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Abstract

Markov state models of molecular kinetics (MSMs), in which the long-time statistical dynamics
of a molecule is approximated by a Markov chain on a discrete partition of configuration space, have
seen widespread use in recent years. This approach has many appealing characteristics compared
to straightforward molecular dynamics simulation and analysis, including the potential to mitigate
the sampling problem by extracting long-time kinetic information from short trajectories and the
ability to straightforwardly calculate expectation values and statistical uncertainties of various
stationary and dynamical molecular observables. In this article, we summarize the current state of
the art in generation and validation of MSMs and give some important new results. We describe
an upper bound for the approximation error made by modeling molecular dynamics with an MSM
and we show that this error can be made arbitrarily small with surprisingly little effort. In contrast
to previous practice, it becomes clear that the best MSM is not obtained by the most metastable
discretization, but the MSM can be much improved if non-metastable states are introduced near
the transition states. Moreover, we show that it is not necessary to resolve all slow processes
by the state space partitioning, but individual dynamical processes of interest can be resolved
separately. We also present an efficient estimator for reversible transition matrices and a robust
test to validate that an MSM reproduces the kinetics of the molecular dynamics data.
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1 Introduction

Conformational transitions are essential to the function of proteins and nucleic acids. These transi-
tions span large ranges of length scales, time scales and complexity, and include folding [1, 2], complex
conformational rearrangements between native protein substates [3, 4], and ligand binding [5]. Experi-
ments have borne out the decades-old proposal that biomolecular kinetics are complex, often involving
transitions between a multitude of long-lived, or “metastable” states on a range of different timescales
[6]. With the ever increasing time resolution of ensemble kinetics experiments and the more recent
maturation of sensitive single-molecule techniques in biophysics, experimental evidence supporting the
near-universality of the existence of multiple metastable conformational substates and complex kinet-
ics in biomolecules has continued to accumulate [7, 8, 9, 10, 11, 12, 13]. Enzyme kinetics has been
shown to be modulated by interchanging conformational substates [14]. Protein folding experiments
have found conformational heterogeneity, hidden intermediates, and the existence of parallel pathways
[15, 16, 17, 18, 19, 20].

While the ability of laboratory experiments to resolve both fast kinetic processes and, in the case
of single-molecule experiments, heterogeneity of some of these processes, the observations are always
indirect; only spectroscopically-resolvable probes can be monitored, and inherent signal-to-noise issues
generally require sacrificing either time resolution (in single molecule experiments) or the ability to
resolve heterogeneity of populations (in ensemble experiments). As a result, molecular dynamics (MD)
simulations are becoming increasingly accepted as a tool to investigate structural details of molecular
processes and relate them to experimentally resolved features [21, 22, 23].

Traditionally, MD studies often involved “look and see” analyses of a few rare events via molecular
movies. Although visually appealing, these analyses may be misleading as they do not supply the
statistical relevance of such observations in the ensemble, and may miss rare but important events
altogether. Another frequent approach, especially common in protein folding analyses, is to project
the dynamics onto one or two user-defined order parameters (such as the root mean square distance
[RMSD] to a single reference structure, radius of gyration, principal components, or selected distances
or angles) with the notion that these order parameters allow the slow kinetics of the molecule to be
resolved. While the ability to directly visualize the results of such projections on chemically intuitive
order parameters is appealing, these projection techniques have been shown to disguise the true and
often complex nature of the kinetics by artificially aggregating kinetically distinct structures and hiding
barriers, thus creating a distorted and often overly simplistic picture of the kinetics [24, 25, 26].

In order to resolve complex kinetic features such as low-populated intermediates, structurally similar
metastable states or structurally distinct parallel pathways, it is essential to employ analysis techniques
that are sensitive to such details. While some reduction of high-dimensional biomolecular dynamics,
perhaps obtained from large quantities of MD trajectory data, is certainly necessary to generate a
humanly understandable analysis, such reduction must be guided by the specific structural or kinetic
information in this data, rather than by the subjectivity of the analyst. A natural approach towards
modeling the kinetics of molecules is by first partitioning the conformation space into discrete states
[27, 25, 28, 29, 30, 31, 32, 26, 33, 34, 35]. Although this step could still disguise information when
lumping states that have an important distinction, it is clear that a “sufficiently fine” partitioning will
be able to resolve “sufficient” detail [36]. Subsequent to partitioning, transition rates or probabilities
between states can be calculated, either based on rate theories [27, 4, 37], or based on transitions
observed in MD trajectories [24, 26, 38, 39, 40, 34, 35]. The resulting models are often called transition
networks, Master equation models or Markov (state) models (MSM), where “Markovianity” means that
the kinetics are modeled by a memoryless jump process between states.

This paper focuses on “Markov models” (abbreviated here by “MSM” [41]), which model the kinetics
with an n×n transition probability matrix that contains the conditional probabilities that the system
will, given that it is in one of its n discrete substates, be found in any of these n discrete substates a
fixed time τ later. An essential feature of an MSM is that it abandons the view of the single trajectories
and replaces it by an ensemble view of the dynamics [42, 43]. Consider an experiment that traces the
equilibrium dynamics of an ensemble of molecules starting from a distribution that is out of equilib-
rium, such as a laser-induced temperature-jump experiment [44]. Here the sequence of microscopic
events occurring during the trajectory of any individual molecule may be of little relevance, as these
individual trajectories all differ in microscopic detail. Instead, the relevant physical details are statis-
tical properties of this ensemble: time-dependent averages of spectroscopically observable quantities
and statistical probabilities quantifying with which conformationally-similar states are populated at
certain times and probabilities that many trajectories follow similar pathways. All of these statistical
properties can be easily computed from Markov models, as these models already encode the ensemble
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dynamics [22, 45]. At the same time, because it is sometimes helpful in aiding the development of
human intuition, individual realizations of almost arbitrary length can be easily obtained, simply by
generating a random state sequence according to the MSM transition probabilities.

Because only conditional transition probabilities between discretized states are needed to construct
a Markov model, the computational burden can be divided among many processors using loosely-
coupled parallelism, facilitating a “divide and conquer” approach. Trajectories used to estimate these
transition probabilities only need to be long enough to reach local equilibrium within the discrete
state, rather than exceed global equilibrium relaxation times that may be orders of magnitude longer.
In other words, the dependency between simulation length and molecular timescales is largely lost;
microsecond- or millisecond-timescale processes can be accurately modeled despite the model having
been constructed from trajectories orders of magnitude shorter [22, 46]. Moreover, assessment of the
statistical uncertainty of the model can be used to adaptively guide model construction, reaching the
desired statistical precision with much less total effort than would be necessary with a single long
trajectory [47, 48, 22].

Finally, computation of statistical quantities of interest from Markov models is straightforward,
and includes:

• Time-independent properties such as the stationary, or equilibrium, probability of states or free
energy differences between states [22, 25, 49].

• Relaxation timescales that can be extracted from experimental kinetic measurements using var-
ious techniques such as laser-induced temperature jumps, fluorescence correlation spectroscopy,
dynamic neutron scattering or NMR [22, 25].

• Relaxation functions that can be measured with nonequilibrium perturbation experiments or
correlation functions that can be obtained from fluctuations of single molecule equilibrium ex-
periments [22, 45].

• Transition pathways and their probabilities, e.g. the ensemble of protein folding pathways [22, 50].

• Statistical uncertainties for all observables [51, 45, 47, 48]

The precision and accuracy with which MSMs reproduce the true kinetics can be tested to verify the
modeling error remains small [22, 52].

In this paper we summarize the current state of the art of theory and methodology for MSM
generation and validation, and fill some important methodological gaps.

• Section 2 discusses the essential properties of the true full-dimensional continuous dynamics and
how these properties may be affected by details of the simulation.

• Section 3 examines the effect of discretizing the state space to produce a discrete-state Markov
chain approximation to the true dynamics. This is the key numerical approximation step, and
we give a detailed analysis of the error incurred in doing so, as well as ways this error can be
controlled.

• Section 4 describes strategies for estimation of the Markov model with finite quantities of MD
simulation data, the statistical step in building a Markov model.

• Finally, Section 5 provides a brief practical guide describing the current state of the art of Markov
model construction for practitioners.

Sections 2 and 3 develop Markov models from a theoretical perspective, and practitioners may wish
to skip directly to Sections 4 and 5, where generation and validation of Markov models from actual
trajectory data are discussed.

The main novelty of the present study is a detailed analysis of the discretization error (Sec. 3), i.e.
the effect of lumping state space points into discrete sets on the accuracy of reproducing quantities
of the original continuous dynamics. We give quantitative upper bounds for the approximation error
of the time evolution and the relaxation timescales of the slow dynamical processes. It is shown that
this error can be made arbitrarily small with surprisingly little effort. In contrast to previous practice
[38, 39, 52, 40], it is seen that the best MSM, in the sense of minimizing this discretization error, is
not obtained by the most metastable discretization; instead the accuracy of the MSM can be improved
if non-metastable states are introduced near the transition states. Moreover, it is shown that it is
not necessary to resolve all slow processes by the state space partitioning, but individual dynamical
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Symbol Meaning
Ω Continuous state space (positions and momenta)

x(t) Continuous state in Ω (positions and momenta) at time t
µ(x) Continuous (in state space) stationary density of x.
p(x) Continuous (in state space) probability density.
τ Lag time, time resolution of the model.

p(x,y; τ) Transition probability density to y ∈ Ω after time τ given the system
in x ∈ Ω.

T (τ) Transfer operator / propagates the continuous dynamics for a time τ .
m Number of dominant eigenfunctions/eigenvalues considered.
ψ(x) Eigenfunctions of T (τ).
φ(x) Density-weighted eigenfunctions of T (τ).
χi(x) Degree of membership of x to discrete state i.

S1, ..., Sn Discrete sets which partition state space Ω.
µi(x) Local stationary density restricted to discrete state i.
〈f, g〉 Scalar product 〈f, g〉 =

´

f(x) g(x) dx.
〈f, g〉µ Weighted scalar product 〈f, g〉µ =

´

µ(x) f(x) g(x) dx.
n Number of discrete states.
π Discrete stationary density in R

n.
p(t) Discrete probability vector in R

n at time t.
C(τ) Transition count matrix (row-dominant) in R

n×n, elements cij(τ)
count the number of i→ j transitions during lag time τ .

T(τ) Discrete transition matrix (row-stochastic) in R
n×n, elements Tij(τ)

give the i→ j transition probability during lag time τ .

T̂(τ) Estimate of T(τ) from trajectory data.
ψi ith right eigenvector of T(τ) in R

n.
φi ith left eigenvector of T(τ) in R

n.

Table 1: Important symbols

processes of interest can be described separately. These insights provide a theoretical basis for the
development of efficient adaptive discretization methods for MSMs.

Additionally, we provide a new estimator for transition matrices for reversible dynamics, i.e. Markov
models that fulfill detailed balance, which is more efficient than the reversible estimators presented
previously [51, 49, 53]. Detailed balance is expected for molecular processes taking place in thermal
equilibrium [54] and using this property in the estimation of MSMs will generally enhance the model
quality as unphysical models are excluded. Finally, we take up the topic of validating MSMs. Several
past studies have attempted to find robust tests for the “Markovianity” of the true dynamics projected
onto the discrete state space [55, 40], a concept which has been proven problematic both formally
and practically. Here, we instead suggest a simple and robust direct test of the error of the model in
reproducing the observed dynamics.

2 Analysis of the continuous dynamics

This section reviews the continuous dynamics of a molecular system in thermal equilibrium, and
introduces the dynamical propagator, whose approximation is our primary concern. While this section
is important for understanding the subsequent formal theory of discretization (Section 3), practitioners
wishing only to learn how to construct such models may skip directly to the discussion of Markov model
estimation (Section 4).

2.1 Continuous dynamics

A variety of simulation models that all yield the same stationary properties, but have different dy-
namical behaviors, are available to study a given molecular model. The choice of the dynamical model
must therefore be guided by both a desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy with an external heat bath during the
course of dynamical evolution), balanced with computational convenience (e.g. the use of a stochastic
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thermostat in place of explicitly simulating a large external reservoir) [56]. Going into the details of
these models is beyond the scope of the present study, and therefore we will simply state the minimal
physical properties that we expect the dynamical model to obey.

Consider a state space Ω which contains all dynamical variables needed to describe the instanta-
neous state of the system. Ω may be discrete or continuous, and we treat the more general continuous
case here. For molecular systems, Ω usually contains both positions and velocities of the species of in-
terest and surrounding bath particles. x(t) ∈ Ω will denote the dynamical process considered, which is
continuous in space, and may be either time-continuous (for theoretical investigations) or time-discrete
(when considering time-stepping schemes for computational purposes). For the rest of the article, we
will assume that x(t) has the following properties:

1. x(t) is a Markov process in the full state space Ω, i.e. the instantaneous change of the system
(dx(t)/dt in time-continuous dynamics and x(t + ∆t) in time-discrete dynamics with time step
∆t), is calculated based on x(t) alone and does not require the previous history. As a result of
Markovianity in Ω, the transition probability density p(x,y; τ) is well-defined:

p(x,y; τ) dy = P[x(t+ τ) ∈ y + dy | x(t) = x] x,y ∈ Ω, τ ∈ R0+, (1)

i.e. the probability that a trajectory started at time t from the point x ∈ Ω will be in an
infinitesimal region dy around a point y ∈ Ω at time t+ τ . Such a transition probability density
for the diffusion process in a one-dimensional potential is depicted in Fig. 1b. When p(x,y; τ)
is a smooth probability density the stochastic transition probability to a set A ⊆ Ω is also
well-defined and formally given by integrating the transition probability density over region A:

p(x, A; τ) = P[x(t+ τ) ∈ A|x(t) = x] =

ˆ

y∈A

dy p(x,y; τ). (2)

2. x(t) is ergodic, i.e. the space Ω does not have two or more subsets that are dynamically discon-
nected, and for t → ∞ each state x will be visited infinitely often. The fraction of time that
the system spends in any of its states during an infinitely long trajectory is given by its unique
stationary density (invariant measure) µ(x) : Ω → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic ensemble (e.g. NVT, NpT). For molec-
ular dynamics at constant temperature T , the dynamics above yield a stationary density µ(x)
that is a function of T , namely the Boltzmann distribution

µ(x) = Z(β)−1 exp (−βH(x)) . (3)

with Hamiltonian H(x) and β = 1/kBT where kB is the Boltzmann constant and kBT is the
thermal energy. Z(β) =

´

dx exp (−βH(x)) is the partition function. By means of illustration,
Fig. 1a shows the stationary density µ(x) for a diffusion process on a potential with high barriers.

3. x(t) is reversible, i.e., p(x,y; τ) fulfills the condition of detailed balance:

µ(x) p(x,y; τ) = µ(y) p(y,x; τ), (4)

i.e., in equilibrium, the fraction of systems transitioning from x to y per time is the same as the
fraction of systems transitioning from y to x. Note that this “reversibility” is a more general
concept than the time-reversibility of the dynamical equations e.g. encountered in Hamiltonian
dynamics. For example, Brownian dynamics on some potential are reversible as they fulfill
Eq. (4), but are not time-reversible in the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although detailed balance is not essential for the
construction of Markov models, we will subsequently assume detailed balance as this allows
much more profound analytical statements to be made. The rationale is that we expect detailed
balance to be fulfilled in equilibrium molecular dynamics based on a simple physical argument:
For dynamics that have no detailed balance, there exists a set of states which form a loop in state
space which is traversed in one direction with higher probability than in the other direction. This
means that one could design a machine which uses this preference of direction in order to produce
work. However, a system in equilibrium is driven only by thermal energy, and conversion of pure
thermal energy into work contradicts the second law of thermodynamics. Thus, equilibrium
molecular dynamics must be reversible and fulfill detailed balance.
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The above conditions do not place overly burdensome restrictions on the choices of dynamical model
used to describe equilibrium dynamics. Most stochastic thermostats are consistent with the above
assumptions, e.g. Andersen [57] (which can be employed with either massive or per-particle collisions,
or coupled to only a subset of degrees of freedom), Hybrid Monte Carlo [58], overdamped Langevin (also
called Brownian or Smoluchowski) dynamics [59, 60], and stepwise-thermalized Hamiltonian dynamics
[40]. When simulating solvated systems, a weak friction or collision rate can be used; this can often be
selected in a manner that is physically motivated by the heat conductivity of the material of interest
and the system size [57].

We note that the use of finite-timestep integrators for these models of dynamics can sometimes
be problematic, as the phase space density sampled can differ from the density desired. Generally,
integrators based on symplectic Hamiltonian integrators (such as velocity Verlet [61]) offer greater
stability for our purposes.

While technically, a Markov model analysis can be constructed for any choice of dynamical model,
it must be noted that several popular dynamical schemes violate the assumptions above, and using
them means that one is (currently) doing so without a solid theoretical basis, e.g. regarding the
boundedness of the discretization error analyzed in Sec. 3 below. For example, Nosé-Hoover and
Berendsen are either not ergodic or do not generate the correct stationary distribution for the desired
ensemble [62]. Energy-conserving Hamiltonian dynamics, even when considering a set of trajectories
that are in initial contact with a heat bath, is not ergodic and therefore has no unique stationary
distribution. While it is possible that future work will extend the present theoretical analysis to these
and other models of dynamics, we currently advise practitioners choose a model which unambiguously
fulfills these conditions, yet provides physically reasonable kinetics.

2.2 Transfer operator approach and the dominant spectrum

At this point we shift from focusing on the evolution of individual trajectories to the time evolution
of an ensemble density. Consider an ensemble of molecular systems at a point in time t, distributed
in state space Ω according to a probability density pt(x) that is different from the stationary density
µ(x). If we now wait for some time τ , the probability distribution of the ensemble will have changed
because each system copy undergoes transitions in state space according to the transition probability
density p(x,y; τ). The change of the probability density pt(x) to pt+τ (x) can be described with the
action of a continuous operator. From a physical point of view, it seems straightforward to define the
propagator Q(τ) as follows:

pt+τ (y) = Q(τ) ◦ pt(y) =
ˆ

x∈Ω

dx p(x,y; τ) pt(x). (5)

Applying Q(τ) to a probability density pt(x) will result in a modified probability density pt+τ (x)
that is more similar to the stationary density µ(x), to which the ensemble must relax after infinite time.
An equivalent description is provided by the transfer operator T (τ) [42], which has nicer properties
from a mathematical point of view. T (τ) is defined as [63]:

ut+τ (y) = T (τ) ◦ ut(y) =
1

µ(y)

ˆ

x∈Ω

dx p(x,y; τ) µ(x) ut(x). (6)

T (τ) does not propagate probability densities, but instead functions ut(x) that differ from proba-
bility densities by a factor of the stationary density µ(x), i.e.:

pt(x) = µ(x)ut(x). (7)

The relationship between the two densities and operators is shown in the scheme below:

pt
Q(τ)−→ pt+τ probability densities

↓ ·µ−1 ↑ ·µ
ut

T (τ)−→ ut+τ densities in µ− weighted space

Alternatively to Q and T which describe the transport of densities exactly by a chosen time-
discretization τ , one could investigate the density transport with a time-continuous operator L called
generator which is the continuous basis of rate matrices that are frequently used in physical chemistry
[31, 64] and is related to the Fokker-Planck equation [54]. Here, we do not investigate L in detail, but
describe some of its basic properties in the Supplementary Information.
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Eq. (6) is a formal definition. When the particular kind of dynamics is known it can be written
in a more specific form [42]. However, the general form (6) is sufficient for the present analysis. The
continuous operators have the following general properties:

• Both Q(τ) and T (τ) fulfill the Chapman-Kolmogorov Equation

pt+kτ (x) = [Q(τ)]k ◦ pt(x) (8)

ut+kτ (x) = [T (τ)]k ◦ ut(x) (9)

where [T (τ)]k refers to the k-fold application of the operator, i.e. Q(τ) and T (τ) can be used to
propagate the evolution of the dynamics to arbitrarily long times t+ kτ .

• Q(τ) has eigenfunctions φi(x) and associated eigenvalues λi (see Fig. 1c and d):

Q(τ) ◦ φi(x) = λiφi(x), (10)

while T (τ) has eigenfunctions ψi(x) with the same corresponding eigenvalues:

T (τ) ◦ ψi(x) = λiψi(x), (11)

When the dynamics are reversible, all eigenvalues λi are real-valued and lie in the interval −1 <
λi ≤ 1 [42]. Moreover, the two types of eigenfunctions are related by a factor of the stationary
density µ(x):

φi(x) = µ(x)ψi(x), (12)

and their lengths are defined by the normalization condition that the scalar product (see Table
1) is unity for all corresponding eigenfunctions: 〈φi, ψi〉 = 1 for all i = 1...m (see Table 1 for
definition of scalar product). Due to reversibility, non-corresponding eigenfunctions are orthog-
onal: 〈φi, ψj〉 = 0 for all i 6= j. When T (τ) is approximated by a reversible transition matrix
on a discrete state space, φi(x) and ψi(x) are approximated by the left and right eigenvectors of
that transition matrix, respectively (compare Fig. 1c and e).

• Since both operators are continuous, they possess a continuous spectrum of eigenvalues. By
convention, we only distinguish a finite number of m dominant eigenvalue/eigenfunction pairs
and sort them by nonascending eigenvalue, i.e. λ1 = 1 > λ2 ≥ λ3 ≥ ... ≥ λm, while the remainder
of the spectrum is confined within in a ball of radius r ≤ λm centered on 0.

• There is one eigenvalue λ1 = 1 that has the greatest norm (i.e., it is simple and dominant). The
associated eigenfunction corresponds to the stationary distribution µ(x) (see Fig. 1e, top):

Q(τ) ◦ µ(x) = µ(x) = φ1(x), (13)

and the corresponding eigenfunction of T (τ)) is a constant function on all state space Ω (see Fig.
1c, top):

T (τ) ◦ 1 = 1 = ψ1(x), (14)

due to the relationship φ1(x) = µ(x)ψ1(x) = µ(x).
To see the significance of the other eigenvalue/eigenfunction pairs, we exploit that the dynamics

can be decomposed exactly into a superposition of m individual slow dynamical processes and the
remaining fast processes. For T (τ), this yields:

ut+kτ (x) = Tslow(kτ) ◦ ut(x) + Tfast(kτ) ◦ ut(x) (15)

=
m
∑

i=1

λki 〈ut, φi〉ψi(x) + Tfast(kτ) ◦ ut(x) (16)

=

m
∑

i=1

λki 〈ut, ψi〉µ ψi(x) + Tfast(kτ) ◦ ut(x) (17)

Here, Tslow is the dominant, or slowly-decaying part consisting of the m slowest processes with
λi ≥ λm, while Tfast contains all (infinitely many) fast processes with λi < λm that are usually not
of interest. The weighted scalar product appearing above is defined in Table 1. This decomposition
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requires that subspaces Tslow and Tfast are orthogonal, which is a consequence of detailed balance. This
decomposition permits a compelling physical interpretation: The slow dynamics are a superposition
of dynamical processes, each of which can be associated to one eigenfunction ψi (or φi) and a corre-
sponding eigenvalue λi (see Fig. 1c-e). These processes decay with increasing time index k. In the
long-time limit where k → ∞, only the first term with λ1 = 1 remains, recovering to the stationary
distribution φ1(x) = µ(x). All other terms correspond to processes with eigenvalues λi < 1 and decay
over time, thus the associated eigenfunctions correspond to processes that decay under the action of
the dynamics and represent the dynamical rearrangements taking place while the ensemble relaxes to-
wards the equilibrium distribution. The closer λi is to 1, the slower the corresponding process decays;
conversely, the closer it is to 0, the faster.

Thus the λi for i = 2, ...,m each correspond to a physical timescale, indicating how quickly the
process decays or transports density toward equilibrium (see Fig. 1f):

ti = − τ

lnλi
, (18)

which is often called the ith implied timescale [40, ?]. Thus, Eq. (15) can be rewritten in terms of
implied timescales as:

ut+kτ (x) = 1 +

m
∑

i=2

exp

(

−kτ
ti

)

〈ut, ψi〉µ ψi(x) + Tfast(kτ) ◦ ut(x) (19)

This implies that when there are gaps amongst the first m eigenvalues, the system has dynamical
processes acting simultaneously on different timescales. For example, a system with two-state kinetics
would have λ1 = 1, λ2 ≈ 1 and λ3 ≪ λ2 (t3 ≪ t2), while a system with a clear involvement of an
additional kinetic intermediate would have λ3 ∼ λ2 (t3 ∼ t2).

In Fig. 1, the second process, ψ2, corresponds to the slow (λ2 = 0.9944) exchange between basins
A+B and basins C+D, as reflected by the opposite signs of the elements of ψ2 in these regions (Fig.
1c). The next-slowest processes are the A↔B transition and then the C↔D transition, while the
subsequent eigenvalues are clearly separated from the dominant spectrum and correspond to much
faster local diffusion processes. The three slowest processes effectively partition the dynamics into
four metastable states corresponding to basins A, B, C and D, which are indicated by the different
sign structures of the eigenfunctions (Fig. 1c). The metastable states can be calculated from the
eigenfunction structure, e.g. using the PCCA method [30, 38].

Of special interest is the slowest relaxation time, t2. This timescale identifies the worst case global
equilibration or decorrelation time of the system; no structural observable can relax more slowly than
this timescale. Thus, if one desires to calculate an expectation value E(a) of an observable a(x) which
has a non-negligible overlap with the second eigenfunction, 〈a, ψ2〉 > 0, a straightforward single-run
MD trajectory would need to be many times t2 in length in order to compute an unbiased estimate of
E(a).
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a) b)

c) d)

e)

Figure 1: (a) Potential energy function with four metastable states and corresponding stationary
density µ(x), (b) Density plot of the transfer operator for a simple diffusion-in-potential dynamics
defined on the range Ω = [0, 100] (see Supplementary Information), black and red indicates high
transition probability, white zero transition probability. Of particular interest is the nearly block-
diagonal structure, where the transition density is large within blocks allowing rapid transitions within
metastable basins, and small or nearly zero for jumps between different metastable basins. (c) The four
dominant eigenfunctions of the transfer operator, ψ1, ..., ψ4, which indicate the associated dynamical
processes. The first eigenfunction is associated to the stationary process, the second to a transition
between A+B ↔ C+D and and the third and fourth eigenfunction to transitions between A↔ B and
C ↔ D, respectively. (d) Eigenvalues of the transfer operator, The gap between the four metastable
processes (λi ≈ 1) and the fast processes is clearly visible. e) The four dominant eigenfunctions of the
transfer operator weighted with the stationary density, φ1, ..., φ4.
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3 Discretization and Discretization Error

While molecular dynamics in full continuous state space Ω is Markovian by construction, the term
Markov model is due to the fact that in practice, state space must be somehow discretized in order to
obtain a computationally tractable description of the dynamics. The Markov model then consists of
the partitioning of state space used together with the transition matrix modeling the jump process of
the observed trajectory projected onto these discrete states. However, this jump process (Fig. 2) is no
longer Markovian, as the information where the continuous process would be within the local discrete
state is lost in the course of discretization. Modeling the long-time statistics of this jump process with
a Markov process is an approximation, i.e., it involves a discretization error. In the current section,
this discretization error is analyzed and it is shown what needs to be done in order to keep it small.

The discretization error is a systematic error of a Markov model since it causes a deterministic
deviation of the Markov model dynamics from the true dynamics that persists even when the statistical
error is excluded by excessive sampling. In order to focus on this effect alone, it is assumed in this
section that the statistical estimation error is zero, i.e., transition probabilities between discrete states
can be calculated exactly. The results suggest that the discretization error of a Markov model can be
made small enough for the MSM to be useful in accurately describing the relaxation kinetics, even for
very large and complex molecular systems.

Figure 2: Scheme: The true continuous dynamics (dashed line) is projected onto the discrete state
space. MSMs approximate the resulting jump process by a Markov jump process.

In practical use, the Markov model is not obtained by actually discretizing the continuous propaga-
tor. Rather, one defines a discretization of state space and then estimates the corresponding discretized
transfer operator from a finite quantity of simulation data, such as several long or many short MD
trajectories that transition between the discrete states. The statistical estimation error involved in
this estimation will be discussed in the subsequent section 4; the current section focuses only on the
approximation error due to discretization of the transfer operator.

3.1 Discretization of state space

Here we consider a discretization of state space Ω into n sets. In practice, this discretization is often
a simple partition with sharp boundaries, but in some cases it may be desirable to discretize Ω into
fuzzy sets [65]. We can describe both cases by defining membership functions χi(x) that quantify the
probability of point x to belong to set i [43] which have the property

∑n
i=1 χi(x) = 1. In the present

study we will concentrate on a crisp partitioning with step functions:

χi(x) = χcrisp
i (x) =

{

1 x ∈ Si

0 x /∈ Si
. (20)

Here we have used n sets S = {S1, ..., Sn} which entirely partition state space (
⋃n

i=1 Si = Ω) and
have no overlap (Si ∩ Sj = ∅ for all i 6= j). A typical example of such a crisp partitioning is a Voronoi
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Figure 3: Crisp state space discretization illustrated on a one-dimensional two-well and a two-
dimensional three-well potential (see Supplementary Information for details of potential and dynam-
ics). (a) Two-well potential (black) and stationary distribution µ(x) (red). (b) Characteristic functions
v1(x) = χ1(x), v2(x) = χ2(x) (black and red). This discretization has the corresponding local densities
µ1(x), µ2(x) (blue and yellow), see Eq. (21). (c) Three-well potential (black contours indicate the
isopotential lines) with a crisp partitioning into three states using a Voronoi partition with the centers
denoted (+).

tessellation [66], where one defines n centers x̄i, i = 1...n, and set Si is the union of all points x ∈ Ω
which are closer to x̄i than to any other center using some distance metric (illustrated in Fig. 3b and
c). Note that such a discretization may be restricted to some subset of the degrees of freedom, e.g. in
MD one often ignores velocities and solvent coordinates when discretizing.

The stationary probability πi to be in set i is then given by the full stationary density as:

πi =

ˆ

x∈Si

dx µ(x).

and the local stationary density µi(x) restricted to set i (see Fig. 3b) is given by

µi(x) =

{

µ(x)
πi

x ∈ Si

0 x /∈ Si
. (21)

These properties are local, i.e. they do not require information about the full state space.

3.2 Transition matrix

Together with the discretization, the Markov model is defined by the row-stochastic transition proba-
bility matrix, T(τ) ∈ R

n×n, which is the discrete approximation of the transfer operator described in
Sec. 2.2 via:

Tij(τ) =
〈χj , (T (τ) ◦ χi)〉µ

〈χi, χi〉µ
Physically, each element Tij(τ) represents the time-stationary probability to find the system in

state j at time t+ τ given that it was in state i at time t. By definition of the conditional probability,
this is equal to:

11



Tij(τ) = P[x(t+ τ) ∈ Sj | x(t) ∈ Si] (22)

=
P[x(t+ τ) ∈ Sj ∩ x(t) ∈ Si]

P[x(t) ∈ Si]
(23)

=

´

x∈Si
dx µi(x) p(x, Sj ; τ)
´

x∈Si
dx µi(x)

, (24)

where we have used Eq. (2). Note that in this case the integrals run over individual sets and only
need the local equilibrium distributions µi(x) as weights. This is a very powerful feature: In order to
estimate transition probabilities, we do not need any information about the global equilibrium distri-
bution of the system, and the dynamical information needed extends only over time τ . In principle,
the full dynamical information of the discretized system can be obtained by initiating trajectories of
length τ out of each state i as long as we draw the starting points of these simulations from a local
equilibrium density µi(x) [42, 43, 67].

The transition matrix can also be written in terms of correlation functions [40]:

Tij(τ) =
E[χi(x(t)) χj(x(t + τ))]

E[χi(x(t))]
=
ccorrij (τ)

πi
, (25)

where the unconditional transition probability ccorrij (τ) = πiTij(τ) is an equilibrium time correlation
function which is normalized such that

∑

i,j c
corr
ij (τ) = 1. For dynamics fulfilling detailed balance, the

correlation matrix is symmetric (ccorrij (τ) = ccorrji (τ)).
Since the transition matrix T(τ) is a discretization of the transfer operator T [42, 63, 36] (Sec.

2.2), we can relate the functions that are transported by T (functions ut in Eq. (6)) to column vectors
that are multiplied to the matrix from the right while the probability densities pt (Eq. (7)) correspond
to row vectors that are multiplied to the matrix from the left. Suppose that p(t) ∈ R

n is a column
vector whose elements denote the probability, or population, to be within any set j ∈ {1, ..., n} at time
t. After time τ , the probabilities will have changed according to:

pj(t+ τ) =

n
∑

i=1

pi(t)Tij(τ), (26)

or in matrix form:

pT (t+ τ) = pT (t)T(τ) (27)

Note that an alternative convention often used in the literature is to write T(τ) as a column-
stochastic matrix, obtained by taking the transpose of the row-stochastic transition matrix defined
here.

The stationary probabilities of discrete states, πi, yield the unique discrete stationary distribution
of T:

πT = πTT(τ). (28)

All equations encountered so far are free of approximation. We wish now to model the system
kinetics of long times by approximating the true dynamics with a Markov chain on the space of n
states. Using T(τ) as a Markov model predicts that for later times, t+kτ , the probability distribution
will evolve as:

pT (t+ kτ) ≈ pT (t)Tk(τ), (29)

which can only approximate the true distribution p(t+ kτ) that would have been produced by the
continuous transfer operator, as Eq. (29) is the result of a state space discretization. The discretization
error involved in this approximation thus depends on how this discretization is chosen and is analyzed
in detail below. A description alternative to that of transition matrices quite common in chemical
physics is using rate matrices and Master equations [64, 31, 68, 69]. The relationship between this and
the current approach is discussed in the Supplementary Information.
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3.3 Discretization error and non-Markovianity

The Markov model T(τ) is indeed a model in the sense that it only approximates the long-time
dynamics based on a discretization of state space, making the dynamical equation (29) approximate.
Here we analyze the approximation quality of Markov models in detail and obtain a description that
reveals which properties the state space discretization and the lag time τ must fulfill in order to obtain
a good model.

Previous works have mainly discussed the quality of a Markov model in terms of its “Markovianity”
and introduced tests of Markovianity of the process x(t) projected onto the discrete state space. The
space-continuous dynamics x(t) described in Sec. 2 is, by definition, Markovian in full state space Ω
and it can thus be exactly described by a linear operator, such as the transfer operator T (τ) defined
in Eq. (6). The problem lies in the fact that by performing a state space discretization, continuous
states x ∈ Ω are grouped into discrete states si (Sec. 3.1), thus “erasing” information of the exact
location within these states and “projecting” a continuous trajectory x(t) onto a discrete trajectory
s(t) = s(x(t)). This jump process, s(t), is not Markovian, but Markov models attempt to approximate
s(t) with a Markov chain.

Thus, non-Markovianity occurs when the full state space resolution is reduced by mapping the
continuous dynamics onto a reduced space. In Markov models of molecular dynamics, this reduction
consists usually of both neglect of degrees of freedom and discretization of the resolved degrees of
freedom. Markov models typically only use atom positions, thus the velocities are projected out
[39, 38]. So far, Markov models have also neglected solvent degrees of freedom and have only used
the solute coordinates [39, 22], and the effect of this was studied in detail in [70]. Indeed, it may be
necessary to incorporate solvent coordinates in situations where the solvent molecules are involved in
slow processes that are not easily detected in the solute coordinates [71]. Often, Markov models are
also based on distance metrics that only involve a subset of the solute atoms, such as RMSD between
heavy atom or alpha carbon coordinates [39, 22, 49], or backbone dihedral angles [38, 31]. Possibly
the strongest approximation is caused by clustering or lumping sets of coordinates in the selected
coordinate subspace into discrete states [72, 39, 31, 22, 49]. Formally, all of these operations aggregate
sets of points in continuous state space Ω into discrete states, and the question to be addressed is
what is the magnitude of the discretization error caused by treating the non-Markovian jump process
between these sets as a Markov chain.

Consider the diffusive dynamics model depicted in Fig. 4a and let us follow the evolution of the
dynamics given that we start from a local equilibrium in basin A (Fig. 4b), either with the exact
dynamics, or with the Markov model dynamics on the discrete state space A and B. After a step τ ,
both dynamics have transported a fraction of 0.1 of the ensemble to B. The true dynamics resolves
the fact that much of this is still located near the saddle point (Fig. 4c). The Markov model cannot
resolve local densities within its discrete states, which is equivalent to assuming that for the next
step the ensemble has already equilibrated within the discrete state (Fig. 4g). This difference affects
the discrete state (basin) probabilities at time 2τ : In the true dynamics, a significant part of the 0.1
fraction can cross back to A as it is still near the saddle point, while this is not the case in the Markov
model where the 0.1 fraction is assumed to be relaxed to states mostly around the minimum (Compare
Fig. 4d and h). As a result, the probability to be in state B is higher in the Markov model than in
the true dynamics. The difference between the Markov model dynamics and the true dynamics is thus
a result of discretization, because the discretized model can no longer resolve deviations from local
equilibrium density µi(x) within the discrete state.

This picture suggests the discretization error to have two properties: (a) the finer the discretization,
the smaller the discretization error is, and (b) when increasing the coarse-graining time, or time
resolution, of our model, τ , the errors for any fixed point in time t should diminish, because we have
less often made the approximation of imposing local equilibrium.

3.4 Quantifying the discretization error

Fig. 4 also suggests a practical measure to quantify the discretization error. Densities, eigenfunctions
or any other function f(x) of the continuous state x, are approximated through the discretization
S1, ..., Sn. Let Q be the projection onto the discretization basis which produces this approximation
f̂(x):

f̂(x) = Qf(x) =

n
∑

i=1

aiχi(x) (30)
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Figure 4: Illustration of the discretization error by comparing the dynamics of the diffusion in a double
well potential (a,e) (see Supplementary Information for setup) at time steps 0 (b), 250 (c), 500 (d) with
the predictions of a Markov model parametrized with a too short lag time τ = 250 at the corresponding
times 0 (f), 250 (g), 500 (h). (b, c, d) show the true density pt(x) (solid black line) and the probabilities
associated with the two discrete states left and right of the dashed line. The numbers in (f, g, h) are
the discrete state probabilities pi(t + kτ) predicted by the Markov model while the solid black line
shows the hypothetical density pi(t+kτ)µi(x) that inherently assumed by the Markov model by using
the discrete state probabilities to correspondingly weight the local stationary densities.
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where the coefficients are given by the projection weighted by the probability of each state:

ai =
〈f, χi〉µ
〈1, χi〉µ

=

´

Si
dx µ(x)f(x)
´

Si
dx µ(x)

. (31)

In the case of a crisp partitioning of state space, functions f(x) are approximated by step functions
that are constant within the discrete states. The approximation error that is caused by the discretiza-
tion is then defined as the µ-weighted Euclidean norm ‖·‖µ,2 of the difference between discretized and
original function:

δf ≡
∥

∥

∥
f(x)− f̂(x)

∥

∥

∥

µ,2
=

(
ˆ

Ω

dx µ(x)
(

f(x)− f̂(x)
)2

)
1
2

. (32)

When the projection Q is applied to probability densities p(x), it effectively counts how much
density is in each of the discrete states and adding a local stationary density of corresponding amplitude.
This projection allows the comparison between true and Markov model dynamics to be made exactly
as suggested by Fig. 4: In both cases we start with an arbitrary initial density projected onto discrete
states, Qp0(x), then transport this density either with the true or with the Markov model dynamics
for some time kτ . Subsequently, the densities is again projected onto discrete states by Q and then
compared:

• The true dynamics transports the initial density Qp0(x) to [T (τ)]kQp0(x)

• The Markov model dynamics transports the initial density Qp0(x) to QT (τ)Qp0(x) in one step
and to Q[T (τ)Q]kp0(x) in k steps using the identity for projections Q ◦Q = Q.

• Projecting both densities to local densities and comparing yields the difference

ǫ(k) =
∥

∥Q[T (τ)]kQp0(x) −Q[T (τ)Q]kp0(x)
∥

∥

µ,2
=

∥

∥[Q[T (τ)]kQ−Q[T (τ)Q]k]p0(x)
∥

∥

µ,2
(33)

In order to remove the dependency on the initial distribution p0(x), we assume the worst case: the
maximum possible value of ǫ(k) amongst all possible p0(x) is given by the operator-2-norm of the error
matrix [Q[T (τ)]kQ−Q[T (τ)Q]k], where ‖A‖µ,2 ≡ max

‖x‖=1
‖Ax‖µ,2 [73], thus the Markov model error is

defined as:

E(k) :=
∥

∥Q[T (τ)]kQ−Q[T (τ)Q]k
∥

∥

µ,2
, (34)

which measures the maximum possible difference between the true probability density at time kτ
and the probability density predicted by the Markov model at the same time.

In order to quantify this error, we declare our explicit interest in the m slowest processes with
eigenvalues 1 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λm. Generally, m ≤ n, i.e. we are interested in less processes
than the number of n eigenvectors that a Markov model with n states has. We define the following
two quantities:

• δi := ‖ψi(x)−Qψi(x)‖µ,2 is the eigenfunction approximation error, quantifying the error of
approximating the true continuous eigenfunctions of the transfer operator, ψi (see Fig. 5 for
illustration), for all i ∈ {1, ...,m}. δ := maxi δi is the largest approximation error amongst these
first m eigenfunctions

• η(τ) := λm+1(τ)
λ2(τ)

is the spectral error, the error due to neglecting the fast subspace of the transfer

operator, which decays to 0 with increasing lag time: limτ→∞ η(τ) = 0.

The general statement is that that the Markov model error E(k) can be proven [36] to be bounded
from above by the following expression:

E(k) ≤ min{2, [mδ + η(τ)] [a(δ) + b(τ)]} λk2 (35)

with

a(δ) =
√
m(k−1)δ (36)

b(τ) =
η(τ)

1− η(τ)
(1 − η(τ)k−1) (37)

This implies two observations:
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1. For long times, the overall error decays to zero with λk2 , where 0 < λ2 < 1, thus the stationary
distribution (recovered as k → ∞) is always correctly modeled, even if the kinetics are badly
approximated.

2. The error during the kinetically interesting timescales consists of a product whose terms contain
separately the discretization error and spectral error. Thus, the overall error can be diminished
by choosing a fine discretization (where fine means it needs to well trace the slow eigenfunctions),
and using a large lag time τ .

Depending on the ratio λm+1(τ)/λ2(τ), the decay of the spectral error η(τ) with τ might be slow. It
is thus interesting to consider a special case of the discretization where n = m and δ = 0. This would
be achieved by a Markov model that uses a fuzzy partition with membership functions derived from
the first m eigenfunctions ψ1, ..., ψm [67]. From a more practical point of view, this situation can be
approached by using a Markov model with n > m states located such that they discretize the first m
eigenfunctions with a vanishing discretization error, and then declaring that we are only interested in
these m slowest relaxation processes. In this case we do not need to rely on the upper bound of the
error from Eq. (35), but directly get the important result E(k) = 0.

In other words, a Markov model can approximate the kinetics of slow processes arbitrarily well,
provided the discretization can be made sufficiently fine or improved in a way that continues to minimize
the eigenfunction approximation error. This observation can be rationalized by Eq. (15) which shows
that the dynamics of the transfer operator can be exactly decomposed into a superposition of slow and
fast processes.

An important consequence of the δ-dependence of the error is that the best partition is not nec-
essarily metastable. Previous work [40, 39, 52, 38] has focused on the construction of partitions with
high metastability (defined as the trace of the transition matrix T(τ)), e.g. the two-state partition
shown in Fig. 5b. This approach was based on the idea that the discretized dynamics must be ap-
proximately Markovian if the system remained in each partition sufficiently long to approximately
lose memory [39]. While it can be shown that if a system has m metastable sets with λm ≫ λm+1,
then the most metastable partition into n = m sets also minimizes the discretization error [36], the
expression for the discretization error given here has two further profound ramifications: First, even
in the case where there exists a strong separation of timescales so the system has clearly m metastable
sets, the discretization error can be reduced even further by splitting the metastable partition into a
total of n > m sets which are not metastable. And second, even in the absence of a strong separation
of timescales, the discretization error can be made arbitrarily small by making the partition finer,
especially in transition regions, where the eigenfunctions change most rapidly (see Fig. 5b).
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Figure 5: Illustration of the eigenfunction approximation error δ2 on the slow transition in the diffusion
in a double well (top, black line). The slowest eigenfunction is shown in the lower four panels (black),
along with the step approximations (green) of the partitions (vertical black lines) at x = 50; x = 40;
x = 10, 20, ..., 80, 90; and x = 40, 45, 50, 55, 60. The eigenfunction approximation error δ2 is shown as
red area and its norm is printed.

Fig. 6 illustrates the Markov model discretization error on a two-dimensional three-well example
where two slow processes are of interest. The left panels show a metastable partition with 3 sets. As
seen in Fig. 6d, the discretization errors |ψ2−Qψ2|(x) and |ψ3−Qψ3|(x) are large near the transition
regions, where the eigenfunctions ψ2(x) and ψ3(x) change rapidly, leading to a large discretization
error. Using a random partition (Fig. 6, third column) makes the situation worse, but increasing
the number of states reduces the discretization error (Fig. 6, fourth column), thereby increasing the
quality of the Markov model. When states are chosen such as to well approximate the eigenfunctions,
a very small error can be obtained with few sets (Fig. 6, second column)

These results suggest that an adaptive discretization algorithm may be constructed which minimizes
the E(k) error. Such an algorithm could iteratively modify the definitions of discretization sets as
suggested previously [39], but instead of maximizing metastability it would minimize the E(k) error
which can be evaluated by comparing eigenvector approximations on a coarse discretization compared
to a reference evaluated on a finer discretization [36].

One of the most intriguing insights from both Eq. (15) and the results of the discretization error
is that if, for a given system, only the slowest dynamical processes are of interest, it is sufficient to
discretize the state space such that the first few eigenvectors are well represented (in terms of small
approximation errors δi). For example, if one is interested in processes on timescales t∗ or slower, then
the number m of eigenfunctions that need to be resolved is equal to the number of implied timescales
with ti ≥ t∗. Due to the perfect decoupling of processes for reversible dynamics in the eigenfunctions
(see Eq. (16-17)), no gap after these first m timescales of interest is needed. Note that the quality of
the Markov model does not depend on the dimensionality of the simulated system, i.e. the number of
atoms. Thus, if only the slowest process of the system is of interest (such as the folding process in a
two-state folder), only a one-dimensional parameter, namely the level of the dominant eigenfunction,
needs to be approximated with the clustering, even if the system is huge. This opens a way to discretize
state spaces of very large molecular systems.

3.5 Approximation of eigenvalues and timescales by Markov models

One of the most interesting kinetic properties of molecular systems are the intrinsic timescales of the
system. They can be both experimentally accessed via relaxation or correlation functions that are
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Figure 6: Illustration of the eigenfunction approximation errors δ2 and δ3 on the two slowest processes
in a two-dimensional three-well diffusion model (see Supplementary Information for model details). The
columns from left to right show different state space discretizations with white lines as state boundaries:
(i) 3 states with maximum metastability, (ii) the metastable states were further subdivided manually
into 13 states to better resolve the transition region, resulting in a partition where no individual state
is metastable, (iii)/(iv) Voronoi partition using 25/100 randomly chosen centers, respectively. (a)
Potential, (b) The exact eigenfunctions of the slow processes, ψ2(x) and ψ3(x), (c) The approximation
of eigenfunctions with discrete states, Qψ2(x) and Qψ3(x), (d) Approximation errors |ψ2 − Qψ2|(x)
and |ψ3 −Qψ3|(x). The error norms δ2 and δ3 are given.
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measurable with various spectroscopic techniques [74, 75, 44, 76], but can also be directly calculated
from the Markov model eigenvalues as implied timescales, Eq. (18). Thus, we investigate the question
how well the dominant eigenvalues λi are approximated by the Markov model, which immediately
results in estimates for how accurately a Markov model may reproduce the implied timescales of the
original dynamics. Consider the first m eigenvalues of T (τ), 1 = λ1(τ) > λ2(τ) ≥ . . . ≥ λm(τ), and let

1 = λ̂1(τ) > λ̂2(τ) ≥ . . . ≥ λ̂m(τ) denote the associated eigenvalues of the Markov model T(τ). The
rigorous mathematical estimate from [77] states that

max
j=1,...,m

|λj(τ)− λ̂j(τ)| ≤ (m− 1)λ2(τ) δ
2, (38)

where δ is again the maximum discretization error of the first m eigenfunctions, showing that the
eigenvalues are well reproduced when the discretization well traces these eigenfunctions. In particular
if we are only interested in the eigenvalue of the slowest process, λ2(τ), which is often experimentally
reported via the slowest relaxation time of the system, t2, the following estimate of the approximation
error can be given:

|λ2(τ) − λ̂2(τ)|
|λ2(τ)|

≤ δ22 (39)

As λ2(τ) corresponds to a slow process, we can make the restriction λ2(τ) > 0. Moreover, the
discretization error of Markov models based on full partitions of state space is such that the eigenvalues
are always underestimated [77], thus λ2(τ) − λ̂2(τ) > 0. Using Eq. (18), we thus obtain the estimate
for the discretization error of the largest implied timescale and the corresponding smallest implied
rate, k2 = t−1

2 :

t̂−1
2 − t−1

2 = k̂2 − k2 ≤ −τ−1 ln(1− δ22), (40)

which implies that for either δ2 → 0+ or τ → ∞, the error in the largest implied timescale or
smallest implied rate tends to zero. Moreover, since λ2(τ) → 0 for τ → ∞, this is also true for the
other processes:

lim
τ→∞

|λj(τ) − λ̂j(τ)|
|λj(τ)|

= 0, (41)

and also

lim
δ→0

|λj(τ) − λ̂j(τ)|
|λj(τ)|

= 0. (42)

which means that the error of the implied timescales also vanishes for either sufficiently long lag
times τ or for sufficiently fine discretization. This fact has been empirically observed in many previous
studies [72, 40, 39, 45, 31, 38, 22], but can now be understood in detail in terms of the discretization
error. It is worth noting that observing convergence of the slowest implied timescales in τ is not a test
of Markovianity. While Markovian dynamics implies constancy of implied timescales in τ [38, 40], the
reverse is not true and would require the eigenvectors to be constant as well. However, observing the
lag time-dependence of the implied timescales is a useful approach to choose a lag time τ at which
T(τ) shall be calculated, but this model needs to be validated subsequently (see Sec. 4.6).

Fig. 7 shows the slowest implied timescale t2 for the diffusion in a two-well potential (see Fig. 5)
with discretizations shown in Fig. 5. The two-state partition at x = 50 requires a lag time of ≈ 2000
steps in order to reach an error of < 3% with respect to the true implied timescale, which is somewhat
slower than t2 itself. When the two-state partition is distorted by shifting the discretization border to
x = 40, this quality is not reached before the process itself has relaxed. Thus, in this system two states
are not sufficient to build a Markov model that is at the same time precise and has a time resolution
good enough to trace the decay of the slowest process. By using more states and particularly a finer
discretization of the transition region, the same approximation quality is obtained with only τ ≈ 1500
(blue) and τ ≈ 500 steps (green).
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Figure 7: Convergence of the slowest implied timescale t2 = −τ/ lnλ2(τ) of the diffusion in a double-
well potential depending on the MSM discretization. The metastable partition (black, solid) has greater
error than non-metastable partitions (blue, green) with more states that better trace the change of the
slow eigenfunction near the transition state.

Fig. 8 shows the two slowest implied timescales t2, t3 for the diffusion in a two-dimensional three-
well potential with discretizations shown in Fig. 6a. The metastable 3-state partition requires a lag
time of ≈ 1000 steps in order to reach an error of < 3% with respect to the true implied timescale, which
is somewhat shorter than the slow but longer than the fast timescale, while refining the discretization
near the transition states achieves the same precision with τ ≈ 200 using only 12 states. A k-means
clustering with k = 25 is worse than the metastable partition, as some clusters cross over the transition
region and fail to resolve the slow eigenfunctions. Increasing the number of clusters to k = 100 improves
the result significantly, but is still worse than the 12 states that have been manually chosen so as to
well resolve the transition region. This suggests that excellent MSMs could be built with rather few
states when an adaptive algorithm that more finely partitions the transition region is employed.

Figure 8: Implied timescales for the two slowest processes in the two-dimensional three-well diffusion
model (see 6a for potential and Supplementary Information for details). The colors black, red, yellow,
green correspond to the four choices of discrete states shown in columns 1 to 4 of Fig. 6. A fine
discretization of the transition region clearly gives the best approximation to the timescales at small
lag times.

3.6 Discretization Methods for molecules

Macromolecular systems generally possess configuration spaces of such high dimension that grid-based
methods for partitioning space become impractical. However, in many macromolecular systems such
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as proteins, the region over which the configurational probability density is significant defines a low-
dimensional (but potentially highly nonlinear) subspace [78]. As a result, data-driven methods, where
a clustering of conformations sampled by some form of molecular simulation defines the partitioning
of this low-dimensional subspace, are both attractive and practical. Various combinations of distance
metrics and clustering methods have been proposed. Distance metrics include Euclidean distance in
backbone coordinates [22] or root mean square distance (RMSD) [49, 39]. Clustering methods include
manual clustering [52], k-means clustering [22], k-centers clustering [49], density-based clustering [79,
80] and adaptive clustering approaches [39]. Approaches to directly discretize certain coordinates, such
as the rotameric states [51, 31] or the hydrogen-bond patterns [38, 72] were also made.

In the present paper we do not attempt to argue for or against a particular metric or clustering
method. In theory, any metric that is able to partition full state space Ω more finely when the number
of clusters is increased permits reduction of the eigenfunction approximation error to zero. In practice,
such a metric is difficult to design and thus one often measures structural differences on a subset
of coordinates (e.g. solute coordinates). In this case, the approximation of the eigenfunctions will
maintain an error that must be compensated by increasing the lag time τ . In practice, it is important
that the metric is selected such that the molecular events under investigation can be resolved. For
example, backbone rotamer angles are a poor metric when large side-chains are involved. Root mean
square distance of entire protein structures might overwhelm small changes at individual degrees of
freedom and therefore be unsuitable when detailed changes in the binding pocket of an enzyme are to
be resolved.

Figure 9: Structure of the MR121-GSGS-W peptide.

However, it is interesting to see that MSMs are robust with respect to changes of the metric and the
clustering method, within a significant range. This is illustrated by the following analysis: The MR121-
GSGS-W peptide simulation (see Supplementary Information for simulation setup) was clustered with
a Voronoi partition in an all-atom RMSD metric, using three different methods to determine the cluster
centers:

1. k-centers clustering [81].

2. Regular time clustering: Cluster generators were picked at regular time intervals along the tra-
jectory.

3. Regular space clustering: Cluster generators were chosen to be approximately equally separated
in RMSD: A minimal distance dmin was fixed, the first trajectory frame was used as the first
cluster center, then the trajectory was iterated and a frame was accepted as cluster center when
its RMSD to all existing cluster centers was equal or greater than dmin.

As the equilibrium simulation used to estimate the Markov model is a factor of 100 times longer than
the slowest implied timescale we consider the estimated transition matrix from this trajectory as almost
free of statistical error. The statistical issues in the estimation problem are discussed in detail in Sec.
4 below.
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Fig. 10 shows that for all clustering methods and numbers of clusters (10, 100, or 1000) used,
the slowest implied timescales converge to approximately the same values t2 ≈ 25 ns and t3 ≈ 10
ns at long lag times τ . All clustering methods produce MSMs which converge for smaller values
of τ when increasingly many clusters are used. This tendency can be assumed as long as sufficient
statistics are available. When the number of clusters gets too large for a given amount of simulation
data, statistical issues need to be considered (see Sec. 4). The differences in MSM quality between
the different clustering methods for similar numbers of clusters are small. Interestingly, k-centers and
regular space clustering do not outperform the simple method of picking cluster centers at regular time
intervals. The three methods used here are relatively fast, all having a time complexity of O(kN), with
k being the number of clusters and N the number of frames in the trajectory. It is unclear whether
using computationally more expensive clustering methods are able to significantly benefit the MSM
construction at this stage. Our findings suggest that MSM construction from trajectory data is robust
as long as sufficient data is available and a sufficient number of states are used.

22



a)

b)

c)

Figure 10: Lag time dependent implied timescales t2 (solid lines) and t3 (dashed lines) of the slowest
processes computed from Markov models of MD simulation data of the MR121-GSGSW peptide. a)
k-centers clustering, b) cluster centers chosen from frames at fixed time intervals, c) cluster centers are
chosen so as to have a certain minimal distance to all others. Independent of the clustering method
chosen, increasing the number of clusters enhances the convergence of implied timescales.
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4 Estimation from data and validation

In almost all practical cases, the transition matrix T(τ) is not obtained by directly discretizing the
continuous transfer operator but rather by estimation from a finite quantity of simulation data. This
includes a statistical error component into the overall error in modeling the true dynamics with Markov
models which will be discussed in this section. Here we assume that a state space discretization (either
crisp or fuzzy) has been defined and that a trajectory is mapped onto this discrete space. We then
answer the question how to estimate a Markov model based on such trajectory data.

Note that while in the previous section we have studied only the discretization error of the Markov
model without consideration of statistical issues (i.e., it was assumed the transition matrix could be
computed exactly), this section only studies statistical issues without consideration of the discretization
error (i.e. the discrete dynamics is now assumed to be perfectly Markovian).

4.1 From trajectories to count matrix

Consider one trajectory generated at equilibrium conditions with N configurations stored at a fixed
time interval ∆t:

X = [x1 = x(t = 0), x2 = x(t = ∆t), . . . , xN = x(t = (N − 1)∆t)] (43)

and consider that a state space discretization has been defined such that each structure can be
assigned to one discrete state xk ∈ Si → sk = i, and the trajectory information can be simply stored
as the sequence s1, ..., sN of discrete states.

We also assume that x1 was drawn from the equilibrium density pertaining to state s1, µs1(x).
The correct starting distribution can be generated from a global estimate of the stationary density
(e.g. generated by well-converged meta-dynamics [82] or replica-exchange [83] simulations), or more
efficiently by launching trajectories from short local equilibrium dynamics restricted to the starting
density µi(x) [84]. Note that in the limit of very small discrete states, this problem vanishes as µi(x)
can then be well approximated by a step function (see [22], supplementary material).

We can now define the discrete state count matrix Cobs(τ) = [cobsij (τ)] at lag time τ , where τ now
needs to be an integer multiple of the available data resolution ∆t:

cobsij (τ) = cobsij (l∆t) =
N−l
∑

k=1

χi(xk)χj(xk+l) =| {k ∈ {1, . . . , N − l} | sk = i ∧ sk+l = j} | . (44)

which provides an estimator of the correlation matrix defined in Eq. (25) by:

ĉ corr
ij (τ) =

cobsij (τ)

N − l
. (45)

When the state space is discretized by a crisp partition, this matrix simply counts the number
of observed transitions between discrete states, i.e. cobsij is the number of times the trajectory was
observed in state i at time t and in state j at time t + τ , summed over all times t. If multiple
trajectories are available, then the count matrices of these trajectories are simply added up.

As a shorthand notation we define the row sums of Cobs:

cobsi = cobsi (τ) :=

n
∑

k=1

cobsik , (46)

which are the total number of times the trajectory was in state i

4.2 Counting

We distinguish between two approaches to counting:

1. Sampling the trajectory at time lag τ :
Here the trajectory is sampled at time lag τ and only these sample points are used for counting:

cobsij (τ) = cobsij (l∆t) =

⌊N/l⌋−1
∑

k=1

χi(x(l·k)+1)χj(x(l·k)+l+1) (47)
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Figure 11: Counting modes: (a) Sampling the trajectories at lag time τ versus (b) moving window
count

When jump process is Markovian at τ , this generates statistically independent transition counts.
It is therefore straightforward to use the resulting count matrix in order to derive expressions
for the likelihood and posterior of transition matrix (see Sec. 4.3 below), which is important in
order to obtain statistical models that do not underestimate the uncertainties [39, 51, 45]. A
disadvantage of this approach is that much of the data is ignored, which can lead to numerical
problems. In particular, states that have been actually visited or transitions that have been
actually observed might be missed when subsampling the data at interval τ , which may be a
reason for estimators breaking down.

2. Window count:
In this method we use a count window of width τ that is shifted along the time line:

cobsij (τ) = cobsij (l∆t) =

N−l
∑

k=1

χi(xk)χj(xk+l) (48)

This method uses all observed transitions, although nearby transitions such as t → t + τ and
t + ∆t → t + ∆t + τ cannot be assumed to be statistically independent. The resulting count
matrix, when assumed to consist of independent counts, will generate a posterior distribution
that is too narrow in the Bayesian approaches below. However, the expectation value of Tij(τ)
is unbiased and thus maximum posterior estimators (Sec. 4.4) are asymptotically correct, such
that the window count method is preferred for this case.

At the moment it is an open question how to best make use of all observed data while at the same
time using statistically independent, or at least uncorrelated counts. It appears straightforward to use
the window method and then divide all counts by l, obtaining non-integer effective counts. However,
the consequences of this approach are not fully understood because the probability distribution of
transition matrices (see Sec. 4.2 below) becomes multimodal for counts 0 < cij < 1. A safe approach
is to use the window count method for estimating the transition matrix and sampling the trajectory
at lag τ when computing count matrices for error estimators.

4.3 Prior, likelihood, and posterior distribution

It is intuitively clear that in the limit of an infinitely long trajectory, the elements of the true transition
matrix are given by the trivial estimator T̂ij(τ) = cobsij /cobsi , i.e. the fraction of times the transition
i → j led out of state i. For a trajectory of limited length, the underlying transition matrix T(τ) is
not uniquely determined. Assuming that the matrix Cobs contains statistically independent transition
counts (see discussion in Sec. 4.2 above), following [85], the probability that a particular T(τ) would
generate a sequence s1, ..., sN the observed trajectory is given by the product of the individual jump
probabilities,

∏N−1
k=1 Tsk,sk+1

. In terms of our notation, this can be rewritten in terms of the count
matrix as:

p(Cobs|T) =

n
∏

i,j=1

T
cobsij

ij (49)

Vice versa, the posterior probability of the transition matrix being T(τ) is:
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p(T|Cobs) ∝ p(T)p(Cobs|T) = p(T)

n
∏

i,j=1

T
cobsij

ij , (50)

where p(T) is the prior probability of transition matrices before observing any data. p(Cobs|T) is
called the likelihood. In transition matrix estimation one is interested in the most probable matrices
T, i.e., the T’s with a large density in the posterior. The prior probability should be chosen such
that it restricts the posterior to solutions that are physically meaningful in the situation where little
observation data is available, but otherwise should be “weak”, i.e. impose little bias (see Sec. 4.5 for a
discussion on the choice of the prior). For computational simplicity, one typically chooses a prior that
is conjugate to the likelihood, i.e. has the same functional form. This leads to the posterior:

p(T|Cobs) ∝
n
∏

i,j=1

T
cpriorij +cobsij

ij =

n
∏

i,j=1

T
cij
ij , (51)

with the prior count matrix Cprior = [cpriorij ] and we have defined the total number of counts, or

posterior counts C = Cprior +Cobs. Since any estimator will be based on the count matrix, it is now
straightforward to use a given estimator for any prior Cprior. When a uniform distribution is used as
a prior (Cprior = 0, p(T) ∝ 1), likelihood and posterior distribution are identical.

4.4 Maximum probability estimators

Based on a given probability distribution of parameters, a straightforward parameter estimator is
the one that maximizes this probability distribution. Indeed, it can be shown (see Supplementary
Information for the derivation) that the maximum probability transition matrix, i.e. the maximum of
Eq. (50), T̂ = argmax p(T | Cobs) is given by the trivial estimator (assuming ci > 0):

T̂ij =
cij
ci
, (52)

It turns out that T̂(τ), as provided by Eq. (52), is the maximum of p(T|Cobs) and thus also of
p(Cobs|T) when transition matrices are assumed to be uniformly distributed a priori. In the limit of
infinite sampling, i.e., trajectory length N → ∞, p(T|Cobs) converges towards a Dirac delta distribu-

tion with its peak at T̂(τ). In this case the prior contribution vanishes:

lim
N→∞

T̂ij = lim
N→∞

cpriorij + cobsij

cpriori + cobsi

= lim
N→∞

cobsij

cobsi

= Tij , (53)

i.e., the estimator is “asymptotically unbiased”.
Note that the estimator T̂(τ) does not necessarily fulfill detailed balance πiT̂ij = πj T̂ji even if the

underlying dynamics is in equilibrium and thus πiTij = πjTji holds for the true transition matrix. In
many cases it is desirable and advantageous to estimate a transition matrix that does fulfill detailed
balance. There is no known closed form solution for the maximum probability estimator with the
detailed balance constraint. In [49], an iterative method was given to obtain such an estimator. Here
we give a computationally more efficient algorithm to compute this estimator.

Let xij = πiTij be the unconditional transition probability to observe a transition i → j. These
variables fulfill the constraint

∑

i,j xij = 1, and the detailed balance condition is given by xij = xji. It
is hence sufficient to store the xij with i ≤ j in order to construct a reversible transition matrix. Let
xi =

∑

j xij . The maximum probability estimator is then obtained by the following iterative algorithm
(see Supplementary Information for the proof of correctness), which is iterated until some stopping
criterion is met (e.g. change of maxi,j{xij} in one iteration is smaller than a given constant or the
number of iterations exceeds a pre-defined threshold):
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Algorithm 1 Maximum probability estimator of reversible transition matrices

(1) For all i, j = 1, ..., n: initialize

xij = xji := cij + cji (54)

xi :=
∑

j

xij (55)

(2) Repeat until stopping criterion is met
(1.1.) For all i = 1, ..., n:

update xii :=
cii(xi − xii)

ci − cii
(56)

update xi :=
∑

j

xij (57)

(1.2) For all i = 1, ..., n− 1, j = i+ 1, ..., n:

a = ci − cij + cj − cji (58)

b = ci(xj − xij) + cj(xi − xij)− (cij + cji)(xi + xj − 2xij) (59)

c = −(cij + cji)(xi − xij)(xj − xij) (60)

update xij = xji :=
−b+

√
b2 − 4ac

2a
(61)

update xi :=
∑

j

xij (62)

(2) Update Tij, i, j = 1, ..., n:

Tij :=
xij
xi

4.5 Expectation and Uncertainty

Since simulation data is finite, all validation procedures (either consistency checks or comparisons to
experimental data) need to account for statistical uncertainties. For these, standard deviations or
confidence intervals induced by the posterior distribution of transition matrices are of interest. It
follows from well-known properties of the distribution of transition matrices [85] that the expectation
value for transition matrices is

T̄ij = E[Tij ] =
cij + 1

ci + n
, (63)

and the variance is given by

Var[Tij ] =
(cij + 1)((ci + n)− (cij + 1))

(ci + n)2((ci + n) + 1)
=
T̄ij(1 − T̄ij)

ci + n+ 1
. (64)

Consider a trajectory of a given molecular system which is analyzed with two different state space
discretizations, one with n = 10 and one with n = 1000 and assume that a lag time τ has been chosen
which is identical and long enough to provide Markov models with small discretization error for both
n (discussed in the previous section). When using a uniform prior (cij = cobsij ), the expectation values
would be different for the two discretizations: In the n = 1000 case, most cij are probably zero, such
that the expectation value would be biased towards the uninformative Tij ≈ 1/n matrix, and many
observed transitions would be needed to overcome this bias. This behavior is undesirable. Thus, for
uncertainty estimation it is suggested to use a prior which allows the observation data to have more
impact. The extreme case is the so-called “Null prior” [22] defined by

cpriorij = −1 ∀i, j ∈ {1, ..., n}. (65)

Using the Null prior, the first moments of the posterior become:
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T̄ij = E[Tij ] =
cobsij

cobsi

= T̂ij , (66)

Var[Tij ] =
cobsij (cobsi − cobsij )

(cobsi )2(cobsi + 1)
=
T̂ij(1 − T̂ij)

cobsi + 1
. (67)

Thus, with a null prior, the expectation value is located at the likelihood maximum, or equivalently
at the maximum of the posterior when a uniform prior would be used. Both expectation value and vari-
ance are independent of the number of discretization bins used. The variance of any Tij asymptotically
decays with the number of transitions out of the state i, which is expected for sampling expectations
from the central limit theorem.

In practice, one is often not primarily interested in the uncertainties of the transition matrix
elements themselves, but rather in the uncertainties in properties computed from the transition matrix.
Two different approaches have been suggested for this:

1. Linear error perturbation [48, 47, 86]: Here, the transition matrix distribution is approximated
by a Gaussian and the property of interest is approximated by a first-order Taylor expansion.
This results in a Gaussian distribution of the property of interest with a mean and a covariance
matrix that can be computed in terms of C. This approach has the advantage of being determin-
istic, which is desirable in situations where uncertainties are used to steer an adaptive sampling
procedure [48, 47, 87, 37], and may be implemented very efficiently. The disadvantage of this
approach is that the Gaussian approximation of the transition matrix posterior in only asymptot-
ically valid, but easily breaks down when few counts have been observed and permits unphysical
values (e.g. Tij outside the range [0,1]). Moreover, the property of interest is approximated
linearly which can introduce a significant error when this property is nonlinear.

2. Markov chain Monte Carlo (MCMC) sampling of transition matrices [51, 88, 45]: Here, a set
of transition matrices is drawn from the posterior distribution. The property of interest is then
calculated for each transition matrix, and the uncertainties are directly estimated from this
set. This approach requires that the true distribution is sampled often enough such that well-
converged estimates of standard deviations or confidence intervals can be made. The advantage of
the approach is that no assumptions are made concerning the functional form of the distribution
or the property being computed. Furthermore, this approach can be straightforwardly applied to
any function or property of transition matrices, including complex properties such as transition
path distributions [22] without deriving the expressions necessary for the linear error perturbation
analysis. Its disadvantage is that sampling may become slow for large matrices.

4.6 Validation: Chapman Kolmogorov test

We have above formulated conditions for choosing a discretization and a lag time τ that minimize
the discretization error of a MSM. However, in practice it is essential to conduct a test whether lag
time and discretization have been chosen such that the Markov model obtained is at least consistent
with the data used to parametrize it within statistical error. In Sec. 3.4, the discretization error was
measured as difference between Markov model propagation and true propagation in the continuous
space. In practice it is easier to measure the propagation error on the discrete space directly. In
particular, we are interested in checking whether the approximation:

[T̂(τ)]k ≈ T̂(kτ), (68)

holds within statistical uncertainty. Here, T̂(τ) is the transition matrix estimated from the data

at lag time τ (the Markov model), and T̂(kτ) is the transition matrix estimated from the same data
at longer lag times kτ . Note that when the nonreversible maximum likelihood estimator, Eq. (52),
is used, this approximation is trivially exact for k = 1 since the Markov model was parametrized at
lag time τ . For all k ≫ t2/τ , the approximation should always be good, as Markov models correctly
model the stationary distribution, even for bad choices of τ and discretization (see Sec. 3.4). Thus,
this test is only sensitive in ranges of k greater one and smaller than the global relaxation time of the
system.

There are various ways how a test of Eq. (68) could be implemented. An implementation of this
test should consider the following points:
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1. For large transition matrices, individual elements of T̂(kτ) or [T̂(τ)]k can be very uncertain, and
comparing n×n elements may be cumbersome. Therefore, we suggest to compare the probability
of being in a given set of states, A, when starting from a well-defined starting distribution. This
simplifies the test to few observables and allows to check the kinetics of states that are of special
interest, such as folded / unfolded states or metastable states.

2. The test should be done for all times kτ for which trajectory data is available. Tests that
compare Markov models that differ only one lag step (τ and 2τ) are likely to be unreliable as
small approximation errors at short times may amplify at long times.

3. The quality of the approximation (68) should be judged within the statistical uncertainties in-
duced by the data.

Here we present an implementation that takes these properties into account. Let π be the stationary
probability of the Markov model T̂(τ). The corresponding stationary distribution restricted to a set
A is then given by

wA
i =

{

πi∑
j∈A πj

i ∈ A

0 i /∈ A
. (69)

As a model test, the following “relaxation experiment” may be carried out for each set: Using wA

as initial probability vector for each of the sets under consideration, the probability of being at that set
at later times kτ is then computed according to (i) the observed trajectory data and (ii) the Markov
model, and subsequently compared. The trajectory-based time-dependence of the probability to be at
set A after time kτ with starting distribution wA is given by:

pMD(A,A; kτ) =
∑

i∈A

wA
i pMD(i, A; kτ) (70)

where pMD(i, A, kτ) is the trajectory-based estimate of the stochastic transition function Eq. (2):

pMD(i, A; kτ) =

∑

j∈A c
obs
ij (kτ)

∑n
j=1 c

obs
ij (kτ)

(71)

Likewise, the probability to be at A according to the Markov model is given by:

pMSM(A,A; kτ) =
∑

i∈A

[(wA)T Tk(τ)]i. (72)

Testing the validity of the Markov model then amounts to testing how well the equality

pMD(A,A; kτ) = pMSM(A,A; kτ) (73)

holds, which is essentially a test of the Chapman-Kolmogorov property. Note that the initial distribu-
tion wA

i is simply a chosen reference distribution with respect to which the comparison is made, here
chosen as in Eq (69).

The equality (73) is not expected to hold exactly as a result of statistical uncertainties caused by
the fact that only a finite number of transitions are available to estimate the true transition probabil-
ities. To account for this, the uncertainties (one-sigma standard error) of the transition probabilities
estimated from MD trajectories are computed as:

ǫMD(A,A; kτ) =

√

k
pMD(A,A; kτ) − [pMD(A,A; kτ)]2

∑

i∈A

∑n
j=1 c

obs
ij (kτ)

. (74)

The test then consists of assessing whether Eq. 73 holds within these uncertainties. The uncertainty
of pMSM(A,A, kτ) can be calculated using the methods described in Sec. 4.5. However, this is not
necessary if the test already succeeds while using only the uncertainties ǫMD(A,A; kτ).

For illustration, we show results of this test using a 106 step trajectory of a diffusion in a double-well
potential (see Supplementary Information for details). Fig. 12 shows the relaxation out of the left well
using a two-state discretization splitting at x = 50 (see Fig. 5b for state definition and Fig. 12a for
results) and using a six-state discretization splitting at x = {40, 45, 50, 55, 60} (see Fig. 5c for state
definition and Fig. 12b for results). The two-state discretization provides spurious results for τ = 100,
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good results for τ = 500 and for τ = 2000 the results are excellent within the statistical uncertainty
of the trajectory. For the six-state discretization even τ = 100 is within the error bars while τ = 500
and τ = 2000 are both excellent approximations.
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Figure 12: Chapman-Kolmogorov-Test for diffusion in a two-well potential using a trajectory of length
106 steps. Tested are Markov models that use lag times τ = 100, 500, 2000 and (a) 2-state discretization
(split at x = 50), (b) 6-state discretization (split at x = 40, 45, 50, 55, 60)

Fig. 13 shows the corresponding results for the three-well diffusion model (see also Fig. 6 and
Supplementary Information for model details). A single 250,000 step trajectory started from the
energy minimum at x = (10, 10) was simulated. For each of the four different discretizations shown
in the first column of Fig. 13 the probability to stay in a state is shown for the three states with
the largest Markov model error (highlighted in 13, left column). It is apparent that the metastable
three-state discretization (Fig. 13a) performs well, however sacrificing metastability in order to more
finely discretize the transition region generates a superior discretization (Fig. 13b). The “uninformed”
random 25-state clustering (Fig. 13c) performs worst but can be improved significantly by using more
states (Fig. 13d). This further supports our theoretical finding that either a clustering adapted to the
eigenfunctions or using more states can improve the quality of the constructed Markov model.

Fig. 14 shows the corresponding test results for the six most metastable sets of the MR121-GSGS-
W peptide using a Markov model based on a Voronoi discretization using minimal RMSD to 1000
peptide configurations equally spaced in time. The lag time was set to τ = 2 ns. The metastable
states are determined by dominant eigenvectors and have been calculated with the PCCA+ method
[30, 38]. The Markov model agrees with the observed trajectory within statistical uncertainty for all
metastable states.

5 Practical Approach to Markov model analysis

Markov models are becomingly increasingly popular as a tool to analyze large sets of MD trajectory
data. In order to give some guidance to the practitioner, we here give a brief walk-through for a
typical Markov model analysis. The analyses suggested here can be performed with the program
EMMA (EMMA’s Markov Model Algorithms, downloadable from https://simtk.org/home/emma).

1. Simulate your molecular system with equilibrium MD simulation, preferably using a stochastic
thermostat that provides a well-defined stationary distribution and a combination of integrator
and thermostat that yields reversible dynamics (such as Anderson thermostat with Verlet). For a
straightforward Markov model analysis, simulate sufficiently long or sufficiently many trajectories
such that the ensemble of trajectories are likely to transition between all relevant conformations.
If only unbiased MD simulations are used for this, it is often much more efficient to start many
trajectories from various starting conformations than relying on sampling the slowest events of
the system with single trajectories [22, 49]. If the system timescales are very long, unbiased MD
simulations are often insufficient to find all relevant conformations in the first place. In this case,
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Figure 13: Chapman-Kolmogorov test for the three well diffusion model (see also Fig. 6). For each of
four discretizations (first column, a,b,c,d), the Chapman-Kolmogorov test is shown for the three states
with the greatest error (labeled with white figures in the first column). Relaxation curves from a 250,000
step trajectory, pMD(A,A; kτ) (black) along with the uncertainties ǫMD(A,A, kτ) are compared to the
model prediction, pMSM(A,A; kτ) (red). The total error σ given in the top right corners is measured
as the 2-norm of the vector containing the differences pMD(A,A; kτ)− pMSM(A,A; kτ) for time points
in the range kτ ∈ [1, 128].
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Figure 14: Chapman-Kolmogorov Test for six metastable sets A to F in MR121-GSGS-W. Solid curve:
pMSM(A,A, kτ) to pMSM(F, F, kτ) predicted by the MSM parametrized at lagtime τ =2 ns. Bullets with
error bars: expectation values and uncertainties of pMD(A,A, kτ) to pMD(F, F, kτ) directly calculated
from the simulation data up to 100 ns.
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enhanced sampling techniques like meta-dynamics [82] or umbrella sampling [89] are useful to
get an initial set of conformations that unbiased MD trajectories can be launched from.

2. Discretize all configurations sampled from all simulations onto a single state space discretization.
A simple and efficient approach is to pick cluster generators equally in time from the simulation
trajectories, and then assigning the frames of all trajectories to the nearest cluster center using
an appropriate distance metric that is able to trace slow degrees of freedom of the system (see
Sec. 3.6). For macromolecular folding, heavy atom RMSD is a common metric as it can be
calculated rapidly and is in principle able to distinguish relatively small differences anywhere in
the molecule [39, 49]. This step generates a set of discretized trajectories.

3. Calculate the implied timescales of your system depending on lag time τ (See Sec. 3.6, Fig.
10). For this, one estimates a series of transition matrices T(τ) with varying lag times τ , using
the window count method (Sec. 4.2). When the simulation length is long compared to the
system’s slowest relaxation time t2, then using the nonreversible transition matrix estimator
Eq. (52) is the fastest and simplest option. However, using the reversible transition matrix
estimator (Algorithm 1) is recommended, as this makes more efficient use of the available data
by subjecting the estimation to physically reasonable constraints and ensures eigenvalues are
real. The few largest (depending how many different processes you are interested in) implied
timescales should exhibit at least approximate convergence in τ (Note that the actual test of
the precision of the Markov model is done later). The τ∗ at which these timescales converge
should be significantly smaller than the value of these timescales themselves, in order for the
Markov model to be useful. If this cannot be achieved, try other discretization methods. If still
unsuccessful, more simulation data might be needed.

4. Estimate the Markov model T(τ∗) using the lag time τ∗, the window count method (Sec. 4.2)
and either the nonreversible or preferably the reversible transition matrix estimator (Sec. 4.4).
It is recommended to compute uncertainties of the quantities one is interested in. For this, also
compute the count matrix C(τ∗) using the sampling at τ∗ method (Sec. 4.5) and a prior of

cpriorij = −1 on all elements i, j [22]. For details how to compute uncertainties, refer to one of
[51, 45, 47, 48, 86].

5. Test the Markov model by conducting a Chapman-Kolmogorov test as described in Sec. 4.6.
This test should be done on a significant number of sets (i.e. not only one or two). A hard test
(as often limited by available statistics) is when the most metastable sets identified by PCCA+
are used [42, 30, 38]. From a practical point of view it is often desirable to define sets based
on structural criteria, such as folded or unfolded. Additionally, the test can be conducted on
random sets [22]. The test is only passed if it succeeds for all sets tested. If it fails, this can
be due to (i) the discretization being too coarse, (ii) the lag time τ being too small, or (iii) the
trajectories used not being in local equilibrium in their starting states. In the latter case it may
help to discard an initial piece from each trajectory.

6. Analyze the Markov model T(τ∗) for properties of interest, e.g.:

(a) the stationary probability, see Eq. (28) and resulting expectation values of functions of
molecular configuration.

(b) the implied timescales corresponding to the relaxation timescales that are measurable with
kinetic experiments are given by the Eigenvalues of T(τ∗), see Eq. (18).

(c) the structural changes associated with the slow kinetics are defined by the Eigenvectors of
T(τ∗), see Fig. (1).

(d) the metastable sets can be computed from the dominant Eigenvectors via PCCA [42] or
PCCA+ [30, 38].

(e) the transition pathways between two chosen sets A and B (e.g. “unfolded” and “native”) can
be computed with transition path theory [22].

(f) observables of kinetic experiments can be computed from the eigenvalues and eigenvectors
[45] and matched to the experimental data. The eigenvectors yield the structural dynamical
interpretation of relaxation at different timescales found in the data.
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6 Discussion and Conclusion

Markov modeling is a simulation analysis tool which is rapidly gaining popularity in the MD com-
munity. We have summarized the state of the art of generation and validation of Markov models of
molecular kinetics and have filled in some important methodological gaps. Below, we summarize our
discussion of this procedure, and highlight areas where further theoretical work or practical study is
needed to give the approach a solid foundation.

As shown in Sec. 2, any physically reasonable implementation of equilibrium molecular dynamics
can be understood in terms of relaxation processes that are described by the eigenfunctions of the
dynamical operator. The role of these eigenfunctions in molecular kinetics cannot be overemphasized,
irrespective of whether Markov models are used or not. These eigenfunctions unambiguously yield
a structural dynamical interpretation of a relaxation process. Each eigenfunction is linked to one
eigenvalue with a corresponding relaxation timescale that is accessible experimentally, thus Markov
models can serve as a means to interpret kinetic experimental data. From a modeling point of view,
the dynamical decomposition Eq. (15) shows that these eigenfunctions define coordinates in which
slow and fast dynamics can be separated exactly. Indeed, they are the only choice of coordinates for
which such a separation is possible and any different attempt to model the dynamics via a projection
onto slow degrees of freedom or order parameters will necessarily introduce memory terms that are
challenging to deal with [90].

One of the key insights from this work is that the discretization error made by using a Markov model
on a discrete state space can be controlled by choosing the discretization and the lag time adequately
(see Sec. 3). In particular, the quality of the Markov model depends on how well the discretization
approximates the slowly relaxing eigenfunctions of the true dynamics. It is shown in Sec. 3.3 how the
Markov model can be used to precisely approximate only selected slow processes with relatively few
discrete states slicing the state space finely in regions where the corresponding eigenfunctions change
rapidly while leaving the discretization coarse in regions where only the fast eigenfunctions vary. This
answers a key concern about discretization-based kinetic model approaches, namely that for complex
macromolecular systems there is no hope to enumerate all energy basins in the discrete model. The
present analysis shows that this is indeed not necessary and that in principle, very few states are
sufficient to obtain an excellent model. Moreover, the analysis also shows that metastable partitions
suggested in previous works [38, 39] are good among partitions where the number of states n is allowed
to be less or equal to the number of metastable states in the system, but that the approximation error
can be further reduced by increasing the number of partitions, even if this means that the individual
discrete states are no longer metastable.

This immediately raises the question how such a discretization can be created for a complex molec-
ular system where the true eigenfunctions are initially unknown. This issue is not yet solved. Based on
current results, it is clear that subdividing discrete states should always reduce the discretization error.
Thus, when geometric clustering methods are used to subdivide state space, it is advisable to use as
many clusters as possible without running into serious statistical problems. In the longer term, much
better discretizations can be expected from methods that adaptively discretize in an iterative manner.
For example, first an initial Markov model is created based on a geometric clustering, these clusters
are then subdivided, providing a finer Markov model. The discretization error of the coarser model
with respect to the finer model is computed using the error bound from Sec. 3.3, and it is then decided
which states are kept, lumped or split. An adaptive method based on maximizing metastability has
been proposed in [39], and a similar approach may be followed by minimizing the error bound from
Sec. 3.3 instead. In a broader sense, adaptive space discretization methods based on error bounds are
commonly and successfully used in other disciplines where equations must be solved on a grid, e.g., in
fluid mechanics and engineering. Moving to such approaches, MD becomes more and more a numeri-
cal analysis problem of molecular phase spaces, and may therefore benefit from the understanding of
discretization methods that has been acquired in scientific computing.

We have devoted part of this work to describing how a Markov model on a given discretization
can be estimated from an available data set. The main novelty in Sec. 4 was the introduction of
an efficient estimator for reversible transition matrices (Algorithm 1). It is recommended to use this
estimator instead of the trivial nonreversible estimator in Eq. (52), because it enforces the physically
reasonable detailed balance constraint, thus making more efficient use of the data and avoiding the
difficulty of dealing with complex transition matrix eigenvalues and eigenvectors that typically arise
from nonreversible transition matrices. As discussed in Sec. 4.5, there are a number of approaches for
estimating the uncertainty, i.e., the statistical estimation error of the Markov model, which is caused
by the finite sample size of data used to parametrize it. The present work has treated the two types
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of error separately: the discretization error was examined assuming that there was no statistical error,
and the statistical error was examined assuming that there was no discretization error. This represents
the current state of knowledge in the field, but in reality both errors are always coupled, because a
finite data set is given that is used for both defining the discretization and estimating the transition
matrix. Thus, the investigation of the coupling of the two sources of error will be an important future
research topic.

Although Markov model theory and methodology is now rather well developed, a number of fun-
damental questions remain. There is a hope that Markov models could avoid or mitigate the sampling
problem by replacing single long equilibrium simulations that wait for the interesting rare events to
happen by a large set short trajectories starting from different conformations that would be visited
rarely in equilibrium. This immediately raises the question how relevant starting conformations can be
found. This question is not specific to Markov model analyses, and it is likely that in this stage biased
sampling methods such as meta-dynamics [82], conformational flooding [91], umbrella sampling [89],
targeted MD [92], replica-exchange MD [83], or pathway methods [35] will be useful to generate an ini-
tial exploration of conformation space from which short equilibrium simulations can then be launched.
When the relevant conformations have been found and a good discretization has been obtained, it is
clear that the uncertainty estimates of the Markov model can be exploited in order to pick starting
points of subsequent simulations so as to adaptively reduce the uncertainty of the quantities of interest
most [47, 48, 93].

A more technical point that is not well understood is how to correctly weight the individual short
trajectories in order to compute unbiased estimates of the transition probabilities from them (see
Eq. (24)). Since the Markov model is based on transition probabilities conditional on the starting
state, there is no worry about relative weights between different discrete states. The correct weighting
between states is taken care of by the Markov model, i.e., if trajectories are started from an initial
distribution that is entirely out of equilibrium between states, the model will asymptotically provide
the correct stationary distribution. The difficulty, however, lies in the correct weighting of trajectories
within discrete states. When the size of the discrete states is not vanishingly small, the energy landscape
within the states will not be approximately flat, and therefore the local equilibrium density within the
states will not be flat either. Thus, when starting equilibrium trajectories from a nonequilibrium
distribution, these trajectories should not contribute to the transition probability estimates with equal
weights. Currently, this problem is dealt with by either discarding initial segments of all trajectories
that correspond to local equilibration times or by enforcing local equilibration by picking starting
conditions from simulations that are constrained to the starting states (see Sec. 4.2). It would be
desirable to have a simple re-weighting method that allows to make use of all available data without
having to use extra simulations. This is a subject of ongoing research.

The type of Markov models investigated here, i.e., transition matrix based kinetics models between
discrete state partitions of configuration space, must be viewed as one aspect within a family of
conformation dynamics approaches. Rate matrix or Master equation models [64, 31, 54] are very close
in spirit, and we have mentioned connections to these models (see Supplementary Information), making
most of our present results available to these models as well. Recently, an alternative approach [31] has
been proposed to obtain coarse-grained Markov or Master equation models based on a noncomplete
partition of state space that avoids to finely discretize the transition region. It is shown in [77] that
our present analyses of the discretization error can be applied to this approach as well, only that here
the eigenfunctions on the non-resolved parts of state space are effectively replaced by an interpolation
based on committor functions between core sets. Generating Markov or Master equation models based
on rate models from an exploration of the stationary points of the energy landscape is an approach that
has great tradition [27] and has been particularly successful in the analysis of Lennard-Jones or water
clusters [27, 94]. These models are not concerned with the same estimation problems as the present
Markov models, as they are built from rate-theory based estimates (such as transition state theory)
of state-to-state transition rates between the stationary points of the energy landscape, and not from
trajectory statistics. However, they necessarily share the same concerns of making a discretization error
by aggregating points of continuous state space into discrete model states. In a wider sense, approaches
that use MD to parametrize effective stochastic equations, such as Langevin dynamics [90, 95, 96], also
induce models of the ensemble dynamics, such as Fokker-Planck type models. Such ensemble dynamics
models generally share the advantages of Markov models over traditional MD analyses that have been
discussed in the introduction. The specific advantage of Markov models is that they are on one hand
asymptotically exact both in terms of discretization and estimator quality (see Sec. 3 and 4), and on
the other hand very simple compared to models that in some way include memory. As they allow
the whole arsenal of Markov chain theory to be readily accessed, the functional relationship between
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Markov models and most interesting molecular properties or observables has been worked out already
[42, 30, 22, 45, 48], and often has a simple and straightforwardly interpretable form. Given these
advantages we expect that the popularity of Markov or similar models for the modeling of molecular
kinetics will keep increasing.
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