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Abstract

Dynamical fingerprints of macromolecules obtained from experiments often seem to indicate two- or
three state kinetics while simulations typically reveal a more complex picture. Markov state models of
molecular conformational dynamics can be used to predict these dynamical fingerprints and to reconcile
experiment with simulation. This is illustrated on two model systems: a one-dimensional energy surface
and a four-state model of a protein folding equilibrium. We show that (i) there might be no process
which corresponds to our notion of folding, (ii) often the experiment will be insensitive to some of the
processes present in the system, (iii) with a suitable combination the observable and initial conditions in
a relaxation experiment one can selectively measure specific processes. Furthermore, our method can be
used to design experiments such that specific processes appear with large amplitudes. We demonstrate
that for a fluorescence quenching experiment of the MR121-G9-W peptide.
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Graphical abstract



EXPERIMENT

SIMULATION

Synopsis.

Dynamical fingerprints obtained from correlation experiments can be predicted quantitatively and inter-
preted using Markov state models of the conformational equilibrium. This approach is of use for choosing
the chromophore attachment points and designing the optimal setup of an experiment.
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Highlights

• Conformational dynamics of large biomolecules represented by Markov state models.

• Quantitative prediction of the dynamical fingerprints of correlation experiments.

• The design of the experiment determines which processes can be measured.

• The slowest observed process does not always correspond to the overall folding rate.

• Optimal experimental setup and observable(s) using molecular simulation and Markov models.

4



1 Introduction

Complex molecular systems often possess multiple stable or metastable states which are typically asso-
ciated with specific functional properties. A hallmark of this are the numerous X-ray crystallography
and NMR structures in which a given macromolecule has been found to exist in multiple conformations.
Famous examples are the muscle protein myosin which exists in open and closed states with different
nucleotide configurations [1], DNA-enzyme complexes that have different conformations depending upon
the DNA sequence [2], or the Ribosome the parts of which are found in different arrangements along
the protein synthesis cycle [3]. While these systems are examples which natively have several metastable
states, in natively ordered proteins, the native state is a metastable state itself. This native state is
in equilibrium with unfolded states, as well as possibly aggregation-prone misfolded states that are ob-
served in prion diseases such as Alzheimer [4]. Thus, metastability is hierarchical with metastable states
containing metastable sub-states [5].

In the last years it has become increasingly clear how these metastable states are connected by
dynamics. Especially single-molecule experiments such as fluorescence-based [6, 7, 8, 9] or force-probe
[10, 11, 12, 13] measurements have explicitly shown that macromolecules reside in different metastable
states and occasionally transit between them. Single molecule trajectories can be analyzed by advanced
statistical techniques such as Hidden Markov Models or other likelihood-based methods [14, 15, 16, 17].

However, ensemble-averaged kinetic measurements remain an essential way to access molecular ki-
netics. Such measurements may be done by perturbation of an actual ensemble of molecules, which
often can be done simpler and with a better signal- to noise ratio than manipulation of single molecules.
Perturbation ensemble experiments may be done by monitoring the relaxation of an ensemble towards
equilibrium after starting from a defined off-equilibrium distribution via, e.g., a jump in temperature
[18, 19], pressure [20], a change in the chemical environment [21] or a photo flash [22, 23, 24, 25]. They
may also consist of dynamical spectroscopic measurements such as X-ray or inelastic neutron scattering
[26]. The resulting signal reports on the kinetic processes involved in relaxing the perturbed ensemble
to the original ensemble. More precisely, the autocorrelation function of the signal can be transformed
into a dynamical fingerprint of the molecule [27]. Each peak in the dynamical fingerprint corresponds to
a kinetic process, and its position corresponds to the timescale of this process.

Alternatively, trajectories of single molecules or fluctuations of dilute samples may be used to ac-
cumulate correlation functions, which are then also ensemble-averaged quantities. This approach is
often chosen with fluorescence methods, such as correlation spectroscopy of the fluorescence intensity
[28, 29, 30, 31, 32] or fluorescence resonance energy transfer (FRET) efficiency [33, 34]. The analysis of
these accumulated correlation function is analogous to the analysis of perturbation experiments, but it
yields a dynamical fingerprint of the kinetic processes which are active in equilibrium.

The main limitation of kinetic experiments is that they usually probe only one or two structural
coordinates simultaneously. Exceptions are NMR-based methods [24]. With these methods, however,
only a low time resolution - in the order of seconds - can be achieved, and several laborious repetitions of
the experiment are required to obtain a viable signal-to-noise ratio. Currently, the only technique that can
access structure and dynamics simultaneously and at great detail is molecular dynamics (MD) simulations,
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which are becoming increasingly accepted as a tool to investigate structural details of molecular processes
and relate them to experimentally resolved features [35, 36, 37].

However, there is still a significant gap between experimental and simulation analyses: experimental
analyses often allow only one or two timescales to be distinguished [29, 38], suggesting simple 2- or 3-state
models are sufficient to describe their behavior. In particular, in the search for the “protein folding speed
limit”, a large number of fast-folding proteins have been measured - and most of them appear two be
two-state systems in current measurement techniques [20, 39]. In contrast, MD simulations often reveal
a considerably more complex picture with multiple metastable states and a multitude of relaxation times
[40, 36, 41]. Theoretically, the macroscopically detectable changes have been proposed to arise from a
stochastic walk on a rugged multidimensional energy landscape [42], possibly involving a hierarchy of
barriers, resulting in a hierarchy of relaxation time scales [43], or, alternatively, a jump process on a
transition network between conformational substates [44, 40, 45] for which a given structural change may
involve multiple pathways [36].

Interestingly, subtle experiments with careful analysis do also indicate that there is additional com-
plexity beyond the one or two most prevalent relaxation timescales [46, 47, 48, 49, 8, 13, 50]. In a couple
of cases, enzyme kinetics has been shown to be modulated by interchanging conformational substates
[51]. Some protein folding experiments have found conformational heterogeneity, hidden intermediates,
and the existence of parallel pathways [52, 53, 54, 55, 56, ?]. The identification of kinetic processes based
on features of the experimental signals which are on the level of statistical or systematic measurement
errors is always subject to criticism. It is, therefore, important to understand what such features mean,
and how they could possibly be enhanced by an optimized experimentals setup. More specifically, we ask
questions such as:

• Is the slowest rate observed always the folding process?

• Can a given experiment see all relaxation processes which are present in the dynamics of the
molecule?

• In ensemble relaxation experiments such as temperature-jump, how does the initial state influence
the fingerprint?

• How can specific conformational changes be assigned to the observed relaxation timescales?

• How does one design an experiment, i.e. choose the optimal attachment points for the chromophores
or choose the optimal site for isotopic labelings, such that the timescale of a particular process is
optimally resolved?

We attempt to assemble a systematic approach of unraveling the complex kinetics of macromolecules.
This is done by building a Markov state model (MSM). Markov models approximate the molecular
kinetics by decomposing the molecular state space into many small substates and specifying a transition
probability between each pair of substates [57, 58, 59, 60, 61, 44, 62, 63, 64]. When the system has
metastable states, the slow kinetics can often be described in terms of a reduced model that only has
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transition probabilities or rates between metastable states [65, 36, 5, 66, 67, 68]. How to construct Markov
models from molecular dynamics simulations and validate them has been extensively reviewed elsewhere
[57]. Here, we only repeat the basic steps in Sec. 5 of the paper while the subsequent sections start by
assuming that a Markov model description is given and explain how this description can be related to
experimental observables to arrive at an assignment of structural rearrangement to measureable features
in kinetic experiments.

In the present paper we focus on flourescence spectroscopy and FRET spectroscopy, either conducted
as equilibrium measurements by correlating fluorescence fluctuation of dilute samples (FCS), or by start-
ing an ensemble from a specific off-equilibrium distribution (e.g. as done by T-jump). However our results
are generally valid and can be applied to any single-molecule experiment including experiments which
are not based on spectroscopy, such as atomic force microscopy, optical or magnetic tweezer experiments.

7



2 Model of a protein folding equilibrium

Consider the folding equilibrium of an illustrative protein folding model shown in fig. 1. The protein
consists of two domains, an α-helix and a β-sheet, linked by a short loop regions. Each of the two
domains is assumed to fold and unfold independently of the other, which leads to a folding equilibrium
with four possible conformational states: (i) both domains folded hf -βf , (ii) helix folded and β-sheet
unfdolded hf -βu, (iii) helix unfolded and β-sheet folded hu-βf , and (iv) both domains unfolded hu-βu.
The transition between two of these states is called a conformational change, and the corresponding
transition probability is indicated by the thickness of the arrow between the two states.

We model the transitions between the conformations as a Markov jump process. While these models
typically are a simplification of the true dynamics in the high-dimensional conformational space of the
molecule, one often finds in practice that they constitute quantitatively correct and useful approximations
that now have a solid theoretical foundation [69]. The Markov state model (MSM) directly yields the
rates of the dynamic processes which are present in the folding equilibrium. The rates which are measured
in experiments are associated to these processes. Note that, in most cases, they are not directly linked
to the transition rates between individual conformational states.

The model protein has three possible attachment sites for chromophores, represented by yellow stars
numbered 1 to 3 in fig. 1. In a classical single-molecule fluorescence quenching or FRET experiment, one
would chose two of these attachment points and measure the conformational dynamics as a projection
onto a coordinates that depends mainly on the distance between the two chromophores. By autocorre-
lating the measured signal one can extract the timescales of the dynamics. However, which timescales
are observed not only depends on the underlying conformational equilibrium but also on the choice of
chromophore attachment points. When considering a temperature jump experiment of the same system,
matters become even more complex, because now the observability of the system’s relaxation timescales
additionally depends on the initial and final probability distribution of the system.

In section 3 we review how the measured spectrum emerges from the underlying MSM, the chosen
observable and the initial distribution. In section 4.2 we apply this theory to the model protein.
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3 Theory

3.1 Markov state models

Consider a state space Ω consisting of N discrete microstates

Ω = {S1, S2, ....SN} .

In the context of molecules, this state space usually is the conformational space spanned by either all or
the most important conformational degrees of freedom of the molecule. A microstate is a small volume
element in this high-dimensional space. The microstates cover the entire (accessible) space, but do not
overlap. See [57] for a discussion how this discretization of the continuous state space affects the quality
of the Markov model.

The movement of the molecule in this (conformational) state space is modeled as time-discrete process
s with a time step τ

s = (s0, sτ , s2τ , s3τ ...) . (1)

The probability of finding the molecule in an state j at time t = nτ , in principle, depends on the entire
history of the process

P(snτ = Sj | s(n−1)τ , s(n−2)τ , s(n−3)τ , ... s0).

Only if this long conditional probability can be truncated to

P(snτ = Sj | s(n−1)τ ),

the process is called Markovian [70]. The probability of finding the molecule in state j at time t = nτ

then only depends on the state the molecule has been in at the previous time step (memory-free process).
These probabilities do not change in the course of the process (time invariant). They only depend on the
pair of microstates {snτ = Sj,s(n−1)τ = Si} and the time step τ of the process. Arranged in a N × N
matrix, they form the transition matrix T(τ) with

Tij = P(snτ = Sj | s(n−1)τ = Si) ,

the central property of a Markov state model. The matrix elements represent the probability that the
molecule is found in microstate Sj provided that it has been in microstate Si a time τ earlier. The ith
row of this transition matrix represents all possibilities a molecule in state i has: it can either stay in its
current microstate (Tii) or move to any of the other n− 1 microstates (Tij). Consequently, the elements
of each row in T(τ) sum up to 1

n∑
j=1

Tij = 1 , ∀i

(row-stochastic matrix).
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Representing the conformational dynamics as a Markov state model is a good approximation if

1. the degrees of freedom (d.o.f.), which are not included in the model, (marginal d.o.f. or bath d.o.f.)
move on faster time-scales than the d.o.f. included in the model (relevant d.o.f.) and are not coupled
strongly to the latter [64], and

2. the conformational states of the molecule are projected onto disjunct regions in the space of the
relevant d.o.f., i.e. they do not overlap, and

3. the transition region is sufficiently finely discretized [69, 71, 57], and

4. the time step τ is large enough [69, 57].

While these requirements now have a solid theoretical underpinning, a practical analysis must test whether
the MSM is consistent with the available simulation data within statistical errors [57]

The experiments we consider in the following are conducted under equilibrium conditions. Hence,
the dynamics can be represented by a single (time-invariant) transition matrix. Given a “good” Markov
state model, its transition matrix can be used to generate possible coarse-grained trajectories of a single
molecule in the state space of the model. More importantly, the transition matrix contains the complete
information of dynamics of an ensemble of molecules in this state space. Let p(t) be a probability vector
with N elements, where the ith element represents the fraction of molecules in the ensemble which are
found in state Si at a time t. Consequently,

N∑
i=1

pi(t) = 1 .

The time evolution of this vector is completly determined by the transition matrix T(τ)

p>(t+ τ) = p>(t)T(τ) , (2)

where p>(t) denotes the transpose of the vector p(t). Given an initial probility vector p(0), the probability
at any discrete time kτ can be calculated by repeatedly applying T(τ) to it

p>(kτ) = p>(0)Tk(τ) = p>(0)T(kτ). (3)

Eq. 2 and eq. 3 are equivalent, which becomes obvious if one realizes that p>(2τ) = p>(τ)T(τ) =

p>(0)T(τ)T(τ) = p>(0)T2(τ). They are known as the Chapman-Kolmogorov equation.
If s is ergodic, and if the potential energy surface on Ω is time invariant, then from physical intuition

it is obvious that there must be a unique stationary distribution π, and that this distribution must not
change under the action of T(τ), i.e.

πT = πTT(τ) (4)
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Indeed, this stationary distribution emerges as the first left eigenvector of T(τ) associated with the
eigenvalue λ1 = 1 [72]. Under equilibrium conditions, the dynamics of a molecular systems always fulfills
detailed balance

πiTij = πjTji (5)

with respect to this stationary distribution π. This means that the number of systems in the ensemble,
which go from state i to state j, is the same as the number of systems going from state j to i. This has
a number of convenient consquences on the properties of the MSM, as will be explained below.

Likewise, physical intuition tells us that any initial vector p(0) eventually converges to the stationary
distribution π. Indeed, one can show that for any p(0)

lim
k→∞

p>(0)Tk(τ) = πT ,

where π is the first left eigenvector of T(τ).
The transition matrix is, however, considerably more than a black box which converts the probability

at some point in time t to the probability at some time kτ later. The way the probability vector changes
with time and eventually converges to the stationary probability vector can be understood in terms of
the eigenvectors of the transition matrix. This is illustrated in Fig. 2 (adapted from [57]) for a simple
example.

The upper part in Fig. 2a shows a energy landscape along a single degree of freedom with four
energy minina (A, B, C, D) and a high energy barrier between minima the two minima on the left side
of the coordinate (A, B) and those on the right (C, D). The coordinate is discretized into one hundred
microstates. The lower part of Fig. 2a shows the corresponding equilibrium probability vector π at a
given temperature T . In Fig. 2b a transition matrix, which is given by a diffusion process on this energy
landscape (see [57] for details), is presented. The matrix elements are color-coded: red represents high
transition probabilities between two microstates, and white or light blue represents transition probabilities
which are zero or close to zero. Reading the ith row from left to right, one finds the transition probabilities
of from state xi into states which belong to minimum A (1 ≤ j < 25), to minimum B (25 ≤ j < 50),
to minimum C (50 ≤ j < 75), and eventually to minimum D (75 ≤ j < 100). The four blocks along
the diagonal structure of T(τ) correspond to the four minima in the energy surface. They reflect the
fact that transitions within a minimum are much more likely than transitions from one minimum to the
other.

These properties can be used in order to identify the metastable states of the system. The mathe-
matical foundation for this was worked out in [60] and further developed in [66]. Metastability analysis
has been subject to various studies and applications [5, 73, 36, 27] and is now a major tool to reduce the
complexity of macromolecular kinetics to humanly understandable terms.

Transition matrices can, as any diagonalizable matrix, be written as a linear combination of their left
eigenvectors, their eigenvalues and their right eigenvectors
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T(τ) =

n∑
i=1

λi(τ)ril
>
i . (6)

and thus, for longer timescales:

Tk(τ) =

n∑
i=1

λki (τ)ril
>
i . (7)

The transition matrix T(kτ) = Tk(τ) which transports an initial probability k time steps forward is
again a linear combination of the eigenvectors and eigenvalues. These linear combinations (eq. 6 and 7)
are known as spectral decomposition of the transition matrix. They are very useful for connecting the
dynamics of the molecule to the measured signal, which is in section 3.2.

Eq. 7 is the key for understanding how the transition matrix transforms a probability vector. The
complete process consists of n subprocesses ril

>
i , each of which is weighted by the eigenvalue λi raised

to the power k. Because the transition matrix is a row-stochastic matrix, it always has one eigenvalue
which is equal to one λ1 = 1 [72]. Raising this eigenvalue to the power k does not change the weight of
the corresponding subprocess r1l

>
1 : 1k = 1. r1l

>
1 is the stationary process, which we postulated in eq. 4,

and l1 = π.
All other eigenvalues of the transition matrix are guaranteed to be smaller than one in absolute value

[72]
|λi| ≤ 1 ∀i .

The weights of the corresponding processes, hence, decay exponentially

λki = exp (k lnλi) = exp

(
t

τ
lnλi

)
= exp

(
− t

ti

)
(8)

with the implied timescale ti of the decay process

ti = − τ

lnλi
. (9)

The smaller the eigenvalue λi, the smaller the implied timescale ti, the faster the corresponding process
decays. Fig. 2d shows the 15 largest eigenvalues of the transition matrix in Fig. 2b. There is one
eigenvalue, λ1, which is equal to one, followed by three eigenvalues, λ2 to λ4, which are close to one. These
four dominant eigenvalues are separated by a gap from the remaining eigenvalues. Hence, the transition
matrix consists of a stationary process, three slow processes and 96 processes which decay quickly. After
a few time steps, only the four dominant processes contribute to the evolution of the probability vector.
How these processes alter this vector, is determined by the shape of the corresponding eigenvectors.

Fig. 2c shows the four dominant right eigenvectors. The first eigenvector corresponds to the stationary
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process and is, therefore, constant. The second eigenvector corresponds to the slowest process and has
positive signs in regions A and B and negative signs in regions C and D. This shape effectively moves
probability density across the largest barrier in the energy surface. Since the eigenvector is approximately
constant within the combined region (A,B) and (C,D) left and right of the barrier, it does not alter the
relative probability distribution within these regions. The third eigenvector, analogously, moves density
between A and B, the fourth moves density between C and D.

A transition matrix which fulfills detailed balance (eq. 5) has several convenient properties. First, all
of its eigenvalues and eigenvectors are guaranteed to be real. Second, defining a diagonal matrix Π in
which the diagonal elements are equal to the equilibrium distribution π

Π : Πij =

πi if i = j

0 else
,

the left and right eigenvectors are interconvertable [72]

li = Πri (10)

ri = Π−1li.

Hence, its spectral decomposition (eq. 7) can be written only in terms of the left eigenvectors

Tk(τ) = Π−1
n∑
i=1

λki (τ)lil
T
i . (11)

In the experiments, which we discussed in the following sections, the dynamics of the molecule is governed
by equilibrium dynamics (no varying forces, temperatures etc.). We will, therefore, always assume detailed
balance.

3.2 Calculating experimental expectation values from Markov models

We now consider the case that an experiment is conducted which measures observable a (and possibly
additional observables b, c, ...). This observable has a scalar value for every state Si, although vector-
or function-valued observables could be treated in a similar way. It is implicitly assumed that the state
space discretization used in the MSM in fine enough such that the value of a varies little within individual
states Si. The discretized observable vector a contains the mean values of individual states, ai.

We consider three different types of experiments: equilibrium experiments, relaxation experiments
and correlation experiments. In equilibrium experiments, the observed molecule is in equilibrium with
the current conditions of the surroundings (temperature, applied forces, salt concentration etc.), and the
mean value of an observable a, Eπ[a], is recorded. This may be either done my measuring Eπ[a] directly
from an unperturbed ensemble of molecules, or by recording sufficiently many and long single molecule
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traces a(t) and averaging over them. The expression for the expected measured value of a is purely
stationary, i.e., it does not depend on the time t:

Eπ[a] =

N∑
i=1

aiπi = 〈a, π〉 . (12)

〈x, y〉 denotes the Euclidean scalar product between two vectors x and y and E[...] the expectation value.
In the second type of experiments, relaxation experiments, the observed molecule or ensemble is

allowed to equilibrate under a given set of conditions to the distribution p(0). At time t = 0 these
conditions are changed virtually instantaneously to another set of conditions which are associated with
a different equilibrium distribution π. Now an observable a is traced over time whose mean value decays
from the old expectation Ep(0)[a] to the new expectation Eπ[a]. The way this relaxation, E[a(t)], hap-
pens in time, allows conclusions on the intrinsic dynamical processes of the molecule. This principle is
used in temperature- and pressure jump experiments. It can likewise be reproduced by single molecule
experiments by measuring many trajectories whose conditions are rapidly changed at certain points in
time, and then averaging over this trajectory ensemble. Single-molecule relaxation measurements can be
realized e.g. by cycling the Mg2+ concentration in single-molecule FRET experiments or by changing the
reference positions in optical tweezer experiments. Computationally, the dynamics of the molecule after
t = 0 are governed by a transition matrix T(τ) which reflects the conditions after the jump. At each time
t = kτ , the ensemble will be distributed as pT (kτ) = pT (0)Tk(τ). The expectation value of a(t) changes
accordingly with time:

Ep(0)[a(kτ)] =

N∑
i=1

aipi(kτ) = 〈a,p(kτ)〉. (13)

Using eq. 3, and eq. 11 one can expand eq. 13 to

E[a(kτ)] =
〈
a,
[
p>(0)Tk(τ)

]>〉
(14)

=

〈
a,

[
p>(0)Π−1

N∑
i=1

λki (τ)lil
>
i

]>〉

=

〈
a,

[
p′>(0)

N∑
i=1

λki (τ)lil
>
i

]>〉

where we have replaced the probability distribution p(0) by the excess probability distribution

p′(0) = Π−1p(0) (15)
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with p
′

i(0) = pi(0)/πi. Rearranging the sum and the scalar products, one obtains

E[a(kτ)] =

〈
a,

[
N∑
i=1

λki (τ)
(
p

′>(0), li

)
l>i

]>〉
(16)

=

N∑
i=1

λki (τ)

〈
a,
[(

p
′>(0), li

)
l>i

]>〉

=

N∑
i=1

λki (τ) 〈a, li〉
〈
p

′>(0), li

〉
= 〈a, π〉

〈
p

′>(0), π
〉

+

N∑
i=2

exp

(
−kτ
ti

)
〈a, li〉

〈
p

′>(0), li

〉
. (17)

In this notation, it becomes obvious that the time-dependence of the expected measured signal E [a(kτ)]

has the fom of a multiexponential decay function

f(t) = γ1 +
∑
i=2

γrelax
i exp

(
− t
ti

)
, (18)

with t = kτ . γi is the amplitude of the a ith decay process and is given as

γrelaxi = 〈a, li〉
〈
p

′>(0), li

〉
. (19)

The respective decay constant ti is equal to the ith implied timescale of the underlying transition matrix.
Note that the individual components of the signal decay until the expected measured signal of the
equilibrium experiment under the target conditions is reached

lim
k→∞

E[a(kτ)] = 〈a, π〉
〈
p

′>(0), π
〉

= 〈a, π〉 = Eπ[a] .

The amplitudes γrelax
i in Eq. (eq. 19) reflect the extent to which a given mode (eigenvector) of the

dynamics influences the time-evolution of 〈a(kτ)〉p(0). This depends on two factors

1. how much probability density is transported via this mode during the relaxation from p(0) to π,
represented by the scalar product

〈
p′>(0), li

〉
2. how sensitive a is to changes along this mode, represented by the scalar product, 〈a, li〉.

A third type experiments considered here are correlation experiments which report on the intrinsic molec-
ular kinetics via time correlation functions of certain observables. One way to measure such correlation
functions is by tracing the equilibrium fluctuations of a molecule subsequently correlating this signal
in time. This is e.g. done in fluorescence correlation spectrosopy (FCS). In experiments, in which two
signals, a and b, are measured simultaneously, also cross-corrleation functions can be extracted from the
measured signal Multiparameter-FRET experiments [74, 75] or Multichromophore FRET experiments
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[7] are examples of this type of experiment. A way of directly measuring time correlation functions of
atomic positions are X-ray and neutron scattering experiments.

3.3 Calculating experimental correlation functions from Markov models

We now use the existing formalism to derive expressions which predict the auto-correlation function
of observable a and the cross-correlation function of observable a and b. Altough, to the best of our
knowledge, the auto- or crosscorrelation analysis of the measured signal has not been applied to relax-
ation experiments yet, we also include this possibility into our derivation for completeness. In total, we
obtain four different expressions for the four possible experimental situations (equilibrium or relaxation
experiment combined with either auto- or cross-correlation function). The respective expressions of the
amplitudes are summarized in Tab. 8.

We start with the most complex case: cross-correlation function in a relaxation experiment. All other
results are specializations of this case. The movement of the molecule is represented by the jump process
on the discrete microstates Si (eq. 1). Each state is associated with a value of each of the measured signal,
represented by the signal vectors a and b. The correlation of a(t) and b(t), given an initial probability
represented by p(0), is defined as

Ep(0)[cor(a, b; τ)] =

N∑
i=1

N∑
j=1

aiP(s0 = Si) · bjP(skτ = Sj | s0 = Si)

=

N∑
i=1

N∑
j=1

aipi(0) · bjP(skτ = Sj | s0 = Si)

If st is a Markov processes with transition matrix T(τ), then the conditional probability P(skτ = Sj |
s0 = Si) can be replaced by the corresponding matrix element

[
Tk(τ)

]
ij
of the transition matrix raised to

the power k. Introducing a diagonal matrix P(0) in which the diagonal elements are equal to the initial
probability vector Pii(0) = pi(0) , we can formulate the cross-correlation function as a vector-matrix
equation

Ep(0)[cor(a, b; kτ)] = a>P(0)Tk(τ)b. (20)

We introduce an excess initial density P′(0) = Π−1P(0) (analogous to eq. 15), replace the transition
matrix by its spectral decomposition (eq. 11), use the definition of the implied timescale (eq. 8) and
obtain an expression which has the same structure as eq. 18
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Ep(0)[cor(a, b; kτ)] = aTP(0)Π−1

[
N∑
i=1

λki lil
>
i

]
b

=

N∑
i=1

λki

N∑
r,s=1

ar
pr(0)

πr

{
lil
>
i

}
rs
bs

=

N∑
i=1

λki

N∑
r,s=1

ar
pr(0)

πr
{li}s {li}s bs

=

N∑
i=1

λki 〈a,P′(0)li〉 〈b, li〉

= 〈a,P′(0)π〉 〈b, π〉+

N∑
i=2

exp

(
−kτ
ti

)
〈a,P′(0)li〉 〈b, li〉 (21)

The ith decay constant of this multiexponential decay is given as the implied timescale associated with
the ith eigenvector of the transition matrix. The corresponding amplitude is given as

γ
relax, cross-cor
i = 〈a,P′(0)li〉 〈b, li〉 . (22)

The autocorrelation function of a relaxation experiment is obtained by replacing the signal vector b by
a in eq. 20 and 21

Ep(0)[cor(a, a; kτ)] = 〈a,p(0)〉 〈a, π〉+

N∑
i=1

exp

(
−kτ
ti

)
〈a,P′(0)li〉 〈a, li〉 .

with the amplitudes

γ
relax, auto-cor
i = 〈a,P′(0)li〉

2
. (23)

In the more common case that the correlation functions are measured under equilibrium conditions,
the initial density equals the equilibrium density and consequently P′(0) is equal to the identity matrix.
The cross- and autocorrelation are thus given as

Eπ[cor(a, b; kτ)] =

N∑
i=1

λki 〈a, li〉 〈b, li〉

= 〈a, π〉 〈b, π〉+

N∑
i=2

exp

(
−kτ
ti

)
〈a, li〉 〈b, li〉

with the amplitudes
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γcross-cori = 〈a, li〉 〈b, li〉 . (24)

and

Eπ[cor(a, a; kτ)] =

N∑
i=1

λki 〈a, li〉
2

= 〈a, π〉2 +

N∑
i=2

exp

(
−kτ
ti

)
〈a, li〉2 . (25)

with the amplitudes

γcross-cori = 〈a, li〉2 . (26)
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4 Application to model systems

4.1 1D energy surface

Figure 3 shows the eigenvectors of our model of an one-dimensional energy surface (fig. 2), two different
observables and two different initial distributions. The observables model a fluorescence quenching ex-
periment. With a1 the chromophore fluoresces if the system is in state A or B, whereas fluorescence is
quenched in state C and D. With a2 fluorescence is quenched in A, B, and D.

Due to the hierachical nature of the energy landscape an interpretation of the measured timescales
in terms of individual conformational changes can be misleading. In a four state system, there are six
possible transitions, i.e. six possible conformational changes. Yet the dynamics in this state space is
described by only three relaxation processes (non-stationary eigenvectors of the corresponding transition
matrix). Processes three and four indeed correspond mostly to transitions from one conformational state
to another. However, process two represents the transition between the group {A,B} and the group
{C,D}, i.e. it can be associated to the transition across the barrier separating B and C.

The stationary process is always detected. The overlap between the observables and the initial dis-
tributions with the eigenvectors of the model, represented by the respective scalar product, are shown to
the left and right of the eigenvector plots in Fig. 3. Because the stationary distribution l1 = π has only
positive entries, the scalar product with any observable or any initial distribution is greater than zero.
Consequently, γ1 in eq. 18 is always greater than zero. Although dynamical fingerprints do normally not
include this stationary part [27], we here include the overlap of observable and initial distributions with
the stationary process for completeness.

Not all dynamical processes can be detected. Whether a given process appears in the experimental
fingerprint depends on the overlap of the observable with this process. For example, the overlap of a1

with the third and the fourth process is nearly zero. These processes correspond to swaps between states
which have the same signal value (A ↔ B and C ↔ D). Hence, a2 is insensitve to them, and γ3 ≈ 0, and
γ4 ≈ 0 in an autocorrelation experiment (eq. 25). Only the second process can be observed with a1. a2

is sensitive to the second and fourth process but not to the third. Compare the scalar products in Fig.
3 with the Fig. 4a and 4b.

By a clever choice of a and p(0) one can selectively measure a specific process. It is not possible
to observer processes in a relaxation experiment which would be invisible in an equilibrium experiment
(Fig. 4c and 4d), because the amplitude is proportional to the overlap of the observable with the
eigenvector (Eq. 23). The amplitude is also proportional to the overlap of the eigenvector with the initial
distribution. By choosing the initial distribition appropriately one can “hide” processes which are visible
in the equilibrium experiment. This allows for the selective measurement of processes which might be
hard to extract from the multiexponential decay in the corresponding equilibrium experiment, for example
processes which decay on short timescales. This is shown in Fig. 4f. An unwise combination of observable
and initial distribution, however, may lead to a spectrum in which only the stationary process can be
observed (Fig. 4e).
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4.2 Protein folding model

We model the folding equilibrium of the model protein (Fig. 1) as a Markov model with four states which
are defined as: state 1 = hfβf (both domains folded), state 2 = hfβu (helix folded, β-sheet unfolded),
state 3= huβf (helix unfolded, β-sheet folded), state 4 = huβu (both domains unfolded). Suppose, we
have observed the protein and took note of the transitions after each time step τ . The matrix

C(τ) =


12000 20 2 0

20 7000 0 2

2 0 6000 20

0 2 20 1000

 . (27)

contains the total number of observed transitions. By normalizing each row one obtains the corresponding
transition matrix

T (τ) ≈


0.9982 0.0017 0.0002 0

0.0028 0.9969 0 0.0003

0.0003 0 0.9963 0.0033

0 0.0020 0.0196 0.9785

 (28)

which represents the Markov model. Note that due to rounding errors, the rows in eq. 28 do not exactly
sum up to one.

The thickness of the arrows in Fig. 1 reflect the transition probabilities between the states. There is a
fast equilibrium between the folded and the unfolded conformation of the β-sheet if the helix is unfolded.
The folding of the complete protein mainly occurs through a cooperative folding pathway via the state
hfβu . Folding of the helix when the β-sheet is already formed is considerably less likely. The eigenvalue
spectrum, as well as the left and right eigenvectors of T are shown in Fig. 5.

The slowest rate in the system is not a priori the “folding rate” of the protein. The timescales observed
in single-molecule experiments are often interpreted in terms of conformational changes in the examined
molecule, and the slowest process is typically associated with the overall folding and unfolding. In the
present example, the folding rate could either be defined as the rate of going from state 4 to state 1, or
as the rate of going from the ensemble of states 2, 3, and 4 to state 1. However, none of the eigenvectors
corresponds to either of the two processes. Rather they have the following interpretation: l2 represents
the folding and unfolding of the helix, l3 represents the folding equilibrium of the β-sheet when the helix
is already formed, and l4 represents the same equilibrium when the helix is unfolded. Care should be
taken to differentiate between the folding rate and the rate limiting step in a folding equilibrium which
in this case is the formation of the helix.

Fig. 5b shows two initial distributions, as they could be used in jump experiments. The first one
(p1(0)) represents an ensemble in which all systems are folded, the second one (p2(0)) an ensemble in
which all systems are completely unfolded. Fig. 5c shows observable vectors which correspond to a
FRET experiment in which the chromophores are attached at sites 1 and 2 (a1), sites 2 and 3 (a2), and
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sites 1 and 3 (a3). For all three observables, we discuss the autocorrelation fingerprints of equilibrium
experiments. We also discuss an equilibrium multichromophore experiment in which observables a1 and
a2 are combined (donor at site 2, first acceptor at site 1, second acceptor at site 3). As for the relaxation
experiments, we discuss the combination of the two initial distributions with observable a3.

The three observables are an intuitive example why some observables do not resolve all processes
present in the system. From Fig. 1 it is clear that, if the chromophores are attached at site 1 and 2
(observable a1), the experiment will only be sensitive to processes which involve the folding or unfolding
of the helix. This is reflected in the scalar products of a1 with the l2, l3, and l4 (table 6). a1 has a large
overlap with l2, but only small or virtually no overlap with l4, and l3. Correspondingly, a2 (chromophores
attached at sites 2 and 3) is sensitive to l3, and l4, which represent the folding of the β-sheet, but rather
insensitive to l2. a3 (chromophores attached to sites 1 and 3) is sensitive to all three processes. The
expected amplitudes of equilibrium experiments with a1, a2, or a3 are shown in Fig. 6a-c.

Given only the three-dimensional structure of a molecule it is often impossible to decide whether a
particular observable can resolve all processes in the conformational equilibrium. However, with the help
of MD simulations one can quantify the sensitivity of the observable to any process in the equilibrium.
This is discussed in section 5.

The two initial probability distributions illustrate a pitfall of jump experiments. Not all processes
are used when the system relaxes from a particular initial distribution to the equilibrium distribution.
For example, in the relaxation from the folded state (p1(0)) the equilibrium between the folded and the
unfolded conformation of the β-sheet is entirely achieved via l3, and not via l4 (table 2: 〈p1(0), l3〉 =0.50,
〈p1(0), l4〉 =0.00). When the system is relaxed from the unfolded state (p2(0)), however, the situation
is reversed: l4 is active, wheras l3 is not (table 2: 〈p2(0), l3〉 =0.06, 〈p2(0), l4〉 =1.09). Therefore, even
when an observable which is sensitive to all processes is chosen, like a3 in the present example, some
processes might still be undetectable in a relaxation experiment. Fig. 6d and 6e. shows the expected
amplitudes for the two relaxation experiments. For p1(0) the fourth process has no amplitude, and for
p2(0) the third process has a very small amplitdue.

With multichromophore experiments the trade-off between selectivity and comprehensiveness is alle-
viated. An observable like a3 has the advantage of comprehensiveness. However, it can be very tedious
and difficult to extract multiple timescales from a possibly noisy data set. In principle, it would possible
to perform several experiment on a given system, each with a different observable, and combine the
obtained results. Unless the sensitivity of the observables to the processes in the system is known, it will
be hard to decide whether peaks which appear with similar timescales in two different experiments are
the same conformational process slightly shifted or two different conformational processes with similar
timescales. By performing a multiple-chromophore experiment one obtains the information of the two
individual experiments, and additionally can use the information from the cross-correlation from the two
signals to match peaks from the individual experiments (Fig. 6f) If two peaks in the individual experi-
ments correspond to the same conformational process i, the amplitude in the cross-correlation fingerprint
should be 〈a1, li〉〈a2, li〉, where 〈a1, li〉 and 〈a2, li〉 are obtained as the square-root of the amplitudes in
the respective auto-correlation fingerprint. If, on the other hand, the two individual experiments measure
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disjunct sets of processes (as in our example), the amplitudes of in the cross-correlation fingerprint should
be close to zero.
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5 Experimental design using MD and MSM

5.1 Experimental dynamical fingerprints

To reconcile our Markov model analysis with measured data, it is useful to transform the experimental
relaxation curve into timescales and amplitudes. In practice, this is often done by fitting a single- or
multiexponential model. This approach is not objective as it requires the number of timescales to be
fixed. For example, multiple exponentials with similar timescales, or a double-exponential where the
larger timescale has a small amplitude will both yield visually excellent single-exponential fits with an
effective timescale that may not exist in the underlying system (see [40] and SI of [27]). To prepare
the experimental data for a systematic analysis, we propose to use a method that uniquely transforms
the observed relaxation profile into an amplitude density of relaxation timescales (here called dynamical
fingerprints). Several such methods have been developed especially maximum entropy or least squares
based methods [76, 77]. In [27] we have developed a maximum-likelihood method which is available
through the package SCIMEX (e.g. https://simtk.org/home/scimex) which is briefly discussed here.

Suppose a correlation or relaxation function xj = x(tj) is given (e.g. from an experiment) at real time
points t1, ..., to. We expect from physical principles that this signal is a noisy realization of a function
that is in fact a sum of multiple exponentials with initially unknown timescales and amplitudes, i.e. a
function that can be represented by

yΦ(t) =

ˆ
t′
dt′ γ(t′) exp

(
− t
t′

)
,

i.e. the Laplace transform of the amplitude spectrum, or “fingerprint”, γ(t′) is expected to consist of
peaks. To computationally determine this fingerprint the timescale axis t′ needs to be discretized using
n spectral time points t′1, ..., t′n. With a fine timescale discretization we obtain a good approximation of
the fingerprint:

yΦ(t) ≈
n∑
i=1

ai exp

(
− t
t′

)
.

where the amplitudes ai define a set of parameters Φ = {ai = a(t′i)} defining the fingerprint that
needs to be determined. When each observation xj comes with a Gaussian-shaped uncertainty σj , the
log-Likelihood of a given fingerprint having generated the observed signal x is given by (up to an irrelevant
additive constant):

log p(x|Φ) =

o∑
j=1

(xj −
∑n
i=1 ai exp(−tj/t′i))2

2σ2
j

(29)

And the amplitudes are estimated as the maximum of this function, yielding the discretized maximum-
likelihood fingerprint [(t′1, a1), ..., (t′n, an)]. As an example, we consider a hypothetical measurement of a
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correlation function of the form

y(t) = 0.9 exp

(
t

50

)
+ 0.1 exp

(
t

250

)
(30)

with additive Gaussian error having intensities of σ = 0.5/
√
t. Fig. 7c shows the curve of Eq. (30)

along with the measured correlation function, while Fig 7a (black) shows the corresponding fingerprint.
Figs 7a (red), b, and c(green) show the results of the fingerprint estimation procedure. The experimental
fingerprint shown in Figs 7a is then used for the further analysis.

5.2 Simulation, Markov model, and simulated dynamical fingerprints

Molecular simulation methods are useful to generate structures that can be assigned to experimentally
measurable dynamical processes. A popular choice are atomistic molecular dynamics models, but in some
cases higher-order models (such as ab initio or QM/MM) or coarser methods (coarse-grained models
or Go-type models) may be useful. Furthermore, a simulation setup should be chosen which is able
to generate dynamical trajectories from some well-defined ensemble. At least, one expects a constant
temperature and a unique stationary density (see [57, 78] for a discussion on ensembles and thermostats
that have desirable statistical properties). Based on such a setup, dynamical trajectories can be generated.
At this point, we assume that the setup and the computational environment has been chosen such that a
“statistically sufficient” amount of trajectories can be generated. In situations where this is not possible,
see [36, 79, 80, 81, 82] for a discussion of methods that can be used to enhance the sampling.

Given the simulation data, the molecular state space is discretized by clustering. Various combina-
tions of distance metrics and clustering methods have been proposed. Frequently used metrics include
Euclidean distance after having fitted the molecule to a reference structure [36, 5], root mean square
distance (RMSD) [45, 59], and various clustering methods may be used [36, 45, 59, 73, 83]. Interestingly,
very simple methods such as choosing generator structures by picking simulation frames at regular time
intervals or even randomly and then clustering the data by assigning all simulation frames to the nearest
generator structures perform quite well [57]. Importantly, the clustering must be fine enough such that
the discretization is still allows the metastable states to be distinguished in order to be useful to build a
quantitative Markov model.

After having discretized the simulation data to discrete trajectories, the transition matrix T(τ) is
estimated. The simplest method to do this is to generate a count matrix C(τ) whose entries cij contain
the number of times a simulation was found in state i in time t and in j at time t + τ , and then
calculating Tij = cij/

∑
k cik. However, this matrix does not necessarily fulfill detailed balance, and thus

the decomposition Eq. (7) does not have a simple interpretation. It is therefore desirable to estimate
a matrix T(τ) that fulfills detailed balance. Reversible counting [40] can be used if one has simulation
trajectories that are much longer than the slowest relaxation time, otherwise one must use an estimation
method [57] which allow a reversible T(τ) to be estimated based on the unbiased count matrix C(τ).

In order to analyze T(τ), we perform an eigenvalue decomposition, generating eigenvectors li and
eigenvalues λi. The eigenvectors can be used to identify metastable sets [60, 66, 5] that help to understand
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the essential kinetics. The eigenvectors li can be investigated in order to obtain insight between which
states the relaxation process with timescale ti = −τ/ lnλi switches.

The fingerprint is calculated by calculating the amplitudes depending on the specific type of exper-
iment considered (see Sec. 3.2 and 3.3) and combining them with the timescales ti. Note that this
fingerprint has statistical uncertainty based on the fact that only a finite number of dynamical trajec-
tories has been used for the estimation of T(τ). This uncertainty can be characterized based on Monte
Carlo methods described in [61, 84, 27].

The assignment of structural processes to experimentally-detected dynamical features can be made if
peaks can be matched between

Programs to calculate Markov models from simulation data are available in the simulation package
package EMMA (e.g. https://simtk.org/home/emma)

5.3 Validation and experimental design

We have discussed and shown in Sec. 4 that for each given experimental setup (i.e. combination of
measurement technique and observable chosen by the label placement), the amplitude of some processes
may be large, and the amplitude of many others may be small. The small-amplitude processes can often
not be detected with high reliability since they might affect the signal only to a degree that is similar to
statistical or systematic error present in the measurement. It is thus desirable to design the experiment
such that specific processes appear with large amplitudes. We sketch the following systematic approach
of experimental design which has been proposed in [27]:

1. Conduct MD simulations of the molecular system under investigation and estimate a Markov model
to model its essential kinetics

2. For each possible experimental setup (e.g. for each placement of the labels), estimate the values
of the corresponding observables, a, b and calculate the expected experimental fingerprints as
described in Sec. 3.2 and 3.3.

3. For each of them slowest relaxation processes, select the experimental setup for which the amplitude
of this relaxation process is largest (or largest compared to the amplitudes of the processes with
similar timescales if the timescale spectrum is dense)

4. Conduct these m experiments.

This approach attempts to optimally probe each process with a single experiment, thus also keeping
the number of potentially expensive experiments small. Besides yielding a useful set of complementary
experiments, this approach is useful to validate the simulated results much more solidly than with a single
comparison.

This approach is ideally suited for experiments with site-specific labels that do not significantly affect
the kinetics. This is especially true for techniques that permit isotope labeling such as NMR, IR spec-
troscopy or neutron scattering. In fluorescence-based techniques this can be achieved with intrinsic dyes
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(e.g. the modulation of Tryptophan fluorescence by the environment [38] or Tryptophan triplet quenching
by Cysteine [85]) or with extrinsic dyes that have little effect on the conformational dynamics.

In [27], the method has been demonstrated on the MR121-GS9-W peptide with a simple heuristic to
predict fluorescence signals for each of 190 possible positions of the MR121 and W dyes along the chain.
Based on this, the amplitudes of the five slowest fingerprint peaks were calculated and are shown in Fig.
9. It is apparent that for most experiments only one or two amplitudes are strong while the remaining
amplitudes are weak. If this result is also true for other molecules, it is evident why so many molecules
appear to have two- or three-state kinetics while they are much more complex in molecular simulations.

Based on such a comparison of predicted fingerprints, experiments can be suggested. The colored
boxes in Fig. 9 highlight five experiments that are predicted to maximally probe each of the slowest
relaxation processes relative to the total amplitude of the five slowest processes.
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6 Conclusions

The combination of Markov models and the concept of dynamical fingerprints provides a theoretically
solid and computationally feasible approach to connect molecular simulation data or molecular kinetic
models to experiments that probe the kinetics of the molecular system in reality. The main advantage
of this approach over traditional MD analyses is that the processes that occur at given timescales are
unambiguously given by the theory. In the Markov model, this assignment is present by the one-to-one
association of transition matrix eigenvalues (that correspond to measurable relaxation timescales) and
eigenvectors (that describe structural changes). When the experimentally-measured relaxation data is
further subjected to a spectral analysis, experiment and simulation can be reconciled on the basis of
dynamical fingerprints, i.e. by matching peaks of the timescale density.

A comment is in order on the fact that in all cases, the slow relaxations in kinetic measurements are
found to have the form of a sum of single exponential term, each term corresponding to an eigenvalue
/ eigenvector pair in our analysis. This is a general result which can also be obtained by performing
the analysis in full continuous state space (as opposed to our discrete-state treatment here). The only
assumptions that are made to arrive at this result are the following:

1. The dynamics of the system is Markovian in full state space (i.e. the continuous space of all
positions and momenta of the molecular systems studied and the solvent molecules). This is a
very weak assumption that is made in all classical simulation models. The Markovian assumption
could also be applied to quantum mechanical models when the electronic degrees of freedom are
included. It is thus also a reasonable assumption for real molecular systems. The only systems for
which such an assumption would be unpractical are systems which have correlations over arbitrarily
long lengthscales, such that no finite-size simulation setup can be made that captures all relevant
processes. This can happen for glassy or crystalline systems.

2. The state space is ergodic, i.e. all states of the system can interchange. This assumption may also
be untrue for glassy or crystalline systems. It is in practice also hard to fulfill for other systems
if the kinetics are slow and are not measured in an ensemble but by averaging multiple single-
molecule trajectories. In this case it may be difficult to collect sufficiently many trajectories that
this trajectory set is effectively ergodic, and deviations from multiexponentiality may be a statistical
artefact.

3. The relaxations are measured at equilibrium conditions. This does include the possibility that the
system relaxes from an off-equilibrium distribution (e.g. as in temperature jump experiments), but
it does so under equilibrium dynamics which fulfill detailed balance. This assumption requires that
the experiment does not put energy into the system or remove energy from it. It is unclear whether
laser or scattering experiments obey this condition sufficiently well.

Even in situations where these points can be assumed to be fulfilled, apparent nonexponentiality has been
found over significantly long timescales, such as stretched exponentials [86, 87] or power laws [48]. Note
that this is no contradiction because such apparent nonexponentialities can be easily explained by sums
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of a few single exponential relaxations with particular spacings of timescales and amplitudes [88, 89, 27]
- and thus also correspond to dynamical fingerprints with multiple peaks (see [27], Supplementary Fig. 1
and 2). In practice, however, care must be taken that such effects are not actually due to the measurement
technique itself. Especially conditions 2 and 3 may sometimes be violated by the experimental setup itself.

It is likely that the apparent two- or three-state kinetics observed in experiments of macromolecules
does not reflect the entire complexity of their conformational dynamics. In particular, the slowest mea-
sured rate is not necessarily the folding rate because (i) there might be no process which corresponds to
our notion of folding, (ii) the experiment might be insensitive to this particular process. The comparison
to a Markov model allows for a unambiguous interpretation of the measured fingerprints.
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8 Tables

equlibrium experiment relaxation experiment

relaxation experiment - γrelaxi = 〈a, li〉
〈
p′>(0), li

〉
autocorrelation γ

eq, auto-cor
i = 〈a, li〉2 γ

jump, auto-cor
i = 〈a,P′(0)li〉 〈a, li〉

cross-correlation γ
eq, cross-cor
i = 〈a, li〉 〈b, li〉 γ

jump, cross-cor
i = 〈a,P′(0)li〉 〈b, li〉

Table 1: Overview of the expressions for the amplitudes in correlation experiments.

〈ak, li〉 a a2 a

l1 1.45 1.39 1.08
l2 0.78 0.15 0.47
l3 0.01 0.59 0.57
l4 0.12 0.66 0.26

〈p(0), li〉 p1(0) p2(0)

l1 0.54 0.54
l2 0.29 0.70
l3 0.50 0.06
l4 0.00 1.09

Table 2: Protein folding model: scalar products of the observable vectors and the initial distribution with
the left eigenvectors.
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9 Figures
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Figure 1: Sketch of a protein folding equilibrium. The arrows represent possible transitions between
confromational states. Their thickness corrersponds to the transition probability. The yellow stars
represent possible chromophore attachment points.
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Figure 2: Markov model of a dynamics in a 1-D energy surface. (a) Potential energy function with
four metastable states and corresponding equilibrium distribution π. (b) Plot of the transition matrix
T(τ) for a diffusive dynamics in this potential. T(τ) is defined on a states space Ω of 100 equisized bins
along the reaction coordinate. Black and orange indicate high transition probability, white zero transition
probability. (c) The four dominant right eigenvectors ri. (d) Eigenvalue spectrum of T(τ). (e) The four
dominant left eigenvectors li.
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Figure 3: Experimental setups for the 1-D energy surface model. The middle columns shows the
left eigenvectors of the model. Panel a additionnally shows two possible initial distributions, and panel
c shows two possible observables. The values of the respective scalar productions are shown to the left
and right of the eigenvector plots.
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Figure 4: Amplitdudes for the 1-D energy surface model. Equlibrium experiments: (a) observable
a1, (b)observable a2. Relaxation experiments: (c) p1(0) and a1, combined (d)p1(0) and a2 combined,
(e) p2(0) and a1 combined, (f) p2(0) and a2 combined.
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Figure 5: Markov model and experimental setup for the protein folding model.
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Figure 6: Amplitudes for the protein folding model. Equilibrium experiments: (a) observable a1,
(b) observable a1, observable a1,
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Figure 7: Dynamical fingerprint of a model correlation function. (a) True (black) and estimated
fingerprint (red). Note that the apparent disagreement in amplitude is a result of the broadening in the
estimated fingerprint which is a consequence of the noise in the data. The areas under the peaks should
be the same for a correctly estimated fingerprint.
(b) Likelihood which is printed every 100 iterations to the log-file. You should inspect this likelihood and
make sure that it is converged. A good rule of thumb is that it should not increase more than 1 likelihood
unit within the last half of the optimization. The inset shows that this is the case here
(c) Comparison of the input (black) with the predicted relaxation curve (green). The predicted curve
is a good fit to the data. The deviation at short times from the true, noiseless, signal (red) are due to
statistical noise in the data.
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Figure 8: Dynamical fingerprint of the MR121-GS9-W peptide. Upper panel: from experiment.
Lower panel: from simulation. n = 9 is the chain length of the peptide.
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Figure 9: Experimental design. Prediction of the amplitudes of fingerprint peaks of the 5 slowest
processes in MR121-GS9-W when placing the fluorescence labels at any of the 190 different possible
residue positions from 1-2 to 19-20. The x-Axis enumerates these 190 labeling positions. The magenta,
blue, green, orange, red lines mark the proposed experimental setups to optimally probe the slowest to
the fifth-slowest processes.
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