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Abstract

In this paper, we present a Gaussian Markov random field (GMRF) model for the transition
matrices (TMs) of Markov chains (MCs) by assuming the existence of a neighborhood relationship
between states, and develop the maximum a posteriori (MAP) estimators under different obser-
vation conditions. Unlike earlier work on TM estimation, our method can make full use of the
similarity between different states to improve the estimated accuracy, and the estimator can be
performed very efficiently by solving a convex programming problem. In addition, we discuss the
parameter choice of the proposed model, and introduce a Monte Carlo cross validation (MCCV)
method. The numerical simulations of a diffusion process are employed to show the effectiveness
of the proposed models and algorithms.

1 Introduction
Markov chain (MC) models provide a general modeling framework for describing state evolutions of
stochastic and memoryless systems, and are now important and powerful tools for an enormous range
of mathematical applications, including science, economics, and engineering. Here we only focus on
the finite discrete-time homogeneous MC model, which is one of the most common MC models, and
whose dynamics can be simply characterized by a transition matrix (TM) T = [Tij ] ∈ Rn×n with Tij

the transition probability from the i-th state to the j-th state. Such models arise in molecular systems
[1], economic forecasts and evaluations [2, 3], web navigation [4], quantitative analysis of sports [5] and
many others. In most applications, the main problem is to estimate the transition probabilities from
observed data.

In the past few decades, a lot of different techniques have been proposed to estimated the TMs.
Many early researches devoted to the least-square (LS) approaches [6, 7, 8], for MC models can be
transformed to linear stochastic systems with zero-mean noise. The advantages of these methods are
that there are well developed theories and algorithms for LS regression, and they can easily extended to
the case where only sample proportions are available from time series data. However, the conventional
LS estimators may violate the nonnegative constraints on TMs. Thus, some restricted LS methods [9,
10, 11] based on constrained quadratic programming algorithms were developed to avoid this problem.
Some researchers [7, 10] suggested utilizing the weighted LS and weighted restricted methods to solve
the problem of heteroscedasticity.

By now, the best known and most popular estimation method of MC models is maximum likelihood
(ML) estimator which was proposed in [12], for it is consistent and asymptotically normally distributed
as the sample size increases [13], and can be efficiently calculated by counting transition pairs. Some
experiments show ML estimator is superior to the LS estimators [14]. Moreover, the ML method can
be applied to estimation from aggregate time series data [15], and revsersible TM estimation for some
physical and chemical processes [1].

Recently, the Bayesian approach [16, 15] to TM estimation has received a good deal of attention. In
this approach, an unknown TM is assumed to be a realization of some prior model, and the posterior
distribution given observed data can be obtained by Bayes’ rule. Comparing to the non-Bayesian
methods, the Bayesian estimator can provide much more information, such as confidence intervals and
expectations of some functions of the TM, than a single point estimate, and is more reliable for small
size data set if the prior model is appropriately designed. The most commonly used prior distribution
is the matrix beta distribution with density

p (T |Θ) ∝
∏

i,j

T
θij−1
ij

where Θ = [θij ] is a nonnegative parameter matrix. It is a conjugate prior for the likelihood of T and
can be easily analyzed and efficiently sampled since each row of T follows the Dirichlet distribution. In
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some applications, Θ = 1 and Θ = 0 are recommended, because p (T |Θ) is equivalent to the uniform
distribution when Θ = 1 [17], and Θ = 0 makes the posterior mean of the TM identical to the ML
estimate [18]. The matrix Θ can also be optimized by using the empirical Bayes approach [19]. The
matrix beta prior distribution based Bayesian estimation of revsersible TM was investigated in [17].
The shortcoming of the matrix beta prior is that it does not take into account possible correlations
between different rows of the transition matrix. Assoudou and Essebbar [20, 21] proposed the Jeffreys’
prior (a non-informative prior) model for TMs to overcome this problem, and no extra parameter is
required in this model. However, the Jeffreys’ prior distribution is too complicated for deriving the
Bayesian estimator, and can only be applied to MC models with very few states in practice.

The major objective of this paper is to propose a new prior model for MCs based on the Gaussian
Markov random filed (GMRF). The GMRF [22, 23, 24, 25] model is a specific Gaussian field model,
and frequently used in spatial statistics and image processing, which constructs a global distribution
of a spatial function by considering the local correlations between points or regions. In this paper,
we assume that the state space of the MC has neighborhood structure and the adjacent states have
similar transition behaviors. This assumption generally holds for the grid based approximate models of
continuous space MCs, and the case that the state space has a distance metric. A GMRF prior model
of TMs is then designed according to the assumption, and the corresponding maximum a posteriori
(MAP) estimator is developed. In comparison with the existing models, the new prior model is able
to utilize the similarity relationship of states better. Although the new prior is not a conjugate prior,
the MAP estimate can be calculated efficiently by convex programming, and there is only one extra
parameter is required, which can be selected by the cross validation (CV) method. Moreover the
estimation problem with noisy data is considered, and the expectation maximization (EM) algorithm
is used to get the MAP estimate.

2 Background

2.1 Gaussian Markov Random Fields
Let G = (V, E) be an undirected graph without loop edges, where V is the set of vertices and E ⊂ V ×V
is the edge set. And vertices u, v ∈ V are said to be adjacent iff (u, v) ∈ E, which is denoted by u ∼ v.
It is clear that ∀u, v ∈ V , v � v and u ∼ v ⇔ v ∼ u. A Gaussian Markov random field (GMRF) Y
on G is a Gaussian stochastic function that assigns to each vertex v a real number Y (v). Here we
only introduce the widely used intrinsic GMRF model [23, 26], which is often specified through the
following distribution

pGMRF (y|σ) ∝ exp

(
− 1

2σ2

∑
u∼v

(
Y (u)− Y (v)

d2 (u, v)

)2
)

(1)

where y = {Y (v) |v ∈ V }, σ is a parameter that controls variation in Y , and d (·, ·) denotes a distance
measure between vertices. And the distribution (1) has the Markovian property that

pGMRF (Y (v) |Y (u) , u 6= v) = pGMRF (Y (v) |Y (u) , u ∈ ∂v)
= N (

Y (v) |µ (v) , σ2 (v)
)

(2)

where ∂v = {u|u ∼ v, u ∈ V }, N (·|µ, σ2
)
denotes the probability density function of the normal dis-

tribution with mean µ and variance σ2, and

µ (v) =

( ∑

u∈∂v

Y (u)
d2 (u, v)

)
/

( ∑

u∈∂v

1
d2 (u, v)

)
(3)

σ2 (v) = σ2/

( ∑

u∈∂v

1
d2 (u, v)

)
(4)

That is, Y (v) is conditionally independent of {Y (u) |u /∈ ∂v} for given neighbors, and the conditional
distribution is centered at the weighted average of {Y (u) |u ∈ ∂v}.

2.2 Markov Chains
We consider a time-homogeneous Mariv chain (MC) {xt|t ≥ 0} on the finite state space S = {s1, . . . , sn}.
Its probability model can be described by a transition matrix (TM) T = [Tij ] ∈ Rn×n whose entries
are given by

Tij = p (xt+1 = sj |xt = si) (5)
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where ∑

j

Tij = 1, Tij > 0 (6)

Here we define Ωn = {T |T ∈ Rn×n is a stochasic matrix}, which is a convex set.
And the probability distribution of the finite-length state sequence {x0, x1, . . . , xm} given T can

be expressed as
p (x0:m|T ) =

∏

i,j

T
Cij

ij (7)

where entries of count matrix C = [Cij ] are numbers of observed transition pairs with

Cij = |{(xt, xt+1) |xt = si, xt+1 = sj , 0 ≤ t ≤ m− 1}| (8)

3 GMRF Based MC Model Estimation

3.1 GMRF Prior
Given an MC state space S = {s1, . . . , sn}, the purpose of this subsection is provide a GMRF model
based prior distribution for the TM T = [Tij ]. Assuming a neighborhood structure on the state space,
which is common in the case that the discrete states are obtained by decomposing a large scale state
space using some discretization or aggregation method, we construct a neighborhood relation between
the transition pairs as

(si, sj) ∼ (sk, sl) ⇔ (si, sj) ∈ (∂sk ∪ {sk})× (∂sl ∪ {sl}) \ {(sk, sl)} (9)

Since the new neighborhood relation (9) is also symmetric and irreflexive, we can model the unknown
matrix T by GMRF model with distribution

pGMRF (T |σ) ∝ exp (−u (T , σ)) (10)

where

u (T , σ) =
1

2σ2

∑

(si,sj)∼(sk,sl)

(
Tij − Tkl

d2
ijkl

)2

(11)

dijkl is the distance between (si, sj) and (sk, sl), and here defined as

dijsk =
√

d2 (si, sk) + d2 (sj , sl) (12)

However, the realization of distribution (10) does not satisfy (6) in the general case. Therefore we
modify the prior distribution as

pGMC (T |σ) = pGMRF (T |σ,T ∈ Ωn) =

{
1

z(σ) exp (−u (T , σ)) , T ∈ Ωn

0, T /∈ Ωn

(13)

where
z (σ) =

ˆ

Ωn

exp (−u (T , σ)) dT (14)

i.e., T follows the distribution pGMRF (T |σ) under the constraint that T ∈ Ωn.
For a stochastic realization of pGMC (T |σ), values of Tij and Tkl are always close if distances

between si and sk, sj and sl are small. In comparison with the conventional prior models of transition
matrices, the proposed model can describe the stochastic relationships between p (xt+1|xt = si) and
p (xt+1|xt = sk) for i 6= k. Further, u (T , σ) is a positive-semidefinite quadratic form in T , which has
many analytical and computational advantages.

3.2 MAP Estimation
The maximum a posteriori (MAP) estimate of the TM T of an MC from observed data {x0, . . . , xt}
with count matrix C = [Cij ] is given by

T̂ = arg max
T

{log p (C|T ) + log p (T )} (15)

3



Using the proposed GMRF prior model and assuming the parameter σ is known, (15) is equivalent to
the following optimization problem

T̂ (σ) = arg min
T∈Ωn



−

∑

i,j

Cij log Tij + u (T , σ)



 (16)

It is a convex problem and can be solved without any spurious local minima. We discuss how to
perform the optimization efficiently in Appendix A.

Remark 1 It is clear that the MAP estimation (16) is equivalent to the maximum likelihood (ML)
estimator when σ →∞.

3.3 Choice of σ

We now consider the case that σ is unknown. Motivated by the above analysis, it seems reasonable to
jointly estimate T and σ by MAP method as

(
T̂ , σ̂

)
= arg max

T ,σ
{log p (C|T ) + log p (T , σ)} (17)

After some manipulations, (17) reduces to

(
T̂ , σ̂

)
= arg min

T∈Ωn,σ



−

∑

i,j

Cij log Tij + u (T , σ)− log p (σ) + log z (σ)



 (18)

where p (σ) denotes the prior distribution of σ. In this form, the first three terms are easily computed,
but log z (σ) is an intractable function of σ since it requires the computation of a integral on Ωn.

So here we use cross-validation (CV) approach to select the value of σ, and adopt the Monte Carlo
cross-validation (MCCV) method proposed in [27], which is considered an effective method of selecting
models, and performs more stably than the traditional v-fold CV and leave-one-out CV [28, 29, 30, 31].
The MCCV of a σ is conducted by the following steps:

Step 1. Partition the set of observed state transition pairs randomly into train and test subsets, where
the test subset is a fraction β (typically 0.5) of the overall set, and the corresponding count
matrices are denoted by Ctrain

k and Ctest
k .

Step 2. Calculate
T̂k (σ) = arg max

T∈Ωn

{
log p

(
Ctrain

k |T )− u (T , σ)
}

(19)

and the predictive log-likelihood

CVk (σ) = log p
(
Ctest

k |T̂k (σ)
)

(20)

Step 3. Repeat the above steps for k = 1, . . . , K and select

σ∗ = arg max
σ

CV (σ) (21)

with CV (σ) =
∑

k CVk (σ) /K.

It can be seen from (20) that CVk (σ) → −∞ if the (i, j)-th entry of Ctest
k is positive and that of

T̂k (σ) convergences to 0. In order to avoid the possible singularity, we approximate the logarithmic
function as

log (Tij) ≈ PLη (Tij) =
1
η

(
T η

ij − 1
)

(22)

when calculating CVk (σ), where η ∈ (0, 1) is a small number. It is easy to prove that

PLη (x)− log x =
(log x)2

2
η + O

(
η2

)
, for x > 0 (23)

and
PLη (x) ≥ −1

η
, for x ≥ 0 (24)

Thus, the function PLη (x) is bounded by −1/η and approximately equal to log x if x ∈ (0, 1] is not
close to 0.
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4 Estimation with Stochastic Observations
In this section, we will take into account that the actual state transitions are unknown, and only
stochastic observations

ot|xt ∼ p (ot|xt) (25)

for t = 0, . . . , m are available. In this case, the MC model of {xt} together with the above probability
distributions describing the possible observations constitute a hidden Markov model (HMM) [32]. The
MAP estimator of the TM with prior parameter σ can be expressed by

T̂ (σ) = arg max
T∈Ωn

{log p (O|T ) + log pGMC (T |σ)}
= arg max

T∈Ωn

{log p (O|T )− u (T , σ)} (26)

where O = {o0, . . . , om}, and computed with the expectation maximization (EM) algorithm [33] con-
sisting of the following steps:

Step 1. Choose an initial T (0) ∈ Ωn and let k = 0.

Step 2. Compute the functional

Q
(
T |T (k)

)
= E

[
log (C (X) |T )− u (T , σ) |T (k), O

]

=
∑

i,j

C̄ij log Tij − u (T , σ) (27)

where X = {x0, . . . , xm}, C (X) = [Cij (X)] denotes the count matrix of X, and

C̄ =
[
C̄ij

]
= E

[
C (X) |T (k), O

]
(28)

can be calculated by the forward-backward procedure [34].

Step 3. Find T (k+1) which maximizes the function Q
(
T |T (k)

)
as

T (k+1) = arg max
T∈Ωn

Q
(
T |T (k)

)

= arg min
T∈Ωn



−

∑

i,j

C̄ij log Tij + u (T , σ)



 (29)

Step 4. Terminate if
∣∣∣
(
log p

(
O|T (k+1)

)
− u

(
T (k+1), σ

))
−

(
log p

(
O|T (k)

)
− u

(
T (k), σ

))∣∣∣ ≤ ε2 (30)

where ε2 is a small positive number.

Step 5. Let k = k + 1 and go to Step 2.

Note that (29) has the same form as (16) with C̄ij ≥ 0 for any i, j, so (29) is a convex optimization
problem and can be solved by the algorithm described in Appendix A too.

Further, in a similar manner to Section 3.3, the value of σ can be designed through the following
MCCV algorithm:

Step 1. Divide O into M parts O1, . . . , OM with equal size as

Oi =
{

ot| (i− 1) (m + 1)
M

≤ t <
i (m + 1)

M

}
(31)

Step 2. Partition {O1, . . . , OM} randomly into train subset Strain and test subset Stest with

p
(
Oi ∈ Strain

)
= β (32)

for i = 1, . . . , M .

5



Step 3. Calculate
T̂k (σ) = arg max

T∈Ωn

{
log p

(
Strain|T )− u (T , σ)

}
(33)

by EM algorithm, and the predictive log-likelihood

CVk (σ) = log p
(
Stest|T̂k (σ) , Strain

)
= log p

(
Stest, Strain|T̂k (σ)

)
− log p

(
Strain|T̂k (σ)

)

(34)
by the likelihood evaluation algorithm of HMMs [34].

Step 4. Repeat Steps 2 and 3 for k = 1, . . . , K and select

σ∗ = arg max
σ

CV (σ) (35)

with CV (σ) =
∑

k CVk (σ) /K.

Remark 2 In this paper, we discuss the estimation of the TM, given a unique state sequence {x1, . . . , xm}
or observation sequence {o1, . . . , om}. It is easy to extend our framework to the case of mutiple state or
observation sequences. We only need to point out that for multiple independent stochastic observation
sequences O1, . . . , OM , we can treat each sequence Oi as a part when performing the MCCV of σ, i.e.,
revise (31) as Oi = Oi, and the predictive log-likelihood in (34) can be written as

CVk (σ) = log p
(
Stest|T̂k (σ) , Strain

)
= log p

(
Stest|T̂k (σ)

)
(36)

5 Simulations

5.1 Brownian Dynamics Model
In this section, the estimation method proposed in this paper will be applied to a Brownian dynamics
(BD) model, which is described as

dr = −f (r) dt + ρdW (37)

where ρ = 1.4, W is a standard Brownian motion, f (r) = dV (r) /dr and V (r) is the potential function
(see Fig. 1) given by

V (r) =





−111.01r3 + 178.63r2 − 82.27r + 10.55, r < 0.75
182.8915r3 − 482.64r2 + 413.69r − 113.44, 0.75 ≤ r < 1
−153.36r3 + 526.11r2 − 595.06r + 222.81 1 ≤ r < 1.25
84.94r3 − 367.53r2 + 521.98r − 242.62, 1.25 < r

(38)

Using Euler-Maruyama scheme [35], the motion equation (37) can be discretized with time step
∆t = 10−3 as

r (t + ∆t) |r (t) ∼ N (
r (t)−∆t · f (r (t)) , ρ2∆t

)
(39)

where N (
µ, v2

)
denotes the normal distribution with mean µ and variance v2. And the state space of

r can be decomposed into n = 100 “cells” S = {s1, . . . , sn} with

xk = si ⇔ sat (r (k∆t) , 0, 2) ∈
(

2 (i− 1)
n

,
2i

n

)
(40)

and
si =

2i− 1
n

(41)

where

sat (r, l, u) =





l, r < l

u, r > u

r, otherwise
(42)

Then the grid based approximate MC model can be expressed as

p (xk+1 = sj |xk = si) ∝ exp

(
− (sj − si + ∆tf (si))

2

2ρ2∆t

)
(43)
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The corresponding TM T = [Tij ] is shown in Fig. 2.
Furthermore, the neighborhood structure on S is here defined by

∂si = {si−1, si+1} ∩ S (44)

with distance measure
d (si, sj) = |i− j| (45)

5.2 TM Estimation
We generate a realization {r (t) |0 ≤ t ≤ 3} of (37) with r (0) randomly chosen from a uniform distribu-
tion over [0, 2] (see Fig. 3), and discretize it into {xk|0 ≤ k ≤ m} ,m = 3000 by using the discretization
method in Subsection 5.1.

Here, we will use the MAP method presented in Section 3 to estimate the TM T based on
{xk|0 ≤ k ≤ m} and compare it with the ML method [15]. The algorithm parameters are chosen
as

ε1 = 10−6, β = 0.5, η = 0.1,K = 20 (46)

and σ is selected from

Sσ (σl, σu) =
{

exp
(

i

19
log

σu

σl
+ log σl

)
|i = 0, . . . , 19

}
⊂ [σl, σu] (47)

with σl = 10−2 and σu = 10−0.5. Fig. 4 plots the MCCV results of σ and the optimal σ∗ = 0.06159.
The comparisons of the different estimators are based on the Kullback-Leibler (KL) divergence rate
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Table 1: KL divergence rate metric between T̂ and T

Estimator KLR
(
T̂ ‖T

)

MAP (σ = σ∗) 0.0872
MAP (σ = 3σ∗) 0.1232
MAP (σ = σ∗/3) 0.7290

ML 0.2316

metric [36] defined as

KLR
(
T̂ ‖T

)
= lim

m→∞
1
m

∑
x0,...,xm

p
(
x0, . . . , xm|T̂

)
log

p
(
x0, . . . , xm|T̂

)

p (x0, . . . , xm|T )

=
∑

ij

π̂iT̂ij log
T̂ij

Tij
(48)

where π̂ = [π̂i] denotes the stationary distribution of TM T̂ =
[
T̂ij

]
. It can measure the distances

between Markov chains on the same state space.
Fig. 5 shows the estimation results of the proposed MAP method with different σ and ML method,

and Table 1 shows the estimation errors. Clearly, the ML method fails to estimate the values Tij with
i ∈ [1, 7]∪[34, 44]∪[91, 100] for there are few xk are sampled within the ranges. The GMRF prior based
MAP estimator overcome this problem by interpolating from the other Tij according to the GMRF
model. Moreover, as observed from the figures, the parameter σ determines the overall smoothness of
the estimated TM, and the MCCV approach can provide an appropriate value of σ.

5.3 TM Estimation with Noisy Data
In this subsection, we study the performance of our proposed algorithms for estimating T from noisy
observations

o (t) |r (t) ∼ N (
r (t) , v2

)
(49)

with v = 0.1. Fig. 6 shows a realization of y (t). And the grid based approximate observation model
is set as

ok|xk = si ∼ N (
si, v

2
)

(50)

It is worth pointing out that the ML estimator

T̂ ML =
[
T̂ML

ij

]
= arg max

T∈Ωn

log p (o0, . . . , om|T ) (51)

tends to over-fit the data for this estimation problem if 1/N is small enough. In the extreme case
where

Ik = arg max
i

p (ok|si) 6= Il = arg max
i

p (ol|si) , ∀k, l ∈ [0,m] , k 6= l (52)
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it is easy to prove that the estimated T̂ ML will be

T̂ML
ij =

{
1, Ik = i, Ik+1 = j for some k

0, otherwise
(53)

which implies that {x0, . . . , xm} = {sI0 , . . . , sIm
} is a determinate process.

The MAP estimator with GMRF prior in 4 will now be compared to the ML estimator implemented
using Baum-Welch algorithm [37]. The parameters of MAP estimator are set as

ε1 = 10−6, ε2 = 10−2, β = 0.5,K = 20,M = 10 (54)

and σ is selected from Sσ

(
10−1.5, 1

)
. The MCCV results are shown in Fig. 7 and the optimal σ∗ =

0.1947.
In Fig. 8, we show plots for T̂ obtained using our MAP estimator with σ = σ∗, 3σ∗ and 0.06159

(σ∗ in Subsection 5.2) and ML estimator. And the corresponding KLR
(
T̂ ‖T

)
are listed in Table 2.

As can be seen from Fig. 8d, the ML estimator exhibits strong overfitting, and there are 58 states si

of the total 100 states satisfying maxj T̂ ML
ij ≥ 0.8 (the maximum entry of T is only 0.1841). With

comparison to ML method, the proposed MAP estimator avoids overfitting by adding a regularization
term u (T , σ) (see (26) and (51)), which penalizes excessively large value of Tij . And the best estimation
performance is achieved when σ = σ∗.

Note that here σ∗ = 0.1947 is bigger than the σ∗ = 0.06159 in the previous subsection, which may
be related to noisy observation and insufficient sample size. From Figs. 5a and 8c, we can see that
the observation noise makes T̂ obtained from {o0, . . . , om} smoother than that directly estimated by
states {x0, . . . , xm}. Therefore the MCCV approach will select a bigger σ∗ to get a suitably smooth
T̂ and maximize the predictive likelihood.
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Figure 8: T̂

Table 2: KL divergence rate metric between T̂ and T

Estimator KLR
(
T̂ ‖T

)

MAP (σ = σ∗) 0.1700
MAP (σ = 3σ∗) 0.2406

MAP (σ = 0.06159) 0.4902
ML 2.2819
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6 Conclusions and Future Works
The GMRF model of TMs discussed in this paper provides a general and flexible framework for
analyzing and estimating MCs with “smooth” TMs by extending the neighborhood relationship between
states to that between transition pairs. This model is helpful to improve the robustness and accuracy
of estimators in many practical cases, especially when the sample size is small with respect to the
size of state space. And the convex form of GMRF model benefits the numerical calculation. The
parameter choice is a difficult problem for our model, but it can be solved by CV methods since there
is only one undetermined parameter. The models and methods presented in this paper can be modifed
so that one can explore other extensions.

1. The Bayesian estimation based on the GMRF prior model. Theoretically speaking, the posterior
distribution of TM can be approximated by numerical sampling methods. But the entries of
TM are highly coupled under the assumption of GMRF prior, and commonly used Monte Carlo
Markov Chain (MCMC) methods (e.g. Gibbs sampling) may be inefficient for this problem.
Moreover, the full Bayesian estimation of TM and the parameter σ is also difficult for intractable
z (σ).

2. Application of other Markov random fileds (MRFs), such as generalized GMRF [38] which is more
flexible than GMRF, and divergence potential function based MRF [39] which is more suitable
to describe the variation of probability values.

These will be considered in future researches.

A Solver
Consider the following convex optimization

min
T

f (T )

s.t.
∑

j

Tij = 1, i = 1, . . . , n

Tij ≥ 0, i, j = 1, . . . , n

(55)

In this paper, we solve the optimization problem as (55) using the diagonalized Newton (DN) method
(see [40, 41] for details), which has a good practical rate of convergence, and takes advantage of the
structure of the problem. The algorithm consists of the following steps:

Step 1. Choose an initial feasible solution T (0) and let k = 0, fL
−1 = −∞.

Step 2. Approximate the optimization problem (55) with the DN subproblem

min
T

f̂ (T ) =


∑

i,j

1
2
a
(k)
ij

(
Tij − T

(k)
ij

)2

+ b
(k)
ij

(
Tij − T

(k)
ij

)

 + f

(
T (k)

)

s.t.
∑

j

Tij = 1, i = 1, . . . , n

Tij ≥ 0, i, j = 1, . . . , n

(56)

where

a
(k)
ij =

∂2f
(
T (k)

)

∂T 2
ij

, b
(k)
ij =

∂f
(
T (k)

)

∂Tij
(57)

and compute T ′ as a solution to (56).

Step 3. Let D = T ′ − T and

fL
k = max

{
fL

k−1, f
(
T (k)

)
+ b

(k)
ij

(
T ′ij − T

(k)
ij

)}
(58)
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Step 4. Apply Armijo rule [42] to obtain

τk ≈ arg max
τ∈[0,1]

f
(
T (k) + τD

)
(59)

and let T (k+1) = T (k) + τkD, fU
k = f

(
T (k+1)

)
.

Step 5. Terminate if
∣∣fU

k − fL
k

∣∣ < ε1, where ε1 is a small positive numbers.

Step 6. Let k = k + 1 and go to Step 2.

For the theoretically optimal solution T ∗, it can be proved that fL
k and fU

k are lower and upper
bounds of f (T ∗), and the gap

∣∣fU
k − fL

k

∣∣ convergences to 0 as k →∞. Moreover, the DN subproblem
(56) can separate into n small-scale quadratic programming problems for i = 1, . . . , n as

min
Ti1,...,Tin

n∑

j=1

1
2
a
(k)
ij

(
Tij − T

(k)
ij

)2

+ b
(k)
ij

(
Tij − T

(k)
ij

)

s.t.
n∑

j=1

Tij = 1

Tij ≥ 0, j = 1, . . . , n

(60)

And each of them can be solved analytically via its Lagrangian dual problem.
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