Probability distributions of molecular observables computed from Markov models.
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Discrete-state Markov (or master equation) models provide a useful simplified representation for
characterizing the long-time statistical evolution of biomolecules in a manner that allows direct
comparison with experiments as well as the elucidation of mechanistic pathways for an inherently
stochastic process. A vital part of meaningful comparison with experiment is the characterization of
the statistical uncertainty in the predicted experimental measurement, which may take the form of
an equilibrium measurement of some spectroscopic signal, the time-evolution of this signal following
a perturbation, or the observation of some statistic (such as the correlation function) of the equilib-
rium dynamics of a single molecule. Without meaningful error bars (which arise due to the finite
quantity of data used to construct the model), there is no way to determine whether the deviations
between model and experiment are statistically meaningful. Previous work has demonstrated that
a Bayesian method that enforces microscopic reversibility can be used to characterize the correlated
uncertainties in state-to-state transition probabilities (and functions thereof) for a model inferred from
molecular simulation data. Here, we extend this approach to include the uncertainty in observables
that are functions of molecular conformation (such as surrogate spectroscopic signals) characteriz-
ing each state, permitting the full statistical uncertainty in computed spectroscopic experiments to be
assessed. We test the approach in a simple model system to demonstrate that the computed uncer-
tainties provide a useful indictor of statistical variation, and then apply it to the computation of the
fluorescence autocorrelation function measured for a dye-labeled peptide previously studied by both

experiment and simulation.
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I. INTRODUCTION

A large variety of biophysical experimental tech-
niques are currently in use, providing information about
various aspects of biomolecular structure and dynam-
ics. Unfortunately, these methods often provide only
indirect information about the microscopic origins of
processes of interest. Spectroscopic methods, for exam-
ple, are inherently limited by the need to collect a suf-
ficient quantity of photons in order to distinguish rele-
vant features of the system from statistical fluctuations
of the measurement process. Assaying ensembles of
molecules provides one solution to collecting sufficient
photons while achieving high time resolution, at the
cost of sacrificing information about heterogeneity, as
only average signals are observed. Conversely, single-
molecule experiments can observe statistical behavior
of single molecules, but at the cost of integrating over
times that may be longer than the timescales involved
in processes of interest.

Molecular simulation is a powerful complementary
tool for probing molecular behavior in biology. With
a forcefield sufficiently representative of physical real-
ity, it is possible to probe the stochastic behavior of in-
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dividual molecules and the associated dynamical pro-
cesses in atomic detail with high time resolution, filling
in the gaps between experiment and intuition. In prac-
tice, however, this requires that practitioners must both
validate the simulation against experimental measure-
ments and collect sufficient data to provide insight into
the mechanisms of interest. This process is frustrated
by the statistical heterogeneity of dynamics (requiring
many realizations of some process be observed) and the
long timescales involved in processes of interest (which
may greatly exceed our capacity to simulate on all but
the largest computers or simplest problems).

The presence of metastable conformational states [1,
2], often the root cause of slow relaxation times and het-
erogeneous dynamics in many biomolecular systems,
also provides a solution to this problem. A separation of
timescales between fast relaxation within a metastable
state and long waiting times between interstate tran-
sitions allows the statistical behavior of the system to
be well-described by a discrete-state Markov model
(or master equation model) over times longer than the
fast mixing time within states [3]. Even if no strong
separation of timescales is present, an appropriately
constructed Markov model can still provide an excel-
lent approximation to the long-time statistical dynam-
ics of the system [4]. Because only transition rates be-
tween pairs of dynamically connected states need be
estimated, these models can be efficiently constructed
using molecular simulation data, where the dynamical
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trajectories employed need only be longer than the lag
time required for a Markov model to well approximate
the original continuous dynamics (here referred to as
the Markov time 7.q) [5-8]. In strongly metastable sys-
tems, this Markov time may be orders of magnitude
shorter than the slowest relaxation times of the system,
thus making Markov models an efficient tool to model
slow processes with a large but usually feasible num-
ber of short simulations, some or all of which may be
generated in parallel. Methods for the construction [7-
9] of such models and determination of an appropriate
Markov time [4-7, 10-12] are described in detail else-
where.

Because these models are constructed from a finite
quantity of simulation data, there will be a degree of
statistical uncertainty in the model parameters and in
the characterization of each discrete state. This uncer-
tainty will consequently induce uncertainties in quan-
tities computed from the model, often in a complex
way. Accurate characterization of these uncertainties
is paramount to either comparison with existing exper-
imental data (to validate the model) or the computa-
tion of new, unobserved properties (to predict unknown
quantities). It is impossible to know if the model and
experimental data are significantly discrepant, for ex-
ample, without some estimate of both the uncertainty in
the computed quantities arising from model uncertainty
and the error in the experimental measurements.

Previously, a Bayesian framework was proposed for
characterizing how finite quantities of simulation data
produces uncertainties in the transition probabilities
for a Markov model of physical systems satisfying
detailed balance [13]. Here, we extend this frame-
work to include the uncertainty in observables (such
as spectroscopically-observable quantities) for each of
these states, allowing the full uncertainty in equilibrium
and time-resolved experimentally observable quantities
computed from the model to be characterized.

This article is organized as follows. Section II reviews
the statistical mechanics of common measurements and
their computation from Markov models. Section III
briefly describes the Bayesian inference framework for
sampling transition matrices that satisfy detailed bal-
ance. Section IV introduces the proposed approach for
incorporating errors in estimated observables into this
framework. Section V validates the method on an ana-
lytically tractable model system, and Section VI applies
it to a previously-studied fluorescent peptide for which
experimental spectroscopic data is available.

II. OBSERVABLES AND MARKOV MODELS

Biophysical spectroscopic measurements, though var-
ied in terms of the quantity being measured, commonly
fall into one of three categories:

Equilibrium measurements (e.g. equilibrium circular
dichroism, infrared spectroscopy, and fluores-

cence measurements) represent ensemble aver-
ages (or expectations) of a conformation-sensitive
spectroscopic signal A(x) over some equilibrium
configurational probability density m(x), where x
denotes the instantaneous molecular configura-
tion:
@) = [ dono) o) o
Nonequilibrium relaxation experiments (e.g.  laser-
induced temperature-jump experiments) monitor
the relaxation of an ensemble-averaged spectro-
scopic signal following a perturbation, and can
be described in terms of the initial density p(z;0)
and the time-evolution operator p(z¢,t; zo,0) that
describes the probability of finding a molecule in
configuration z; at time ¢ given that it was initially
in configuration ¢ at time 0

(A@t)),, = /dxopo(xo)/dmtp(xt,t;xo,O)A(xt)
@

Equilibrium correlation measurements (e.g. fluores-
cence correlation spectroscopy, spectral density
functions) probe the auto- or cross-correlation
function of some experimental observables A and
B at equilibrium

(A4(0) B(1)) =

A discrete-state Markov model is defined by a par-
tition of the molecular configuration space €2 into A
rapidly-equilibrating states S;, such that S; (N S; = 0 if
i# jand Uf\il S; = . It is convenient to define a set of
characteristic or membership functions ¢;(x) which assume
a value of unity within the state and zero without:

1 ifxes;
i = 4
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Taken together, the ¢;(z) form a partition of unity, such
that Zi\il ¢i(x) = 1for all z (see, e.g. [14]).

Dynamics between the states are here characterized
by a discrete-time Markov model, described by a row-
stochastic transition matrix T(7) that evolves a row-
vector of state occupation probabilities p(¢) by a fixed
observation interval (or lag time) T:

p(r) = p(0) T(r) ©)

Equivalently, it is common to describe the statistical dy-
namics in continuous time in terms of a phenomenologi-
cal rate matrix K (see, e.g., [11]), whose off-diagonal ele-
ments contain rate constants if the states are sufficiently
metastable [15-17], related to the transition matrix by

T(r) = X7, (6)

/dxo w(xU)A(:UO)/dxt p(z, t;20,0) B(zy)
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where the exponential denotes the formal matrix expo-
nential e = Y>> JA"/nl. It is critical to note that,
while the statistical evolution can be described in con-
tinuous time, the model still provides no information
about processes occurring on timescales shorter than
the Markov time 7., because they have been coarse-
grained out by aggregating configuration space into dis-
crete states. Here, we focus on the discrete-time transi-
tion matrix T, but the method proposed in Section IV
for modeling uncertainties in state observables can be
combined with the inference of rate matrices K [18] in a
straightforward manner.

The transition matrix T(7) has a well-defined mean-
ing in terms of correlation functions [5]

(6:(0) 65(6))
(¢4)
If dynamics is Markovian, the transition probability for

an integral multiplier n of the time 7 is given by expo-
nentiating the transition matrix:

Tij(r) = @)

T(nrt) = [T(1)]", T 2> Teq (8)

where the minimal lag time 7 for which this relationship
holds approximately is termed the Markov time 7eq [7].

Because each state mixes quickly compared to the
transition time between states, the average value of
some spectroscopic signal A(x) over each state can be
easily estimated from short trajectories:

A = <A)i:/dm7ri(x)A(x) )

where 7;(z) = 7w(z) ¢:(x)/m; is the equilibrium proba-
bility restricted to the state defned by the membership
function ¢;(z), and m; = [ dzm;(z) ¢;(z) is the equilib-
rium probability of occupying state 7, which can also be
determined from the equilibrium eigenvector of T(7).

This allows us to write the three types of experimen-
tal observables (Egs. 1-3), computed from the Markov
model defined by T(7) for a fixed 7 > 7y, as

M
(A) = > m A (10)
=1
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Because the transition matrix T(7) is a priori unknown, it
must be estimated or inferred from some data, such as a
set of transition counts between discrete states observed
in one or more molecular dynamics simulations. Since
the quantity of data is necessarily finite, the true value
of T(7), defined in terms of transfer probabilities, will
be uncertain.

For a given set of observed transitions from trajectory
data, what is the uncertainty of T and how does this
affect the uncertainty of equilibrium or kinetic proper-
ties computed from the model? Adequate assessment
of this uncertainty and how it influences (potentially
complicated, nonlinear) observables of interest is criti-
cal in determining when a sufficient quantity of data has
been collected for the hypotheses in question to be de-
cided, and whether any discrepancy observed with ex-
perimental observation is to be deemed statistically sig-
nificant. Additionally, one may further exploit knowl-
edge of these uncertainties by planning new simulations
such as to most reduce the uncertainties in the observ-
ables of interest, and thus to get converged observables
with a minimal amount of simulation effort [19-22].

Due to the expense of generating the simulation data
required to construct a reliable model, it is generally not
practical to partition the data into independent subsets
to assess the variation in properties of interested among
smaller datasets. Bootstrap methods have been applied
to the estimation of error in Markov models [6], but it is
challenging to correctly preserve the correlation struc-
ture in the data unless the model is constructed from
numerous independent trajectories sampled from equi-
librium.

Much effort has therefore been devoted to Bayesian
approaches to uncertainty analysis for Markov mod-
els. Bayesian methods provide a powerful and simple
framework for describing the posterior uncertainty in
both model parameters and observables of interest com-
puted from the model, in addition to the potential to
quantify uncertainties with information-theoretic tools.
Previously, Bayesian approaches have been proposed
for inferring transition matrices that do not satisfy de-
tailed balance [19], but recent work has shown that use
of prior knowledge that the dynamics must obey de-
tailed balance [23] can significantly improve the quality
of the resulting inference [24]. To this end, Bayesian ap-
proaches for inferring either reversible transition matri-
ces [13, 24] or rate matrices [25, 26] have been proposed.
Here, we consider the extension of the method for sam-
pling reversible transition matrices proposed in [13] to
also consider the uncertainty due to insufficient char-
acterization of the averages of molecular observables
within the states.

III. UNCERTAINTY IN TRANSITION PROBABILITIES

Consider a discrete-state Markovian trajectory of du-
ration N7 starting in a given state s¢, with observations
of the current state made with a time resolution 7 > 7,
denoted s = {so, s1,...,sn}. Given one or more such
trajectories, the M x M transition count matrix C, where
¢;; is the number of times a discrete trajectory s appears
in state i at some time index ¢ and state j at time index
t+1, is a sufficient statistic for capturing all information
about the stochastic behavior of this system [13]. For one



trajectory, C can be written

T

Cij = Y Gise 10js, (13)

t=1

In the limit of an infinitely long trajectory, the elements
of the true transition matrix are given by the trivial esti-
mator:

. Cij Cij

Tij(r) = 77— = %v (14)
> Cik '
k=1

where ¢; = 224:1 cik, gives the total number of observed
transitions leaving state . For a trajectory of finite
length, the underlying transition matrix T(7) cannot be
computed exactly from the observed transition count
matrix C. Instead, we can compute the probability that
the true (unknown) transition matrix T generated the
observed counts, assuming the process is Markovian
(henceforth suppressing the argument 7):

p(C|T) = H T (15)

3,7=1

H St—1,St _p C|T

By Bayes’ theorem, the probability that T is the true
transition matrix that generated the data C is then

p(T|C) o p(C|T)p H 77 | p(T), (16)

1,j=1

where p(T) is the prior probability of transition matri-
ces, reflecting our knowledge about T before observing
any data. For uniform prior p(T), the maximum of the
likelihood function Eq. 15 is given by the trivial estima-
tor of Eq. 14. In the limit that the number of samples
N — oo, p(T|C) becomes progressively more peaked
around T(7).

For a physical system the condition of detailed bal-
ance [m; T;;(1) = m;T;;(7)] must be satisfied for any
7 [23], where

T = /d;mr(x) oi(x) 17)

We presume also that the Markov chain described by T
is indecomposable, so that the unit eigenvalue is nonde-
generate. Such a stochastic matrix has a single, domi-
nant eigenvector of 1, and the corresponding left eigen-
vector 7

ol == (18)

which yields the stationary distribution of the transi-
tion matrix when normalized to a 1-norm of 1, such
that) S, m; = 1. All other eigenvalues are real, and lie
on the interval [-1,+1).

C1 Element-wise nonnegativity 0 < Tj; Vi, g
C2 Row-stochasticity ZM T,;,=1V1i
C3 Detailed Balance mTZ] =m;Tj V1,5

We wish to impose the following constraints on the
transition matrix T through the choice of prior p(T):
Which formally corresponds to the prior

H 7097 §(mTiy — miTy) (Tij)  (19)

1,j=1

where h;;(x) is the Heaviside function, and B = (b;;) is
an M x M matrix of prior pseudocounts. Typical choices
of the prior are the uniform prior, b;; = 1V 4, j [13], and
the null prior, b;; = 0V 4,5 [27]. The uniform prior as-
signs a uniform a priori distribution to all matrix ele-
ments by adding a full pseudocount to each of them,
which takes much observation data to be overriden if
the system consists of many states. The null prior, on the
other hand, gives most impact to the observed data, as
it forces the maximum likelihood estimator and mean of
the transition matrix to coincide, and all transition ma-
trix elements in which no count has been observed to
Zero.

To sample the distribution given by Eq. 16, a sampling
procedure based on the Metropolis-Hasting algorithm
is used. Given a current matrix 7" and a proposed new
matrix 7", the acceptance probability is computed by:

p(T" = T) p(T'|C)
p(T — T') p(T|C)

where p(T — T’) and p(T' — T) denote the proba-
bility to propose a stochastic move to T’ given T, and
vice versa. Two types of proposal steps (which together
generate an ergodic chain) are used, and are described
briefly below. To ensure the ratio of priors remains cal-
culable, the moves are restricted to only generate pro-
posals T' that conform to constraints C1, C2, and C3.
This is achieved by the two move types described in the
subsequent subsections, each of which is chosen with a
50% probability in each iteration.

The sampling procedure is initialized with a matrix
that fulfills detailed balance:

Paccept (T - T/) = (20)

Cij + Cji

mlt
T M
> lein + cil
k=1

ij
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When the sampling data is not generated from a global
equilibrium, this matrix can be very different from the
probability maximum or even outside the region of
main probability mass. Therefore, it is necessary to run
the sampler for a “burn-in” phase long enough until
the estimated properties of interest (e.g. uncertainties of
the expectation or the correlation values) become stable.
This burn-in phase is discarded and the actual estima-
tion of the uncertainties is based on the subsequent pro-
duction phase of the sampler.



Further details and formal proofs of correctness of this
sampling procedure are given in Ref. [13].

A. Reversible Element Shift

Consider a pair of states (i,5), ¢ # j. The changed
elements in the proposed transition matrix, T', after a
move parameterized by A, are given by:

T

Ti,j:nj_A 5 TJ,Z:T]Z—*A

H7ZEZ+A, Tj{j:Tjjﬁ’;A

If T fulfills the detailed balance condition (C3), T/ will
also fulfill C3, and the stationary distribution remains
unchanged:

™ =T

In order to maintain the stochasticity of T' (constraint
C2), the parameter A is restricted to:
)
A€ [max(—ﬂi7 —ijj), T; ]
U
If A is chosen uniformly from this range, the proposal
probabilites for the reversible element shift are given by

p(T' —T) _ \/(Tij — AP+ (T — A)?

gy 22
W(T =T (T + () )
The ratio of posterior probabilities is given by
p(T'|C) (Tt A\ (T — A\
p(TIC) — \ T T
T}'j + %A ij Tji - %A Cji
X | ——"— — | (23)
Tj; Ti;

B. Row Shift

In a row shift move, a row i of T is selected with uni-
form probability 1/M, and probability mass is moved
from the diagonal element T; to all outgoing probabili-
tiesT;j forj=1,..., M:

Tj; = T

To maintain stochasticity, the parameter « is drawn uni-
formly from the range:

The ratio of proposal probabilities is given by:

T —-T
P =) _ o), (24)
p(T — T
where m is the number of non-zero transition probabili-
ties in the modified row.
The ratio of posterior probabilities is given by

T - T 1—a(l—T;)\
p(T —T) T;

The row shift operation will change the stationary dis-
tribution 7, but 7 may be efficiently updated:

’ i ;o T,

:eroz(lfm-) Comita(l—m)

Since this update scheme is incremental, it will accumu-
late numerical errors over time that cause the updated =
to drift away from the stationary distribution of the cur-
rent transition matrix. To avoid that, 7w is recomputed
from the current sample of the transition matrix in reg-
ular intervals (here, every 100 sampling steps).

IV. UNCERTAINTY IN MOLECULAR OBSERVABLES

We now consider the problem of estimating the ex-
pectation of some molecular observable A(z) over each
discrete state:

(4), = /dxA(:z:) (26)

From a single trajectory, the straightforward estimator
of this quantity is simply the sample mean over those
samples within state

T
Zl i(w1) A(xr)
P
Aj=—F—— (27)
PIRACH)
=1
Temporally sequential samples A; = A(z;) collected

with a temporal resolution of the Markov time 7.4 are
presumed to be uncorrelated, because by definition, this
is the maximum time required for the system to decorre-
late within any discrete state. We presume that the set of
samples A(z;) for those configurations z, appearing in
state 7 are collected in the set {A,,}'_; in the remainder
of this section, generally abbreviated as {4, }.

Because only a finite number of samples are collected
for each state, there will be a degree of uncertainty in
this estimate. Unlike the problem of inferring the tran-
sition matrix elements, however, we cannot write an ex-
act expression for the probability of observing the A,, in
terms of a simple parametric form, since its probability
distribution may be arbitrarily complex:

pilAy) = / ded(A, — A@)m(z) (@8



Despite this, the central limit theorem states that the
behavior of A; approaches a normal distribution (gen-
erally very rapidly) as the number of samples N in-
creases. We will therefore make the assumption that
pi(Ay) is normal, and demonstrate this allows us to do
a very good job of inferring the distribution of the er-
ror in §4; = A; — (A), for a very reasonable number
of samples, and generally gives an overestimate of the
error (which is arguably less dangerous than an under-
estimate) for smaller sample sizes.
Consider the sample mean estimator for (A),:

1 N
L = — An 2
=N nz::l (29)

The asymptotic variance of fi, which provides a good
estimate of the statistical uncertainty in /i in the large-
sample limit, is given as a simple consequence of the
central limit theorem

var A, 52

N N (30)

6% = E(ji— Eli])?) =
where the unbiased estimator for the variance o2 =
var A, is given by

1 N .
o7 = mZ(An — i) (31)
n=1

Suppose we now assume the distribution of A from
state 7 is normal, even though there is no reason to ex-
pect it will be:

Alp,0* ~ N(u,0%) (32)

Were this to be a reasonable model, we could model the
timeseries of the observable A, = A(xz:) by the hierar-
chical process:

St | St—t, T ~ BS(TSt71 Tyeo- 7Tst,1 N)
Al ps,, 03, ~ N(ps,, 07,) (33)

Here, the notation BS(7y,...,7y) denotes a Bernoulli
scheme where discrete outcome n has associated proba-
bility m,,, and N(y, o?) denotes the normal distribution
with mean p and variance 0?. We will demonstrate
below how this model does in fact recapitulate the ex-
pected behavior in the limit where there are sufficient
samples from each state.

We choose the (improper) Jeffreys prior [28],
plp.0?) o o7 34
because it satisfies intuitively reasonable reparameter-

ization [28] and information-theoretic [29] invariance
principles. Note that this prior is uniform in (4, log o).

The posterior is then given by
N
P, 0®[{An}) o lH p(Anlp, 02)1 plp, %)
n=1

N
1
—(N+2 _ 2
x o ) exp [ 52 WE:l(An 1) ] (35)

Rewriting in terms of the sample statistics 7 and 62, we
obtain

p(p, 0 [{An})

1
(N+2) -
x o exp{ 552

N
> (An =)’ + N(ji— u)ﬂ }
n=1

o o~ N+ ey {_222 (N —1)6% + N(jr — p)?] } (36)

The posterior has marginal distributions

o? | {A,} ~ Inv—x?(N — 1,6%)
2 I {An} ~ thl(/]Ha-Q/N) (37)

where o2 is distributed according to scaled inverse chi-
square distribution with IV —1 degrees of freedom, and 1
according to Student’s t-distribution with N — 1 degrees
of freedom that has been shifted to be centered about /i
and whose width has been scaled by 62/N.

As can be seen in Figure 1, as the number of degrees
of freedom increases, the marginal posterior for p ap-
proaches the normal distribution with the asymptotic
behavior expected from standard frequentist analysis
for the standard error of the mean, namely

1 — N(fi,62/N) (38)

At low sample counts, the t-distribution is lower and
wider than the normal distribution, meaning that confi-
dence intervals computed from this distribution will be
somewhat larger than those of the corresponding nor-
mal estimate for small samples. In some sense, this
partly compensates for 6% being a poor estimate of the
true variance for small sample sizes, which would natu-
rally lead to underestimates of the statistical uncertainty.
In any case, this is also far from the asymptotic limit
where the normal distribution with variance 52 /N is ex-
pected to model the uncertainty well.
The posterior can be decomposed as

p(,u,o'ZHAn}) = p(l‘|‘727{An})p(GZHAn}) (39)

This readily suggests a two-step sampling scheme for
generating uncorrelated samples of (p1, 0%), in which we
first sample o2 from its marginal distribution, and then
u from its distribution conditional on o2

0% | {An} ~ Iv—(N —1,67)
wlo® {4} ~ N(i,0*/N) (40)
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FIG. 1: Approach to normality for marginal distribution
of the mean p(u|{A,}). For fixed i and 6, the marginal
posterior distribution of p (red), a scaled and shifted Stu-
dent t-distribution, rapidly approaches the normal distribu-
tion (black) expected from asymptotic statistics. The PDF is
shown for sample sizes of N = 5 (the broadest), 10, 20, and 30.

Alternatively, if the scaled inverse-chi-square distribu-
tion is not available, the y?-distribution (among others)
can be used:

(N =1)(6%/0%) | {An} ~ xX*(N 1) (41)

where the first argument is the shape parameter and the
second argument is the scale parameter.

V. VALIDATION IN A MODEL SYSTEM

How can we test a Bayesian posterior distribution?
One of the more powerful features of a Bayesian model
is its ability to provide confidence intervals that cor-
rectly reflect the level of certainty that the true value will
lie within it. For example, if the experiment were to be
repeated many times, the true value of the parameter be-
ing estimated should fall within the confidence interval
for a 95% confidence level 95% of the time. As an illus-
trative example, consider a biased coin where the prob-
ability of turning heads is . From an observed sam-
ple of N coin flips, we can estimate ¢ using a Binomial
model for the number of coin flips that turn up heads
and a conjugate Beta Jeffreys prior [28, 29]. Each time we
run experiment and generate a new independent collec-
tion of N samples, we get a different posterior estimate
for 6, and a different confidence interval (Figure 2, top).
If we run many trials and record what fraction of the
time the true (unknown) value of 6 falls within the con-
fidence interval estimated from that trial, we can see if
our model is correct. If correct, the observed confidence
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FIG. 2: Testing the posterior for inference of a biased coin flip
experiment. Top: Posterior distribution for inferring the prob-
ability of heads, 6, for a biased coin from an sequence of N =
1000 coin flips (dark line) with 95% symmetric confidence in-
terval about the mean (shaded area). The true probability of
heads is 0.3 (vertical thick line). Posteriors from five different
experiments are shown as dotted lines. Botfom left: Desired
and actual confidence levels for an idealized normal posterior
distribution that either overestimates (upper left curves) or un-
derestimates (bottom right curves) the true posterior variance
by different degrees. Bottom right: Desired and actual confi-
dence levels for the Binomial-Beta posterior for the coin flip
problem depicted in upper panel. Error bars show 95% confi-
dence intervals estimates from 1000 independent experimental
trials. For inference, we use a likelihood function such that the
observed number of heads is N |6 ~ Binomial(Ng, N, 6) and
conjugate Jeffreys prior [28,29] 6 ~ Beta(1/2,1/2) which pro-
duces posterior 0| Ny ~ Beta(Ny +1/2, Ny +1/2) along with
constraint Ng + Nz = N.

level should match the desired confidence level (Figure
2, bottom right). Deviation from parity means that the
posterior is either two broad or too narrow, and that the
statistical uncertainty is being either over- or underesti-
mated (Figure 2, bottom left).

We performed a similar test on a three-state model
system, where the (reversible, row-stochastic) transition
matrix for one Markov time is given by

0.86207 0.12931 0.00862
0.15625 0.83333 0.01041 (42)
0.00199 0.00199 0.99602

T1) =

Each state is characterized by a mean value of the ob-
servable A(z), fixed to 3,2, and 1 for the first, second,



25}

(A(nT)),

1.5}
287}

N
N

24} ~—

22t

(A(0)A(nT))

0 50 100 150 200
time/t

FIG. 3: Observables for three-state model system Top: Relax-
ation of (A(t)) ,, (solid line) from initial distribution po = [100]
to equilibrium expectation (A) (dash-dotted line). Bottom:
Equilibrium autocorrelation function (A(0) A(t)) (solid line)
to (A)? (dash-dotted line). The estimates of both (A(t)) 0o and
(A(0) A(t)) at 50 timesteps (red vertical line) were assessed in
the validation tests described here.

and third states, respectively. The equilibrium popula-
tions are m ~ [0.1625 0.1345 0.7031]. Simulation from
this model involves a stochastic transition according to
the transition element Tj; followed by observation of
the value of A(z) sampled i.i.d. from the current state’s
probability distribution p;(A). The nonequilibrium re-
laxation (A), from the initial condition py = [100] in
which all density is concentrated in state 1, as well as the
autocorrelation function (A(0) A(¢)), is shown in Figure
3.

With the means of p;(A) within each state fixed as
above, we considered models for p;(A) that were either
normal or exponential, using the probability density func-
tions:

pi(A) = (2m) Y26 L exp [212(/1 - ,ui)Q] normal
0
pi(A) = ui_l exp[—A/ui] , A>0 exponential

While the normal output distribution for p;(A) corre-
sponds to the hierarchical Bayesian model that forms the
basis for our approach, the exponential distribution is
significantly different, and represents a challenging test
case.

Figure 4 depicts the resulting uncertainty estimates
for both normal (top) and exponential (bottom) densi-
ties for the observable A. In both cases, the confidence
intervals are underestimated for short trajectory lengths
(1 000 steps) where, in many realizations, few samples
are observed in one or more states, so that the variance
is underestimated or the effective asymptotic limit has
not yet been reached. As the simulation length is in-
creased to 10 000 or 100 000 steps so that it is much more

likely there are a sufficient number of samples in each
state to reach the asymptotic limit, however, the confi-
dence intervals predicted by the Bayesian posterior be-
come quite good. For the exponential model for observ-
ing values of A (which might be the case in, say, fluores-
cence lifetimes), we observe similar behavior. Except for
what appears to be a slight, consistent underestimation
of (A(t)),, (much less than half a standard deviation)
there appears to be excellent agreement between the ex-
pected and observed confidence intervals, confirming
that this method is expected to be a useful approach to
modeling statistical uncertainties in equilibrium and ki-
netic observables.

VI. APPLICATION TO FLUORESCENCE
CORRELATION IN A PEPTIDE

Time-resolved single-molecule fluorescence experi-
ments provide a way to monitor the microscopic fea-
tures of folding by probing the fluctuations of a
conformation-sensitive spectroscopic probe for individ-
ual molecules. In contrast to ensemble measurements,
which yield information only on average properties,
single-molecule experiments provide information on
distributions and time trajectories of properties that
would otherwise be hidden [30]. Due to recent ad-
vances in instrumentation, single-molecule fluorescence
spectroscopy has received a particular surge of inter-
est. In contrast to traditional fluorescence experiments,
nonequilibrium perturbations to synchronize an ensem-
ble of molecules are avoided, allowing equilibrium con-
formational dynamics to be studied [30-32]. Fluores-
cence correlation spectroscopy (FCS) takes advantage
of Brownian diffusion to bring one or a few fluores-
cent molecules into the observation volume at any given
time, recording bursts of fluorescent emission. By cal-
culating the autocorrelation function (ACF) of the flu-
orescence intensity fluctuations, information about the
temporal statistics of dynamics can be obtained for a
wide range of time scales spanning nanoseconds to sec-
onds [32]. Because the fluorescence signal is only an in-
direct probe of molecular conformation, molecular dy-
namics simulations (typically limited to nanosecond to
microsecond timescales) have proven to be of great util-
ity in the interpretation of fluorescence autocorrelation
experiments [33]. By employing Markov models to de-
scribe the long-time dynamics, it is possible to extend
the utility of molecular dynamics simulation for pre-
dicting and interpreting these experiments into the mi-
crosecond regime and beyond [27].

Here, we illustrate the use of the Bayesian uncer-
tainty analysis procedure described above in interpret-
ing an experimental study of the loop-closure dynamics
of a small fluorescently-labeled peptide using a Markov
model constructed from molecular dynamics simulation
data. To probe the fastest processes in protein fold-
ing, Krieger et al. and Neuweiler et al. collected single-
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P
an exponential distribution with the same mean was used for the probability of observing a particular value of A within each

state.

molecule fluorescence data on a series of small peptides
incorporating fluorophores and quenchers [34, 35]. In
the experiment considered here, end-to-end contact for-
mation is studied by monitoring selective fluorescence
quenching of an N-terminal fluorescent oxazine deriva-
tive MR121 by a C-terminal tryptophan residue, an effi-
cient natural amino acid quencher, with an intervening
Gly-Ser-Gly-Ser repeat (hereafter called MR121-GSGS-
W, see Fig. 5). To first order, when the tryptophan
is sufficiently close to the MR121 dye, fluorescence is
quenched (resulting in an “off” state); conversely, when
the tryptophan is far from the dye and the peptide is
in a more extended conformation, the dye is fluores-
cent (resulting in an “on” state). The quenching pro-
cess has been shown to be diffusion limited [35, 36], en-

abling the underlying contact-formation kinetics to be
probed by fluorescence correlation spectroscopy (FCS)
with nanosecond time-resolution [34, 35].

A. Simulation details and Markov model construction

Here, a 3 ps molecular dynamics simulation of
MR121-GSGS-W is analyzed. The simulations were per-
formed in explicit water at 293 K using the GROMOS96
force field 43al [37, 38] and the GROMACS program
version 3.2.1 [39, 40]. Partial atomic charges for the dye
MR121 were taken from Vaiana et al. [36]. One pep-
tide molecule in an extended conformation was solvated
with SPC water [41] and placed in a periodic thombic



FIG. 5: Fluorescent peptide MR121-GSGS-W. The large fluo-
rescent dye molecule, MR121, is the fused multiring structure
visible at the N-terminus on the left of the figure.

dodecahedron box large enough to contain the peptide
molecule and ~ 1.0 nm of solvent on all sides at a liquid
density of 55.32 mol/1 (=1 g/cm?), resulting in 1155 wa-
ter molecules in the simulation box. The simulation vol-
ume was held fixed, and thermal control was enforced !
using the Berendsen weak-coupling algorithm [45] with
a coupling time of 0.1 ps. All bond lengths were fixed
using the LINCS algorithm of order 4 with a tolerance
of 107* nm [46]. and a time step of 2 fs for numeri-
cal integration was used. Periodic boundary conditions
were applied to the simulation box and the long-range
electrostatic interactions were treated with the particle
mesh Ewald method [47] using a grid spacing of 0.12 nm
combined with a fourth-order B-spline interpolation to
compute the potential and forces in between grid points
and an Ewald tolerance of 107°. The real space cut-off
distance was set to 0.9 nm. The C-terminal end of the
peptide was modeled as COO™ to reproduce a pH of
about 7 as in the experimental conditions [35]. No coun-
terions were added since the simulation box was already
neutral (one positive charge on MR121 and one negative
charge on the terminal COO™). The coordinates were
saved every At = 0.2 ps.

As a crude model of fluorescence quenching, all con-
figurations in which the heavy atoms of the rings sys-
tems of MR121 and the tryptophan had a nearest-
neighbor distance of greater than 0.45 nm were defined
to be fluorescent, and the remainder as dark (quenched).
A cutoff of 0.45 nm was selected since quenching occurs
upon van der Waals contact [35]. Thus, a fluorescence

! Note that the Berendsen weak-coupling algorithm does not generate
a true NVT ensemble, and only produces statistics equivalent to an
NVT ensemble in the thermodynamic limit [42-44].
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observable can be defined by the fluorescence observ-

able f(z):

1 « fluorescent ’

flz) = {0 x dark 43)

while the fluorescence of state i is given by

fi= / da () f(x), (44)

which, of course, must be estimated from the simulation
data collected within state i%.

From the simulation trajectory, 1 000 configurations
equally spaced in time were used to define the gen-
erators of an initial partitioning of configuration space
into Voronoi polytopes (as in the microstates of [48]),
where each structure in the trajectory is assigned to the
generator it is closest to using the least-squares-aligned
RMSD [49, 50] as a metric [51] using the efficient RMSD
calculation procedure of Theobald [52]. A lag time of
7 =1 ns was then used, as examination of the implied
timescales [48] showed they become approximately in-
dependent of lag time for larger values of 7. In order to
obtain reasonable estimates of the per-state fluorescence
fi and transition probabilities T;;, the state space was
further coarse-grained by computing the right eigenvec-
tors of the 1000x1000 row-stochastic transition matrix
and lumping states that had a Euclidean distance of less
than 0.05 in the space of the 20 dominant eigenvectors
which were normalized to have unit 2-norm. This gen-
erated a reduced state space of 163 states, and it was
verified that the implied timescales did not significantly
deteriorate.

The unnormalized fluorescence autocorrelation func-
tion is given in terms of f; and T;; as

M M
(O f(nr)) =D > mi fi (T(1)" g f5. (45)

i=1 j=1

which corresponds to the part of the fluorescence auto-
correlation curve that is measured by FCS experiments.
Note that the measured FCS curves will also contain ad-
ditional contributions due to effects such as triplet states
and diffusion which are not considered in our analysis.
The normalized form of the fluorescence autocorre-
lation function, which decays from an initial value of

2 Note that, for this particular case, the observable f(x) could be mod-
eled exactly by a Bernoulli trial where the state fluorescence f; are
the (unknown) parameters. However, due to the broad applicabil-
ity of the normal model to many types of observables, we do not
examine the Bernoulli model here. In any case, any significant dif-
ference between the two models should vanish as the number of
samples reaches the asymptotic limit.



unity to zero at large ¢, is given by:

0)f(nt)) — 2
(f( <)]{2(> —)zf>2<f> (46)
S i m fi (D)™ £ — Yoty (i £3)?
Sty i fR (1)

o)

B. Uncertainties in model-derived observables

To determine how the uncertainties in the computed
unnormalized and normalized fluorescence correlation
functions depend on the quantity of simulation data
used, the initial portions of the clustered MD trajectory
0.1, 0.25, 0.5, 1, 2 and 3 us were used to construct the
count matrix C and number of fluorescent samples per
state f;. The sampling procedure described above was
used to sample from the model posterior, with a burn-in
phase of 10° samples that were discarded. Due to the
local nature of the Monte Carlo transition matrix moves
detailed in Section I1I, subsequent transition matrix sam-
ples are generally strongly correlated. Since the pro-
cedure ergodically samples from the full distribution,
it is asymptotically correct to use all transition matrix
samples for estimating uncertainties in the observables,
however this is inefficient for large systems. Therefore,
here 10° sampling steps were conducted for each tran-
sition matrix used to estimate the fluorescence correla-
tion function, and 1 000 fluorescence correlation func-
tions were sampled in this way (corresponding to 10°
sampling steps in total). This procedure required 2 - 3
minutes on a standard 2.4 GHz Intel CPU core in total.

Fig. 6 shows a sample of 20 unnormalized (left) and
normalized (right) fluorescence correlation functions
computed from the Bayesian model posterior. The most
obvious source of uncertainty in the unnormalized cor-
relation functions is the uncertainty in the stationary dis-
tribution 7, which results in a visually apparent disper-
sion in the plateau values. As expected, the variance
in the plateau values becomes smaller for longer sim-
ulation times, especially when the simulation times ex-
ceeds 2 pus. The uncertainty in the rate of decay, how-
ever, appears to be rather similar despite this. This is
more easily seen in the normalized fluorescence correla-
tion functions (Fig. 6, right, shown in log scale) which
has the effect of removing the effects of differences in
asymptotic value. The normalized autocorrelation is
plotted on a log-scale, such that a single-exponential
relaxation would appear as a straight line. All curves
show an asymptotic single-exponential relaxation with
a timescale and rate determined by the slowest pro-
cess implied by the corresponding transition matrix. At
shorter times of about 10-20 ns, however, all curves ap-
pear to be multi-exponential. While multi-exponential
behavior was not seen in Ref. [35], but this timescale
is close to the resolution limit of this experiment. For
all simulation times, the rate of decay of the slow com-
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ponents appears to be similar, although the amplitude
(i.e. the relative amplitude of slow and fast components)
varies. Note that the visually apparent increase in vari-
ance at larger at long simulation times (>1 us) is sim-
ply a consequence of the logarithmic scale used for plot-
ting the normalized autocorrelation function. However,
it seems that the short simulation times, the slowest pro-
cesses are estimated to be slower than at long simulation
times.

The autocorrelation function (A(0)A(n7)) (Eq. 3) can
be written in terms of the left eigenvectors 1;, right eigen-
vectors r;, and eigenvalues \; of T(7):

M
(A0)A(n7)) = Y A([T(r)]")is 4

ij=1

=34 (Z Thi A lkj) A;
0

k

Z (Z A; Tki) ZAJ- Lj | | A%
k % J

Z ag A = Z ay e/t (47)
k k

The timescales ¢; associated with the two slowest pro-
cesses were computed by

-
ti=——r, 48
= Tloan (48)
with ¢ = 2,3, where Ay and A3 are the two largest non-
unit eigenvalues of T(7). The relative amplitudes of the
two processes in the fluorescence correlation function
’ ai

= 49
i as + as (49)

with i = 2,3, were computed as well. The amplitudes
ay, a4 are shown in Fig. 7. At simulation times of 1 us
or less, the relative amplitudes of the slowest process is
somewhat smaller than that of the second-slowest pro-
cess. This changes at 2 or 3 us, where the slowest pro-
cess is revealed as the one with the largest amplitude.
As seen in the previous plot, the timescales, in partic-
ular the slowest timescale, are overestimated at short
simulation times, while their uncertainty, being a fac-
tor of 2-3 at 100 ns, rapidly decreases. At 2 us and 3 s,
the timescales appear well-determined, and are around
15 and 20 ns. Note that although these timescales are
above the resolution limit of the experiment in Ref. [35],
in the presence of noise, a signal consisting of two ex-
ponentials with similar timescales can generally not be
distinguished from a single exponential.

VII. DISCUSSION

We have demonstrated how a normal model for the
probability of generating observations from each state
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in a Markov model, even though approximate, can give
very useful estimates for the uncertainties of the expec-
tation restricted to this state, and provide a convenient
means for propagating these uncertainties into the un-
certainties in more complicated quantities (such as cor-
relation functions and nonequilibrium relaxation spec-
tra) predicted from the model. As the number of sam-
ples observed within each state approaches the asymp-
totic limit, the uncertainties computed from the normal
model approach those expected from asymptotic theory.
While in particular situations, a different (non-normal)
model may be applicable to modeling the distribution
of observables from each state given unknown parame-
ters, the generality and simplicity of the normal model
presented here is expected to be of broadest utility.

In conjunction with transition matrix sampling to in-
corporate the statistical uncertainties of the transition
probabilities between Markov model states, the poste-
rior distribution of virtually any observable accessible
with experiment can be computed, provided two con-
ditions are met: (1) The Markov time 7 for which the
model accurately reproduces dynamics is shorter than
the timescales of the process of interest, and (2) it is pos-
sible to compute a surrogate for the spectroscopic sig-
nal as a function of conformation to an accuracy greater
than the uncertainty of the experimental measurement.
Even if the accuracy of the surrogate for the spectro-
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scopic signal is not high, it is possible that the timescales
present in the experimental signal may still be com-
pared.

Another advantage conferred by having a fully gener-
ative model — in which complete realizations of the ex-
periment can be produced artificially —is the possibility
for predicting how additional data collection schemes
will most rapidly reduce the uncertainty in the quanti-
ties desired from the model. For example, if a partic-
ular nonequilibrium relaxation spectrum is of interest,
Bayesian experimental design techniques [53] could be
employed in order to determine how new simulations
can be initiated in a way expected to most rapidly re-
duce the uncertainty in this quantity.
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