statistical errors. How
to estimate these sampling errors based on the available
data is discussed in the next subsection.

E. Statistical uncertainty

When the amount of available data is finite, instead of
maximizing the product in (8) we can sample this prob-
ability over the rates ki,j . This permits to estimate the
statistical errors in the rates and it is especially simple for

a uniform prior. In this case (8) shows that the rates ki,j
are statistically independent, and each ki,j is distributed
according to a gamma distribution with scale parameter
NT
i,j + 1 and shape parameter 1/RTi . When it is desired

to estimate statistical uncertainties of quantities derived
from K, these distributions can be sampled straightfor-
wardly using standard routines for generation of gamma
distributed random numbers like e.g. gamrnd in Matlab.
This is one aspect in which core MSMs based on mile-
stoning are easier to work with than the standard MSM
approaches discussed in Appendix D.

F. Phenomenological rates

While the rates kij quantify the number of transitions
per time between core sets, one is often interested in the
so-called phenomenological rate matrix K∗ with entries
k∗i,j that can be compared to the appropriately estimated
reactive flux rate constants, see Ref. 47 and 51. The k∗i,j
are the rate constants that are typically of interest to
Chemical Physicists since the eigenvalues of K∗ are the
intrinsic relaxation rates λr1, . . . , λ

r
m which can be probed

experimentally. In the special case of a system with 2-
state kinetics, there is a single relaxation rate λr2 = k∗1,2 +
k∗2,1.

In order to explain how these phenomenological rates
can be computed from the kij , let us denote by RTi,j the
total time a trajectory generated on [0, T ] spent while
being i → j-reactive and assigned to Bi. Based on this,
we define the so-called mass matrix M̂ by

m̂i,j =
RTi,j
RTi

. (10)

mi,j is the fraction of time the system is i→ j-reactive.

Given the mass matrix M̂ = [m̂i,j ], the matrix of phe-
nomenological rate constants can be derived as

K̂∗ = M̂−1K̂. (11)

This equation is not intuitively obvious but will be de-
rived in the subsequent section III.

III. RELATION BETWEEN MILESTONING
DYNAMICS AND MICROSCOPIC DYNAMICS

In this section we investigate the exact transition rates
of milestoning dynamics between core sets, i.e. the rates
obtained in the limit of an infinitely long trajectory (i.e.
when T →∞) where the statistical uncertainty vanishes.
This is done by expressing the milestoning rates in terms
of the original microscopic dynamics in continuous state
space via Transition Path Theory (TPT)42–46. This re-
lation provides the theoretical basis for further investi-
gations on how the milestoning rates depend on the size
and exact definition of the core sets. This will allow us
the analyse the relation between the milestoning rates
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and phenomenological rates of the process under investi-
gation which is treated in Sec. III D.

A. Microscopic dynamics and Generator

We now define some properties of the microscopic dy-
namics x(t). For the present chapter we assume x(t) is
a Markov process, i.e. the instantaneous change of the
system (dx(t)/dt in time-continuous and x(t + ∆t) in
time-discrete dynamics with time step ∆t), is calculated
based on x(t) alone and does not require the previous
history. As a result of Markovianity in Ω, the transition
probability density p(x,y; τ) is well-defined: For every
pair of state x,y ∈ Ω and a given lag time τ ∈ R0+, it is
given by

p(x,y; τ) dy = P[x(t+ τ) ∈ dy | x(t) = x], (12)

i.e., by the probability that a trajectory started at time
t from the point x ∈ Ω will be in an infinitesimal region
dy around a point y ∈ Ω at time t+ τ .

Furthermore, we assume that x(t) is reversible, i.e.,
p(y,x; τ) fulfills the condition of detailed balance:

p(x,y; τ) µ(x) = p(y,x; τ) µ(y), (13)

i.e., in equilibrium, the number of systems transitioning
from x to y per time is the same as the number of system
transitioning from y to x. Note that this “reversibility”
is a more general concept than the time-reversibility of
the dynamical equations as, e.g., encountered in Hamil-
tonian dynamics. For example, Brownian dynamics on
some potential are reversible as they fulfill Eq. (13), but
are not time-reversible in the same sense as Hamiltonian
dynamics. Although detailed balance is not formally re-
quired to construct MSMs using milestoning, it is useful
for the theoretical results of the present section; in36 it
has been worked out how to deal with the non-reversible
case in a way very similar to what is outlined in the fol-
lowing. Note that detailed balance is expected to hold
in equilibrium molecular dynamics due to basic physi-
cal arguments, although this is not true for all computer
implementations of equilibrium molecular dynamics13.

With the definition of the transition probabilities in
(12) we can easily write down how the probability density
ρ(x, t = 0) of finding the system (or, more generally,
an arbitrary function) in state x is propagated by the
microscopic dynamics:

ρ(y, t)µ(y) =

∫
Ω

p(x,y; t)ρ(x, t = 0)µ(x)dx, (14)

where we used probability densities relative to the invari-
ant measure which has technical advantages because of
reversibility. The propagation equation (14) can be writ-
ten in much simpler form since the Markov property of
the underlying dynamics implies that is has a generator:

dρ(x, t)

dt
= Lρ(x, t), (15)

such that ρ(x, t) = exp(tL)ρ(x, 0). This generator exists
for all time-continuous Markov processes but can take
significantly different from: For example, for diffusive dy-
namics the equation (15) is just the Fokker-Planck equa-
tion; this specific case and the associated formula for L
(that gives L as a partial differential operator) is outlined
in Appendix A. For Markov jump processes in discrete
state space, L is a rate matrix instead. In the discrete-
time setting, equation (15) has to be modified, see Ref.
36 for details.

B. Exact milestoning rates from transition path
theory (TPT)

Using TPT together with the generator description of
the microscopic dynamics, we can derive exact expres-
sions for some useful quantities that will help us to char-
acterize the transition rates of the milestoning process:

πi = lim
T→∞

RTi
T
, νi,j = lim

T→∞

NT
i,j

T
, (i 6= j). (16)

Here πi is the proportion of time during which the last
milestone hit was Bi while νi,j is the average rate of tran-
sition between Bi and Bj (i 6= j). Clearly, in terms of

these limits, the exact rate ki,j = limT→∞ k̂i,j is given
by

ki,j =
νi,j
πi
, (i 6= j). (17)

πi is the equilibrium distribution of the Markov jump
process b(t) (i.e. the stationary solution of (2)) provided
that the microscopic dynamics x(t) is reversible. In that
case, νi,j = νj,i, which from (17) implies a detailed bal-
ance condition of the milestoning dynamics in which πi
is the equilibrium distribution:

πiki,j = πjkj,i. (18)

To see how the limits in (16) can be computed using
TPT, we need to recall a few key facts about this the-
ory. In a nutshell, TPT analyzes the property of the
reactive trajectories by which specific reactions occur. In
the present context the reactions of interest are the N
reactions where each of core set Bi is taken as a product
state, and the union of all other core sets, ∪j 6=iBj , as re-
actant state. As shown in TPT, the statistical properties
of the reactive trajectories associated with each of these
reactions can by expressed solely in terms of the equi-
librium probability density of the system µ(x), and the
so-called committor functions (one per core set) which
are the solutions qi of

Lqi(x) = 0 x /∈ Bj∀j
qi(x) = 1 x ∈ Bi
qi(x) = 0 x /∈ Bj∀j 6= i

(19)
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where the operator L again denotes the infinitesimal gen-
erator of the original process, the boundary conditions for
qi are specified by the second and third line.

The committor functions have a simple probabilistic
interpretation: qi(x) gives the probability that the tra-
jectory starting at x will reach Bi before it reaches any of
the other sets, i.e., before ∪Nj 6=iBj is entered. This prop-
erty, together with the fact that the dynamics is Marko-
vian can be used to get νi,j and πi as follows. Suppose
we ask what the equilibrium probability density µi(x) is
to find the process in x given that the last milestone it
came from was Bi? Using reversibility under time re-
versal, this is equivalent to ask what is the equilibrium
probability density to find the process in x and that the
next set it will hit is Bi and so µi(x) is given explicitly
by

µi(x) = µ(x)qi(x) (20)

If we now integrate this quantity wrt. x over all the
configuration space we obtain the equilibrium probability
that the last set hit wasBi regardless of where the process
actually is. From (16) this is precisely πi and so

πi =

∫
Ω

µ(x)qi(x)dx (21)

A similar argument can be used to obtain νi,j . We will
outline the details of the argument for the case of diffusive
dynamics in the appendix. As shown in Ref. 36, for all
reversible processes x the rate νi,j can be calculated by
means of

νi,j =

∫
Ω

µ(x)qi(x)(Lqj)(x)dx. (22)

Formulas (21) and (22) are the desired expressions for πi
and νi,j . Therefore, whenever the (reversible) dynamics
has a generator L and a unique equilibrium probability
density, this density together with the committor func-
tions uniquely determine the quantities πi and νi,j that
are needed to compute the exact rates ki,j via (17).

C. Galerkin projection interpretation

It is interesting to revisit the formula above from the
view point of Galerkin projection. Therefore consider the
space of square-integrable functions

H = {f : Ω→ R :

∫
Ω

|f(x)|2µ(x) <∞}

equipped with the scalar product

〈f, g〉µ =

∫
Ω

µ(x)f(x)g(x)dx. (23)

We consider the operator P that when acting on a func-
tion f ∈ H returns its best approximation Pf in the

finite-dimensional subspace

S = {f : Ω→ R : f =

N∑
i=1

αiqi, αi ∈ R},

that is spanned by the functions q1, . . . , qN . As out-
lined in Appendix C the best approximation Pf can be
computed from its property that the assoicated approxi-
mation error f − Pf is orthogonal to S, and thus has to
satisfy

〈f − Pf, qj〉µ = 0, ∀j = 1, . . . , N.

Again from Appendix C we learn that therefore P can
be expressed as

(Pf)(x) =

N∑
i,j=1

qi(x)(S−1)i,j〈qj , f〉µ, (24)

where S−1 is the inverse of the matrix with entries

si,j = 〈qi, qj〉µ, (25)

which exists since the qi are linearly independent. Con-
sider now the eigenvalue problem associated with the gen-
erator L of the process:

Lφe = λeφe, (26)

where the superscript ‘e’ stands for exact. The Galerkin
projection of this equation on the subspace S reads

PLPφ = λPφ. (27)

After a little algebra, it is easy to see that this equation
can be written explicitly as

N∑
j=1

νi,jrj = λ

N∑
j=1

si,jrj , (28)

where νi,j is given by

νi,j = 〈qi, Lqj〉µ (29)

as already discussed and we defined

Pφ =

N∑
i=1

riqi, s.t. ri =

N∑
j=1

(S−1)i,j〈qj , φ〉µ. (30)

Dividing both side of (28) by πi, and defining the so-
called mass matrix with entries

mi,j = si,j/πi (31)

(28) can also be expressed as

N∑
j=1

ki,jrj = λ

N∑
j=1

mi,jrj (32)
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where ki,j is the rate matrix defined in (17). This
means that (a) we can compute the exact transition rates

ki,j = limT→∞ k̂i,j of the milestoning process by means
of Galerkin projection of the generator and that (b) the
associated eigenvalues λj of the generalized eigenvalue
problem (32) will somehow be approximations of the
original eigenvalues λe of the original eigenvalue prob-
lem Lφe = λeφe.

What does the approximation by Galerkin projection
entail in terms of evolution of observables and densities?
Since for reversible processes L is a self-adjoint operator
the propagation of observables as well as densities under
the underlying microscopic dynamics is related to the
action of the propagator exp(tL). That is, when starting
with an observable or density f at time 0, its evolution in
state space is given by exp(tL)f . Suppose that we start
from some f(x) which belongs to the subspace spanned
by q1, q2, . . . , qN , i.e. such that f = Pf . Then, the value
at time t of this observable will be

exp(tL)Pf, (33)

and its projection on the subspace spanned by q1, q2, . . . ,
qN is simply

P exp(tL)Pf. (34)

From the considerations above it is easy to see that the
Galerkin projection amounts to approximating the evo-
lution of the observable by

exp(tPLP )f. (35)

In Refs. 49 and 50 the associated approximation error is
analyzed and bounds on the error are derived.

To sum up, what the above considerations show is that
milestoning does more than give the Markov approxima-
tion of the evolution of the index process b(t) discussed in
Sec. II B. Milestoning also permits to approximate the
evolution of observables in the system and, in particu-
lar, it gives estimates of the leading eigenvalues of the
generator of the original process via solution of (32).

D. Exact phenomenological rate constants

We now combine the results of the previous sections in
order to provide an estimator of phenomenological rate
constants between the metastable states of the system.
In Sec. II, it was described how the milestoning rate
constants ki,j can be estimated. Those rates, however
are sensitive to the exact definition of cores within the
metastable states. In order to arrive at phenomenological
rate constants, the milestoning rate constants ki,j need
to be corrected for the influence of the core definition.
As was shown in Sec. III C this can be done by introduc-
ing the masses mi,j , see Eq. (32). We can rewrite this
generalized Eigenvalue problem in matrix form as:

Kr = λMr (36)

from which we see that the reweighted matrix K∗ =
M−1K with

K∗r = λr (37)

has eigenvalues that approximate the original eigenval-
ues of the system and therefore its dominant intrinsic
relaxation timescales.

Even though the derivation of Eq. (32) relies on the
interpretation of mi,j in terms of the committor func-
tions qi, in milestoning we can obtain both mi,j without
explicit knowledge of qi. The factors si,j defined in (31)
give the proportion of time during which the trajectory
is on its way from Bi to Bj , that is the last milestone hit
was Bi and the next milestone hit will be Bj . It follows
that sij = limT→∞RTij . With the approximate mass ma-

trix M̂ with entries m̂ij as defined in Eq. (10), the entries
of the exact mass matrix are thus given by

mi,j = lim
T→∞

m̂ij . (38)

which directly provides an estimator of mi,j from finite-
time trajectories. That is, the mass matrix can be ap-
proximated from a long trajectory by monitoring tran-
sition times. This is remarkable because the calculation
of qi is a formidable task in high dimensional systems.
Based on the estimate of mi,j , K

∗ can be estimated as
described in Sec. II F above.

E. Consequences for the definition of the core sets

The approximation quality of the MSM based on mile-
stoning depends on both the characteristics of the origi-
nal dynamics and on the choice of the core sets B1, B2,
. . . , BN . How to assess the error that the Markov as-
sumption introduces is not obvious. Mathematical re-
sults in this direction are available in Refs. 36, 49, and
50, whose intuition can be understood from our inter-
pretation via Galerkin projection discussed in Sec. III C.
Indeed, this interpretation suggests that the MSM based
on milestoning will work well if the space spanned by
the eigenvectors corresponding to the low-lying eigen-
values of L is well approximated by the space spanned
by the committor functions q1, . . . , qN . In this case, the
Galerkin projection PLP will approximate well the low-
lying eigenvalues of the generator L, so that the long-time
behavior will be captured, see the example in Sec. IV, and
especially the discussion of Fig. 4.

Furthermore, it can be shown that if the Galerkin pro-
jection error is small, then also the Markov assumption
for the process b(t) is justified50. This will also be illus-
trated in one of the examples in Sec. IV.

How to use this assessment to constructively choose
the core sets is a much harder question which goes be-
yond the scope of this paper. However, let us make a
few comments. Technically, the above considerations re-
quire that the generator L of the original dynamics pos-
sesses a group of eigenvalues which are somewhat smaller
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in magnitude than all the other ones. The existence of
small eigenvalues indicates that slow processes are taking
place in the original state-space. These slow processes are
what the generalized eigenvalue problem in (32) is meant
to capture, in the sense that the generalized eigenval-
ues should be close to the small eigenvalues of the orig-
inal process. Clearly, this shows that we should choose
N sets if there are N small eigenvalues, since a Markov
jump process on N states has exactly N eigenvalues. In
fact, if we assume that the original process has N small
eigenvalues, then general results guarantee the existence
of a good collection of sets B1, B2, . . . , BN . What this
argument does not tell, however, is how to choose these
sets, because in general we will not be able to compute
the dominant eigenvectors and committor functions that
would be needed to identify the sets based on the above
insight. In other words, what these sets are is not given
explicitly, except for the rather vague property that the
trajectory x(t) should oscillate inside and around each
for a long time before visiting another. How to use this
criterion in a constructive way is the subject of current
research, and we shall not dwell on this issue further here.
However, the questions discussed above will be illustrated
via examples in Secs. IV and V.

IV. ILLUSTRATIVE EXAMPLE: DOUBLE
WELL POTENTIAL WITH DIFFUSIVE

TRANSITION REGION

As a first example, Let us consider a one-dimensional
overdamped diffusion processes. The associated equation
of motion in the one-dimensional energy landscape V (x)
reads

γẋ(t) = −V ′(x(t)) +
√

2β−1γ η(t) (39)

where γ is the friction coefficient, and β = 1/kBT where
kB is Botzmann’s constant and T the system tempera-
ture, η(t) a white-noise process, i.e. a Gaussian process
with mean zero and covariance 〈η(t)η(t′)〉 = δ(t−t′), and
V ′ dnotes the first derivative of the energy landscape
function. We consider γ = 1 and β−1 = 0.25 together
with the potential V (x) given by:

V (x) =


(1− x2)2, x ≤ 0;
4
5 + 1

5 cos(πx), 0 ≤ x ≤ 8;

(1− (x− 8)2)2, x ≥ 8.

(40)

The potential has two deep wells connected by an ex-
tended transition region with substructure, see Fig. 2.
The transition region between the two deep wells con-
tains four smaller wells that each acts as dynamical trap
for the transitions between these two deep wells. This
can be seen from the equilibrium density also shown in
Fig. 2. The minima in the two deep wells are located at
x0 = −1 and x1 = 9, and the respective saddle points
that separate the deep wells from the rest of the land-
scape are located at xs0 = 0, and xs1 = 8, respectively,
with energy barrier equal to 1.

a)
−2 0 2 4 6 8 10
0
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2
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x

b)
−2 0 2 4 6 8 10
0

0.1
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0.4
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0.6

0.7

0.8

x

FIG. 2. (a) the potential V (x) with extended transition
region and (b) the associated equilibrium density µ(x) =
exp(−βV (x)) for β−1 = 0.25.

The associated generator L is given by equation (A3) in
the appendix. Its eigenvalues can be obtained by solving
(26) numerically. This gives the following estimates for
the first 7 eigenvalues with smallest amplitude: λe0 = 0
and

λe1 λe2 λe3 λe4 λe5 λe6
−0.0036 −0.0283 −0.0860 −0.1631 −0.2298 −1.3603

The eigenvalue λe1 measures the metastability between
the two deep wells: the associated timescale is |λe1|−1 ≈
275.69. The four next eigenvalues λe2, . . . , λe5 measure
metastable effects associated with switches between the
four additional small wells. These effects make the ex-
ample more challenging.

To build the MSM using either milestoning or the stan-
dard procedure based on a full partition of state-space13,
we generated a long trajectory from the overdamped
equation. This trajectory was computed using the Euler-
Maruyama discretization with the stepsize ∆t = 0.001 in
the time interval [0, T ] with T = 100000. This stepsize is
so small that we can consider the discrete solution to be
almost identical to a path of the solution such that we
can consider it as “almost continuous”.
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1. Core MSM based on Milestoning

We choose two core sets of the form

Bδ0 = (−∞, x0 + δ], Bδ1 = [x1 − δ,∞) (41)

Here δ is an adjustable parameter used to assess the ro-
bustness of the milestoning approximation with respect
to the precise definition of the core sets. Note in par-
ticular that for δ < 0, the core sets do not include the
minima in the two deep well of the potential, whereas
for δ ≥ 1 these sets include the first saddle point next to
these minima. As a result, we expect that the accuracy
of the core MSMs based on milestoning will deteriorate
when either δ < 0 or δ ≥ 1, but that these MSMs will be
rather insensitive to the value of δ in the range 0 ≤ δ < 1.
The results below confirm this intuition.

−0.5 0 0.5 1 1.5
−5

−4.5

−4

−3.5

−3

−2.5

−2
x 10

−3

δ

FIG. 3. Comparison of eigenvalues for different core MSM
based on milestoning for the potential shown in Fig. 2. The
flat dash-dotted line indicates the first non-trivial eigenvalue
of the original process, the dashed line the δ-dependent first
non-trivial eigenvalue of Kδ, and the solid curved line the
first non-trivial eigenvalue of the corrected rate matrix K∗δ
The vertical lines are the statistical error estimation based on
100 realizations of trajectories with length T = 100000.

First we compare the leading eigenvalue of the mile-
stoning rate matrix K and the corrected eigenvalue due
to (28) to the true leading eigenvalue. Fig. 3 shows the
result for different values of δ. It is observed that the
eigenvalue of the uncorrected milestoning rate matrix K
is biased. It significantly overestimates λe1 for small val-
ues of δ and then rapidly decays at large values of δ, with
no significant range of δ values where λe1 is estimated
correctly. In contrast, the corrected eigenvalue estimate
using (28) is an excellent estimator for λe1 in the range
δ ∈ [−0.25, 0.5], showing that the corrected milestoning
rate matrix is a useful dynamical model. For very small
and very large δ values, this estimate deteriorates as well.

To corroborate these observations, in Fig. 4 we show
the eigenfunction of L corresponding to the first non-
trivial eigenvalue, and its projection onto the subspace

a) −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

δ = 0.1

b) −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

δ = 1

FIG. 4. Comparison of eigenfunction of L corresponding to
the first nontrivial eigenvalue (solid lines) and its projection
on the subspace spanned by the committors (dashed lines) for
different core sets ((a) δ = 0.1 and (b) δ = 1) for the potential
shown in Fig. 2.

spanned by the committors q0 and q1 for different core
sets depending on δ. We observe that for the core sets
with δ = 0.1, the eigenfunction is almost identical to its
projection, while for δ = 1 some discrepancy is visible
which explains why the error in the eigenvalues in Fig. 3
for δ = 0.1 is much smaller than for δ = 1.

Finally, Fig. 5 exhibits the distribution of residence
times r1 in core set Bδ1 for δ = 1.0; the residence times
r1 are the length of the periods with b(t) = 1 along the
time series. If b(t) were a perfect Markov process the
distribution of residence times in the core sets would be
perfectly exponential with a decay rate given by the re-
spective rate. We observe a distribution close to a sin-
gle exponential and thus the deviations from the Markov
property are small.

2. Full partition MSM

As recalled in Appendix D, in order to specify a stan-
dard MSM we have to specify a full partition of the state
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FIG. 5. Distribution of residence times in state i = 1 in a tra-
jectory of length T = 12000000 for cores sets Bδi for δ = 1.0:
semi-logarithmic plot indicating almost singly exponential de-
cay.

space into N sets and a lagtime τ . We will consider the
following four partitions, A1, A2, A3, A4 with N=2, 3, 4
and 6:

A1 = (−∞, 4], (4,∞)
A2 = (−∞, 0], (0, 8), [8,∞)
A3 = (−∞, 0], (0, 4], (4, 8), [8,∞)
A4 = (−∞, 0], (0, 2], (2, 4], (4, 6], (6, 8), [8,∞),

where the refinements of the two-set partition are chosen
such that the wells in the extended transition region are
more and more resolved. For these partitions we com-
puted the associated transition matrix P ∗ for different
lagtimes τ based on the full observation. Fig. 6 shows
the estimated first non-trivial eigenvalue λ for the origi-
nal process computed from the second-largest eigenvalue
µ of P ∗ via λ = log(µ)/τ depending on the lagtime τ ,
compare (D4).

We observe that the quality of the approximation gets
better as we increase the number of sets in the parti-
tion and/or lagtime. For large enough lagtime and fine
enough partition the approximation quality is superior to
that of the core MSM.

Finally, in Fig. 7 we compare the different MSM ap-
proaches and show the statistical (sampling) error of the
eigenvalue estimate using 100 realizations of trajectories.
The statistical error increases with the lagtime τ , since
for larger τ the number of observed transitions decreases.
In comparison to the core MSM, we observe that for small
lagtime τ , the statistical error of the full-partition MSM
with fine partition is smaller, since for a trajectory with
same length we have significantly more transitions be-
tween the boundaries of the sets in the partition than
between the core sets. However, to achieve similar ac-
curacy of the eigenvalue estimate, we need large lagtime
(τ = 100 in the figure), and the statistical error of the
full-partition MSM then becomes similar to that of the
core MSM. The reason is that the information in the

0 5 10 15 20 25
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

τ

FIG. 6. Comparison of eigenvalue estimate for full-partition
MSM with the different partitions A1, A2, ... for the potential
shown in Fig. 2. The flat dash-dotted line indicates the first
non-trivial eigenvalue of the original process, and the four
solid lines the estimate using P ∗ depending on the lag time
τ . The higher the blue line, the more sets in the partition,
from 2 for the bottom line (partition A2) to 6 for the top one
(partition A4).

0 20 40 60 80 100
−5

−4.5

−4

−3.5
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−3

τ

FIG. 7. Comparison of eigenvalue estimate using MSM based
on milestoning and based on a full partition of state space
into 6 sets. The flat dash-dotted line indicates the first non-
trivial eigenvalue of the original process, the flat dashed line
the estimate using core set MSM with δ = 0.4, and the solid
(curved) line the estimate using the standard MSM with 6
sets. The statistical errors are indicated with vertical lines:
The one in the middle (τ = 50) corresponds to the mileston-
ing MSM, while the others are associated with the particular
lagtime used.

trajectory that is useful to get the estimate of the first
nontrivial eigenvalue is the transition between the core
sets. While we have more transitions between the sets
in the full partition when the number of these sets is
large, they do not help in estimating the first nontrivial
eigenvalue. Hence, for small τ , statistical errors are small
but systematic bias is large, whereas for large τ , the sys-
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tematic bias is reduced but the statistical errors become
comparable to the ones of core set MSM.

V. PEPTIDE EXAMPLE

In this section the different ways to construct MSMs
are compared by their ability to estimate the transition
timescales of the α � β transition in explicitly solvated
Alanine Dipeptide.

One molecule Alanine Dipeptide with termini ACE
and CT3 using the CHARMM 27 force field was sim-
ulated in a box of 256 TIP3P water molecules using the
program NAMD version 2.7b1. The box size was ob-
tained by a short NPT equilibration and then held fixed
followed by a 1 µs production run with Langevin dy-
namics at 300 K, using a friction constant of 5 ps−1 and
options rigibonds all (all bond lengths fixed) and useSet-
tle. Frames were saved every 10 fs. The dynamics of the
system are monitored via its φ and ψ backbone dihedral
angles, a density plot generated from a histogram of the
simulation snapshots is shown in Fig. 8. This illustrates
that the density is maximal at the α and β regimes, with
a transition region between them at which trajectories
cross between the two states.

We construct a full-partition MSM based on a parti-
tion of the φ/ψ coordinates. This partition was obtained
by k-means clustering based on φ/ψ coordinates iterated
to convergence. The use of φ/ψ is not essential here; we
could also start from a clustering based on all or most
dimensions of the state space. Here, we used k-means
based on k = 10, 50 and 250 clusters which produced
complete partitions of different resultion of the data set.
Discrete trajectories were generated by mapping the con-
tinuous trajectories onto cluster numbers and counting
transitions cij(τ) at several different lagtimes τ . The
maximum likelihood transition matrices amongst these
clusters were estimated via p̂ij(τ) = cij(τ)/

∑
k cik(τ),

thus generating a series of standard Markov state mod-
els. Their slowest implied timescale is shown in Fig. 9
depending on the number of clusters used and the pa-
rameter τ . It is apparent that the ITS converges after
τ ≈ 20 ps, i.e. the discretization error of the MSM re-
quires a minimum lagtime of about 20 ps to decay. This
convergence behavior depends on the spatial resolution of
the partition used: convergence is faster when more clus-
ters are used, thus being able to better approximate the
transfer operator eigenfunctions. The standard MSM al-
lows the timescale of the slowest process to be estimated,
this being ≈ 19 ps based on the apparent convergence.
We should however be aware that this estimate remains
somewhat uncertain since it depends on where we agree
to observe convergence. Statistical error estimates for the
ITS were performed using the Bayesian error estimation
algorithm described in Ref. 52, being on the order of the
line thickness in Fig. 9. Thus, the statistical error is ir-
relevant in the current dataset, and significant deviations
of the ITS estimates at small τ are due to discretization

errors.
The full-partition MSM also provides an estimate of

the transition rates between the two states if we con-
sider the slowest transition process to be defined by the
switching process between the α and β regions and using

k∗ = k∗αβ + k∗βα
παk

∗
αβ = πβk

∗
βα.

πα = 0.4735 and πβ = 0.5265 were estimated from the
stationary density of P where the β region was defined
via the density minima to be ψ ∈ [−130, 40] and the α
region to be the rest. Using k∗ = 1/19 ps, this provides
the estimates:

k∗αβ ≈ 0.0277

k∗βα ≈ 0.0249.

that are shown in Fig. 11
In order to obtain an estimation using a core MSM

based on milestoning, two core centers were defined at an-
gular coordinates xα = (−80,−60) and xβ = (−80, 170).
Circular cores with a radius r were defined around these
centers, and the milestoning MSMs were computed for
different core sizes r. The results are shown in Fig. 10,
where the 19 ps estimate from the full partitioning MSM
is drawn as a dashed line, to indicate the reference solu-
tion. Both the straightforward core generator (K) and
the Galerkin projection (K,M) generators strongly un-
derestimate the ITS at large core sizes. This observation
correspond to the observation that standard MSMs un-
derestimate the ITS at small lagtimes: Large cores are
unable to approximate the eigenfunctions corresponding
to the ITS estimated, thus producing a discretization er-
ror that leads to underestimated ITS. The core generator
K then has a roughly linearly increasing estimate of the
ITS until the ITS is much too large for very small cores.
This overestimation is due to the fact that at very small
core sizes the core generator estimate misses some tra-
jectories which have actually entered a given basin, but
leave this basin before hitting the small core. For the
core generator estimate there is no apparent indicator
that would help to identify the core size that provides
a correct estimate of the timescale. On the other hand,
the Galerkin projection method does converge towards
the MSM estimate of the ITS for small core sizes. Only
at a core size of 1 degree also this estimate breaks down,
presumably due to statistical reasons.

The transition rates k∗αβ and k∗βα are also directly ob-
tained using the core generator and Galerkin projection
approaches. Correspondingly to the ITS behavior, the
rates are overestimated with large core sizes in both ap-
proaches, see Figure 11. For small core sizes, the Galerkin
projection converges towards a robust estimate close to
the one of the full partition MSM, while the core MSM
based on milrestoning does not.

These results indicate that the Galerkin projection
method used with the core MSM based on milestoning
is able to provide a robust estimate of the true ITS and
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FIG. 8. Stationary distribution of Alanine dipeptide in φ/ψ
angle space. The two core centers are shown as white bullets.

rates of the system (A) without requiring a coarse time
resolution as the full-partition MSM does, and (B) based
on just 2 sets instead of a full partition of state space.

This peptide example is still particularly well suited
for the full-partition MSM approaches since our a pri-
ori knowledge about the importance of the two pep-
tide angles allows an arbitrarily fine partition of the
two-dimensional peptide angle sub-manifold. On the
one hand this permits to approximate the rates rather
precisely using a full-partition MSM and thus evaluate
the accuracy of the core set MSM rates in comparison.
On the other hand the reader should not forget that
for a more complicated molecular system such a low-
dimensional essential sub-manifold may not be given or
known a priori and thus any achievable partition will be
in danger of being too coarse (especially in the transition
regions). In such a case the core set MSM will have an
advantage which cannot be underestimated: it ”only” re-
quires to find the centers of the relevant metastable sets
for use as core sets and partition of the transition regions
is not needed.
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FIG. 9. Implied timescale of the process between the α and
β conformations based on standard Markov state models as
described in the text.
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FIG. 10. Estimate of the implied timescales from the core-
generator, the Galerkin projection and the standard Markov
state model.
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VI. CONCLUSION

The framrework of milestoning allows us to introduce
a new type of Markov State Model. This new class of
MSM differ from standard MSM in three main aspects:

1. Instead of a finite partition of state space we only
need some disjoint core sets which should be the
cores of metastable sets of the process under con-
sideration; the core sets can be pretty small neigh-
borhoods around the energy minima in the most
pronounced wells in the energy landscape.

2. We do not need to choose a lag time but can com-
pute the generator characterizing the MSM directly
from the MD timeseries; therefore core set MSMs
do not introduce a lower bound on the resolvable
timescales (which in case of standard MSM is given
by the lag time).

3. The a posteriori estimators for the sampling error
caused by the finiteness of the timeseries can be ex-
plicitly evaluated entrywise with core MSMs based
on milestoning and itdoes not require sampling of
multivariate, constrained distributions like for full-
partition MSMs.

Here, we demonstrated how to compute maximum like-
lihood estimates of the generator of core MSM from the
MD timeseries of finite length, constructed explicit ex-
pressions for this generator in the limit of infinitely long
time series via TPT, and showed how to project the
eigenvalue problem of the generator of the original pro-
cess via a Galerkin ansatz. Numerical experiments on a
model system with extended diffusive transition region
and on a small peptide illustrated that the core MSMs
based on milestoning allow to approximate the slowest
timescales of the original process well, especially when
based on the Galerkin projection ansatz. The results
in Refs. 36, 49, and 50 form a solid basis for our ap-
proach to core MSMs in the sense that they show that
the discretization error (core MSM compared to original
dynamics on longest timescales) will be small for optimal
core sets. The key questions in the context of core set
MSMs thus is how to choose the core sets optimally: this
question will be the topic of future investigations.
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Appendix A: Generators of Markov Processes

Here we give some details about generators for Markov
processes.

Let us consider overdamped diffusion processes first.
The general equation of motion for an overdamped dif-
fusion in energy landscape V = V (x) reads

γẋ(t) = −∇V (x(t)) +
√

2β−1γ η(t) (A1)

Here γ is the friction coefficient, and β = 1/kBT where
kB is Botzmann’s constant and T the system tempera-
ture. Finally η(t) is a white-noise process, i.e. a Gaussian
process with mean zero and covariance 〈η(t)ηT (t′)〉 =
δ(t − t′) Id where Id denotes the identity matrix. The
associated invariant measure is

µ(x) = Z−1e−βV (x) where Z =

∫
Ω

e−βV (x)dx (A2)

and the corresponding infinitesimal generator

L = −∇V (x) · ∇+ β−1∆. (A3)

Here ∇ denotes the gradient operator with respect to x
and ∆ the associated Laplacian.

The equations of motion of a system governed by
Langevin dynamics are for x = (r,v) and given by (using
mass-weighted coordinates){

ṙ(t) = v(t)

v̇(t) = −∇V (r(t))− γv(t) +
√

2β−1γ η(t)
(A4)

where r(t) and v(t) denotes positions and momenta, re-
spectively, while V , γ, β, and η are as above in the
case of overdamped diffusion. For simplicity we assumed
the molecular mass matrix to be the identity, which
can always be achieved by using mass-weighted coordi-
nates. The equilibirium probability density associated
with (A4) is

µ(x) =
1

Z
exp

(
− β(V (r) + 1

2v
Tv)

)
,

where Z is a normalization constant. The generator as-
sociated with (A4) is

L = −γv · ∇v − v · ∇r +∇rV (r) · ∇v + β−1∆v.

In case x(t) is a Markov jump process on discrete state
space {1, . . . , N} we consider the time-t transition kernel
between its discrete states,

p(t, i, j) = P(x(t) = j|x(0) = i),

and get the generator L with entries

li,j = lim
t→0+

1

t
(p(t, i, j)− δij),

where δij denotes the Kronecker symbol. The transition
kernel Pt, i.e., the stochastic matrix with entries p(t, i, j),
relates to the generator as

Pt = exp(tL).

and the equilibirium probability distribution of the pro-
cess solves 0 = µTL or µT = µTPt.
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Appendix B: Computation of νi,j

For simplicity let us focus on the overdamped case first
and come back to the general situation at the end of this
subsection.

Assume that the committor functions qi from (19) are
given, and µi and πi have been computed from equations
(20) and (21). The starting point for obtaining the νi,j
is the following expression for the probability current of
reactive trajectories (these are all parts of an infinitely
long trajectory that go from Bi to ∪j 6=iBj directly, i.e.,
without going back to Bi before entering ∪j 6=iBj)

ji(x) = µ(x)∇qi(x) (B1)

The integral of this current through the boundary of set
Bj 6= Bi gives the net probability flux out of this set
in the reaction from ∪j 6=iBj to Bi. By invariance under
time reversal this is also the net flux into Bj 6= Bi in the
reaction from Bi to ∪j 6=iBj . In other words

νi,j =

∫
∂Bj

µ(x)n̂j(x) · ∇qi(x)dσj(x), i 6= j (B2)

where ∂Bj denotes the boundary of Bj , n̂j(x) the unit
normal pointing out of ∂Bj , and dσj(x) the surface ele-
ment on ∂Bj . It is easy to see that (B2) can be expressed
as

νi,j = −
∫

Ω

µ(x)∇qi(x) · ∇qj(x)dx, i 6= j (B3)

Indeed (B2) is what remains if one integrates (B3) by
parts and uses (19). (B3) shows that νi,j ≥ 0 as needed.
Another integration by parts indicates that (B3) can also
be expressed as

νi,j =

∫
Ω

µ(x)qi(x)(Lqj)(x)dx,

as we have outlined above.
This derivation can be transfered to other dynamics,

too. For example, if the evolution is governed by the
Langevin equation, then the positions x must simply be
replaced by the set of positions and velocities, (x,v).
For Markov jump processes in discrete state space please
visit36.

Appendix C: Projection operator

The projection operator P maps a function f to its
best approximation Pf in

S = {f : Ω→ R : f =

N∑
i=1

αiqi, αi ∈ R},

and is thus defined by Pf = u ∈ S with

‖u− f‖ = min
v∈S
‖v − f‖, (C1)

where the norm is defined via the scalar product, ‖g‖2 =
〈g, g〉µ. For some real-valued scalar s and an arbitrary
v ∈ S we get from (C1) that Pf = u satisfies

‖u−f‖2 ≤ ‖(u+sv)−f‖2 = ‖u−f‖2+2s〈v, u−f〉µ+s2‖v|2,

which, for s > 0, reduces to 2〈v, u− f〉µ + s‖v|2 ≥ 0 and
in the limit s → 0 yields 〈v, u − f〉µ ≥ 0. Since we get
〈v, u− f〉µ ≤ 0 for s < 0 and s is arbitrary it must be

〈v, u− f〉µ = 0.

Since v also has been arbitrary, the last identity holds for
all v ∈ S, and thus

〈qj , f − Pf〉µ = 0, ∀j = 1, . . . , N.

Since Pf ∈ S, we have Pf =
∑
i αiqi for some coefficients

αi. Using the orthogonality of the error, we get∑
i

αi〈qj , qi〉µ = 〈qj , f〉µ,

which can be written as the system of linear equations∑
i αisij = 〈qj , f〉µ when introducing the matrix S =

(sij) with sij = 〈qj , qi〉µ. Formal solution of this system
of linear equations yields

(Pf)(x) =

N∑
i,j=1

qi(x)(S−1)i,j〈qj , f〉µ.

Appendix D: Comparison with standard Markov
State Models

In this section we recall the standard procedure used
to build Markov state models and stress the differences
with milestoning.

1. Set up

In contrast with milestoning, a standard MSM is typ-
ically based on a complete subdivision of state space Ω
into disjoint sets A1, . . . , AN such that Ω = ∪jAj . The
index process i(t) associated with these sets can be de-
fined as before, which now results in the simpler relation

i(t) = j if x(t) ∈ Aj (D1)

A second difference with milestoning is that standard
MSMs analyze the discrete-time process i(kτ), τ > 0, k =
0, 1, 2, . . . instead of its continuous-time version. The key
assumption made is that for appropriate choices of the lag
time τ the process i(kτ) can be modeled by a discrete-
time Markov process. The validity of this assumption
depends on the choice of both the sets Aj and the lag
time τ .



16

Assuming Markovianity, the evolution of the pro-
cess i(kτ) is completely specified by a set of transition
probabilities pi,j ≥ 0 which depends on τ and give the
probabilities that i((k + 1)τ) = j given that i(kτ) = i
(when i = j, pi,i gives the probability of staying in state i
after one step of length τ). This implies in particular
that, given the initial state i(0) = j0 and the transition
probabilities pi,j , the probability that the process i(kτ)
evolves along the (discrete) trajectory j1, . . . , jn is (com-
pare (4))

P(path|prob) = pj0,j1 · · · pjn−1,jn , (D2)

2. Bayesian formalism, MLE and error estimates

Formula (D2) gives the probability to observe a path
given the transition probabilities pi,j . As before, what is
available from MD data is the path i(kτ), k = 0, 1, 2, . . .,
and not the transition probabilities pi,j and to estimate
pi,j we need their probability given the path. Combining
Bayes formula with (D2), we get

P(prob|path) = C P(prob)

N∏
i,j=1

p
NT

i,j

i,j , (D3)

where C is a normalization constant, P(prob) is the prior
in the set of all possible transition probabilities, and NT

i,j

is the number of transitions from state i to state j ob-
served along i(kτ) during the time interval [0, T ] (NT

i,i

counts the number of events such that a i(kτ) = i and
i((k + 1)τ) = i).

The maximum likelihood estimate (MLE) for the tran-
sition probabilities pi,j can be computed analytically by
maximizing (D3) over all pi,j subject to the constraints
that pi,j ≥ 0 and

∑
j pi,j = 1:

p∗i,j =
NT
i,j

NT
i

, (D4)

where NT
i is the number of visits of the process i(kτ) in

state i, i.e., the number of discrete times with i(kτ) = i in
[0, T ]. In order to access the statistical uncertainty of the
MLE (D4) one has to construct an ensemble of transition
matrices that is distributed according to P(prob|path).
Because of the constraints pi,j ≥ 0 and

∑
j pi,j = 1,

there is no simple formula that permits to compute this
uncertainty entrywise (as is the case for the rates in the
milestoning, see (8) above). However, there are sampling
algorithms that generate an ensemble of transition ma-
trices distributed according to (D3).

3. Exact formulas

We can again ask what is the exact representation for-
mula for the transition probabilities pi,j . It is simply:

pi,j =
1

µAi

∫
Ai

dx

∫
Aj

dy µ(x)p(x,y; τ) (D5)

where µ(x) is the equilibrium probability density of the
process x(t), µAi

=
∫
Ai
µ(x)dx, and p(x,y; τ) denotes

the transition probability density already introduced in
(13). Denoting by Pτ = exp(τL) the transition kernel at
lag-time τ , we can express (D5) as

pi,j =
〈χi, Pτχj〉µ
〈χi, χi〉µ

, (D6)

where χi is the indicator function of the set Ai: χi(x) = 1
if x ∈ Ai, χi(x) = 0 otherwise.

4. Galerkin projection interpretation

A standard MSM can be also understood as a Galerkin
approximation using the space spanned by χ1, . . . , χN .
The eigenvalue problem associated with the transition
matrix Pτ is (compare (26)):

Pτϕ
e = µeϕe, (D7)

where µe = eλ
eτ . The projected version of this equation

is (compare (27))

PχPτPχϕ = µϕ. (D8)

where the projection operator Pχ is the equivalent of (24)
with qi replaced by χi

(Pχf)(x) =

N∑
i=1

ξi(x)〈ξi, f〉µ (D9)

After a little algebra, it is easy to see that (D8) can be
written as

N∑
j=1

pi,jr
χ
j = µrχi , (D10)

where rχi is the equivalent of (30) with qi replaced by χi

rχi =
〈χi, ϕ〉µ
〈χi, χi〉µ

. (D11)

Compared with a Markov state model based on mile-
stoning, we see that the mass matrix mi,j is simply the
identity matrix since the functions χi are orthogonal with
each other and the weights 〈χi, χi〉µ are included in the
pi,j .

Finally, let us comment on the approximation error in
standard MSMs. The relevant error measure the devia-
tion of the probability transport described by the MLE
p∗i,j , that has been computed based on a finite trajectory
in [0, T ] via (D4), and the probability transport of the
underlying process x(t). This error can be decomposed
into the deviation between the probability transport of
p∗i,j from the transport given by the exact representa-
tion pi,j from (D5), and the deviation between pi,j and
the original probability transport of x(t). The former is
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the statistical error which depends on the length of the
finite trajectory and for which we have an a posteriori
estimator via the likelihood as described above. The lat-
ter is the discretization error that depends on the choice
of the sets A1, . . . , AN (spatial discretization error) as
well as the lag time τ (temporal discretization error). In

Ref. 49 an estimate for the discretization error is given
which shows that it can be made small if the lag time
is large enough and the sets are chosen appropriately.
In particular this result shows that for large enough lag
times, only the spatial discretization error remains while
the temporal error vanishes.
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