
Dynamical reweighting:
Improved estimates of dynamical properties from simulations at multiple temperatures

John D. Chodera,1, ∗ William C. Swope,2, † Frank Noé,3, ‡
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Dynamical averages based on functionals of dynamical trajectories, such as time-correlation func-
tions, play an important role in determining kinetic or transport properties of matter. At temperatures
of interest, the expectations of these quantities are often dominated by contributions from rare events,
making the precise calculation of these quantities by molecular dynamics simulation difficult. Here,
we present a reweighting method for combining simulations from multiple temperatures (or from
simulated or parallel tempering simulations) to compute an optimal estimate of the dynamical prop-
erties at the temperature of interest without the need to invoke an approximate kinetic model (such as
the Arrhenius law). Continuous and differentiable estimates of these expectations at any temperature
in the sampled range can also be computed, along with an assessment of the associated statistical
uncertainty. For rare events, aggregating data from multiple temperatures can produce an estimate
of the desired precision at greatly reduced computational cost compared with simulations conducted
at a single temperature. Here, we describe use of the method for the canonical (NVT) ensemble us-
ing four common models of dynamics (canonical distribution of Hamiltonian trajectories, Andersen
thermostatting, Langevin, and overdamped Langevin or Brownian dynamics), but it can be applied to
any thermodynamic ensemble provided the ratio of path probabilities at different temperatures can be
computed. To illustrate the method, we compute a time-correlation function for solvated terminally-
blocked alanine peptide across a range of temperatures using trajectories harvested using a modified
parallel tempering protocol.

Keywords: Weighted histogram analysis method (WHAM); multiple histogram reweighting; multistate
Bennett acceptance ratio (MBAR); extended bridge sampling (EBS); temperature reweighting; temperature-
dependent dynamics; parallel tempering; molecular dynamics.

I. INTRODUCTION

Dynamical properties, such as diffusion constants,
position and velocity autocorrelation functions, rota-
tional correlation times, frequency-dependent dielectric
constants, and reaction or isomerization rates play a crit-
ical role in our understanding of various phenomena in
chemistry and biology. Besides providing physical in-
sight, calculation of these properties from simulations
is often necessary for making comparison with spectro-
scopic experiments (such as FTIR, 2DIR, NMR, dynamic
light scattering, or neutron correlation spectroscopy) or
to make predictions about material or structural proper-
ties under conditions difficult to access experimentally
or of substances yet to be created in physical form.
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When these phenomena involve enthalpic barriers or
entropic bottlenecks in systems obeying classical sta-
tistical mechanics, averages of these properties can be
extremely slow to converge in standard molecular dy-
namics simulations, requiring tediously long simula-
tions to produce estimates with the desired statistical
precision. Additionally, the temperature-dependence of
these properties is often of interest, requiring either the
use of simulations at numerous temperatures, where
each simulation must be long enough to ensure the dif-
ference in estimates between different temperatures is
statistically significant, or the assumption of a kinetic
model, such as Arrhenius behavior for rate processes.

In recent years, a number of algorithmic advances
have helped ameliorate difficulties for the computation
of equilibrium expectations or thermodynamic proper-
ties caused by the presence of significant enthalpic and
entropic barriers. Chief among these have been simu-
lated [1–3] and parallel [4–7] tempering, in which the time
required to cross enthalpic (entropic) barriers is reduced
by allowing the system to access higher (lower) tem-
peratures during the simulation. The use of random
temperature-switching proposals and a Metropolis-like
criterion for their acceptance embeds the simulations in
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a Markov chain that ensures, in the long run, the sta-
tionary distribution at thermal equilibrium is sampled
at each temperature [8]. The advantages of this proce-
dure are twofold: convergence times for averages at a
single temperature can often be reduced by appropriate
choice of temperatures to enhance mixing [8–11], and
data from all temperatures can be combined to produce
superior estimates of equilibrium expectations over a
range of temperatures using histogram reweighting [12–
15] or histogram-free [16, 17] statistical analysis meth-
ods.

While helpful in the calculation of equilibrium ex-
pectations of mechanical observables that are functions
only of the atomic coordinates and momenta, the data
produced by simulated and parallel tempering simula-
tions are generally not directly useful for the computa-
tion of dynamical quantities. This is due to the fact that
replica trajectories include unphysical changes in tem-
perature, and permuting the data to separate trajectories
by temperature results in discontinuous trajectories for
each temperature, with a complicated correlation struc-
ture entangling the temperatures [15, 18]. The short tra-
jectory segments generated between exchanges, how-
ever, are valid dynamical trajectories that can be used
to estimate dynamical properties, as in [19].

Here, we show how trajectories from multiple tem-
peratures (including those harvested from tempering
simulations) can be reweighted to produce optimal es-
timates of dynamical quantities at the temperature(s) of
interest, and how these estimates might be superior to
those from single-temperature simulation if the crossing
of enthalpic barriers or entropic bottlenecks is acceler-
ated at some of the replica temperatures. Application of
this reweighting scheme to simulated and parallel tem-
pering simulations requires little, if any, modification of
the simulation protocol. We require only that the time
between exchanges is long enough to compute dynami-
cal expectations of interest, the model of dynamics used
to propagate the replica samplers in between exchanges
is of a form amenable to reweighting, and the temper-
ature spacing is close enough to permit estimation of
appropriate normalization constants. We illustrate this
approach by estimating a slowly-convergent property—
the normalized fluctuation autocorrelation function for
a conformational state of terminally-blocked solvated
alanine peptide that is only sparsely populated at 300
K—and show that dynamical reweighting provides sig-
nificant advantages over standard estimates from single
temperatures alone.

II. THEORY

We now lay out the main theoretical tools necessary
for estimating dynamical expectations by making use of
simulations at multiple temperatures. In Section II A,
we provide a precise definition of the dynamical expec-
tations we can estimate through reweighting schemes.

Next, in Section II B, we review the generalized path es-
timator for making optimal use of trajectories sampled
from multiple ensembles. As this estimator requires we
compute path action differences at different tempera-
tures for every trajectory sampled, Section II C presents
simplified, convenient forms of these quantities for sev-
eral common models of dynamics within the canoni-
cal ensemble. Finally, Section II D describes a modi-
fied parallel tempering protocol that can be used to eas-
ily sample trajectories from multiple temperatures in a
way that they can easily be used with this estimation-
by-reweighting procedure.

A. Dynamical expectations

The equilibrium thermodynamic expectation of some
static (non-kinetic) propertyA for a system obeying clas-
sical statistical mechanics can be written as

〈A〉 ≡
∫
dx p(x)A(x) (1)

where x denotes the instantaneous configuration of the
system (such as the coordinates and momenta of all par-
ticles), A(x) is often referred to as a phase function or me-
chanical observable, and p(x) is the equilibrium probabil-
ity density, given by

p(x) = Z−1 q(x) ; Z ≡
∫
dx q(x) (2)

where Z is a normalizing constant or partition function,
and q(x) > 0 is an unnormalized probability density.
(Here, we will choose q(x) to contain terms that depend
explicitly on x; x-independent multiplicative terms will
generally be absorbed into Z throughout.) In the canon-
ical ensemble, for example, the system is in contact with
a heat bath and held at fixed volume, and we have
q(x) = e−βH(x), where H(x) is the Hamiltonian and
β = (kBT )−1 is the inverse temperature.

We can write an analogous expression for equilibrium
dynamical expectations of a kinetic property A as

〈A〉 =

∫
dX p[X]A[X] (3)

where A[X] now denotes a functional of a trajectory
X ≡ x(t), p[X] is the probability density of trajectories,
and the integral is taken over the space of all such trajec-
tories with respect to an appropriate measure dX . Anal-
ogous to the case of phase space probability densities,
p[X] can also be written in terms of an unnormalized
density q[X] > 0,

p[X] = Z−1 q[X] ; Z ≡
∫
dX q[X] (4)

As we will see in Section II C, the precise definition of
p[X] will depend on the dynamical model under con-
sideration.
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While the expectation of any trajectory functional can,
at least formally, be computed this way, the most com-
mon dynamical quantities of interest are time-correlation
functions of the form

CAB(t) ≡ 〈A(0)B(t)〉 (5)

for some pair of phase functions A and B. This corre-
sponds to the choice

A[X] ≡ A(x(0))B(x(t)) (6)

For practical purposes, we will henceforth presume that
the functional A[X] is temporally local, in that it can be
expressed in a way that operates on a finite time interval
that can be bounded by some fixed duration τ . We can
then restrict ourselves to considering trajectory objects
X ≡ x(t) of fixed length τ , so that x(t) is defined only
on the interval t ∈ [0, τ ]. In the case of time-correlation
functions CAB(t) above, for example, t ≤ τ .

Expectations with respect to some altered trajectory
probability density p∗[X] can also be computed within
this equilibrium expectation framework by simply in-
corporating the weighting factor p∗[X]/p[X] into the tra-
jectory functional A. For example, to compute time-
correlation functions such as Eq. 6 with respect to
nonequilibrium initial conditions, A[X] could be rede-
fined to include a factor of ρ[X]/p[X] to account for non-
equilibrium (or even non-canonical) initial phase space
density ρ[X] [20].

B. Dynamical reweighting

The groundwork for reweighting trajectories sampled
from multiple thermodynamic states in order to pro-
duce an optimal estimate of some dynamical expec-
tation was laid in work by Minh and Chodera [21].
Though presented in the context of nonequilibrium ex-
periments (in which the consequences of the Crooks
fluctuation theorem [22, 23] were explored), the estima-
tor is sufficiently general that it applies to equilibrium
trajectories sampled from different equilibrium thermo-
dynamic states within the same thermodynamic ensem-
ble, producing an asymptotically optimal estimate of
properties within the thermodynamic state of interest.
The generalized path ensemble estimator [21] is in turn
based on the statistical inference framework of extended
bridge sampling [24–26], which provides a solid statis-
tical foundation for earlier estimation and reweighting
schemes found in statistical physics and chemistry [12–
14, 16, 27].

Here, we briefly review the general estimator formal-
ism and examine its application to common schemes
used to model dynamics at constant temperature. While
we restrict our consideration to the canonical (NVT)
ensemble, extension to other thermodynamic ensem-
bles (such as the isobaric and semigrand-canonical en-
sembles) and other schemes for generating trajectories

within the canonical and other thermodynamic ensem-
bles is operationally straightforward.

Suppose we have K path ensembles at different ther-
modynamic conditions, indexed by i ∈ {1, . . . ,K}, char-
acterized by trajectory probability densities

pi[X] = Z−1
i qi[X] ; Zi ≡

∫
dX qi[X] (7)

where qi[X] > 0 is an unnormalized density and Zi an
unknown normalization constant, from which we have
collected Ni trajectories of duration τ . We denote these
trajectories Xn, where the trajectory index n runs from
1 to N ≡

∑K
k=1Nk, with the trajectories from different

path ensembles indexed in arbitrary order. The associa-
tion of a trajectory with the path ensemble from which it
was sampled will not be relevant in the estimating equa-
tions.

The optimal estimator for a dynamical expectation

〈A〉i =

∫
dX pi[X]A[X] (8)

was shown by Minh and Chodera [21] to be given by

Âi =

N∑
n=1

wniA[Xn] (9)

where the N ×K weight matrix W ≡ (wni) containing
the appropriate trajectory weights for all trajectories n
in all path ensembles i is given by

wni = Ẑ−1
i

[
K∑
k=1

NkẐ
−1
k qk[Xn]/qi[Xn]

]−1

. (10)

Here, wni denotes the weight contribution from trajec-
tory n in the aggregated pool of N trajectories for es-
timating expectations for state i. The presence of the
leading normalizing factor Ẑ−1

i ensures that the weights
are normalized such that

∑N
n=1 wni = 1 for any state

i. The unnormalized path densities qk[Xn]/qi[Xn] rep-
resent the ratio of how likely a particular trajectory Xn

is to appear in path ensemble k over path ensemble i,
up to some ratio of normalizing constants Zi/Zk that is
trajectory-independent. Importantly, the estimator ex-
pression in Eqs. 9–10 holds even if no trajectories are
sampled from some of the path ensembles, such that
Ni = 0 for these unsampled ensembles, but there are still
samples from other path ensembles such that N > 0).

The normalizing constants {Ẑi}, determined only up
to an arbitrary multiplicative constant, are determined
by solving the coupled set of K nonlinear equations for
i = 1, . . . ,K, under the constraint that

∑N
n=1 wni = 1:

Ẑi =

N∑
n=1

[
K∑
k=1

NkẐ
−1
k qk[Xn]/qi[Xn]

]−1

(11)

This can be done efficiently through a number of meth-
ods [17, 21]. For example, the simplest such approach is
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to iterate a form of Eq. 11 to self-consistency. Suppose
we choose an initial guess Ẑ(0)

i = 0, i = 1, . . . ,K. We
can employ an iterative update procedure,

Ẑ
(n+1)
i =

N∑
n=1

[
K∑
k=1

Nk[Ẑ
(n)
k ]−1qk[Xn]/qi[Xn]

]−1

(12)

to generate a new set of estimates {Ẑ(n+1)
i } from a pre-

vious set of estimates {Ẑ(n)
i }. Each iteration of the up-

date procedure requires only that we be able to com-
pute the ratio qk[Xn]/qi[Xn] for all trajectories in the
pool of N trajectories; these ratios can be precomputed
and stored. This iterative procedure is continued until
these estimates converge to within some specified toler-
ance [17, 21]. For numerical stability, it is convenient to
work with lnZ

(n)
i instead of Z(n)

i directly [17].
In the canonical ensemble, the probability distribu-

tions are parameterized by a temperature T , or equiva-
lently, the inverse temperature β ≡ (kBT )−1. The expec-
tation of observableA at some arbitrary inverse tempera-
ture β, 〈A〉β , estimated from simulations at fixed inverse
temperatures β1, . . . , βK , can then be estimated as

Â(β) =

N∑
n=1

wn(β)A[Xn] (13)

where the temperature-dependent trajectory weights
wn(β) are

wn(β) = Ẑ(β)−1

[
K∑
k=1

NkẐ
−1
k q[Xn|βk]/q[Xn|β]

]−1

(14)

with normalization constants Zk ≡ Z(βk), and

Ẑ(β) =

N∑
n=1

[
K∑
k=1

NkẐ
−1
k q[Xn|βk]/q[Xn|β]

]−1

(15)

Once the normalizing constants {Ẑk} have been deter-
mined by solving the coupled nonlinear equations in
Eq. 11, no further nonlinear equation solution iterations
are necessary to estimate Â(β) at other temperatures of
interest.

Perhaps surprisingly, Eqs. 10 and 14 do not contain
any information linking a trajectory Xn with the path
ensemble pj [X] from which it was sampled; this fact is a
direct, if unobvious, consequence of the extended bridge
sampling formalism [25, 26].

The unnormalized trajectory probability density
q[X|β] will depend on the model of dynamics within the
canonical ensemble used in the simulations; we give ex-
pressions for several popular models in Section II C. In
all the cases treated here, however, q[X|β] is a continu-
ous and differentiable function of β, meaning that A(β)
will also be continuous and differentiable. The utility
of this estimate will depend on a number of contribut-
ing circumstances; the estimate is only expected to be

reliable within the range of temperatures sampled, but
estimates can, in principle, be obtained for any temper-
ature.

The statistical uncertainty in Â(β) can be computed
in a straightforward manner from an estimate of the
asymptotic variance of Â(β) [17, 21]. Briefly, the estimat-
ing equations are linearized about the optimal estimator
and the variance in the estimating equations is propa-
gated into the corresponding variance in the estimator
(see, for example, the Appendix in [26].) Operationally,
the N × K weight matrix W is augmented by two ad-
ditional columns, indexed (for convenience) by a and A,
consisting of

wna = wn(β) ; wnA =
A[Xn]

Â(β)
wna (16)

where β is the temperature of interest.
The variance in Â(β) can be computed from the

asymptotic covariance matrix Θ, which is estimated by

Θ̂ ≡WT · [IN −WNWT]+ ·W (17)

where IN is the N × N identity matrix, N =
diag(N1, N2, . . . , NK , 0, 0), and A+ denotes the pseu-
doinverse of a matrix A. For cases where the columns
of W are linearly independent (which will be the case
when β 6= βi for all i ∈ {1, . . . ,K} and βi 6= βj for i 6= j),
a simpler expression that requires pseudoinversion of
only O(K)×O(K) can be used:

Θ̂ = [(WTW)+ −N]+ (18)

Efficient computation of Θ̂ by other means is discussed
in the Appendix of [17].

The uncertainty in Â(β) is then estimated as

var Â(β) ≡
〈(
Â(β)−

〈
Â(β)

〉)2
〉

≈ [Â(β)]2
[
Θ̂aa − 2Θ̂aA + Θ̂AA

]
(19)

Near Â(β) ≡ 0, the uncertainty estimation in Eq. 13
may run into numerical issues; in this case, it is recom-
mended that the relative uncertainty var Â(β)/[Â(β)]2

be computed instead.
Similarly, the covariance between two estimates Â(β)

and B̂(β′) at respective temperatures β and β′ (which
may be the same or different) can be computed by aug-
menting W with additional columns [17, 21],

wnb = wn(β′) ; wnB =
B[Xn]

B̂(β′)
wnb (20)

yielding

cov
(
Â(β), B̂(β′)

)
≡
〈(
Â(β)−

〈
Â(β)

〉)(
B̂(β′)−

〈
B̂(β′)

〉)〉
≈ Â(β) B̂(β′)

[
Θ̂ab − Θ̂aB − Θ̂Ab + Θ̂AB

]
(21)
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This can be extended to more than two expectations if
the covariance of many such pairs is desired simultane-
ously [17, 21].

For purposes of numerical stability, it is conve-
nient to work with the logarithms of quantities like
q[X|βi]/q[X|βj ] and Ẑi/Ẑj . We therefore define a tra-
jectory action functional S[X|β] as

S[X|β] ≡ − ln q[X|β] (22)

Note that this definition differs from standard defini-
tions (e.g. [28]) in that only terms that depend on both
trajectory X and temperature β are included in q[X|β]
and S[X|β]—any remaining multiplicative terms in the
path probability density p[X|β] are subsumed by the
normalization constant Z(β) to simplify the subsequent
development. Inclusion of explicit multiplicative terms
that depend on β but not X could reduce the variance
of dynamical reweighting estimates, but this is not done
here for simplicity.

For all of the models of dynamics considered in Sec-
tion II C, the trajectory- and temperature-dependent ac-
tion S[X|β] is linear in the inverse temperature β, having
the form

S[X|β] = βH[X] (23)

where the quantity H[X] plays the role of a general-
ized path Hamiltonian that operates on trajectory space,
analogous to the role of the standard Hamiltonian H(x)
that operates on microstates in phase space. We note
that the path Hamiltonian can be trivially computed
from the action S[X|β] or unnormalized path density
q[X|β] as

H[X] = β−1S[X|β] = −β−1 ln q[X|β] (24)

We also define the dimensionless path free energy fi
of path ensemble i as

fi ≡ − lnZi (25)

The logarithms of the trajectory weights wn(β) can then
be written in terms of the path Hamiltonians H[X] and
dimensionless free energies fi as

lnwn(β) = f̂(β)− ln

K∑
k=1

Nke
f̂k−(βk−β)H[Xn] (26)

where the temperature-dependent dimensionless free
energy f̂(β) is given by

f̂(β) = − ln

N∑
n=1

[
K∑
k=1

Nke
f̂k−(βk−β)H[Xn]

]−1

(27)

and the f̂k ≡ f̂(βk). Practical notes about working
with the estimation equations in a numerically stable
and efficient manner are given in [17, 21]. Due to the
analogous nature of estimating static equilibrium ex-
pectations using the Bennett acceptance ratio (MBAR)

method [17], pymbar, the Python package for perform-
ing MBAR analysis (available at http://simtk.org/
home/pymbar), can be used for the computation of di-
mensionless path free energies f̂i, expectations Â, and
covariances cov(Â, B̂) by using path actions S[X] in
place of the reduced potential energy u(x). This scheme
was used for the calculations presented here.

C. Models of dynamics in the canonical ensemble

While the path ensemble estimator (described for
temperature-dependent dynamics in Section II B, and
more generally in [21]) can be applied to dynamics in
any thermodynamic ensemble in which the unnormal-
ized trajectory probability density ratios qi[X]/qj [X] are
finite and nonzero over the same domain, we restrict our
consideration to the canonical (NVT) ensemble in classi-
cal statistical mechanics. As the concept of a thermo-
dynamic ensemble is a purely equilibrium construct, it
specifies only the relative probability p(x|β) with which
a configuration or phase space point x is observed at
equilibrium. To write a probability density over equi-
librium trajectories at inverse temperature β, p[X|β],
we must further specify a particular scheme for mod-
eling dynamics within this ensemble. The choice of
model used to simulate dynamics within this ensemble
is not unique—many schemes can be employed that will
generate the same equilibrium density in phase space
p(x|β), but will have different trajectory probability den-
sities p[X|β]. This choice must therefore be guided by
both a desire to mimic the relevant physics for the sys-
tem of interest (such as whether the system must be al-
lowed to exchange energy with an external heat reser-
voir during the course of dynamical evolution), bal-
anced with computational convenience (e.g. the use of
a stochastic thermostat in place of explicitly simulating
a large external reservoir).

We consider four common models for simulating
dynamics within the NVT ensemble for which the
ratio of unnormalized trajectory probability densities
q[X|βi]/q[X|βj ] can be computed: (i) Hamiltonian dy-
namics with canonically-distributed initial conditions,
(ii) an Andersen thermostat [29], (iii) Langevin dynam-
ics, and (iv) overdamped Langevin (sometimes called
Brownian) dynamics. Notably, the deterministic nature
of the Nosé-Hoover thermostat [30, 31] and the way that
the inverse temperature β appears in its equations of
motion means a trajectory X ≡ x(t) generated at in-
verse temperature βi will have identically zero proba-
bility p[X|βj ] at inverse temperature βj 6= βi, prevent-
ing its use in the reweighting scheme described here.
The same is true of the Berendsen weak-coupling algo-
rithm [32], though any usage of this form of thermal con-
trol is highly discouraged because of its failure to gener-
ate a canonical ensemble [33–35] or be ergodic [34].

http://simtk.org/home/pymbar
http://simtk.org/home/pymbar
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1. Canonical distribution of Hamiltonian trajectories

Consider a collection of trajectories of length τ in
which initial phase space points x0 ≡ x(0) are sampled
from the canonical density p(x0|β), and whose dynam-
ical evolution is governed by Hamiltonian mechanics.
Physically, this corresponds to the statistics of a situa-
tion where the system is initially in contact with a ther-
mal reservoir at inverse temperature β, but the evolu-
tion time τ is short enough that effectively no heat is
exchanged with the reservoir during this time. Practi-
cally, an ensemble of these trajectories can be generated
in a number of ways: For example, the initial configura-
tions x0 could be generated from the desired canonical
ensemble p(x0|β) ∝ e−βH(x0) by a form of Metropolis-
Hastings Monte Carlo [36] or hybrid Monte Carlo [37].

The trajectory probability density p[X|β] is given by

p[X|β] = Z(β)−1 e−βH(x0) (28)

whereH(x) denotes the Hamiltonian for the system and
x0 ≡ x(0) is the initial phase space point. While the
normalization constant can be written

Z(β) =

∫
dx e−βH(x) (29)

we do not need to compute it for use in dynamical
reweighting.

The path Hamiltonian H[X] can then be identified
(via Eq. 24) as being identical to the Hamiltonian

H[X] = H(x0). (30)

We note that, while the Hamiltonian is invariant along
the trajectory for true Hamiltonian dynamics, numerical
integrators will not exactly preserve this property.

2. Andersen thermostat

The Andersen thermostat [29, 38] allows the system
to exchange heat with an external thermal reservoir
through stochastic collisions with virtual bath particles.
These “collisions” simply cause the real particle’s ve-
locity to be reassigned from a Maxwell-Boltzmann dis-
tribution corresponding to the thermostat temperature,
ensuring that the canonical ensemble is sampled [29].

Two schemes are commonly used. In the first scheme,
the system undergoes so-called massive collisions, in
which all momenta are reassigned from the Maxwell-
Boltzmann distribution at fixed intervals; evolution be-
tween collisions occurs by normal Hamiltonian dynam-
ics. This collision interval can have a large effect on the
kinetic properties of the system, so this scheme is usu-
ally used only for studying static thermodynamic prop-
erties.

In the second scheme, each particle has a fixed proba-
bility per unit time ν of having its momenta reassigned.
This corresponds to a scenario in which each particle

undergoes independent stochastic collisions with ficti-
tious bath particles, with the system evolving according
to Hamiltonian dynamics between collisions. Andersen
suggested a physically-motivated collision frequency ν
could be selected based on the thermal conductivity κ of
the sample [29]

ν =
2aκ

3kBρ1/3Np
2/3

(31)

where a is a dimensionless constant that depends on the
shape of the system, ρ is the density, and Np is the num-
ber of particles. Note that, as the system size increases
with Np, the collision frequency ν decreases as N−2/3

p ,
such that the dynamics will approach that of a Hamil-
tonian system for large systems. Further elaborations
of this thermostatting scheme attempt to model physi-
cally realistic dynamics of large solutes, such as solvated
biological macromolecules, by coupling the thermostat
only to solvent degrees of freedom (see, e.g., Ref. [39]).
Systems with constraints will require the velocity com-
ponents along the constraints to be removed prior to in-
tegration by an algorithm such as RATTLE [40].

For either thermostatting scheme, the probability of
sampling a trajectory X ≡ x(t) at inverse temperature
β is therefore determined by the probability of select-
ing the initial configuration x0 ≡ x(0) from equilibrium
and the probability of generating the resulting sequence
of random collisions. Up to irrelevant temperature-
independent multiplicative constants that simply deter-
mine the probability that a given sequence ofNc particle
collisions occurred, this probability is

p[X|β] ∝ e−βH(x0)
Nc∏
n=1

πv(vn|mn, β) (32)

where the index n in the product runs over all particle
collisions that occurred during integration (either at reg-
ular intervals or stochastically determined), indexed in
arbitrary order. vn is the velocity of the particle after the
nth massive collision, mn its mass, and πv(v|m,β) is the
Maxwell-Boltzmann distribution for the velocity vector
of a particle of mass m at inverse temperature β:

πv(v|β,m) ∝ e−βmv
2/2 (33)

The path Hamiltonian H[X] can therefore be identi-
fied as the Hamiltonian for the initial phase space point
x0 plus the new kinetic energies of all particles that have
undergone collisions during the course of integration:

H[X] = H(x0) +
1

2

Nc∑
n=1

mnv
2
n (34)

where again, vn is the new velocity of the particle that
had undergone collision indexed by n, and mn is its
mass.
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3. Langevin dynamics

In Langevin dynamics, stochastic forces are used to
mimic the influence of degrees of freedom that are not
explicitly represented by particles in the system, such as
solvent molecules whose influence is incorporated into
the potential by mean-field interactions. The memory-
less Langevin equations of motion for phase space point
x ≡ (r,v), consisting of Cartesian atomic positions r and
velocities v, are

ṙi(t) = vi(t)

miv̇i(t) = Fi(v(t))− γivi(t) +Ri(t) (35)

where mi is the mass associated with degree of freedom
i, Fi(q) ≡ −∂H/∂qi is the systematic force component,
and γi is an effective collision frequency or friction coef-
ficient for that degree of freedom, with units of inverse
time (e.g. 91 ps−1 for water-like viscosity). γi is related
to the temperature-dependent diffusion constant Di(β)
by

Di(β) = (βγimi)
−1 (36)

The stochastic forceRi(t) has zero mean and satisfies the
fluctuation-dissipation theorem,

〈Ri(t)Rj(t′)〉 = 2β−1miγiδijδ(t− t′) (37)

The Langevin Leapfrog integrator [41] is an accurate
and stable algorithm for integrating the Langevin equa-
tions of motion. Updating of positions rt and velocities
vt by a discrete timestep ∆t is handled by the following
scheme:

vi,t+ 1
2
= aivi,t + bi∆tm

−1
i Fi(Xt) + cim

−1/2
i ξit

ri,t+1 = ri,t + ∆t vi,t+ 1
2

(38)

vi,t+1 = aivi,t+ 1
2

+ bi∆tm
−1
i Fi(Xt+1) + cim

−1/2
i ξi(t+1)

where we have defined the dimensionless constants ai,
bi, and ci associated with each degree of freedom i as

ai ≡ e−γi∆t/2

bi ≡ (1− e−γi∆t/2)/(γi∆t)

ci ≡ (1− e−γi∆t)1/2

As the collision rate γi → 0, we have ai → 1, bi → 1/2,
and ci → 0, resulting in the standard leapfrog integrator
scheme.
ξit is a unit-bearing random normal variate with zero

mean and variance β−1 = kBT , simply denoted

ξit ∼ N (0, β−1). (39)

Note that ξit has units of the square-root of energy.
Propagation for Nt steps of Langevin leapfrog inte-

gration from initial configuration x0 ≡ (r0,v0) for a sys-
tem with Nd degrees of freedom requires generating the
sequence of random variates ξit. Ignoring multiplica-
tive factors not involving both trajectory X and tem-
perature β, the unnormalized equilibrium probability of

sampling a trajectory X which originates at x0 and has
noise history ξit at inverse temperature β is given by

q[X|β] = e−H(x0)
Nt∏
t=0

Nd∏
i=1

φ(ξit; 0, β−1) (40)

where φ(x;µ, σ2) is the normal probability density

φ(y;µ, σ2) ∝ exp

[
− 1

2σ2
(y − µ)2

]
(41)

The path Hamiltonian can therefore be computed
from the initial phase space point x0 and unit-bearing
noise history ξit, as

H[X] = H(x0) +
1

2

Nt∑
t=0

Nd∑
i=1

ξ2
ti (42)

which can easily be accumulated during integration.
Note that, if γi = 0 for a degree of freedom i, the

corresponding noise term ξ2
ti does not contribute to the

integration in Eq. 38 and can be omitted from the path
Hamiltonian above.

4. Overdamped Langevin (Brownian) dynamics

At high friction, momentum relaxation becomes fast
compared to particle motion, such that inertial motion
may be neglected. A common integrator for this over-
damped regime, in which only coordinates q are explic-
itly integrated, is given by Ermak and Yeh [42, 43]

rt+1,i = rti +
∆t

γimi
Fi(xt) +

√
2

(
∆t

γimi

)1/2

ξti (43)

where the stochastic component ξti is again a unit-
bearing normal random variate with zero mean and
variance β−1 = kBT ,

ξti ∼ N
(
0, β−1

)
(44)

with units of the square-root of energy, and γi is a col-
lision rate of friction constant for degree of freedom
i, with units of inverse time, where the temperature-
dependent diffusion constant Di is again related by
Eq. 36.

Ignoring irrelevant multiplicative factors that do not
depend on both trajectory X and temperature β, the un-
normalized probability functional for a realization of Nt
steps of this process is then

q[X|β] = e−βU(x0)
Nt∏
t=1

Nd∏
i=1

φ(ξti; 0, β−1) (45)

where U(x) = U(r) denotes the potential energy and
φ(y;µ, σ2) again denotes the normal probability density.
This allows us to identify the path Hamiltonian as

H[X] = U(x0) +
1

2

Nt∑
t=1

Nd∑
i=1

ξ2
ti (46)
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D. Modified parallel tempering protocol

An especially convenient way to harvest trajectories
from multiple temperatures is through the use of paral-
lel tempering [4–7]. As illustrated by Buchete and Hum-
mer [44], the trajectory segments generated in between
exchange attempts are valid dynamical trajectories sam-
pled from the corresponding replica temperatures. Sim-
ulated tempering can likewise be employed, though we
will not discuss this here.

Below, we enumerate several considerations that
must be taken into account for the use of a parallel tem-
pering protocol to collect trajectories for use in dynami-
cal reweighting.

First, the dynamics in between exchange attempts
must use a scheme amenable to reweighting, such as
one of the models of dynamics within the canonical en-
semble described in Section II C. While this means some
popular choices, such as Nosé-Hoover dynamics [30, 31]
and the Berendsen weak-coupling algorithm [45] cannot
be used, considerable flexibility remains in which dy-
namical schemes are permitted, including Hamiltonian,
Andersen, Langevin, and overdamped Langevin (Brow-
nian) dynamics, as discussed in the previous section.

Second, the time between exchange attempts should
be at least as long as τ , the time over which the com-
puted dynamical observable A[X] is temporally lo-
cal. For example, if a correlation function CAB(t) ≡
〈A(0)B(t)〉 is desired for t ∈ [0, τ ], the time between
exchanges should be at least τ . This may, in some cir-
cumstances, impact the efficiency of parallel tempering
in producing uncorrelated samples. For functionsA that
require a large τ , much of the benefit of the exchanges in
parallel tempering may be lost if few exchange attempts
occur during the simulation. Often, the best choice is
to make this time exactly τ , since the enhanced mixing
properties of parallel tempering simulations diminish as
the time between exchanges grows (for fixed total simu-
lation time) [46].

Thirdly, it is necessary that there is sufficient over-
lap in the distribution of path Hamiltonians sampled
from neighboring temperatures for dynamical reweight-
ing to be effective. While the standard replica-exchange
acceptance criteria [7] will lead to the correct distribu-
tion of trajectories at each temperature, the fraction of
accepted exchange attempts reports on the quality of
overlap of potential energies, rather than the overlap of
path Hamiltonians; as a result, poor reweighting per-
formance may be obtained despite a high exchange ac-
ceptance fraction. A simple way to ensure both good
overlap in path Hamiltonian between neighboring tem-
peratures and correct sampling of the equilibrium dis-
tribution is to use a modified exchange criterion based

on the trajectory action:

Pexch(βi, βj) = min

{
1,
p[Xi|βj ]p[Xj |βi]
p[Xi|βi]p[Xj |βj ]

}
= min

{
1, e−(βj−βi)(H[Xi]−H[Xj ])

}
(47)

where, again, H[X] = β−1S[X|β] = −β−1 ln q[X|β]
denotes the path Hamiltonian for trajectory X defined
in Eq. 24. The resulting procedure can be considered
a form of parallel tempering transition path sampling
[47], with the difference that new trajectories are gen-
erated from old ones in the more conventional fashion
of integrating equations of motion from the final config-
uration xT of the previous trajectory, rather than some
form of transition path sampling [28, 48]. Note that,
even for the case of a canonical distribution of Hamil-
tonian trajectories, the modified acceptance criteria of
Eq. 47 differs from the standard acceptance criteria [7],
as the total Hamiltonian in the modified criteria replaces
the potential energy in the standard criteria.

Attempting to swap temperatures βi and βj for an ar-
bitrarily chosen pair of replicas (i, j) will ensure that the
trajectories are correctly distributed from equilibrium at
their new (or old) temperatures after the exchange at-
tempt guarantees each replica visiting temperature βi
samples from p[X|βi] in the long run [8, 49, 50]; as a
result, their individual timeslices xt will also be dis-
tributed from the corresponding equilibrium distribu-
tion p(x|βi). If there is poor overlap between the tra-
jectory action distributions, then the exchange attempts
between these temperatures will rarely succeed; on the
other hand, if the overlap is good, then the exchange
rate will be accepted with significant probability. Be-
cause the cost of a single exchange attempt is insignif-
icant compared to the computational cost of propagat-
ing all K replicas by another time τ , it is recommended
that many swaps between pairs (i, j) chosen with uni-
form probability be attempted in order to ensure the
replicas are well-mixed. Monitoring of attempted and
accepted exchanges early in the simulation can help di-
agnose whether there is sufficient coupling between all
temperatures for successful reweighting.

While it is not strictly necessary to employ this mod-
ified acceptance probability, some care must be taken
to ensure that a canonical distribution is actually ob-
tained. For example, swapping using an exchange cri-
teria based only on potential energies (as suggested by
Sugita et al. [7]) and failing to rescale velocities may lead
to an incorrect distribution. On the other hand, rescal-
ing the velocities by (βold/βnew)1/2 as recommended [7],
or subsequently redrawing the initial velocities from a
Maxwell-Boltzmann distribution at the new tempera-
ture [6, 51]—a process equivalent to “massive collisions”
for the Andersen thermostat, is not problematic. How-
ever, extra care must be taken to ensure the tempera-
tures are spaced such that there is sufficient overlap in
trajectory action between neighboring temperatures.

Finally, we note that the temporally sequential trajec-
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FIG. 1. Terminally-blocked alanine in explicit solvent and
potential of mean force ofψ torsion at 300 K. The dark shaded
region denotes a 95% confidence interval (two standard errors)
in the free energy difference between the plotted ψ torsion and
the lowest point on the potential of mean force (near ψ = 150
degrees). The labeled light shaded region denotes the αR con-
formation. The PMF and error bars were estimated from the
parallel tempering dataset using MBAR as described in the
text.

tories produced by each replica will have some degree
of correlation in the observable A[X]. If this correla-
tion is significant, the uncertainty estimate produced by
Eqs. 19 will be an underestimate of the true statistical er-
ror, as the samples used in the estimation are assumed
to be uncorrelated. A simple way to remove this corre-
lation is to construct the timeseries At ≡ A[Xt] over
the sequentially-sampled trajectories Xt from a single
replica (without having permuted the replicas to collect
trajectory data by temperature) and estimate the sta-
tistical inefficiency gA from the integrated autocorrela-
tion time of the timeseries At, t = 0, 1, . . . [17, 52–55].
If an equally-spaced subset of N/gA trajectories from
the replicas is generated, these samples will be effec-
tively uncorrelated. Alternatively, the time between ex-
changes τ can be increased to ensure that sequential At
are decorrelated.

III. CORRELATION FUNCTIONS OF A SOLVATED
TERMINALLY-BLOCKED ALANINE PEPTIDE

To illustrate the application of dynamical reweighting
to a condensed-phase system, we consider the estima-
tion of the normalized fluctuation autocorrelation func-
tion for a long-lived conformational state of terminally-
blocked alanine peptide in water that is sparsely popu-
lated at 300 K. Additional simulation details are given
in Appendix A. All code, datasets, analysis scripts,
and plotting scripts used for this application are made
available for download at http://simtk.org/home/
dynamical-reweighting.

The modified parallel tempering protocol described
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FIG. 2. Normalized fluctuation autocorrelation functions for
indicator function on αR conformation. In both plots, single-
temperature estimates are shown as points with error bars,
and the dynamical reweighting estimate is shown as a solid
line with shaded error interval. Error bars denote 95% confi-
dence intervals (two standard errors).

in Section II D was used to sample many 10 ps trajec-
tories from each of 40 exponentially-spaced tempera-
tures spanning 300–600 K, using the “canonical distri-
bution of Hamiltonian trajectories” model of dynamics
described in Section II C 1. Replica temperatures were
chosen to be exponentially spaced so that Tk = (Tmax −
Tmin) exp[(k − 1)/(K − 1)] + Tmin for k = 1, . . . ,K; this
is equivalent to geometrically-spaced replicas, which
would achieve equal acceptance rates among replicas
if the system being simulated was an ideal gas. These
temperatures may not be optimal in terms of reducing
replica correlation times or equalizing acceptance prob-
abilities for the system studied here. While numerous
schemes for intelligently choosing or adapting temper-
atures exist [56? ? –60], no attempt was made to do so
here. The modified protocol makes use of the exchange
criteria of Eq. 47, where path Hamiltonians instead of
potential energies are used in computing the probabil-
ity of accepting a proposed temperature swap between
replicas; this amounts to simply using the total energies
H(x) in the exchange criteria, the sum of potential and
kinetic energies, instead of only the potential energies in
standard parallel tempering protocols. A total of 6720
iterations were conducted (67 ns/replica, or 2.7 µs ag-
gregate), where each iteration consisted of a tempera-
ture exchange phase, assignment of new velocities from
the Maxwell-Boltzmann distribution at the appropriate
replica temperature, and generation of a 10 ps trajectory
segment.

To ensure thorough mixing of the replica associa-
tions with temperatures, 403 = 64 000 exchange at-
tempts among randomly-selected pairs of replicas were
attempted each parallel tempering iteration. Because

http://simtk.org/home/dynamical-reweighting
http://simtk.org/home/dynamical-reweighting
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exchanges are attempted among all temperatures, and
not just neighboring ones, the probability any two tem-
peratures are exchanged during the simulation is diag-
nostic of whether there is sufficient overlap among tem-
peratures for successful reweighting; in particular, if no
swaps occur between specified subsets of temperature,
reweighting will produce highly uncertain estimates.
Over the course of the simulation, 31.5% of proposed
neighbor swaps were accepted, 4.5% of next-neighbor
swaps, and 1.1% of more remote proposed exchanges
accepted. The second-largest eigenvalue of the empiri-
cal temperature exchange matrix was less than unity—
estimated to be 0.99801—indicating that the set of tem-
peratures did not decompose into two or more subsets
with extremely poor exchange properties between them;
were there two subsets of temperatures with no tran-
sitions in between, this eigenvalue would have been
unity. This indicates that a sufficient number of repli-
cas were chosen to span the range of temperatures with
reasonably good exchange among temperatures.

A statistically uncorrelated subset of trajectories gen-
erated from the modified parallel tempering simulation
were extracted according to the procedure described in
Section II D. The statistical inefficiency g of the time-
series un was computed, where un is defined as the ef-
fective reduced potential for the replica ensemble, defined
in terms of the instantaneous joint configuration of all
replica conformations X ≡ {X1, . . . , XK}:

un ≡ u(Xn) =

K∑
k=1

βkH[Xkn] (48)

Here, Xkn denotes the trajectory sampled from the
replica at temperature βk at iteration n of the paral-
lel tempering simulation, and H[X] the path Hamilto-
nian. As the quantity un denotes the log-probability
of the overall replica-exchange joint probability distri-
bution function P (X1, . . . , XK |β1, . . . , βK), and the sta-
tistical inefficiency of the timeseries un, n = 1, . . . , N
roughly corresponds to the number of parallel temper-
ing iterations required to generate an independent set of
samples. After discarding the first 50 iterations to equi-
libration, the statistical inefficiency was estimated to be
3.1 iterations.

We define the αR conformation as ψ ∈ [−124, 28) de-
grees, based on examination of the one-dimensional po-
tential of mean force (PMF) in the ψ torsion at 300 K (Fig-
ure 1), which was estimated using the multistate Ben-
nett acceptance ratio (MBAR) [17] and a Gaussian ker-
nel density estimator with a bandwidth of 20 degrees.
This state has a low population at 300 K (9.6 ± 0.5% as
estimated by MBAR), but a relatively long lifetime com-
pared to other conformational transitions in this peptide
model. As an observable, we chose the indicator func-
tion for the αR state:

h(x) =

{
1 ψ(x) ∈ [−124, 28) degrees

0 else
(49)

We compute the normalized fluctuation correlation
function C(τ ;β),

C(τ ;β) ≡
〈δh(0)δh(τ)〉β
〈δh2〉β

(50)

where we use the shorthand δh(t) ≡ h(x(t)) − 〈h〉β .
We note that, while the correlation function C(τ ;β) de-
scribes the relaxation dynamics out of the defined re-
gion ψ ∈ [−124, 28) degrees, this correlation function
may contain multiple exponential timescales due to the
simplistic definition of the αR stable state. Estimation
of accurate rate estimates would require calculation of a
quantity robust to imperfect definition of dividing sur-
face, such as examination of the reactive flux correlation
function [61, 62] or the Markov model described in a
companion paper [63].

Because C(τ ;β) is not easily expressed as a single ex-
pectation, we write it as a combination of two elemen-
tary path expectations. For a fixed choice of τ , we define
the path functionals A and B as

A[X] ≡ h(x(0))h(x(τ))

B[X] ≡ h(x(0)) (51)

The correlation function C(τ ;β) can then be written as

C(τ ;β) =
〈A〉β − 〈B〉

2
β

〈B〉β − 〈B〉
2
β

(52)

and hence its estimator, in terms of Â(β) and B̂(β), is

Ĉ(τ ;β) =
Â(β)− B̂(β)2

B̂(β)− B̂(β)2
(53)

where we have used the fact that (B[X])2 = B[X] be-
cause [h(x)]2 = h(x). The statistical uncertainty in
Ĉ(τ ;β) is determined by simple propagation of error.
Suppressing the functional dependence on β, we have

δ2Ĉ =

[
∂Ĉ

∂Â

]2

δ2Â+

[
∂Ĉ

∂B̂

]2

δ2B̂ + 2

[
∂Ĉ

∂Â

][
∂Ĉ

∂B̂

]
δÂδB̂

(54)

where the partial derivatives are given by

∂Ĉ

∂Â
=

1

B(1− B)
;
∂Ĉ

∂B̂
=
A− 1

(B − 1)2
− A
B2

(55)

Where the quantities δ2Â ≡ var Â, δ2B̂ ≡ var B̂, and
δÂδB̂ ≡ cov(Â, B̂) represent the statistical errors (vari-
ance or covariance) of the estimators Â and B̂.

Estimates for C(τ ;β) were computed using either the
pool of uncorrelated trajectories at each replica tem-
perature, or for a superset of temperatures (including
the simulation temperatures) by dynamical reweight-
ing as described in Section II B. For the former case,
statistical error estimates were computed using sample
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FIG. 3. Temperature dependence of the normalized fluctua-
tion autocorrelation function C(τ ;β) for τ = 10 ps. Single-
temperature estimates are shown as points with error bars de-
noting a 95% confidence interval; the dynamical reweighting
estimate is shown as a solid line with shaded confidence inter-
val.

(co)variances; for the latter case, statistical errors were
computed using covariances obtained using Eqs. 19
and 21. Figure 2 compares correlation functions esti-
mated for a few temperatures using single-temperature
data and multiple-temperature data using dynamical
reweighting.

To demonstrate how dynamical reweighting pro-
duces a smooth estimate throughout the temperature
range, even at temperatures not sampled, Figure 3
shows the estimate of C(τ ;β) for τ = 10 ps. Clearly, the
reweighted estimate produces a smoother, continuous
estimate across all temperatures, with a uniformly re-
duced statistical uncertainty compared to the estimates
computed from individual temperatures. While some
features in the reweighted estimate are likely spurious,
the 95% confidence interval envelope (shaded region)
still permits a smooth, well-behaved curve within its
boundaries.

Finally, we compare the bias and variance of single-
temperature estimates with the dynamical reweighting
estimate in a manner independent of the statistical er-
ror estimator. The replica-exchange trajectory was di-
vided into 20 contiguous blocks of equal length, and
C(τ ;β) estimated independently on each block. Us-
ing the dynamical reweighting estimate over the en-
tire dataset as a reference, the bias and variance of the
single-temperature and dynamical reweighting estima-
tors were assessed by computing the estimators for each
of 20 consecutive subsets of the simulation, and comput-
ing the mean deviation or standard deviation of the esti-
mates over the blocks. The bias, which is defined as the
expectation over many independent realizations of the
experiment of the deviation of the estimate from the true

value, was estimated as the sample mean of the block
estimates minus the estimate computed using all data;
the variance, which represents the expected squared-
deviation of the estimator from its expectation over
many independent realizations of the experiment, was
estimated by the sample variance over the blocks. Fig-
ure 4 depicts the estimated bias and variance in Ĉ(τ ;β)
for all times τ ∈ [0, 10] and all simulation temperatures
βk. The advantage of dynamical reweighting is clear.
Bias is minimized by virtue of the fact that contributions
to the dynamical property can occur at any tempera-
ture and are incorporated with their appropriate weight,
rather than relying upon small-number statistics where
the events of interest may occur few or no times within
the simulation at the temperature of interest. Similarly,
inclusion of data from multiple temperatures reduces
the overall variance component of the statistical error,
resulting in improved estimates at all temperatures.

Figure 5 shows the total trajectory weight contribut-
ing from each sampled temperature as a function of
target temperature β, where the per-trajectory weight
wn(β) from Eq. 14 is summed over all trajectories from
the contributing sampled temperature and plotted on
a base-10 logarithmic scale, normalized so that the
target temperature has a total contributing weight of
unity (zero on log scale). After the target temperature,
neighboring temperatures contribute the most trajectory
weight to averages at the target temperature, with the
contribution rapidly falling off for more distant temper-
atures. Note that this does not mean that distant tem-
peratures are unhelpful, as they may still serve to reduce
the effective replica correlation time if correlation times
at high temperatures are especially short [8].

Normalizing the total trajectory weight contributed
from each temperature to the weight contributed from
the target temperature allows us to roughly estimate
how much useful data in total we are extracting by mak-
ing use of reweighting in this system by summing this
total relative weight over all temperatures. This quan-
tity, averaged over all target temperatures, is ∼ 2.4, sug-
gesting that approximately 2.4 times as much data is
provided in this system by making use of reweighting
instead of just the data collected from the replicas that
visit the target temperature. Increasing the quantity of
data collected by a factor of 2.4 should decrease the stan-
dard error by ∼

√
2.4 ≈ 1.6, an amount consistent with

the difference in confidence interval widths depicted in
Figure 2.

IV. DISCUSSION

The dynamical reweighting scheme outlined here
provides a convenient way to estimate equilibrium dy-
namical properties from simulations at multiple tem-
peratures, complementing reweighting schemes for es-
timating static expectations (such as the related multi-
state Bennett acceptance ratio, or MBAR, method [17],
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of unity (zero logarithm).

or the histogram-based WHAM [13, 15, 18]). Dynam-
ical reweighting provides a way to make use of all
the data from a parallel or simulated tempering sim-
ulation, provided the dynamical model employed is

amenable to reweighting by the unnormalized density
ratios q[X|β]/q[X|β′] being both finite and nonzero. This
condition is fulfilled for the common models of dynam-
ics in the canonical ensemble—canonical distribution
over Hamiltonian trajectories; Andersen, Langevin, and
overdamped Langevin / Brownian stochastic dynam-
ics, reviewed in Section II C—but not Nosé-Hoover or
Berendsen.

While not all properties will benefit greatly from
the use of reweighting, some dynamical expectations—
particularly those that involve large contributions from
trajectories that are rare at the temperature of in-
terest, but more plentiful at elevated (or reduced)
temperatures—will especially benefit in terms of re-
duced variance. For example, though not shown here,
transitions along the φ torsion for terminally-blocked
alanine involve conformational states with high free en-
ergy which may not even be sampled at some tempera-
tures in simulated or parallel tempering simulations of
typical length, necessitating the use of reweighting to
provide an estimate of rates involving these states (illus-
trated in detail in a companion paper [63]). Even in the
case where little or no temperature-dependent enhance-
ment of the phenomena is expected, neighboring tem-
peratures from a simulated or parallel tempering sim-
ulation often carry a reasonably large amount of infor-
mation about the temperature of interest, and their in-
clusion will further reduce the expected statistical error
in the estimated expectation if the data is available any-
way.

The variety of models of dynamics within the canon-
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ical ensemble presented in Section II C, all of which
lead to the same static equilibrium distribution of con-
figurations, naturally leads one to ask which model is
most appropriate. In some regimes—such as the low-
friction regime of Langevin dynamics and the canon-
ical distribution of Hamiltonian trajectories containing
large baths of explicit solvent—these models may give
nearly identical expectations, while in other regimes—
those where the Andersen collision rate ν or Langevin
collision rate γ is large—the expectations for dynami-
cal properties may differ considerably. Which situation
is more physically reasonable will undoubtedly depend
on both the system under study and the properties of in-
terest, but a detailed investigation of this is beyond the
scope of this work.

The efficiency of reweighting—that is, the degree to
which temperatures β′ 6= β contribute to expectations at
temperature β—will depend both on the size of the sys-
tem and, for stochastic dynamics, the trajectory length.
To understand this behavior, consider a standard par-
allel tempering simulation using the conventional ex-
change criteria based on potential energies [7]. In or-
der for the ensembles at two temperatures to have good
potential energy overlap, and hence good exchange ac-
ceptance rates, their temperatures should be spaced
roughly the half-width of the potential energy distribu-
tion, δU ∼

〈
(U − 〈U〉)2

〉1/2
= T
√
kBCv ,. The heat ca-

pacity for the potential energy, Cv ≡ (∂/∂T ) 〈U〉T , tells
us that the temperature shift δT corresponding to this
energy shift δU is roughly T

√
kB/Cv .

Analogously, good path Hamiltonian overlap (and
good exchange acceptance rates using the modified ac-
ceptance criterion in Eq. 47) can be assured with a tem-
perature spacing of roughly T

√
kB/Cv , where Cv is a

generalized form of the heat capacity for path Hamil-
toniansH[X]:

Cv ≡
∂ 〈H〉T
∂T

= kBβ
2
〈
(H− 〈H〉)2

〉
β

(56)

For the canonical distribution of Hamiltonian trajecto-
ries, this generalized path heat capacity Cv is identical
to the heat capacity for the total energy, (∂/∂T ) 〈H〉T =
Cv +NdkB/2, which grows linearly with the number of
degrees of freedom Nd.

For Andersen, Langevin, and Brownian dynamics,
the generalized path heat capacity Cv differs from the
thermodynamic heat capacity Cv . Because the variance
of a sum of uncorrelated random variables is simply the
sum of the variances, we can compute this difference an-
alytically. For Andersen dynamics, Cv = Cv + NckB/2,
where Nc is the number of collisions that occur during
realization of the trajectory, where roughlyNc ∼ NdNtν,
with ν is the per-step collision probability and Nt is the
number of integration timesteps in the trajectory. For
Langevin dynamics, Cv = Cv + Nd(Nt + 1)kB/2, and
for Brownian dynamics, Cv = Cv + NdNtkB/2 (where
Cv here denotes the heat capacity for the potential en-
ergy contribution only for Brownian dynamics). For con-

stant, nonzero collision rates, the generalized heat ca-
pacity is therefore extensive in NdNt; as the systems
grow larger or the trajectories grow longer, the efficiency
of reweighting is therefore expected to diminish.

The form of the path Hamiltonians suggests a further
analogy with the equilibrium statistical mechanics gov-
erning single configurations. For Hamiltonian dynam-
ics, a path is uniquely identified by its initial phase space
point. For the stochastic forms of dynamics (Andersen,
Langevin, Brownian), a trajectory given an initial phase
space point can be thought of as an ideal polymer con-
sisting of Nt “monomers” that are replicates of the Np-
particle system, one replicate per trajectory timeslice,
where the only interactions are “bonds” between cor-
responding atoms in sequential timeslices. The interac-
tion energies for these “bonds” are harmonic in the noise
variables ξti corresponding to the atomic displacement
between sequential timeslices.

Surprisingly, the path Hamiltonians and generalized
path heat capacities are independent of the choice of col-
lision rate γi for Langevin and Brownian dynamics, ex-
cept when γi is identically zero, at which point the par-
ticles with zero associated collision rates no longer con-
tribute to the path Hamiltonian or heat capacity since
they evolve by deterministic dynamics. This is analo-
gous to the fact that the heat capacity of an ideal poly-
mer is independent of the spring constant and particle
masses. Only in the case of Andersen dynamics will the
collision rate ν modulate the heat capacity through de-
termining the number of particle collisions observed in
a trajectory of fixed length Nt.

It should be noted that there is often additional in-
formation available that could be incorporated into the
reweighting scheme through the use of control vari-
ates [26]. For example, for the model of Hamiltonian tra-
jectories with randomized momenta, the normalization
constants Ẑi that are inferred during the procedure ac-
tually contain the temperature-dependent momentum
partition function, which can be computed analytically.
Incorporation of this as a constraint, or other integrals
of the dynamics that are known exactly, can further re-
duce the variance in the estimated properties of inter-
est, though the degree to which this may occur will be
problem-dependent.
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Appendix A: Additional simulation details for alanine
dipeptide

Using the LEaP program from the AmberTools 1.2
molecular mechanics package [64], a terminally-blocked
alanine peptide (sequence ACE-ALA-NME, see Fig-
ure 1) was generated in the extended conformation, with

peptide force field parameters taken from the AMBER
parm96 parameter set [65]. The system was subse-
quently solvated with 749 TIP3P water molecules [66]
in a cubic simulation box with dimensions chosen to en-
sure all box boundaries were at least 9 Å from any atom
of the extended peptide. The system was subjected to
energy minimization using L-BFGS [67, 68] to reduce
the root-mean-square force to less than 1 kJ/mol/nm,
and then equilibrated for 1 ns with a leapfrog Langevin
integrator [41] at a control temperature of 300 K, us-
ing a 2 fs timestep and collision rate of 5/ps. During
equilibration, an isotropic Monte Carlo barostat with
a control pressure of 1 atm was applied, with volume
moves attempted every 25 timesteps, and the range
of volume change proposals automatically adjusted to
give an approximate acceptance probability of approxi-
mately 50% [69]. All bonds to hydrogen, and hydrogen-
hydrogen distances in waters, were constrained by the
CCMA [70] and SETTLE [71] algorithms, as appropri-
ate. The particle-mesh Ewald (PME) method [72] was
used to treat electrostatics, using a real-space cutoff of
9 Å. PME parameters were automatically selected by an
algorithm that attempts to find the most efficient set of
parameters for which an error bound is less than a spec-
ified error tolerance [69], which was set to the default of
5 · 10−4. Lennard-Jones interactions were truncated at
9 Å without switching, and a homogeneous analytical
long-range dispersion correction [73] was employed to
compensate for dispersion interactions outside the cut-
off. The resulting system had a box volume of 23 073.7
Å3, and the box volume was fixed in the subsequent par-
allel tempering simulation.

A custom Python code making use of the GPU-
accelerated OPENMM package [74–76] and the PY-
OPENMM Python wrapper [77] was used to conduct the
simulations. Because OPENMM lacks a velocity Verlet
integrator, a hybrid velocity Verlet [78] / leapfrog [79,
80] integration scheme was used for integration of the
equations of motion, implemented as follows. At the
beginning of the dynamical propagation phase of paral-
lel tempering iteration, on-step velocities were first gen-
erated from the Maxwell-Boltzmann distribution at the
current replica temperature. Components of the veloc-
ity along constrained bonds (all bonds to hydrogen and
the hydrogen-hydrogen bonds of TIP3P water) were re-
moved using the RATTLE algorithm [40] with 10−16 rel-
ative tolerance, and a 1 fs “half-kick backwards” ap-
plied to the modified velocities using the force evalu-
ated at the current positions. The OPENMM Verlet in-
tegrator was then used to evolve the positions by 0.5
ps (250 steps with a 2 fs timestep) on the GPU, and a
1 fs “half-kick forwards” was applied to the velocities
to synchronize them with the positions after again ap-
plying the RATTLE algorithm. During leapfrog integra-
tion, the CCMA and SETTLE algorithms were used to
constrain bonds, as appropriate.

http://ambermd.org/#AmberTools
http://simtk.org/home/openmm
http://simtk.org/home/openmm
http://simtk.org/home/pyopenmm
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