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Abstract
Protein-ligand interactions are essential for nearly all biological processes, and yet the bio-

physical mechanism that enables potential binding partners to associate before specific binding
occurs remains poorly understood. Fundamental questions include which factors influence the
formation of protein-ligand encounter complexes, and whether designated association path-
ways exist. In this article we introduce a computational approach to systematically analyze
the complete ensemble of association pathways and to thus investigate these questions. This
approach is employed here to study the binding of a phosphate ion to the Escherichia coli
Phosphate Binding Protein. Various mutants of the protein are considered and their effects
on binding free energy profiles, association rates and association pathway distributions are
quantified. The results reveal the existence of two anion attractors, i.e. regions that initially
attract negatively charged particles and allow them to be efficiently screened for phosphate
which is specifically bound subsequently. Point mutations that affect the charge on these
attractors modulate their attraction strength and speed up association to a factor of 10 of
the diffusion limit and thus change the association pathways of the phosphate ligand. It is
demonstrated that a phosphate that pre-binds to such an attractor neutralizes its attraction
effect to the environment, making the simultaneous association of a second phosphate ion
unlikely. Our study suggests ways how structural properties can be used to tune molecular
association kinetics so as to optimize the efficiency of binding, and highlights the importance
of kinetic properties.
Keywords: protein-ligand binding, association pathways, Phosphate Binding Protein, Brownian dynamics,
Transition Path Theory

1 Introduction
The ability of proteins to bind ligands, including ions, substrates, co-factors and other proteins,
is essential to all life processes. For instance, protein-ligand interaction mediates uptake and stor-
age of cargo such as oxygen uptake in Hemoglobin, molecular recognition leading to information
transfer such as in sensing of neurotransmitters or growth hormones, and buildup of biological
structures such as in RNA-Ribosome interactions (1, 2). While the majority of the biochemical
and pharmaceutical work investigated protein-ligand interactions in terms of equilibrium binding
affinities, it is becoming increasingly evident that the effectiveness of such interactions crucially
depends on dynamical and kinetic properties (3). The dynamical properties of binding are inher-
ently linked to structural aspects such as size, concentration and spatial distribution of the binding
partners as well as their detailed atomic structures and changes therein.

Structure-dynamics relationships for binding processes have been studied a lot at binding site
contact distance, both on relevant energetics such as detailed electrostatic complementarity of
the binding surfaces and hydrophobic burial, as well as on the structural binding mechanisms
such as induced fit versus conformational selection (4, 5). In contrast, fundamental properties of
the spatiotemporal mechanism of how this first contact of the protein-ligand binding process is
established are still elusive. For example, does binding occur via a single dominant pathway, via
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multiple separated pathways, or via a funnel-shaped ensemble of pathways? Is it directed to the
binding site or do metastable states exist which trap the binding partners in nonfunctional states?
Can diffusion-limited binding be sped up by rapid binding to the surface and subsequent surface
search?

From a theoretical point of view, the protein-ligand association process can be thought of
as a diffusion in a high dimensional energy landscape that usually has an energetically favorable
minimum at the configuration of the protein-ligand complex. In situations in which the interaction
process takes place in dilute media, this energy landscape is flat at large protein-ligand distances,
resulting in a purely diffusive motion of the molecules. When the interaction partners approach
each other, electrostatic forces become relevant and for favorably interacting molecules, the energy
landscape funnels down towards the complex formation configuration (6). Such a binding funnel
may also possess complex features as local minimal or parallel pathways. All mechanistic questions
can be answered when the binding funnel and the dynamics governing the motion upon it are
understood. Protein-ligand binding has thus many similarities with protein folding and principles
or methods worked out in the protein folding field are also likely to be useful here.

In the past decades, the field of molecular simulations has been increasingly successful assigning
structural and mechanistical information to experimental observations (7). A widely used compu-
tational approach to simulate protein-ligand association dynamics are Brownian dynamics (BD)
and Langevin dynamics (LD) simulations (8) of the diffusional motion of internally rigid protein
models in implicit solvent. The BD approach has been proven useful to predict bi-molecular asso-
ciation rates (9–12) in situations where binding is diffusion limited, as well as to provide detailed
insights into how protein-ligand encounter complexes are formed (13). However, a systematic
analysis of the obtained simulation data is often difficult. In this work we present a simulation
and analysis approach that directly reveals the ensemble of pathways of a ligand to the binding
pocket, thus allowing mechanistic questions to be answered. The approach allows to identify the
presence of metastable states in the binding procedure and to study how binding mechanism and
rates are altered by mutations in the protein.

Two alternative approaches to simulate and analyze dynamics exist: Most commonly, one uses
the direct simulation approach in which long trajectory realizations of the dynamical equations
(e.g. BD) are generated, and then analyzed. This approach has the advantage that it allows
complex geometries with many degrees of freedom to be simulated, such as large heterogeneous
protein mixtures (14). A disadvantage is that quantities computed from generated trajectories,
e.g., association rates come with statistical uncertainty, or may be systematically biased when
some rare events have not been sampled at all. Moreover, trajectory data are often tedious
to analyze, involving the search for “interesting” observables which involves human subjectivity.
Alternatively, one can describe the ensemble dynamics of the system, where the transition proba-
bilities or rates between configurational substates of the system are characterized. This approach
has been successfully used in modeling the conformational dynamics of proteins with Markov
models (15–19), where the interstate transition probabilities are estimated from many short sim-
ulations that are initialized from different substates. In diffusion processes, such as BD and LD,
the ensemble dynamics can be expressed directly via the Fokker-Planck equation. Based on this
formulation, sampling of individual trajectories can be avoided and the sampling error can be
made zero. However, the downside of this approach is that for solving the Fokker-Planck equation
the configuration space must be discretized. When using a rectangular lattice, this is currently
only feasible for three-dimensional spaces. Nevertheless, with a three-dimensional space one can
already address the biophysically interesting process of ion binding to proteins (20). An extension
to higher-dimensional problems such as protein-protein binding with internal dynamics is feasible
by extending the approach to meshless discretization approaches (17, 21, 22).

In this paper we show how the ensemble dynamics approach permits a straightforward and
objective analysis of the protein-ligand association pathways by using the mathematical framework
of Transition Path Theory (TPT) (23, 24) which provides a complete and quantitative description
of association pathways that lead from a freely diffusing ligand towards a protein-ligand complex
in a given molecular model. Here, we apply this approach to systematically study the binding of
inorganic phosphate (Pi) to the Phosphate Binding Protein (PBP) of Escherichia coli (25–27).
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This protein plays an important role in the phosphate supply of bacterial cells and is expressed
in situations when the intracellular concentration of Pi is low. After it is transported to the
bacterial periplasm, it scavenges for free Pi to subsequently pass it on to a membrane protein
which transports the phosphate into the cytoplasm. While previous work on the binding of Pi to
PBP was mainly concerned with investigating the binding kinetics by experimental means (28, 29)
or direct simulation (30), to our knowledge this work for the first time provides a systematic
description of the Pi binding pathway ensemble. Various mutations are studied and it is shown
how they modulate the phosphate binding rates and pathways. It is also shown how PBP becomes
saturated to a second binding attempt once a Pi has been bound.

The obtained findings highlight the importance of a positively charged patch of the PBP for
the attraction of negatively charged ions. Our results suggest that this pre-binding site may be
a general mechanism for efficiently organizing specific ion binding via a two-step mechanism that
first selects by polarity and then by ion type.

2 Theory

2.1 Dynamical Model

Without loss of generality, the protein-ligand association process can be divided into two phases
that are dominated by different forces (31) (see Figure 1). The association phase I is largely
governed by electrostatic forces and thermal motion of solvent molecules which lead to a diffusive
approach of the solutes studied, and does not depend on intramolecular flexibility. In the binding
phase II the protein-ligand complex is formed, which involves more complex short range forces,
intramolecular flexibility and the structural role of solvent molecules. This separation into two
phases suggests two different computational models to describe them. The second phase requires
a more detailed approach such as all-atom molecular dynamics simulation with full structural
resolution and flexibility. Here, we restrict ourselves on the association phase I where the motion
of the ligand in the protein-ligand potential is described by rigid body Brownian (or Smoluchowski)
dynamics in implicit solvent:

dx(t) = − D

kBT
∇V (x) dt+

√
2DdWt, (1)

where x(t) is the position of the ligand at time t ≥ 0, D is the joint translational diffusion
constant of PBP and Pi, T the absolute temperature, kB the Boltzmann constant, V (x) the
potential energy of the ligand at position x(t) and Wt is multivariate Wiener process, i.e. white
noise with independent, normally distributed, increments. We assume isotropic diffusion for both
the protein and the ligand, hence diffusion can be described by a scalar constant. The error
introduced by neglecting hydrodynamic interactions between interaction partners is unlikely to
affect the main findings of this paper. However, in subsequent studies hydrodynamic interaction
could be included following recent work of Geyer et. al (32). The change in particle position dx(t)
in a time interval dt is thus the result of the force from the potential, −∇V (x), and a random
displacement which implicitly models the collisions with solvent molecules. It is important to note
that the solution x(t) of the stochastic differential equation (Eq. 1) is a random sequence. Hence,
for a given initial position x(0) = xo, each realization of x(t) describes a possible ligand trajectory.

2.2 Interaction Potential

In order to compute the interaction potential between PBP and phosphate ion solely electrostatic
forces are considered as they are the most important contributors during the association phase.
An explicit modeling of Van der Waals forces can be omitted as the interaction partners can
be thought of being immersed in dense media (water) and therefore interact equally with all
surrounding atoms.

Furthermore, the structure of the diffusing ligand Pi is approximated by a point charge of −2e
to represent the HPO−2
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form of phosphate. This allows the energy of PBP-Pi configurations to
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Figure 1: Phases of protein-ligand association. Phase I is largely characterized by diffusional
association and ends upon encounter complex formation. Phase II involves actual binding of the
ligand and might involve structural rearrangements in both interaction partners.

be calculated by multiplying the electrostatic potential induced by the protein with the phosphate
charge (−2e) at the respective positions. The protein potential V (r) is computed using Poisson-
Boltzmann theory (33), in which the solvent is modeled as a continuum with a specific dielectric
constant. The Poisson-Boltzmann equation is given by:

∇[�(x)∇V (x)] = −4πρ(x)− 4π
�

i

c∞i ziq exp

�
−ziqV (x)

kBT

�
λ(x) (2)

where �(x) is the dielectric constant at position x, ρ indicates the charge density of the protein
(given by assigning partial atom charges), c∞i denotes the concentration of ion species i at an
infinite distance from the molecule, zi is its partial charge, q is the elementary charge, kB the
Boltzmann constant, T is the temperature and λ(x) indicates the ion accessibility.

For the calculation of association rates to be correct, the volume considered around the pro-
tein has to be large enough such that the gradient of the potential approaches zero at its outer
boundaries. At the same time it is crucial for a correct calculation that the potential close to the
protein surface is well described. To comply with the large volume and high resolution require-
ments, we use the manual focusing mechanism (mg-manual) provided by APBS, solving the PB
equation on differently sized grids ranging from 33 × 33 × 33 with isotropic spacing of d = 16 Å
to 193× 193× 193 with isotropic spacing of d = 0.35 Å. The respective coarser solutions was used
as an outer boundary condition for the finer one.

2.3 Transition Path Theory

While individual realizations of the stochastic dynamics (Eq. 1) are random, we are interested
in the deterministic expectation values of this random process, such as transition rates, fluxes
and pathway probabilities. In order to obtain these quantities, we apply Transition Path Theory
(TPT) (23, 34, 35) to the Markov jump process that results from discretizing the Fokker-Planck
equation that is associated with Eq. 1.

The main concepts of TPT are briefly restated subsequently. Given an ergodic stochastic
process such as Brownian dynamics in a potential, Langevin dynamics or a Markov jump process,
e.g., on a grid, TPT provides the statistical properties of the ensemble of reactive pathways between
two disjoint subsets, “A” and “B”, of the state space. For this, consider a hypothetical infinitely
long trajectory. A trajectory fragment is called a reactive trajectory, if it leaves A and subsequently
enters B. Particularly, trajectories that return to A before reaching B are not considered part of
the reactive trajectory ensemble. (See Figure 2 for an illustration)

In order to calculate TPT quantities in practice the configuration space must be discretized.
We consider that the configuration space is partitioned into small sets, here briefly called “states”.
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Figure 2: Reactive trajectory definition. The bold parts show reactive trajectory parts going from
set A (unbound configurations) to set B (bound configurations)

In the scenario of protein-ligand binding, the set A is defined to comprise of configurations where
the ligand can freely diffuse, here chosen to contain all states in space that are more than 250 Å
away from the center of mass of the protein. The set B in turn is chosen to contain all states that
correspond to bound or metastable pre-complex protein-ligand configurations.

The essential quantity needed to compute statistical properties of transition pathways between
A and B is the forward committor, q+i , defined as the probability that the process when being
at state i will reach the set B next, rather than returning to set A. In the context of protein-
ligand association, q+i denotes the probability to associate to the binding site (at B) rather than
to dissociate to set A. In the methods section it is explained how the forward commitor q+i can be
efficiently calculated for a given dynamical model. Furthermore, we need the backward committor
probability q−i , which is the probability when being at state i that the process has been in set A
previously rather than in set B, i.e., it has reached state i from the dissociated states A and not
been bound before. For reversible stochastic processes, as in the present case, it is simply given
by q−i = 1− q+i . Let kij be the transition rate between states i and j, without taking into account
the choice of A and B. In order to be able to infer information about the reactive parts of the
trajectory, i.e., the parts that leave A and go to B, only the part of kij must be considered, which
involves trajectories that come from the dissociated A set and will go on to the associated B set,
i.e., q−i kijq

+

j . The reactive probability flux is hence given by

fij = πiq
−
i kijq

+

j . (3)

πi denotes the Boltzmann weight of state i, i.e., the overall probability for the process to be
in the volume element represented by state i. This definition still contains recrossing events of
reactive trajectories. In order to only account for the net reactive probability flux from A to B,
the reactive flux fji associated with recrossings of the reactive trajectory is subtracted from the
forward flux fij , leading the following expression for the net reactive probability flux:

f+

ij = max{0, fij − fji}. (4)

It is important to note that the flux is conserved, i.e., the amount of flux leaving A equals the
amount entering B and for all intermediate states i the influx equals the outflux. This property
directly leads to an expression for the transition rate from A to B which is explained in the next
section. Refer to Figure 3 for an illustration of TPT on a two-dimensional model of protein-ligand
association.

2.4 Binding Rate Calculation

The expected number of A → B transitions per time unit is given by the total flux (36):

FAB =
�

i∈A

�

j /∈A

f+

ij =
�

i∈A

�

j /∈A

πikijq
+

j . (5)

This quantity includes the fact that the ligand needs to diffuse back to the A area until another
transition to B is considered. Hence, in order to calculate the A → B transition rate, we need to
take the probability into account, that the ligand is moving from A to B, i.e., it has been in A
last:
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Figure 3: Illustration of TPT on a simple two-dimensional protein-ligand binding model. The
dissociated state of the ligand A and the associated state B are shown. (a), (b), (c) show a
situation in which no potential is present and the ligand can diffuse freely until it associates to
the protein. (d), (e), (f) illustrate a situation where the protein has surface charges, generating
energy minima that attract the ligand. (a) and (d) show the different potentials, (b), (e) show the
forward committor q+, revealing for areas on top of the charged protein a higher probability to
reach the binding site than for the uncharged protein. (c) and (f) show the reactive flux density
and integrated flux lines calculated from the flux field resulting from the fluxes f+

ij . For the
neutral protein it becomes apparent that the ligand diffuses freely and the binding pathways are
only restricted by spatial constraints. In the charged scenario the ligand is strongly attracted by
the top side of the protein, creating a high reactive flux density in that area that distorts the
pathway ensemble accordingly.
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πA =
�

i∈S

πiq
−
i , (6)

where S is the set of all states. Therefore, the transition rate is given by (15):

kAB =
FAB

πA
. (7)

kAB is the rate at which a ligand molecule binds starting from set A. In order to compute
the bimolecular association rate of PBP and Pi, the rate at which ligand molecules arrive at the
A sphere has to be taken into account. Based on the assumption that protein and ligand diffuse
freely upon a distance r, i.e., in our scenario the ligand enters the A sphere, according to Erban
et al. (37) the diffusion limited association constant kOn can be obtained by:

kOn = 4πD

�
r −

�
D

kAB
tanh

�
r

�
kAB

D

��
, (8)

where D is the diffusion constant, and r denotes the radius of the A sphere. Note that kOn is a
concentration dependent rate (e.g. in nm³s−1), while kAB is the rate of a single molecule event
(in s−1).

3 Methods

3.1 Molecular model and simulation setup

The coordinates of the open form mutant T141D of the Phosphate Binding Protein from Es-
cherichia coli (PDB (38) code 1OIB, Chain A) served as a template to create several in silico
mutants of the protein. The mutagenesis tool of PyMOL (vers. 0.99rc6) was used to cre-
ate mutants D56N, D137T, K43M, K43Q, R134Q, R135Q, R134Q/K167Q/K175Q (3 mut.),
R134Q/K167Q/K175Q/D21N/D51N/D61N (6 mut.), T141D, chosen in agreement with previous
work on PBP (30). The wild-type (wt) was modeled by replacing Asp141 with Thr141.

Energy minimization of the structures in a TIP3P water box was carried out by running 2000
steps of the steepest gradient algorithm using the Gromacs (version 4.5) program (39) employing
the CHARMM (40) force-field. The protonation states of ionizable amino acids were determined
by using the PROPKA (41) tool setting the pH to 7. The atomic partial charges were assigned
using the PDB2PQR suite (42) using the CHARMM force-field as reference. The electrostatic
potential of the resulting structures were calculated using the Adaptive Poisson-Boltzmann Solver
(APBS) (43), using dielectric constants of �P = 4.0 for the protein interior and �S = 78.0 for the
solvent. As joint diffusion constant D = 8× 10−6cm2s−1 (44) was used.

3.2 Space Discretization

In order to calculate the TPT quantities for the protein-ligand binding process, a finite volume
space discretization is required which extends over a large volume while at the same time having a
high resolution close to the protein surface. Therefore, we developed a simple adaptive discretiza-
tion scheme based on the numerical gradient of the electrostatic potential. The procedure starts
from a coarse cubic 33× 33× 33 grid with an edge length of 528 Å and refines interior grid points
based on a local error criterion. By using central finite differences the potential derivatives in each
Euclidean direction are computed for each point, at the one hand using the present discretization
as well as using a finer discretization where additional grids points have been added halfway be-
tween each pair of initial grid points. Whenever at a given refinement point the two derivatives
differ by more than a specified threshold (here 0.01 kT/Å), the refinement is accepted and another
grid plane is added intersecting with this refinement point and perpendicular to the connection
between the two coarse grid points. This procedure is iterated until no more planes are added.

7



Grid points that would lie inside the protein, defined by having a minimal distance to protein
atoms of less than 3.2 Å, are not taken into account, and are dismissed from the final grid. The
resulting grids had an average size of 173× 151× 177 points (a total of 4.623.771 elements) with
box lengths ranging from 16 Å for distant boxes to 0.5 Å in the vicinity of the protein.

3.3 Rate Matrix Computation

When considering Brownian dynamics (Eq. 1) the transition rates between volume elements of
the regular grid defined in 3.2 can be computed using a discretization scheme introduced in (45).
The resulting matrix K is a discrete model of the entire ensemble dynamics of the protein-ligand
association process, and all subsequent analysis can be conducted based on this matrix. A matrix
element kij specifies the number of transitions per time unit to a volume element j conditional on
starting at element i, and is computed as follows:

kij =






D
hi,jdi→j

exp
�
− 1

2kBT (Vj − Vi)
�

j ∈ {Ni}
−
�

j kij , j = i

0 otherwise,

(9)

where Ni denotes the set of all volume elements that share a face with element i, D is the joint
diffusion constant, Vi designates the potential at grid point i, hi,j denotes the distance between
grid points i and j and di→j stands for the length of the ith volume cell into the direction of j.

3.4 A and B Definition and Committor Computation

After obtaining the space discretization of the volume around the protein, the A and B sets are
assigned. For the set of free diffusing configurations of the phosphate ion (A set of states) all
volume elements whose center is further than 250 Å away from the geometric center of the protein
are chosen. Note that the choice of A is irrelevant as long as far enough away from the protein such
that the electrostatic forces are zero in A. Defining A further away from this minimal distance
will increase r but decrease kAB resulting in the same concentration dependent binding rate as in
Eq. 8. The set B of bound/pre-complex configurations is chosen to include all volume elements
that are within a 3 Å radius of the geometric center of Thr10, Ser38 and Ser139, shown as yellow
region in Figure 4. The choice of B will affect the pathways and association rates as it defines the
bound state.

With the discrete rate matrix (Eq. 9) the forward committor can be computed by solving the
constrained linear problem

Kq = 0 (10)
s.t. qi = 0 ∀i ∈ A

qi = 1 ∀i ∈ B

where A and B are the sets of discrete states corresponding to dissociated and associated
states, respectively. This problem is solved by reordering the states in the order (S,A,B) where
S = (A ∪B)C , yielding the following structure in K and q:

K =




KSS KSA KSB

KAS KAA KAB

KBS KBA KBB



 , q =




qS

qA = 0
qB = 1



 , (11)

Which allows Eq. (10) to be rewritten as:

KSSqS = KSB . (12)
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Figure 4: Transparent Connolly surface of the Phosphate Binding Protein (Escherichia coli)
showing secondary structure elements. The yellow region depicts the B set. A subset of mutated
amino acids are shown in Van der Waals representation. The dotted surface represents points
acccessible by the phosphate ion. The indicated plane denotes the projection area used to visualize
first hitting densities (Figs. 6 and 7).

which can easily be solved by standard numerical methods to obtain the unknown qS . In the
present application the number of unknowns is in the order of 106. In order to solve this task we
use the implementation of the iterative BiCGStab algorithm provided by the Java Matrix Tookit
(46). A thorough discussion of efficient committor computations including error analysis can be
found in (47).

3.5 Free Energy Profile of Ligand Association

As the forward committor is the probability to associate rather than dissociate, it measures the
progress of the reaction and thus represents a “kinetic reaction coordinate” (48) with 0 representing
the dissociated (A) and 1 representing the associated configurations (B). The free energy along
this coordinate is given by

F (q) = −kBT ln (ρ(q)) + const. (13)

ρ(q) denotes the stationary density of the set of states having a committor value q and is calculated
in our discrete model by

ρ(q) =
�

i, qi∈[q−∆
2 ,q+∆

2 ]

exp

�
−V (xi)

kBT

�
. (14)

using a sliding window with width ∆ = 0.005 over the range of q ∈ [∆
2
, 1− ∆

2
].
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3.6 Binding flux field and visualization

For a visualization of phosphate association pathways a vector field of reactive fluxes was calcu-
lated. For this purpose, a total flux vector was assigned to each grid point i by vectorial summation
of all outgoing fluxes f+

ij . To visualize the resulting vector field, as in Figs. 6 and 7, the Mayavi2
program (49) was employed. Starting from a fixed number of points spherically distributed with
distance 80 Å from the geometric center of the protein, the program follows the streamlines along
the flux vectors, thus tracing out possible binding pathways. The streamlines are colored accord-
ing to the local flux strength, i.e., norm of the total flux vectors. The lighter the coloring, the
stronger the encountered flux.

In order to better visualize how the association pathways behave near the protein, we have
calculated where they hit the protein surface for the first time. For this, a surface was defined
in a distance of 10 Å around the phosphate accessible surface. At each surface element, the flux
through the surface, quantified by the reactive TPT flux f+

ij (Eq. 4), is calculated. For the
sake of visualization the orthogonal projection of surface elements onto a two-dimensional plane
which divides the surface into two halves is calculated. The plane is depicted in Figure 4. In the
projection only surface elements on the half of the binding site are taken into account.

4 Results and Discussion
The results of the modeling and analysis of inorganic phosphate association to the phosphate bind-
ing protein and various in silico mutants are presented below. Selected mutants are summarized
in Figure 6 while the results for remaining structures are shown in the supplementary information
(SI).

4.1 Free Energy Profiles and Association Rates

The left column of Figure 6 shows the free energy profile of phosphate associations along the com-
mittor coordinate. For most of the investigated mutants the free energy decreases with increasing
committor value, indicating that binding of phosphate is energetically favorable. Inspecting the
free energy profiles of different mutants shows the existence of several minima along the com-
mittor coordinate. Such minima indicate that the phosphate ion is more likely to be found at
certain positions in space with corresponding committor values and these configurations may be
metastable. Interestingly, the two committor iso-surfaces shown in Figure 5 are especially relevant
for the phosphate binding process: for each mutant at least one of these two iso-surfaces describes
configurations associated with a minimum in its free energy profile. Whenever a minimum could
be assigned to one of the iso-surfaces it is marked with a red or blue dot in the free energy profile.
Phosphate configurations represented by the outer iso-surface (red) are subsequently termed in-
termediate 1 and configurations described by the inner iso-surface (blue) are termed intermediate
2.

In the wild-type protein, both intermediate 1 and intermediate 2 free energy minima indi-
cate two metastable configurations of the phosphate before it reaches the binding site. The
A197W (see SI) mutant exhibits a very similar profile and an almost equal association rate of
26.4 M−1s−1 compared to 27.9 M−1s−1 for the wild-type, indicating that this mutation has little
effect on the phosphate ion binding capability. For mutants R134Q/K167Q/K175Q (3 mut.) and
R134Q/K167Q/K175Q/D21N/D51N/D61N (6 mut.) the intermediate 1 configuration is destabi-
lized and thus only the configurations corresponding to intermediate 2 are found to be metastable.
Both mutants have the same three positively charged amino acids replaced by neutral substitutes,
but in the 6 mut. mutant the associated loss of charge is compensated by additionally replacing
3 negatively charged amino acids by neutral substitutes. The destabilization of intermediate 1
indicates that residues Arg134, Lys167 and Lys175 are necessary for holding the phosphate ion
at the protein surface. Interestingly, losing this kinetic trap along the binding coordinate does
not increase the association rate of phosphate: in contrast it is decreased by a factor of 3 for the
6mut. mutant (9.3 M−1s−1) and by a factor of ∼ 10 for the negatively charged 3mut. mutant
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Figure 5: Connolly surface representation of PBP with transparent intermediate 1 (red) and
intermediate 2 (blue) committor iso-surfaces.

(2.5 M−1s−1). Due to its relevance for attracting phosphates and thereby enhancing the binding
efficiency we henceforth abbreviate the positive charge patch around residues Arg134, Lys167 and
Lys175 “anion attractor ”.

To further assess the relevance of positive surface charges, single-point mutations R134Q and
R135Q were considered. R134Q neutralizes one residue of the anion attractor , whereas R135Q
neutralizes a residue which is found between the anion attractor and the phosphate binding site,
therefore interfering with the phosphate transport route. While both mutants show a reduced asso-
ciation rate, this reduction is 5-fold in R135Q while it is only 2-fold for R134Q. The corresponding
free energy profile of R135Q also reveals this effect by showing smaller binding (committor) prob-
abilities for intermediate 1 and 2 configurations than for the R134Q mutant.

The mutants discussed so far have mainly affected residues in the vicinity of the anion attractor .
For a more comprehensive assessment of phosphate association also mutations D56N, D137T,
K43Q and K43M were considered. Mutations D56N and D137T both neutralize a negative charge
and increase the association rate by a factor of about 3 compared to the wild-type. Due to
thus stronger attraction of the negatively charged phosphate ion, the minimum associated to
intermediate 2 configurations vanishes, while intermediate 1 trapping is still present although with
an increased probability to reach the binding site from these configurations. The intermediate 2
minimum also disappears for the negatively-charged K43M/K43Q mutants. However, in contrast
to the positively charged D56N/D137T mutants, the association rate is reduced by a factor of
almost 3 and the binding probability associated with intermediate 1 configurations is strongly
reduced, which can be seen from the left shifted minimum in the free energy profiles.

Finally, the T141D mutant is discussed. The free energy profile of this mutant is remarkably
different from other mutants that also introduce a negative net charge of -1e. In fact, also a free
energy minimum can be assigned to intermediate 1 configurations, but the associated binding
probability is very small. Furthermore, the free energy difference between unbound and bound
phosphate is positive, rendering phosphate binding unfavorable. This can also be observed, at
the corresponding association rate which is also drastically reduced, and a factor of 5 smaller
than the smallest association rate found for almost all other mutants with a negative net charge
of -1e. An explanation of this result might be the location of the mutation, which introduces a
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negative charge very close to the phosphate binding site, repelling the phosphate here. Unlike
other mutations that introduce negative charges, in this case the phosphate ion cannot avoid the
repulsive region via alternative pathways in order to reach the binding site. Consequently, this
mutation has the largest effect on the association efficiency of the phosphate ion.

Table 1: Net charge and computed bimolecular association rates of considered mutant structures
at ionic strength of 0mM .

Mutant Net Charge [e] kon [108M−1s−1]
wt (modeled) 0 27.9

A197W 0 26.4
D56N +1 73.9
D137T +1 77.8
T141D -1 1.6
R135Q -1 5.9
K43M -1 11.3
K43Q -1 11.4
R134Q -1 12.4
3mut -3 2.5
6mut 0 9.3

PBP:Pi -2 3.0

4.2 Stream Lines and First Hitting Density

The free energy profiles and rates described above provide information about macroscopic or
effective properties of the phosphate association process, but they do provide little information
about the fine details of phosphate association. More do the specific dynamical properties that can
be accessed with the Transition Path Theory approach: the shape of the binding pathways and the
distribution of where they hit the protein surface. Figure 6 and the following show representative
pathways of the association pathway ensemble. These plotted pathways are streamlines that
follow the reactive flux field of binding. The number of reactive trajectories that pass a volume
element per unit of time is expressed by streamline coloring. The brighter the coloring, the more
reactive trajectories pass through the surrounding volume elements. This manifests as almost white
coloring in the vicinity of the binding site, where the increasing bundling of reactive trajectories
leads to an increased flux density. In order to obtain additional information where the phosphate
association pathways “attack” the protein, we measured how many reactive trajectories per unit
of time hit surface elements in a distance of 10 Å around the protein. This hitting density is
visualized by a planar projection in the second column of Figure 6 along with the positions of the
mutations.

The neutrally charged structures wt and A197W share a similar pattern in the first hitting
density and distribution of pathways. The phosphate trajectories attack the protein on both
sides of the phosphate binding side, with a preference for the side at which the anion attractor
is located. The corresponding stream line illustrations show that some phosphates form first
contact with the anion attractor and then crawl over the surface to the binding site. This picture
is not qualitatively different for the positive D56N and D137T mutants. Here, also both sides
of the protein are approached by the phosphate and the surface crawling still occurs. However,
due to the increased net charge of the protein the number of reactive trajectories is strongly
increased. A change in both hitting density and approach pathway distribution can be observed
for in K43M/K43Q. In this case the number of pathways that attack the protein at the side of the
mutation is reduced and the stream lines show that the phosphate is no longer attracted to the
surface at the respective position. An even stronger distortion is observed when the positive patch
is neutralized as in the 6mut. and 3mut. mutants. The number of pathways that hit the extended
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protein surface above the positive patch is significantly reduced in both cases. Furthermore, the
flux lines show that the pathways are not attracted to the positive patch but rather straightly
approach the phosphate binding site from the bulk. Due to the negative net charge of the 3mut.
mutant the number of phosphates that reach the binding site is per unit of time is reduced as visible
from darker flux lines. While the T141D mutation was found to strongly reduce the association
rate it neither exhibits a change in first hitting density nor is the topology of association pathways
affected. The surface attraction of the phosphate ion is still present, however, the number of
phosphates reaching the binding site is strongly reduced, i.e. this mutation only affects the last
step of association. Although mutations R134Q and R135Q do not show a pronounced effect on
the first hitting density, they do show a difference in the flux line picture. In comparison to R135Q,
the surface attraction at the positive patch is less pronounced in the R134Q mutant.

In the results shown so far, we have investigated the binding dynamics of a single phosphate
ion in the dilute limit, i.e. in absence of other solutes. In a biological scenario, the situation is
much more complex as the cytosol is densely filled with various species of different sizes, shapes
and charges. Although such a heterogeneous complexity is of limited interest to the biophysicist,
it is very interesting to work out some of the principles that contribute to the phosphate binding
dynamics, and more generally to potentially all ion-binding dynamics, in the cell. For example how
does phosphate binding occur in a phosphate rich environment, i.e. where phosphates compete
for binding? To model this, we investigate inorganic phosphate association in a model where a
phosphate ion is already trapped at the positively charged surface patch. Therefore, a HPO−2

4

ion was placed in the vicinity of Arg134, Lys167 and Lys175 and the association dynamics were
computed based on the resulting electrostatic potential. The computed free energy profile, the first
hitting density and the binding pathways are depicted in Figure 7. The free energy profile shows
that the trapping property of the positively charged patch is lost when it is already loaded with
a negatively charged ion, the minima corresponding to the intermediate 1 iso-committor surface
was not present anymore. Moreover, the overall binding free energy is nearly zero. The hitting
density plot shows that the pathways avoid to attack the protein at the bound phosphate location
and are redirected further down. The streamlines additionally reveal that the second phosphate
does not “crawl” over the anion attractor, it rather reaches the binding site from space.

5 Conclusion
In this study we have presented a computational approach to systematically investigate protein-
ligand association kinetics. While existing computational approaches have permitted the calcula-
tion of binding energies and rates using a variety of molecular and dynamical models, the presented
method goes beyond these by providing an extensive analysis of the entire ensemble of associa-
tion pathways by which a ligand approaches its target protein, and their relative probabilities.
While in the present study a simple electrostatic interaction model was used in combination with
rigid body BD, our analysis approach can be readily applied to any molecular dynamical model
that allows to calculate or estimate transition probabilities or rates between the substates of the
protein-ligand configuration space.

The usefulness of the approach was demonstrated by studying the binding of inorganic phos-
phate to the Phosphate Binding Protein from Escherichia coli and several in silico mutants of
it. The analysis reveals that protein mutations that affect surface charges may have subtle to
drastic effects on the association kinetics and association pathways. Some mutations affect only
association rates without significantly altering the associating pathways, i.e., they scale the fluxes.
Other mutations change the association pathways of Pi, and the associated change of the rate,
may be of very different magnitude depending on the exact location of the mutation.

Overall, all systems studied here exhibit binding via a broad ensemble of parallel pathways,
indicating a funnel-like energy landscape that narrows down towards the bound state, very similar
to the situation in protein folding (50).

Consequently, only very few single-point mutations are able to effectively disable Pi binding.
The only single point mutation observed to do this was next to the binding site and thus affected
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Figure 6: Free energy profiles, first hitting densities, and pathways for selected mutants of Pi

associating to the Phosphate Binding Protein. Text background coloring: Gray - Protein has
neutral net charge, Blue - positive net charge, Red - negative net charge. First column - Free
energy profile of the ligand when it travels from the dissociated (q+ = 0) to the associated state
(q+ = 1). A red or blue dot is shown whenever a minimum could be assigned to one of the two
iso-surfaces shown in Figure 5. Second column - Surface density of reactive trajectories that hit
the extended protein surface per unit of time. In each of the plots the black points represent
projected Cα positions of mutated amino acids. Note that the color axis is scaled separately for
each mutant for clarity. Third column - Streamlines of the reactive flux of ligand association
(see Sec. 3.6) for the different mutants, which represent the ensemble of association pathways.
A lighter streamline coloring corresponds to a higher local reactive flux. Here, the same color
scheme is used for all pictures. Fourth column - Here the positions of mutated residues are shown.
Red/blue corresponds to negative/positive charged mutations relative to the wild-type structure.
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Figure 7: Phosphate Binding to PBP:Pi - free energy profile, first hitting density, association
pathways, marked phosphate location

nearly all binding pathways at the bottleneck where they converge. Most other constructed single-
point mutations only disabled a subset of pathways, allowing other parts of the pathway ensemble
to take over, resulting in only a mild reduction of the association rate. Multiple mutations at
critical positions, however, were much more effective and could efficiently disable binding.

The analysis of the mutagenetic behavior revealed the importance of two anion attractors on
the surface of PBP which unspecifically attract all negatively charged molecules. This unspecific
attraction brings anions closer to the phosphate binding site thus trapping them in a region of
limited size. As a result, the PBP wild-type exhibits "superdiffusive association", i.e., associations
with a rate that is about three fold compared to the free-diffusion association rate to the binding
site that is estimated to be 9.2 M−1s−1. With favorable mutations, the association rate may be
sped up to about ten times the free diffusion rate.

After an anion reaches the attractor the phosphate specificity is introduced in the subsequent
step, i.e., the actual complex formation, where binding of phosphate is energetically favorable over
other anions by detailed interaction (25, 27). The resulting catch and select mechanism might be
a general strategy which allows ions to be efficiently screened before being specifically selected.
To experimentally verify our findings, the relevance of different pathways on the protein surface
might be assessed by labeling of specific surface residues and Pi and investigation of their contact
dynamics using, e.g., NMR.

The grid based discretization used here to define configurational substates is limited to few
dimensions and is thus limited to study systems of a size like ligand approaching a rigid protein.
However, in future work the approach will be extended to gridless data-based discretization of
configuration spaces as they are frequently used in Markov model analysis of protein internal
dynamics (15). With this extension, a flux analysis of association pathways will be possible for
complex protein-ligand and protein-protein binding with full dynamical treatment such as all-atom
MD in explicit solvent.
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7 Supplement

Figure 8: Mutant A197W - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site

Figure 9: Mutant D137T - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site

Figure 10: Mutant 3 mut. - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site
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Figure 11: Mutant K43Q. - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site

Figure 12: Mutant R134Q. - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site

Figure 13: Mutant R135Q. - Committor Free Energy Profile, First Hitting Density, Association
Pathways, Mutation Site
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