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Abstract

While studies of protein-ligand association have mostly focused on the native complex and its

stability (binding affinity), relatively little attention has been paid on the association process

that precedes the formation of the complex. Here we review approaches to study the kinet-

ics of association and association mechanisms, i.e. the probability distribution of association

pathways. Selected methods are described that allow these properties to be calculated quan-

titatively from simulation models. We summarize some applications of these methods and

finally propose a model mechanism by which proteins may efficiently screen potential ligands

for those that can be natively bound.



Protein-protein and protein-ligand interactions are essential for almost any biological pro-
cess. Protein-ligand and protein-substrate binding is a prerequesite for signal transduction
and modulation processes. Protein-protein interactions are for example required to form fila-
ments that are stabilized by strong interactions amongst the constituing monomers. Due to
their importance protein interactions have been subject to intensive investigation since the
early days of molecular biology [Pauling et al., 1943; Kauzmann, 1959]. Classically, protein
interactions have largely been characterized in terms of the affinity of the interaction partners
involved. For example, a highly affine interaction is characterized by the fact that small con-
centrations of the respective interaction partners lead to a high yield of interaction complex.
While affinity has been proven to be a good measure to indicate for example the potency
of an enzyme inhibitor it “hides” the kinetics of the underlying structural and biochemical
processes. This kinetic aspect can be crucial to assess the effectivity of a certain reaction
[Tummino and Copeland, 2008] or to foster a biophysical understanding of the reaction pro-
cess itself. For example, certain interactions show a high affinity due to a slow koff rate, which
means the interaction partners form a complex that is stable for a rather long time, while
other interactions might exhibit the same affinity value while with a higher turnover, i.e., a
faster association rate (kon) and also a faster dissociation rate (koff). A prominent example
for the biological relevance of kinetically fast interactions is given by the degradation of the
neurotransmitter Achethycholine (ACh) from the synaptic cleft, which is carried out by the
enzyme Achetylcholinesterase (AChE). For this process very fast kinetics are indispensable,
as fast high frequency transmission of nerval signals relies on a quick restoration of the trans-
mitting modules. As a result of this requirement, evolution made AChE to one of the fastest
known enzymes, with a protein-ligand association that is super-diffusive, i.e. faster than would
be realized by free diffusion [Ripoll et al., 1993; Radic, 1997; Meltzer et al., 2006].

In the following we give a short overview of theoretical studies that have contributed to
investigate mechanisms and kinetics of protein interactions and present a new methodology
that in principle allows to compute the ensemble of all reactive protein-protein/protein-ligand
association pathways. This approach is illustrated on an example of binding of a phosphate
ion to the Phosphate Binding Protein, previously published in [Held et al., 2011]. For a
more thorough review of existing theoretical work on protein-protein interactions the reader
is referred to previous studies, e.g., [Vijayakumar et al., 1998; Gabdoulline and Wade, 2002;
Papoian and Wolynes, 2003; Dell’Orco, 2009; Schreiber et al., 2009].

In many studies, protein association dynamics are modelled as a random diffusion process
in an energy landscape that arises from the electrostatic interaction energy of the proteins
involved [Northrup and Erickson, 1992; Zhou, 1993; Gabdoulline and Wade, 1997a; Ehrlich
et al., 1997; Gabdoulline and Wade, 1999; Elcock et al., 1999; Altobelli and Subramaniam,
2000; Gabdoulline and Wade, 2001a; Elcock, 2003; Haddadian and Gross, 2006; McGuffee
and Elcock, 2010; Pachov et al., 2011]. In these approaches the influence of individual water
molecules in the system is approximated via a continuum heat bath that exerts random kicks
on the solute molecules. Furthermore, it is often assumed that the internal degrees of free-
dom, e.g., flexibility of side-chains or internal conformational changes can be neglected and
the proteins are thus modeled as rigid bodies. These simplifications allow to reach simulation
timescales that are relevant for protein association events at a comparatively low computa-
tional cost compared to all-atom molecular dynamics. It should be noted that with advances
in computational power, such fully detailed molecular dynamics simulations to study the as-
sociation process are becoming accessible [Ahmad et al., 2008; Buch et al., 2011]. Protein
flexibility is likely to be essential for the actual binding process that occurs after association
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towards a pre-complex, either because the binding induces conformational changes, or because
it proceeds via conformational selection [Lange et al., 2008].

In 1978 Ermak and McCammon [Ermak and McCammon, 1978] have presented an al-
gorithm that allows mixtures of proteins to be simulated with Brownian dynamics. Based
on this algorithm, a strategy has been developed to compute bi-molecular kinetic association
constants [Northrup et al., 1984]. To obtain the association rate of two proteins the proce-
dure is the following: One protein is translationally constrained in the center of a sphere and
the other is placed in random orientations at random position at the surface of the sphere.
Starting from these configurations the Ermak-McCammon algorithm is used to simulate the
movement of the diffusing protein for each of the generated setups. Based on the obtained
simulation results the fraction of proteins that successfully associated with the center protein
is estimated. This fraction together with the expected Smoluchowski rate to find both pro-
teins at the radius of the sphere from where the trajectories started is then used to compute
the diffusional association rate. This approach to calculate a bi-molecular association rate
constant is often abbreviated as NAM (Northrup, Allision, McCammon) approach. In the
initial [Northrup et al., 1984] publication this rate was based on branching diagrams, but later
an analytical expression has been derived by Zhou [Zhou, 1990].

In the past 25 years the described methodology was very successfully applied to study
the mechanisms and kinetics of a number of biological interactions processes. Ranging from
studies of bi-molecular protein-protein interactions [Northrup and Erickson, 1992; Zhou, 1993;
Gabdoulline and Wade, 1997a; Elcock et al., 1999; Gabdoulline and Wade, 1999; Altobelli and
Subramaniam, 2000; Gabdoulline and Wade, 2001a; Haddadian and Gross, 2006], over DNA-
chromatin [Ehrlich et al., 1997; Pachov et al., 2011] interactions to studies of heterogeneous
protein mixtures Elcock [2003]; McGuffee and Elcock [2010]. In parallel to the complexity in-
crease of the systems studied with Brownian dynamics algorithms, also the underlying models
improved. For example, the different dielectric nature of protein and solvent had been ne-
glected in early works. Gabdoulline and Wade [Gabdoulline and Wade, 1996] have developed
a the effective charge method that elegantly accounts for this difference in an approximate but
computationally efficient way. Furthermore, hydrodynamic interactions had been neglected in
Brownian dynamics studies due to their small accuracy benefit vs. computational cost ratio.
However, recent algorithmic advances by Geyer et al. [Geyer and Winter, 2009] substantially
reduce the associated computational cost and render their future inclusion in BD simulations
economic.

Despite the success of BD to correctly model association kinetics, little work was devoted
to systematically characterize the association and dissociation pathways that lead to formation
of protein complexes, i.e. the microscopic mechanism. An exception in that regard is the work
by Spaar et al. [Spaar et al., 2006b], who analysed the fraction of trajectories that successfully
formed an Barnase-Barstar encounter complex. While their analysis provides valuable insights
about possible association and dissociation pathways, it remains largely qualitative. It is for
example not apparent from their analysis which pathways connect the metastable regions
present in the vicinity of the Barnase protein.

To overcome this lack of quantitative analysis, we have recently developed an approach
that allows to compute both the association kinetics and the ensemble of association pathways
of protein-ligand association processes in a rigorous way. This approach is based on Transi-
tion Path Theory, which is a statistical physics approach to characterize transition pathways
between selected subsets of a dynamical system. In the remainder of this paper this approach
will be recapitulated and illustrated at the example of inorganic phosphate binding to the
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Phosphate Binding Protein. Further we propose a kinetic model that models the binding of

anions to the attractive patch of the Phosphate Binding Protein, revealing a potential kinetic

benefit of low-affinity binders over high-affinity binders.

Calculation of transition pathways and rates

How can the full ensemble of pathways and the overall rate of a protein-ligand association

process be calculated? First, a molecular model needs to be defined, i.e. the computational

representation of the protein, its ligand, and their interactions with each other and with the

solvent. At very small interaction distances structural dynamics and explicit water molecules

are important. Therefore, explicit water all-atom molecular dynamics simulations have been

used to investigate questions such as whether ligand binding occurs via induced fit or con-

formational selection [Lange et al., 2008]. For binding partners that have relatively stable

structures and at distances where they are still separated by one or two solvation layers, the

internal dynamics of protein and ligand and the explicit structure of solvent molecules are

presumably less important. Consequently, it is common at this stage to use models that keep

the internal structures of protein and ligand rigid and treat the solvating environment (con-

sisting of water, ions, and other non-resolved molecules) implicitly by subsuming it into a

(1) an effective diffusion constant, governing how fast protein and ligand can move through

this media, and (2) an effective dielectric permittivity, governing the strength of electrostatic

interactions between protein and ligand, potentially also accounting for the effect of the ionic

strength of the solution. Based on these two properties and the specific location of charges

on protein and ligand, their motion can be described by Brownian dynamics (BD) [Northrup

et al., 1984; Gabdoulline and Wade, 1997b, 2001b; Spaar et al., 2006b; Schluttig et al., 2008].

Having defined the molecular model and dynamics, all properties of interest are in principle

defined, including the binding affinity, the binding rate, and the ensemble of binding pathways.

However, it is often impractical to calculate these properties by calculating time averages from

direct simulation, i.e. by running a single or a number of long trajectory/-ies that bind/s and

unbind/s sufficiently often.

Recently, mathematical and computational approaches have been developed that break

down this problem into sub-problems each of which are practically manageable. We sketch

the approach here and give the most important expressions for rates and pathway probabil-

ities. First, the conformation space of protein and ligand are conceptually divided into the

dissociated regime, where the protein-ligand pair under investigation do not interact and dif-

fuse freely through the media, and the near regime where one protein copy and one ligand

copy are considered to be close enough such that they interact, e.g. via electrostatic and

hydrodynamic forces (Fig. 1). The near regime is entered with a rate kDiff that depends on

the concentration of protein and ligand, and the ligand can then either diffuse out again or

associate with the protein at a rate kAB. kAB is the rate of a complex formation event of a

single protein-ligand pair from the boundary of the near regime, i.e. it is measured in s−1

and is not concentration dependent, and it depends on all details of the interaction between

protein and ligand.

While kDiff can be easily calculated from the Smoluchowski rate equation (see Fig. 1) the

calculation of the ensemble of pathways in the near regime and its associated rate kAB is more

difficult. The key here is to subdivide this near regime into small conformational substates,

calculate the transition rates or transition probabilities between pairs of such substates i and
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j separately, and then reassemble the entire dynamics within the near regime from it. We and
others have developed and established such ensemble dynamics or Markov models in the past
few years [Schütte et al., 1999; Swope et al., 2004; Noé et al., 2007; Chodera et al., 2007; Noé,
2008; Noé and Fischer, 2008; Buchete and Hummer, 2008; Noé et al., 2009; Bowman et al.,
2009; Voelz et al., 2010; Prinz et al., 2011,(; Keller et al., 2011]. The typical application of
Markov models is to analyze complex processes such as protein folding where large amounts of
molecular simulation is clustered into small conformational substates and the overall process
can be understood by analyzing the resulting transition probabilities between these substates
[Karpen et al., 1993; de Groot et al., 2001; Weber, 2003; Wales, 2003; Rao and Caflisch, 2004;
Schultheis et al., 2005; Hubner et al., 2006; Muff and Caflisch, 2007; Noé and Fischer, 2008;
Buchete and Hummer, 2008; Pan and Roux, 2008]. The dynamical data may be generated
with any dynamical model, including all-atom molecular dynamics, coarse-grained dynamics
or Brownian dynamics with rigid solutes. Such analyses are especially useful in scenarios
where large simulation datasets arise, such as in the folding@home framework [Singhal et al.,
2004; Bowman et al., 2009]. On the other hand, in situtations such as protein-protein or
protein-ligand binding, essential degrees or freedom are often known a priori . For example,
obviously relevant coordinates are the 6 rototranslational degrees of freedom that describe
the relative position and orientation of the second protein or ligand with respect to the first
protein. In such cases, the conformation space can be discretized a priori and many short
simulations can be started from many different substates, without having to wait for the
dynamics to sample these substates. One advantage of Markov models over standard analyses
is then that their substate-to-substate transition probabilities Tij(τ) can be estimated from
many short trajectories of length τ that may be much shorter than the slowest relaxation
times of the system, thus getting somewhat independent of the rare event character of the
molecular system . [Noé et al., 2009; Prinz et al., 2011]. This approach introduces statistical
uncertainty in the results whose magnitude can be estimated with novel statistical methods
[Singhal and Pande, 2005; Hinrichs and Pande, 2007; Noé, 2008; Chodera and Noé, 2010].

In simple cases, such as the diffusive binding of an ion to a rigid protein, the conformational
substates can be defined by a three-dimensional grid in the space of ion location around the
protein. In this case, there are even no simulation trajectories needed because it is possible
to calculate transition rates kij between substates from a direct spatial discretization of the
dynamical equations and without statistical error [Song et al., 2004; Held et al., 2011]. Markov
models can be expressed in terms of either transition probabilities Tij(τ) or transition rates
kij , and the subsequent analysis also works with both approaches. For simplicity, we continue
with the transition rates kij .

A number of quantities can be calculated from the transition rates kij . Each conformational
sub-state has a stationary distribution πi (the Boltzmann distribution, see Fig. 2b) for which
the detailed balance equation πikij = πjkji holds, i.e. in equilibrium, the flux of trajectories
from state i to j, πikij , equals the flux of trajectories backward, πjkji.

We now want to concentrate on those trajectories only that come from the dissociated
state A (i.e. the boundary between far and near regime) and progress to the associated state
B without returning to A in between. We are interested in characterizing the probability
distribution of these reactive trajectories, and in the flux these trajectories generate between
the state. For this, we require the concept of the committor qi, which is, for each state i,
the probability that a trajectory being in this state will next move on to associate (to B),
rather than dissociate (to A) [Du et al., 1998; Bolhuis et al., 2002; Vanden-Eijnden, 2006], see
Fig. 2 for illustration. The committor can be easily calculated from kij [Noé et al., 2009].
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As qi quantifies the kinetic progress of the ligand association process, it can be used as a

reaction coordinate or order parameter for a free energy profile. The free energy profile of

ligand association is then given by:

F (q∗) = −kBT log
�

i|qi≈q∗

πi, (1)

where kB is the Boltzmann constant, T the absolute temperature and q∗ the value of the

committor coordinate. More importantly, the committors can be used to calculate the reactive

fluxes f+

ij
between substates via transition path theory (TPT) [Vanden-Eijnden, 2006; Metzner

et al., 2009]. The reactive flux is the number of trajectories passing from i to j per time unit

moving from the dissociated to the associated state, and is given (at the equilibrium) by:

f+

ij
= max{πikij(qj − qi), 0}. (2)

which defines a flux field that can be used to show the streamlines out of A and into B along

with their probabilities (see Fig. 2d).

Finally the A → B reaction rate is given by [Noé et al., 2009]:

kAB =

�
i∈A

�
j /∈A πikijqj�

i πi(1− qi)
.

kAB is the rate at which a ligand molecule binds starting from set A. In order to compute

the bi-molecular association rate of protein and ligand, the rate at which ligand molecules

arrive at the A sphere has to be taken into account. Based on the assumption that protein

and ligand diffuse freely with diffusion constant D outside the A sphere, the diffusion limited

association constant kOn can be obtained by [Erban and Chapman, 2009]:

kOn = 4πD



r −
�

D

kAB

tanh



r

�
kAB

D







 , (3)

where r denotes the radius of the A sphere. Note that kOn is a concentration dependent rate

(e.g. in M−1s−1), while kAB is the rate of a single complex binding event (in s−1). In the

derivation of this formula Erban and Chapman assume that molecules X diffuse to the surface

of a sphere of radius r, which is centered around molecule Y . Once molecules X hit the surface

of the sphere they are removed from the surface with rate kAB, i.e. the rate at which ligands

bind given they are found on the surface of a sphere with radius r. The approach described

here is an alternative to the NAM approach [Northrup et al., 1984] to calculate binding rates

kOn. Both approaches converge to the exact binding rates when statistical and discretization

errors approach zero. Our approach has the advantage that it can deal with substate-based

dynamical models such as Markov models that can be generated even for processes that are

much slower than affordable simulation lengths.

Phosphate Binding to the Phosphate Binding Protein

A number of studies, especially using Brownian dynamics simulations of rigid proteins and

ligands, have been used to study protein-ligand association kinetics [Gabdoulline and Wade,
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1997c, 2001b; Spaar et al., 2006a, 2009; Held et al., 2011]. These studies have found rela-

tively broad ensembles of association pathways that narrow down when the ligand approaches

the binding site. In some systems, the dependence of these pathways on mutations were

investigated [Spaar et al., 2006a, 2009; Held et al., 2011]. Examples have been found that

association might occur via pre-binding sites outside the native binding site that metastably

associate ligands, and from which either binding or dissociation might occur. In [Held et al.,

2011], the binding of phosphate (Pi) to the Phosphate Binding Protein was studied in detail

using the systematic approach described in the above section. The rate matrices K, which

served as input for the TPT analysis, were computed by discretizing the surrounding space

of the Phosphate Binding Protein mutants into a number of volume elements. Given this

discretization the transition rates kij between volume elements were calculated based on the

joint diffusion constant of protein and ligand and the electrostatic potential associated to each

volume element. The unbound set of states A was chosen to comprise all elements with a

distance larger then 25nm to the protein center, the set of bound states B was chosen to com-

prise elements in the vicinity of the bound Pi conformation, please see [Held et al., 2011] and

[Latorre et al., 2010] for details. While previous work on this system was mainly concerned

with investigating the binding kinetics by experimental means [Brune et al., 1998; Ledvina

et al., 1998] or direct simulation [Huang and Briggs, 2002], our study was the first to provide

a systematic description of the Pi binding pathway ensemble.

Similar to diffusion-controlled enzymes [Stroppolo et al., 2001] we find that the wild-type

shows association rates greater than the diffusion-limited rate which would be expected for

finding the binding site by pure undirected diffusion. By investigating several in-silico mutants

of the phosphate binding protein this super diffusive binding effect could be attributed to a

positively charged patch (“anion attractor”) which strongly attracts anions by electrostatic

steering. For the purpose of this review, we pick four of the studied proteins that are most

instructive to explain the general biophysical mechanisms that alter the binding kinetics and

association pathway ensemble.

The results are summarized in Fig. 3. The left column shows the free energy profile of

phosphate associations along the committor coordinate and the calculated association rate.

For the selected mutants the free energy decreases with increasing committor value, indicating

that binding of phosphate is energetically favorable. Inspection of the free energy profiles of

different mutants shows the existence of several minima along the committor coordinate. Such

minima indicate that the phosphate ion is more likely to be found at certain positions in space

with corresponding committor values and these configurations may be metastable.

In particular, the free energy profile of the wild-type protein shows two free energy minima

that indicate two metastable configurations of the phosphate before it reaches the binding

site. While this indicates a kinetic trapping of phosphate ions before they reach the binding

site the calculated association rate of 27.9 M−1s−1
is still three times greater than the pure

diffusion rate. When the positive patch formed by R134, K167 and K175 is neutralized,

as in the R134Q/K167Q/K175Q/D21N/D51N/D61N (6 mut.) mutant, the anion attractor is

disruped. Interestingly, loosing this kinetic trap along the binding coordinate does not increase

the association rate of phosphate: in contrast it is decreased by a factor of 3 (9.3 M−1s−1
),

now being similar to the purely diffusional association rate.

In the mutant D137T a negative charge close to the binding site is neutralized, causing the

opposite effect: The association rate is increased by a factor of about 3 compared to the wild-

type. Due to this stronger attraction of the negatively charged phosphate ion, the minimum

associated to trapped configurations close to the binding site vanishes, while trapping at the
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anion attractor is still present, although with an increased probability to reach the binding

site from these configurations.

In order to assess the association mechanism, the ensembles of association pathways are

shown in the middle column of Fig. 3. The plotted pathways are streamlines that follow the

reactive flux field of binding. The number of reactive trajectories that pass a volume element

per unit of time is expressed by streamline coloring, i.e. brighter color means more flux. This

manifests as a nearly white coloring in the vicinity of the binding site, where the trajectories

converge to form a strong current.

For the wild-type structure, the phosphate trajectories attack the protein on both sides of

the phosphate binding side, with a preference for attacking at the anion attractor and then

crawling over the surface to the binding site. This picture is not qualitatively different for the

positively charged D137T mutants. Here, also both sides of the protein are approached by

the phosphate and the surface crawling still occurs. However, due to the increased net charge

of the protein the number of reactive trajectories is strongly increased. A strong distortion is

observed when the positive patch is neutralized as in the 6mut. mutant. The flux lines show

that the pathways are not attracted to the positive patch but rather straightly approach the

phosphate binding site from the bulk.

In the results shown so far, we have investigated the association dynamics of a single Pi in

the dilute limit, i.e. in absence of other solutes. In a biological scenario, the situation is much

more complex as the cytosol is densely filled with various species of different sizes, shapes and

charges. Therefore, it is very interesting to work out some of the principles that contribute to

the phosphate binding dynamics, and more generally to potentially all ion-binding dynamics,

in the cell. For example how does phosphate binding occur when it competes with other anions

or other phosphates? To model this, we investigate inorganic phosphate association in a model

where a phosphate ion is already trapped at the positively charged surface patch. Therefore,

a HPO−2
4 ion was placed in the vicinity of Arg134, Lys167 and Lys175 and the association

dynamics were computed based on the resulting electrostatic potential. The computed free

energy profile and the binding pathways are depicted in the last row of Figure 3. The free

energy profile shows that the trapping property of the positively charged patch is lost when it

is already loaded with a negatively charged ion, the minima corresponding to the first trapping

configurations was not present anymore. Moreover, the overall binding free energy is nearly

zero and the binding rate is strongly reduced. The streamlines additionally reveal that the

second phosphate does not “crawl” via the anion attractor , it rather reaches the binding site

from bulk solvent.

Rapid scanning of ligands

In vivo, the cell is densely filled with molecules of all sorts, including proteins, ligands, water,

ions, RNA, etc. Most complexes, when formed, however, are very specific, e.g. a particular

protein will be able to bind one particular ligand or a small class of ligands, but certainly

not every ligand that has roughly the right size, shape and overall charge. This is because

tight binding is specific in many sites, i.e. formation of hydrogen bonds, electrostatic com-

plementarity or match of hydrophobic patches need to be favorable enough to overcome the

associated entropic cost.

Let us remind the reader to the comparison to protein folding, where the entropically

favorable unfolded chain is stabilized in a compact state by native interactions. In the early
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days of protein folding, Levinthal raised the so-called Levinthal paradox , which referred to the
kinetics of protein folding: Levinthal assumed that each amino acid could assume at least two
conformations (via its Backbone rotameric flexibility), all being equally probable except for
the stable native state. If it then takes a certain waiting time (e.g. pico- or nanoseconds) to
try one such combination, then, given the typical number of amino acids in the protein, so
many trials would be necessary that the protein could not fold in the age of the universe. The
resolution of this paradox is that different non-native states are not equally likely, but tend to
become increasingly likely as the native state is approached - which has often been modeled
by a protein folding funnel [Thirumalai and Woodson, 1996; Dill, 1999; Onuchic and Wolynes,
2004].

A similar problem seems to appear in protein-ligand binding. When each binding attempt
of a wrong ligand to a protein takes a certain time (e.g. nano- or microseconds), can then a
correct ligand be found within a reasonable timescale at all unless the concentration is very
high? It is very likely that cells have developed efficient sorting and searching mechanisms such
that this process is not governed by random trial alone. One aspect is certainly that proteins
with related binding partners are often located in proximal positions in the cell. However,
there might be additional mechanisms that guide binding partners to attract candidates and
then rather quickly reject mismatches.

Consider the Phosphate Binding Protein discussed above in a mixture of anions, its ligand
Pi at concentration cL and other non-ligand anions with the same polarity at concentration
c0. The protein will attract all anions to its pre-binding site, the anion attractor, which is
a quick way of screening anions, which are at least known to be in the same charge class in
which the ligand also is in. Being at the pre-binding site, the non-ligand (0) cannot bind, and
must dissociate some time later, while the ligand (L) can bind tightly. The reaction diagram
below describes a kinetic model for this scenario:

Based on this reaction diagram, we can calculate the mean time needed to bind a ligand
molecule from the bulk, depending on the relative concentration cL : c0 and the pre-binding
affinity Ka = kon/koff with kon being given by Eq. 3. The results shown in Fig. 5 suggest
that a high pre-binding affinity is optimal in the case where no non-ligand are around and
thus each binding attempt results in success. In this case, increasing the pre-binding affinity
reduces the expected time needed for binding as the associated state PL is then more likely
to move on to the bound state PL∗ rather than to dissociate. However, the picture drastically
changes as soon as non-ligands are in bulk. While it is still true that the time needed for a trial
with the true ligand is reduced, this is not the case for non-ligands. Whenever a non-ligand
is associated, a high pre-binding affinity will force this non-ligand to stay at the pre-binding
site for a long time before it can dissociate and free the site for the next trial. The optimal
settings in this case, i.e. the situation with minimal time needed to find and bind the ligand, is
given for relatively small pre-binding affinities. This illustrates how decreasing the pre-binding
affinity can be favourable to speed up binding in the sense that the waiting time to the next
successful binding event is kept small since blocking times from „wrong“ ligands are avoided.

Discussion

While protein-ligand binding has in the past mostly focused on measurement or calculation of
binding affinities, the field is now clearly moving more towards kinetics and mechanisms. This
is in part due to improved experimental techniques, especially single-molecule experiments
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such as force probe measurements or single molecule fluorescence, which allow the existence
of multiple metastable states and the transition rates between them to be observable. On
the theoretical side, methods in the classes of transition networks / Markov models have
been developed that allow simulations to be analyzed and interpreted in a way that yields
rather unambiguous access to the relevant states, interstate transitions rates and other kinetic
quantities. With these methods available, kinetic and mechanistic properties are likely to be
in the focus of future research in protein-ligand binding.

One of the issues that have been raised here is the question how a protein can efficiently
find its specific binding partner(s) in a vast and dense mixture of different possible binding
partners present in the cell. Here we have suggested a simple sorting mechanism that promotes
rapid identification of the right ligand by first quickly selecting all potential ligands that fall
within the right category (here carrying the right charge), and then attempting to bind. It was
found that in the presence of “wrong” ligands, binding is promoted most with a pre-binding
site that has a low rather than a high affinity, in order to avoid creating kinetic traps with
wrong ligands. This model is yet to be supported by experimental evidence and further sorting
mechanisms, e.g. by size, shape, hydrophobicity etc. might exist.
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Figures
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[kDiff] = M−1s−1 [kAB] = s−1
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Figure 1: kDiff and kAB as contributors to the overall diffusional association rate kon . kDiff

denotes the rate at which substrate particles diffuse into a sphere of radius r, it is given by
the Smoluchowski rate kDiff = 4πDr and has the unit M−1s−1 . kAB denotes the transition
rate of a single substrate molecule present at distance r to the binding site B, it is given by
the A → B transition rate and has the unit s−1.
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Figure 2: Illustration of TPT on a simple two-dimensional protein-ligand binding model. The
dissociated state of the ligand A and the associated state B are shown. (a) potential energy
landscape. (b) resulting stationary density, i.e., probability to find the ligand at a certain
position (c) committor q, revealing a higher probability to reach the binding site for areas
on top of the charged protein than for the uncharged protein. (d) reactive flux density and
integrated flux lines calculated from the flux field resulting from the fluxes f+

ij .
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Figure 3: Free energy profiles and association pathways of Pi associating to the Phosphate

Binding Protein. First column - Free energy profile of the ligand when it travels from the

dissociated (q = 0) to the associated state (q = 1). Second column - Streamlines of the

reactive flux of ligand association, which represent the ensemble of association pathways.

A brighter streamline coloring corresponds to a higher local reactive flux. Third column -
Here the positions of mutated residues are shown. Red/blue corresponds to negative/positive

charged mutations relative to the wild-type structure.18



Figure 4: Reaction diagram showing a possible kinetic scenario of anion attraction to a pre-
binding site. Starting from the bulk two possible reaction channels can be taken: In case of a
ligand (L) the upper path is chosen, in case of a non-ligand (0) the lower one. Both species are
attracted to the pre-binding site PL/P0 with their respective concentration dependent rate
kon, but only the ligand can move further to the bound state PL. If the concentration of non-
ligand is increased with respect to the ligand concentration the lower channel will dominate
the reaction system and the pre-binding site will be blocked by the non-ligand more often,
which results in a lower yield of PL*.
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Figure 5: Mean binding time of a ligand in a mixture of “right” and “wrong” ligands at
concentrations cL and c0 depending on the relative concentration cL : c0 and the pre-binding
affinity Ka = kon/koff . Rates were set to (c0 + cL)kdiff = kAB = kbind = ku = 1s−1 and
koff = kon/Ka.
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