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Counting Lattice Triangulations

Volker Kaibel and Giinter M. Ziegler
Abstract

We discuss the problem to count, or, more modestly, to estimate
the number f(m,n) of unimodular triangulations of the planar grid of
size m X n.

Among other tools, we employ recursions that allow one to compute
the (huge) number of triangulations for small m and rather large n by
dynamic programming; we show that this computation can be done in
polynomial time if m is fixed, and present computational results from
our implementation of this approach.

We also present new upper and lower bounds for large m and n,
and we report about results obtained from a computer simulation of
the random walk that is generated by flips.

1 Introduction

An innocent little combinatorial counting problem asks for the number
of triangulations of a finite grid of size m x n. That is, for m,n > 1 we
define P, ,, :={0,1,...,m} x{0,1,...,n}, “the grid”. Equivalently, the point
configuration P, ,, consists of all points of the integer lattice Z? in the lattice
rectangle conv(P,, ) = [0, m] x [0,n] of area mn. Every triangulation of this
rectangle point set that uses all the points in Py, ,, has (m+1)(n+1) = | Py,
vertices, 2mn facets/triangles, and 3mn + m + n edges, 2(m + n) of them on
the boundary, the other 3mn — m — n ones in the interior. All the triangles
are minimal lattice triangles of area % (that is, of determinant 1), which are
referred to as unimodular triangles. The grid triangulations that use all the
points are thus called unimodular triangulations. The number of unimodular
triangulations of the grid P,,,, will be denoted by f(m,n).

As an example, our first figure shows one unimodular triangulation of the
5 x 6 grid:
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To get started, one notes that of course f(m,n) = f(n,m), one discovers with
pleasure that f(1,n) = (27:‘), and one works out by hand with a bit of pain that
f(2,2) = 64 and f(2,3) = 852. Furthermore, one observes that the special
triangulations that decompose into m vertical strips of width 1 yield the lower
bound

) = s = () (1)

n

so for larger m and n the numbers f(m,n) get huge very soon; for example,
the bound yields f(5,6) > 610",

It is equally interesting to study/enumerate more general types of triangu-
lations, such as triangulations of finite point sets that do not necessarily use all
the points, triangulations of general convex or non-convex lattice polygons, tri-
angulations of general position point sets, triangulations of higher-dimensional
point sets, etc. None of these will appear here, but we refer interested readers

to Lee [BZ] and De Loera, Rambau & Santos [[J].

Lattice triangulations are basic combinatorial objects, and they are fun-
damental discrete geometric structures; so it is no surprise that they appear
in various computational geometry contexts. However, lattice triangulations
have also been studied intensively from different algebraic geometry angles.
So, triangulations of a convex lattice polygon

e provide the data for Viro’s [BI] famous construction method of plane
algebraic curves with prescribed combinatorics and topology, related to
Hilbert’s sixteenth problem:;

e appear in Gel'fand-Kapranov—Zelevinsky’s [[[§] theory of discriminants,
where “regular” triangulations are in bijection with the vertices of the
secondary polytope of the point configuration, and

e model torus-equivariant crepant resolution of singularities for toric three-
folds, where “regular” triangulations correspond to projective desingu-
larizations; see e. g., Kempf et al. [R1], Chap. 3] and Dais [[L].

The last two points pose the problem of counting or estimating the num-
ber f¢(m,n) of regular triangulations of P, ,, that is, of triangulations of
conv(FP,,,) whose triangles are the domains of linearity for a piecewise lin-
ear convex function (lifting function); see also, for example, Sturmfels [0,
Chap. 8], Ziegler [B9, Lect. 5]. Motivated by the toric variety considerations,
one would like to know whether/that for large m and n most triangulations
are non-regular. There is no proof, but a lot of evidence that this should be
true (see, e.g., Table J).

In this context, we must admit that despite the effort that has been put
into studying this question (see e. g. Hastings [[, Chap. 2]), it has not become
clear what non-regular triangulations really “look like.” The “mother of all
examples” is the whirlpool triangulation of the 3 x 3 grid:
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Indeed, this unimodular triangulation is irregular, since a lifting function h
would have to satisfy h(p;) + h(gi—1) < h(pi—1) + h(g;) for i = 0,...,3 (all
indices taken modulo 4), implying the contradiction h(qy) + -+ + h(gs) <
h(qo) + - - -+ h(gs).

For m = n = 3, except for three symmetric copies this is the only example of
anon-regular triangulation: We have f(3,3)— f*¢(3,3) = 4. This may lead one
to the conjecture that some kind of “generalized whirlpools” are responsible
for non-regularity. However, the pictures of “non-regular triangulations” that
we present below do not support this intuition.

The plan for this paper is as follows: In Section [ we face the challenge to
count explicitly, trying to cope with the “combinatorial explosion.” For this,
we present a simple dynamic programming technique by which we get sur-
prisingly far, and which on the specific problem of grid triangulations outruns
the much more sophisticated general techniques such as Avis & Fukuda’s [f]
reverse search, Aichholzer’s ([ path of a triangulation, or the oriented matroid
technique of Rambau [R7].

In Section f we estimate f(m,n) for large m and n, trying to narrow the
bounds for the asymptotics. It is interesting to compare with the situation for
N = (m+1)(n+1) points in the plane in general position, where the currently
best available upper bound seems to be Santos & Seidel’s [B§] estimate that
there are o(59”) triangulations. However, in our problem the N points are not
at all in general position — and the upper bounds that we have to offer are
much better: We report on a neat O(23") upper bound by Anclin [[], which
substantially improves on a previous O(2") upper bound by Orevkov [27].
Based on explicit enumeration results from Section B, we get a lower bound of
22055mn when both m and n get large; note that ([[T1]) yields already a lower
bound 20—o(1)2mn,

Finally, in Section f] we sample lattice triangulations for large parameters
m and n, and thus try to understand what typical lattice triangulations, as
well as typical regular lattice triangulations, “look like.” While we have some
pictures to offer, proofs seem harder to come by. Indeed, the pictures display
some long-range order; while this may make lattice triangulations interesting
as a statistical physics model, it generates serious obstacles for any proof that
the obvious Markov chain is rapidly mixing, and thus to application of the (by
now) standard theory [.
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2 Explicit Values

There are several methods available to generate or count all triangulations
of a finite set of points in R?. An approach that works for point sets in arbitrary
dimensions is implemented in the software package TOPCOM by Rambau 27
(see also Pfeifle and Rambau [2G]). It enumerates all triangulations in a purely
combinatorial manner after the chirotope of the point set (oriented matroid
data) has been computed.

The reverse search algorithm proposed by Avis and Fukuda [f] is a rather
general enumeration scheme that can be specialized to triangulations of point
configurations in R? (see also Bespamyatnikh [[]). Since it was used to ob-
tain some of the results reported in Section ], and because it is based upon
some structural properties that are relevant for our treatment later, we briefly
describe the method here.

Let 7 be a fine triangulation of a point set S C R?; ie., 7 is a set of
triangles, for which the set of vertices equals S, such that the union of all
triangles is the convex hull of S, and any two triangles intersect in a common
(possibly empty) face. The unimodular triangulations of P, ,, are precisely its
fine triangulations. An edge of some triangle in 7 is flippable if it is contained
in two triangles of 7 whose union is a strictly convex quadrangle. Replacing
these two triangles by the two triangles into which the other diagonal cuts
that quadrangle (flipping the edge) yields another fine triangulation of S. The
graph on the fine triangulations of S defined via flipping is the flip graph of S.

Let us fix an arbitrary ordering of the points in S, inducing via lexicograph-
ical ordering a total order on the set of pairs of points, and thus, again via
lexicographical ordering, a total order on the fine triangulations of S, which
are identified with their sets of edges here. There is a distinguished fine trian-
gulation 7, of S with respect to that ordering, namely the smallest Delaunay
triangulation (i.e., a triangulation characterized by the condition that for every
triangle the circumcircle contains no point from S in its interior).

Furthermore, for each fine triangulation 7 # 7, there is a distinguished
flippable edge (computable in O(]S|) steps) such that, starting from any fine
triangulation of S, iterated flipping of the respective distinguished edges even-
tually yields 7. This algorithmically defines a spanning tree in the flip graph
of S, rooted at 7y; in particular, the flip graph of a two dimensional finite point
set is connected.

The basic idea of the reverse search method is to traverse that spanning
tree from its root 7y. At each iteration one chooses a leaf 7 of the current
partial tree, and determines those among the triangulations adjacent to 7°
on whose path to 7j in the spanning tree 7 lies. Properly implemented, the
reverse search algorithm generates all fine triangulations in O(|S| - f(5)) steps,
where f(.S) is the number of fine triangulations of S; see [fj.

Via the “secondary polytope” of a finite point set S C R? [If] one can
design a variant of the reverse search algorithm that generates all regular
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triangulations of S in O(|S| - F*&(S)) steps, where F™8(S) is the number of
such triangulations. It is, unclear, however, if one can also generate all reqular
fine triangulations of S in a number of steps that is bounded by a polynomial
in the number of such triangulations.

If one is interested in the number of triangulations of a two-dimensional set
of points rather than in the explicit generation of all of them, then the path of
a triangulation method due to Aichholzer [ is more efficient than the reverse
search algorithm.

For counting the unimodular (fine) triangulations of the very special point
sets P, however, different methods are much more efficient. These are de-
scribed in the following sections.

2.1 Narrow Strips

Strips of width m = 1.  For any lattice trapezoid of width 1, whose paral-
lel vertical sides have lengths a and b, the number of unimodular triangulations
is g1(a,b) = (“:b) = (“:b); indeed, a bijection between these triangulations and
the a-subsets of {1,...,a + b} is established by top-down numbering the tri-
angles of a triangulation 7 by 1,...,a + b, and mapping 7 to the a-set of all

numbers of triangles whose vertical edges are on the left. In particular, we

have
f(l,n) = <2”> (2.1)

n

Strips of width m = 2.  For f(2,n) we have no explicit formula, and we
cannot evaluate the asymptotics precisely, but we have a “quadratic” recursion
that can be evaluated efficiently: For this we enumerate the triangulations
according to the highest “width 2 diagonal,” which (if it exists) decomposes
the rectangle into two width 1 strips, a single triangle, and a trapezoid of
width 2 (see the left-hand figure below). Let ¢2(A, B) denote the number
of triangulations of a trapezoid of width 2 with vertical edges of lengths A
and B and horizontal base line, as in the right-hand figure below — where
A+ B = 1 mod 2 implies that the midpoint of the diagonal is not a lattice
point, and where we may assume A < B by symmetry:

trapezoid shape
e o o (A, B):

'S B B




6 Volker Kaibel and Giinter M. Ziegler

Thus we get

m 2 o — 3A+B+1 O — A+3B+1
2 = 2 A B 2 2 .
ren = () w2 Sowan (™) ("0,

0<A<B<n
A+B=1 mod 2

The binomial coefficients in this recursion correspond to triangulations of

width 1 strips. So they could be rewritten in terms of ¢;, as g; (n— A, n—%)
resp. g1(n—B,n— %). A similar remark applies to the binomial coefficients

that appear in the following.
For go(A, B) = g2( B, A) we also get a recursion by considering the highest
diagonal of width 2:

3A+B-1 A+3B-—1
s - () (42
3A+B—3a—b 1 A+3B—a—3b 1
2 2
O ) )]

0<a<A, 0<b<B
a+b=1 mod 2, a+b<A+B

B B
A A

® [ ] a

® [ ] ® [ ] b

Here the parameters A, B, a,b may be interpreted as the y-coordinates of cer-
tain lattice points. The shaded parts of the figure consist of strips of width 1,
whose triangulations are counted by the binomial coefficients g; (-, -).

Strips of width m = 3. For f(m,3) we have a recursion of order 4;
it relies on the observation that if we screen the middle strip from the top
for diagonals of width at least 2, then the first diagonal to find will be of
width exactly 2, since any width 3 diagonal is flippable, and contained in a
parallelogram that is bounded by two width 2 diagonals. The corresponding
decomposition of our rectangle is indicated in the left figure below:

2 ¢

o o ¢ hook shape D
(A7 Bv Ca D)
° Be
A ¢ e o o A
¢ o o o
¢ o o o
¢ o o o
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Therefore, we obtain

on\ o — BAEBHLN /9, A+3B+1
= 2 h(A, B 2 2
f(3;n) (n) +2 ) h(4, ,n,n)< oA )( W B ),

0<A,B<n
A+B=1 mod 2

where h(A, B,C, D) counts the number of triangulations in a “hook” shape as
given in the right drawing in the figure above, which depends on four param-
eters 0 < A, B,C,D <n, with A+ B=1mod 2 and B < C. For the number
of triangulations of such a hook shape we get a recursion

3A+B-1 A+3B-1
anen = (505 )0e)

3A+B—3a—b __ 1 A+4+3B—a—3b __ 1
+ > h(a,b,C,D)( f{—a )( £23—b )

0<a<A, 0<b<B
a+b=1 mod 2, a+b<A+B

D+C — 3a+b+1 A+3B—a—3b __ 1
A+LB—
D S T ] G |
2

A+B-1
0<a<D, 0<b< AXB=L
atb=1mod 2, ¢tb+l<p

C+D— 5B—A-1

C—-B

The four terms in this recursion correspond to the four cases depicted in the
figure below, where the fourth case — of a long diagonal of width 3 — occurs
only in the case where the second endpoint of the diagonal, which may be

computed to have y-coordinate %, comes to lie within the hook.

C C C 1\ C
D D q » D » D
< [ ] 4
B B B B 3B—A—1
[ ] )
At A Arits? Ay
2 ) 2
< [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
atb+1
< [ ] a [ ] b 2 [ ] [ ] [ ] [ ] [ ]
< [ ] [ ] [ ) b [ ] [ ] [ ] b [ [ ) [ ] [ ]
< [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
L 2 . ] [ L 2 L 2 L 2 L 2

2.2 Strips of (fixed) width m.

We now describe a recursive strategy for the enumeration of unimodular
triangulations of grids of arbitrary size. The method is applicable for triangu-
lations of general finite point sets — but it is effective only in the special case
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where the points lie on a small family of parallel (vertical, say) lines; in our
case this is the situation of small (fixed) m and variable n. The key observation
is that any triangulation may be dismantled by removing triangles from the
upper boundary, while maintaining a lattice triangulation of a y-convex lattice
polygon. Since for fixed m the number of such polygons in P, ,, is bounded by
a polynomial in n, this yields an efficient dynamical programming algorithm
in this case.

Let Ay, Ay C R? be two triangles whose intersection A; N A, is a common
(empty, zero-, or one-dimensional) face of both A; and A,. We say that
Ay lies above Ay (A; < Ay) if there are two points (x,71) € A; \ Ay and
(x,y2) € Ag \ A on a vertical line with y; < yo. For example, in our figure
the shaded triangle lies above the other one; the other two pairs of triangles
are incomparable.

Due to the convexity of the triangles and the intersection condition imposed
on them, this is a well-defined asymmetric and irreflexive relation.

Lemma 2.1 There is no sequence Ay, ..., A1 C R? of triangles (such that
the intersection of any two among them is a face of both) satisfying

A0-<A1-<...-<At_1-<A0. (22)

Proof Suppose that Ag,...,A,_; C R? is a minimal cyclic sequence of tri-
angles (such that the intersection of any two among them is a face of both),
i.e., it satisfies (B-3) (it is cyclic), but no subsequence of Ay, ..., A; 1 C R? is
cyclic. The orthogonal projections z(A;) to the z-axis have the following three
properties (where all indices are taken modulo ¢):
(a) z(A) Na(Ai) # 0,
(b) 2(A) Z 2(Ar 1), (Arr), and
(c) z(Aiz1) Nz(Airr) =0,
where (a) follows immediately from the definition of < and (b) as well as (c)
are due to the minimality of the cycle.

But (a), (b), and (c) together imply that the intervals x(Ay),. .., z(A_1)
“either run left-to-right or right-to-left”; in particular, we have x(Ag)Nx(4;) =
() for i € {2,...,t — 1}, contradicting A;_; < Ay. O

Of course, both in the definition of < as well as in Lemma B.] one can
replace “triangle” by “compact convex set.”
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The relation < was defined with respect to parallel projection here. If one
defines an ordering with respect to central rather than to parallel projection,
then the analog to Lemma P.1] (for arbitrary centers of projection) does not
hold. For Delaunay triangulations, however, there is an analog to Lemma P.1].
(See De Floriani et al. [[[T]| for dimension 2, and Edelsbrunner [[J] for arbitrary
dimensions.)

Due to Lemma P.0], the relation < induces a partial order on the set of
triangles in R?, which we will also denote by <.

A sequence 7q,...,7T5,, of sets of triangles will be called an admissible
sequence for P, , if 7; is a unimodular triangulation of P,, ,, and if, for each
i =2,3,...,2nm, we have 7; = 7, ; \ {A} for some <-maximal triangle A
in 7;_;. A subset S C R? is called an admissible shape (of P,,,,) if it can
be obtained as a union S = AT, A for an admissible sequence 71, ..., Tomn
and some i € {1,...,2mn}. Every admissible shape is y-convex (i.e., its
intersection with any vertical line is connected). It is determined by its upper
boundary segments, i.e., the sequence of line segments [[(V rM] ... [I®) r®)]
with 1V = 0, 19 = n, and rgD =9 for j € {2,...,t}, such that, for each
point p in the relative interior of any of the segments, p + (0,¢) ¢ S holds for
all e > 0.

Let S be an admissible shape. We denote by 7p..(S) the set of all <-
maximal unimodular triangles in S, that is, the finite set of all unimodular
triangles that could be <-maximal in some unimodular triangulation of S.
For example, the figure below indicates the 12 <-maximal triangles of the
shaded admissible shape.

o o e o o
A
g
o o [o\eo o (i
’,’, \“ ;1
F R A )
[ ] e [le® oy o
M e “l
/ i
f N
/
o\ o/i @ @& e o \
’
/
/
f
f
° o o o o o

Any admissible shape S’ that arises from S by removing some triangles con-
tained in 7. (S) is called an admissible subshape of S. These triangles have
disjoint interiors, and they are uniquely determined for each admissible sub-
shape S’ of S (compare the proof of Lemma P.J). Their number is denoted by
#(5',9).

Since every unimodular triangulation of S contains at least one triangle
from 73, (S), we obtain the following inclusion-exclusion formula for the num-
bers f(S) of unimodular triangulations of admissible shapes S.
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Lemma 2.2 FEvery admissible shape S has

F(8) =) (=)FEp (s (2.3)

Sl

unimodular triangulations, where the sum is taken over all admissible proper
subshapes S’ of S.

Lemma P.2 allows us to compute f(m,n) = f([0,m] x [0,n]) via a dynamic
programming approach: Determine the numbers f(S) via (.3) in some order
such that every admissible shape appears after all its admissible subshapes.
In order to analyze the running time of such an algorithm, we first need to
estimate the number of admissible shapes.

Lemma 2.3 Let [IV) rM] .. [I® r®] be the sequence of upper boundary seg-
ments of an admissible shape S. Then

lz(/j) e {Tg(/j_l) _ 1’r§j—1)’rz(/j—1) + 1}
holds for each 2 < j <'t.

Proof This follows by induction on the number of triangles removed in order
to obtain S: Every vertical edge of a triangle in a unimodular triangulation
has length one, and thus removing a <-maximal triangle from an admissible
shape never creates a vertical boundary part of height more than 1. 0

Lemma P.3 implies the following bound on the number of admissible shapes.
Lemma 2.4 There are at most (3n+2)""Y(n+1)? admissible shapes of Py, .

Proof The upper boundary of an admissible shape has n+1 possible start and
n + 1 possible end points. At every interior x-coordinate (z € {1,...,m —1})
either a segment of the upper boundary ends and a new one starts (3(n+1)—2
possibilities, by Lemma P.3) or a segment “passes through” (one possibility).
O

The second important quantity for the analysis of the running time of the
dynamic programming algorithm proposed above is the maximal number of
summands that may occur in (2.3).

Lemma 2.5 Every admissible shape S of Py, , has at most

34 I3\
(%f) < 331"

admissible subshapes.
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Proof Let (By,..., B;) be the sequence (from left to right) of upper boundary
segments of S. Each triangle in 7., (S) contains at least one of the edges
{By,...,B}.

Let B € {By,...,B;} be a segment of the upper boundary of S. There are
at most two triangles in 7. (S) containing B and one of its adjacent segments.
Each other triangle in 7., (S) that contains B must have its third vertex v
in B+ R-(0,—1) on the line that is parallel to B at distance ¢3(B)~!, where
(5(B) denotes the Euclidean length of B (because the triangle has area 3).
Since v must be integral and there is no integral point in the relative interior
of B, there are at most two possibilities for v. Let us call one of them the first
triangle below B, and the other one, the second triangle below B (if they exist).

For every admissible subshape T" of S, define a word w(T') € {0, «, 3,7}*

by replacing B; by
‘@’ if S\ T contains the first triangle below B;,
‘6" if S\ T contains the second triangle below B;,

v’ if S\ T contains the triangle formed by B; and B;_;, and

‘0’ otherwise.

Clearly, every ‘v’ in w(T") has a ‘0’ as its left neighbor; furthermore, w(-) is
an injective mapping. Therefore, the number of admissible subshapes of S is
bounded from above by the function ¢(m) defined recursively via

p0)=1, 1)=3,  @m)=3p(m—1)+¢(m—-2) (m=2)
Using standard techniques (see, e.g., [B9, Thm. 4.1.1]), one derives from this
recursion that ¢(m) < (%)m for m > 1. O

Lemmas P.4 and imply that (for every m) the dynamic programming
algorithm needs at most

3.31"Bn+2)" M (n+1)* < 10™(n+1)"

arithmetic operations. The actual running time of an implementation heavily
depends on the data structures for storing the admissible shapes and on the
way by which one determines the admissible subshapes in that data structure.
Therefore, here we include only the following rough statement.

Theorem 2.6 For every fized m, the function f(m,n) can be computed in
time bounded by a polynomaial in n.

In our implementation, we organize the admissible shapes as the leaves
of a tree whose nodes are the prefixes of the sequences of upper boundaries
segments of admissible shapes. The data structure allows quite efficient access
to the admissible subshapes while not wasting too much memory. Nevertheless,
the bottleneck in the computations is always memory. It is crucial to use an
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ordering of the admissible shapes in which for each shape S the shapes of which
it is an admissible subshape come as soon as possible after it; this allows one to
keep in memory only a subset of the admissible shapes at each point of time.

Furthermore, in (B.3) there is no need to sum over all admissible sub-
shapes S’. It suffices to consider those S’ that arise from removing triangles
in Tax(S) that are contained in {(x,y) € R? : ¥ > ¢}, where ¢ is the maxi-
mal x-coordinate where lg(,j ) = r@(,j D 41 for some J and the upper boundary
segments [[(V rM] .. 1) +®] of S (if that maximum exists).

Of course, when computing the number of unimodular triangulations of
P,,,, by our method, we obtain as a byproduct the number of unimodular
triangulations of several interesting polygons inside P, ., including P, 1, ...,
Pm,n—l-

The algorithm described above cannot only be used to calculate the number
of unimodular triangulations of any admissible shape S in P, ,,; it can also be
extended to produce a uniformly distributed random triangulation within the
same asymptotic running time, and thus, in polynomial time (depending on n)
for fixed m. For this, one just determines the numbers of triangulations of those
admissible subshapes of S that arise from removing one single triangle; with
respect to the corresponding random distribution one then chooses one of the
<-maximal triangles in S at random, and proceeds with the subshape obtained
by removing it.

2.3 Explicit values

We have implemented the algorithms described in Subsection P.1] in C++,
using the gmp library [[7] for exact arithmetic, with the interface to it provided
by the polymake system [L7].

Results obtained by our code are compiled in the Appendix (see Tables J,
@, B, @, and [1). The number of unimodular triangulations of P,,,, asymptoti-
cally grows exponentially with mn (see also Section B)). Therefore, it is more
convenient to view the function f(m,n) on a logarithmic scale, normalized

by mn.
Definition The capacity of the m x n grid is

c(m,n) = 710&7{1(2%”).

The following Figure shows the capacity functions ¢(m,n) form € {1,...,6}.
The largest capacity we found is 2.055792 (for m = 4 and n = 32, see Table fj).

To give an impression of the amount of (machine) resources required for
the calculations: The run of the admissible shape algorithm for m = 6 and
n = 7 needed about three gigabytes of memory. The grid Fg 7 has 370252552
admissible shapes. We generated them in lexicographical order with respect
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capacity
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to the pairs of starting heights and volumes. This way, never more than 15%
of the admissible shapes had to be kept in memory simultaneously. Notice
that more than 400 megabytes (of the 3 gigabytes in total) where needed
just to store the numbers of triangulations of the admissible shapes in the
memory. The CPU time used for the computation was about 25 hours. Our
computations were performed on a SUN UltraAX MP machine equipped with
four 448 MHz UltraSPARC-II processors (of which we used only one) and 4
gigabytes main memory.

For very small parameters, Meyer [P4] has enumerated all unimodular tri-
angulations by Avis and Fukuda’s reverse search method (sketched at the
beginning of this section) and checked them for regularity. Table [l shows the
results. While for these small parameters irregular triangulations are quite
rare, the picture changes drastically when m and n get larger, see Section fi.

m X n 7 triangulations # irregular fraction

3x3 46456 4 .000086
3 x4 2822648 502 .000178
3 XD 182881520 63528 .000347
4 x4 736983568 1553020 .002107

Table 1: Number of regular triangulations of small grids.

3 Bounds
3.1 Patching

Any two unimodular triangulations of P,,,, and P,,,, can be patched to
a unimodular triangulation of P, ,,+n,. Thus we have the follwing super-
multiplicativity relation, where f™&(m,n) denotes the number of irregular
unimodular triangulations of P, .
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Lemma 3.1 For m,ny,ny > 1 the following relations hold.
(i) f(m,ny +ng) > f(m,ny) f(m, ny)

(i) feE(m, a4 ng) = f (m, ) 75 (m, ny)

With respect to regular triangulations, patching is dangerous, as demon-
strated by the following example of a non-regular triangulation of P, 4 com-
posed of four regular triangulations of P (suggested by Francisco Santos).

However, a much more general theorem by Goodman and Pach [[§] says that
any two regular triangulations of two disjoint convex polytopes P;, P, C R?
can be extended to a regular triangulation of conv(P; U P,) without additional
vertices. Thus also for the regular case we get a (slightly weaker) supermulti-
plicativity relation.

Lemma 3.2 For m,nq,ny > 1 we have
fre(m,ny +mng + 1) > f*%(m,nq) f*%(m, ny) .

The following figure illustrates the patching of Lemma B.2:
For ny = 1 we will (Lemma B.J) strengthen the inequality in Lemma B.J.
Let us fix some notations first. For any function A : P, ,, — R we denote

by H : P,,,, — R? the function with H(z,y) = (z,y, h(z,y)). The function h

is called a lifting function of a triangulation 7 of P, ,, if 7 is the image of

the set of “lower facets” of the 3-polytope conv{H (z,y) : (x,y) € P, ,} under
orthogonal projection to the x, y-plane (deletion of the third coordinate).

A function A is a lifting function of 7 if and only if h is convex and piece-
wise linear, and its (maximal) domains of linearity are the triangles in 7. In
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particular, one may add to h any convex piecewise linear function whose do-
mains of linearity are unions of triangles of 7 in order to obtain another lifting
function for 7.

A triangulation is regular if and only if it has a lifting function.

The following result shows that all unimodular triangulations of a strip
of width 1 are regular; moreover one has a lot of freedom in choosing the
respective lifting functions, which we will exploit below.

Lemma 3.3 Let T be a unimodular triangulation of a lattice trapezoid with
two parallel vertical or horizontal sides Sy and Sy at distance one. Fvery
piecewise linear function hg : Sy — R that is strictly convex on Sy N 7Z* can
be extended to a lifting function for T .

Proof Let py,...,p, be the integral points on Sy, and let {e;1,...,¢e; )} be
the edges of 7 connecting p; to S;. Let Si (i) and Sy (7) be the closures of the
two components of Sy \ {p;}. Then we may decompose the function hq as

r k(i)

ho(z) =D > his(e)

i=0 j=1

where each h; ; is a convex function on Sy, linear both on Sg (¢) and on Sy (i),
and having its unique break-point at p;.

Now we extend each h; ; to a convex, piecewise-linear function defined on
the entire trapezoid such that it has a break-line at the edge e; ; and is linear

above and below this line. Then the sum of all h; ; is a lifting function for 7.
O

Proposition 3.4 Forn > 1 the following relations hold.
(i) free(lin) = f(1,n) = (3))
(i) f8(2,n) = f(2,n)

Proof Part (i) follows immediately from Lemma B-J(i) (and equation (B1])).

Since patching two regular triangulations along a single edge preserves
regularity, it suffices for the proof of part (ii) to show that every unimodular
triangulation of shapes of one of the forms
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is regular. But this can be derived from Lemma B.3. One starts from an
arbitrary prescribed strictly convex function on the middle column, and after
the extensions to the two shaded vertical trapezoids of width one obtained
from Lemma B.3, one adds a piecewise linear function that is constant on the
left strip, linear on the right strip, and sufficiently large on the right column
of vertices. O

Similarly, one proves the following strengthening of Lemma for ng =1,
as announced earlier.

Lemma 3.5 For m,n > 1, we have
2n
[ee(m,n+1) = f*¢(m,n) - ( ) '
n

3.2 Limit capacities

In the following, we will show that the capacities ¢(m,n) and ¢*¢(m,n)
(with f(m,n) = 260" and f7°8(m, n) = 2¢*(Mm)mn) asymptotically behave
well, which allows us to focus on their limits subsequently. Note that all
capacities are bounded (see Theorem B.9).

Proposition 3.6 Let m > 1.

(i) The limit ¢, := lim c(m,n) exists.

n—oo

(ii) The limit 8 := lim ¢™(m,n) ezists.

n—oo

Proof LemmasB.1(i) and B.9 imply by Fekete’s lemma [23, Lemma 11.6] that

lim f(m, n)% and lim f*&(m,n — 1)%

n—oo n—oo

exist. Therefore,

1 |
lim — log f(m,n)% = lim log /(m,n) = lim ¢(m,n)
n—oo M n—o0 mn n—o0
and
1 reg _ 1
fim gy log (mun = ¥ = Jim PECEEE — fi (man
exist as well. O

While the last proposition concerned the asymptotics of growing n for
fixed m, the next result shows that also growing m and n simultaneously
yields nice asymptotics.
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Proposition 3.7 Let m > 1.

(i) The limit ¢ .= nlbl—lgo c(m,m) exists. It satisfies
c:wlbi_rgocm and Cme < ¢ (my €N) .
(ii) The limit ¢*& = Tr]l:1—>II(1)O c"®(m,m) exists. It satisfies
"t = nil_rgo ches and 8 < (mpeN).

Proof From Lemma B]|(i) one derives (for mg,ng > 1) the inequality
F(m,m) > f(mo, no) b, (3.1)

For integers p, ¢ > 1 we define ®(p,q) :=1— %f’dq. We have ®(q,q) = 1 and
lim, o, ®(p,q) =1 for all ¢ € N.
Equation(B.I]) then implies

c(m,n) > ®(m,my)P(n,ng)c(mg, ng) , (3.2)

and, in particular,
c(mg,n) > ®(n,ng)c(mo, no) - (3.3)

Inequality (B-3) (together with lim ®(n,ng) = 1) yields

Cm > c(m,ng) . (3.4)

Inequality (B.2) implies (together with lim ®(m,mgy)®(m,ng) = 1)

m—00

lim inf ¢(m, m) > ¢(mgp, no) ,

m—00

and therefore,
liminf c¢(m, m) > ¢, - (3.5)

Finally, we obtain the following chain of inequalities, which, together with
(B-H) proves part (i) of the proposition. The middle inequality is from (B.5),
and the outer ones are due to (B.4).

liminf ¢,,, > liminf ¢(m, m) > limsup ¢,,, > lim sup c¢(m, m)

m—00 m—0o0

Part (ii) is proved similarly, starting from Lemma B.2. O
Note that a similar proof yields
c¢= lim c¢(am, n) and = lim ¢®(am, On)

for each pair a, 5 > 0.

By Lemma BJ|(ii), the corresponding “irregular limit capacities” do exist
as well, and they are equal to ¢,, (m > 3) and c, respectively. Therefore, we
do not treat them explicitly.
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3.3 Lower bounds

Proposition 3.8 The following estimates hold.
(i) o = =2
(ii) e = ¢ > 2.044
(iii) c3 > 2.051, ¢y > 2.055
(iv) ¢m > 2.048 form >5
(V) ¢m >8> 2 form >3
Proof Part (i) follows from

22n

Nl

Parts (ii) and (iii) are results of the computer calculations reported in Section P,
combined with Proposition B.4(ii).
Lemma B.|(i) applied to the “transposed grids” implies

f(1,m) = f5(1,n) = <2:) -

maq mgo
clm; +mo,n) > ——c(my,n) + —————c(ms,n) , 3.6
(4 ma, ) = i) + () . (30)
and thus
> M Cmy T e c
Cmi+me = ————Cm — _——tmg -
1+m2 my + mo 1 my -+ mo 2
With (ii) and (iii), this yields (iv).
Similarly, Lemma B.J leads to
m
reg reg - .9
Cmt1 = m+lcm * m+1
With (ii) this proves part (v). O

Equation (B.6) implies that ¢, > ¢, for k > 2; for example, this implies
that ¢4 > co — but it is not obvious that ¢3 > ¢y. Even stronger, one would
assume that

2=c<c<c< -+ <c,

and

2= A < < O

<egt < e <

but neither monotonicity is proved.
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3.4 Upper bounds

From general principles (see Ajtai et al. [f]]) one gets that the capacity for
any configuration of N points in the plane is finite. In the general position
case (no three points on a line) the currently best upper bound is o(2%%V),
due to Santos & Seidel [P§]. However, in the very “degenerate” case of lattice
triangulations, there are far fewer triangulations: Orevkov [R5 obtained the
bound f(m,n) < 43m™" = 26mn_ Very recently, this has been substantially
improved by Anclin [f], as follows.

Theorem 3.9 (Anclin [B]) For allm,n > 1,
f(m,n) < 23mn—m—n.

Proof Our sketch relies on the essential ideas of Anclin’s proof.

The first, crucial observation is that the midpoints of the edges in any
unimodular triangulation are exactly the half-integral, not integral points
in conv(P,, ). (Clearly the midpoint of every edge is half-integral; the con-
verse may be derived from Pick’s theorem, or from the fact that all unimodu-
lar triangles are equivalent to conv{(0,0), (1,0),(0,1)}.) The number of these
half-integral points in the interior of P, , is e = 3mn —m — n.

Now any triangulation is built as follows: The half-integral points are pro-
cessed in an order that is given by a parallel sweep. (See de Berg et al. [f,
Sect. 2.1] for a discussion and many further sweeping applications of this fun-
damental technique.)

Whenever a point is processed, we add to the partial triangulation a new
edge with the given midpoint. The key claim is that at each such step, when
a half-integral point v is processed, there are (at least one and) at most two
possibilities for the new edge with midpoint v to be added. If this claim is
true, then the number of triangulations is bounded by 2°.

To prove the claim, one can verify the following: Let [v/,?'] and [v”, "] be two
potential edges with midpoint v that could be added, where v' and v” are the
endpoints below the sweep-line /; let () be the convex hull of the integral points
in the triangle [v, V', v"]; then all the k > 2 vertices v = vg, vq, ..., V51,05 = V"
of Q are “visible” from v, and any one of the edges [v;, ;] with midpoint v could
potentially be added at this step. Furthermore, the midpoints %(vi_l + v;) lie
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below the sweep-line, and thus the edges [v;_jv;] are present in the current
partial triangulation.

Vo V2

Now assume that [vg, To|, [v1,01], [v2,Us] are three adjacent edges with mid-
point v that could be added when processing v. By central symmetry with
respect to v we may assume that the midpoint w of [vy, 9] lies below the
sweep-line. But the triangle vy, v, 73] is then an empty triangle of area i, just
like the triangle [v1,v,vs]. From this we conclude that in the current partial
triangulation, the edge [v1, Us] must be present — which creates a crossing with
the potential edge [vg, o], and thus a contradiction. O

The following upper bounds on the limit capacities follow immediately from
Theorem B.9.

Corollary 3.10 For all m,n > 1, the following inequalities hold:

(i) ¢&(m,n) < c¢(m,n) < 3—+—

3=

(11) Cigg S Cm S 3_

1 . .
- (in particular, ¢;® < ¢, < 2.5)

(i) & < ¢ < 3

As Anclin noted, his proof works much more generally: For any partial
triangulation of a not necessarily simple or convex lattice polygon, the number
of completions is at most 2¢, where €’ is the number of edges that are to be
added.

4 Explicit Triangulations

For small grids, one can enumerate all unimodular triangulations by the re-
verse search algorithm sketched in Section P]. For larger grids, it is desirable to
obtain from the huge set of unimodular triangulations “random” ones. There
are ways to produce them, however, in most cases the probability distribution
from which they are chosen is unknown.
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4.1 Generating Random Triangulations

A standard way to compute complex random objects such as triangulations
is to set up arandom walk. In our case of unimodular triangulations of P, ,, the
method is described easily: First one determines any starting triangulation 7°
of P, n. Then, the following operation is performed 7 times: Choose one
of the (inner) edges of 7 uniformly at random; if this edge is flippable (see
Section P), then with probability % the current triangulation 7 is replaced by
the one obtained from it by flipping that edge.

As the flip graph of the triangulations is connected (see Section P), it
follows from general principles that, with 7 tending to infinity, the probability
distribution defined by the output of this algorithm converges to the uniform
distribution (with respect to the “total variation distance”); see, e.g., Jerrum
and Sinclair [20] or Behrends [f§]. Unfortunately, not much is known about the
speed of convergence of the distribution. In particular, for general m and n
it is not known whether there is a polynomial bound (in n + m +&~!) on the
number 7 of steps needed to guarantee that the total variation distance between
the produced and the uniform distribution is at most ¢ (i.e., if the associated
Markov chain is rapidly mizing). The only exception is the case m = 1: Here
it follows from results of Felsner and Wernisch [[4] that the Markov chain is
indeed rapidly mixing.

Despite this lack of knowledge on the distribution of the output of the
random walk algorithm, one still can use it in order to produce examples of
“interesting” triangulations.

4.2 Empirical Results

For each n € {10,...,20}, Meyer [P4] generated 1000 random unimodular
triangulations of P, , by running the random walk described in Subsection [.1]
10? steps, recording every 10°th triangulation; see Table .

The results support the conjecture that, for n tending to infinity, a random
unimodular triangulation of P, ,, is irregular with probablity one. A second
observation is that the (expected value) of the average length of an edge in a
random triangulation seems to grow very slowly with n.

4.3 Obstructions to Regularity

All figures shown below have been produced by Meyer [24], who imple-
mented procedures for checking regularity by solving linear programs using
the CPLEX 6.6.1 library.

Proposition B.4 shows that P, has only regular triangulations. The grid
Ps 5 has precisely the following four (pairwise congruent) irregular unimodular
triangulations.
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m X n irregularity max. edge length av. edge length

10 x 10 355 5.538 1.614
11 x 11 435 5.843 1.630
12 x 12 .559 6.118 1.645
13 x 13 .696 6.397 1.659
14 x 14 7182 6.650 1.670
15 x 15 875 6.911 1.681
16 x 16 927 7.151 1.690
17 x 17 965 7.391 1.700
18 x 18 971 7.618 1.708
19 x 19 992 7.821 1.713
20 x 20 997 8.060 1.723

Table 2: Results for random unimodular triangulations of large grids. The
first column shows the (empirical) probability of irregularity, the second and
third columns contain the (empirical) expected values of the maximal and the
average edge length.

When trying to understand the reasons for irregularity, it seems useful to
consider (smallest) forbidden patterns for regular triangulations. Let 7 be a
set of unimodular triangles of P, , (such that any two of them intersect in
a common face). We denote by S C P,,, the set of all grid points covered
by triangles in 7. The set 7 is called regular if there is a height function
h : S — R such that for each triangle A € 7, all h-lifted points in S\A lie
strictly above the affine hull of the h-lifting of A. A subset of 7 is called a
mainimal irreqular configuration if it is not regular, but all its proper subsets
are regular. Clearly, a regular unimodular triangulation of P, ,, cannot contain
any minimal irregular configuration.

Examples for minimal irregular configurations of P 3 are the following:

Already for P54 many other minimal irregular configurations occur; some
are depicted here:
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While these figures still have some similarities with the nice “whirlpools”
ones for Ps3, the picture gets more and more complicated with growing grid
sizes, as the following examples demonstrate:

Viewing these figures, it seems unlikely that one can find any compact
characterization of regularity for unimodular triangulations of P, , in terms
of forbidden substructures.

We close our zoo of “explicit triangulations” with some pairs of triangula-
tions, found by Meyer’s implementation of the random walk. In each of the
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figures, the left triangulation is regular, but the right one is not, although it
can be obtained from the left one by flipping just one edge (drawn bold in
the upper left and in the lower right corner, respectively). For both irregular
triangulations, a minimal irregular configuration contained in it is depicted as
well.
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