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Abstract

Markov (state) models (MSMs) have attracted a lot of interest recently as they (1) can probe
long-term molecular kinetics based on short-time simulations, (2) offer a way to analyze great
amounts of simulation data with relatively little subjectivity of the analyst, (3) provide insight into
microscopic quantities such as the ensemble of transition pathways, and (4) allow simulation data
to be reconciled with measurement data in a rigorous and explicit way. Here we sketch our current
perspective of Markov models and explain in short their theoretical basis and assumptions. We
describe transition path theory which allows the entire ensemble of protein folding pathways to be
investigated and that combines naturally with Markov models. Experimental observations can be
naturally linked to Markov models with the dynamical fingerprint theory, by which experimentally
observable timescales can be equipped with an understanding of the structural rearrangement
processes that take place at these timescales. The concepts of this paper are illustrated by a
simple kinetic model of protein folding.

Keywords: Molecular kinetics, Transition pathways, Transition path theory, Markov (state) models,
MSM, Spectroscopy, temperature jump

1 Introduction

Folding of proteins and other macromolecules depends on their ability to undergo conformational tran-
sitions between substates. A hallmark of protein dynamics is that these substates are often metastable
sets of structures, i.e. the protein will typically fluctuate within a set of structures for a long time
before enough thermal energy is accumulated to leave this set and transition to another metastable
set. Such dynamics has been conceptualized as a walk on a complex energy landscape with basins
corresponding to metastable sets of structures and energy barriers separating these basins [27]. It is
the interest of chemical physicists and biophysicists to identify the essential metastable states, quan-
tify their free energies or probabilities, the kinetics arising from the transitions between them, and the
structural mechanisms involved.

The study of protein folding has been a particular driving force in investigating protein dynamics via
both experiment and simulation. The fact that protein folding is an intramolecular process involving
changes to almost the entire structure makes a variety of physical or chemical probes and measurement
techniques available that report on aspects of the folding process. For small and moderately sized
proteins, simulations are now feasible that can access experimentally resolvable timescales [87, 64, 78].

There is a large body of experimental research indicating that protein folding is characterized by
single-exponential kinetics [7, 38, 56]. This suggests that protein folding is a two-state transition, where
the two states are believed to correspond to an enthalpically-stabilized native state and an entropically
stabilized denatured state [11, 19, 20, 65]. It has been noted, however, that it is unclear whether such a
two-state interpretation is meaningful as the as equilibration of the denatured state may not occur on
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a timescale faster than folding [9, 21]. In current research, there is increased attention to complexity
in the kinetics that was difficult to detect in earlier studies. Moreover, for some formerly apparent
two-state folders, additional relaxation timescales have been found using measurement methods with
increased resolution [71, 63, 57]. A more disturbing fact is that although kinetic experiments will in
principle measure all relaxation timescales, any given combination of measurement and observable will
only be sensitive to a few - typically one or two [63]. It is thus conceivable that protein folding has
significantly more complex kinetics than apparent in individual experiments. This feeling seems to be
supported by careful analyses of single-molecule experiments that have reported on the existence of
multiple metastable states [29, 55, 52, 25, 73, 30, 92]. Also ensemble experiments can, with appropriate
design, probe conformational heterogeneity, hidden intermediates and the existence of parallel pathways
[46, 80, 32, 47, 48].

In order to overcome the limitation of indirect observability of experiments, molecular dynamics
(MD) simulations are becoming increasingly accepted as a tool to investigate structural details of
molecular processes and relate them to experimentally resolved features [75, 64, 85]. In the simulation
community, there is also a tendency to move towards more sophisticated analysis methods. Previous
projections of the simulation data onto simple one- or two-dimensional observables usually suggest
simplicity in the kinetics, this however owing often to a disguise of the true and often complex nature
of the kinetics by creating overlaps between kinetically distinct structures [44, 58, 54]. In the past
few years, there has been a rapid increase of studies that first partition the simulated structural data
into relatively small substates and then study the kinetics that emerges from a transition network
between these substates [89, 58, 40, 37, 90, 12, 70, 54, 17, 76, 66]. Early work has focused on energy-
landscape models that use rate theories to generate transition networks between local potential energy
minima [89, 60, 61]. More recenlty, approaches that are based on directly counting transitions in MD
simulations were established [44, 54, 59, 14, 83, 76, 66]. The resulting models are often called transition
networks, Master equation models or Markov (state) models (MSM), where “Markovianity” means that
the kinetics are modeled by a memoryless jump process between states [79, 84, 83, 15, 14, 59, 64, 67,
77, 18].

MSMs provide access to the complexity of the essential kinetics without discarding information by
projection onto order parameters. The essential kinetics can be understood by studying the metastable
sets arising from the model [77, 90, 59] or graph-based visualization tools [70]. The ensemble of folding
pathways can be calculated and quantified from MSMs with Transition Path Theory [64]. Kinetic
experimental measurements can be calculated from MSMs directly and the experimentally-detectable
kinetic features can be linked to structural changes [63]. In the present review, we will explain the
essentials of MSM theory and these analysis methods.

2 Markov Models

In this section we outline the basic theory of Markov models, explain where their limitations are and
how well they can approximate original kinetics, and give approaches for constructing Markov models
from simulation data.

2.1 Basics

We briefly sketch the main mathematical ideas underlying Markov models of molecular kinetics. The
dynamics of a molecular system can be understood as a long trajectory x(t) describing the positions and
momenta of all atoms considered. The state space of positions and momenta is huge - 6N dimensions
when a molecular system with N atoms are considered. However, we know that in most macromolecular
systems only a very small subset of this state space is actually populated - namely the region which
contains conformations of relatively low energies. It is therefore reasonable to ask whether we can
computationally characterize this region by subdividing it into sets, each of which comprising a group
of similar molecular structures. We then aim at approximately describing the dynamics in terms of
the transition probabilities between these sets. This state-space discretization and the corresponding
transition probabilities will be our Markov model.

More formally, it is assumed that the molecular system studied lives in a continuous state space Ω
consisting of positions and momenta, its time evolution x(t) obeys the following properties:
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1. x(t) is a Markov process in the full state space Ω, i.e. the instantaneous change in x only depends
on the current value of x and not its history.

2. x(t) is ergodic, i.e. all states of Ω could be reached by an infinitely long trajectory and are visited
with a frequency given by the Boltzmann distribution:

µ(x) = Z(β)−1 exp (−βH(x)) . (1)

3. x(t) is reversible, i.e., the probability densitiy of going from state x to state y in time τ , p(x,y; τ),
fulfills the condition of detailed balance:

µ(x) p(x,y; τ) = µ(y) p(y,x; τ), (2)

These conditions are fulfilled by many dynamical models frequently used to simulate molecular dy-
namics, such as Anderson-thermostatted dynamics or Hybrid Monte Carlo. We can then perform the
following, at this stage purely formal, trick, and describe the evolution of the dynamics in terms of an
ensemble distribution pt(x):

pt+τ (x) = Q(τ) ◦ pt(x). (3)

This means when pt(x) is the probability distribution of molecules in the ensemble at time t,
then pt+τ (x) is the probability distribution of the ensemble at a later time t + τ . The evolution of
probability density is described by the operator Q(τ). The important fact of this equation is that the
same operator Q(τ) holds at all times t and that it is a linear operator, i.e. a mathematically simple
object, which allows to propagate to arbitrarily long times by repeated usage:

pt+2τ (x) = Q(τ) ◦ (Q(τ) ◦ pt(x)) = Q(2τ) ◦ pt(x). (4)

and so on. The whole purpose of Markov models is to discretize state space Ω such that Q(τ) can
be approximated by a matrix and pt(x) can be approximated by a vector, such that the equations
above are well approximated. We will explain below that this is indeed possible even for complex
molecular systems, and that then all interesting long-time dynamical quantities can be calculated from
the discrete version of Q(τ) despite only short trajectories of length τ are needed. Note that τ can be
orders of magnitude shorter than the longest timescales of the system.

Before going into the discrete representation, we shall first illustrate how Q(τ) operates on a one-
dimensional example. Fig. 1a shows a potential energy landscape with associated Boltzmann density
µ(x). Fig. 1b is an illustration of the operator Q(τ): the horizontal and vertical axes correspond to
the coordinate x and the color coding quantifies how much probability density is transported between
two points x in a time τ . The dark colour blocks near the diagonal correspond to the fact that there
is a high probability to move around within an energy basin, while the white colors in off-diagonal
regions correspond to the fact that there is a small probability to jump between the basins.

Fig. 1c-e show a spectral decomposition of the operator Q(τ) which will be discussed below. The
eigenvalues shown in Fig. 1c and eigenfunctions shown in Fig. 1d fulfill the equations

Q(τ) ◦ φ(x) = λiφ(x).

whose relevance will also be explained below.
Imagine now that the coordinate x is discretized into sets {S1, ..., Sn}. It is obvious that when

these sets are many and small enough, we can approximate Q(τ) by discrete transition probabilities
between sets. Tij(τ) represents the time-stationary probability to find the system in state j at time
t+ τ given that it was in state i at time t:

Tij(τ) = P[x(t+ τ) ∈ Sj | x(t) ∈ Si],

defining a transition matrix T(τ) ∈ R
n×n. The transition matrix can also be written in terms of

correlation functions [83]:

Tij(τ) =
ccorrij (τ)

πi
, (5)
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Figure 1: (a) Potential energy function with four metastable states and corresponding stationary den-
sity µ(x), (b) Density plot of the transfer operator for a simple diffusion-in-potential dynamics defined
on the range Ω = [0, 100] (see Supplementary Information), black and red indicates high transition
probability, white zero transition probability. Of particular interest is the nearly block-diagonal struc-
ture, where the transition density is large within blocks allowing rapid transitions within metastable
basins, and small or nearly zero for jumps between different metastable basins. (c) Eigenvalues of the
transfer operator, The gap between the four metastable processes (λi ≈ 1) and the fast processes is
clearly visible. (d) The four dominant eigenfunctions of the operator Q(τ), φ1, ..., φ4, which indicate
the associated dynamical processes. The first eigenfunction is associated to the stationary process,
the second to a transition between A + B ↔ C + D and and the third and fourth eigenfunction to
transitions between A ↔ B and C ↔ D, respectively. e) The eigenfunctions weighted with the µ(x)−1.
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where πi is the stationary probability to be in set Si:

πi =

ˆ

x∈Si

dx µ(x),

and the unconditional transition probability ccorrij (τ) = πiTij(τ) is an equilibrium time correlation
function which is normalized such that

∑

i,j c
corr
ij (τ) = 1. Since we assume the dynamics to fulfill

detailed balance, the correlation matrix is symmetric (ccorrij (τ) = ccorrji (τ)). If we would manage to
generate a very long trajectory x(t) and simply count transitions in time steps τ , we would obtain a
count matrix cij(τ) that is proportional to ccorrij (τ).

Suppose that p(t) ∈ R
n is a column vector whose elements denote the probability, or population,

to be within a set j ∈ {1, ..., n} at time t. After time τ , the probabilities will have changed according
to:

pj(t+ τ) =

n
∑

i=1

pi(t)Tij(τ), (6)

or in matrix form:

pT (t+ τ) = pT (t)T(τ) (7)

Note that an alternative convention often used in the literature is to write T(τ) as a column-
stochastic matrix, obtained by taking the transpose of the row-stochastic transition matrix defined
here.

The stationary probabilities of discrete states, πi, yield the unique discrete stationary distribution
of T:

π
T = π

TT(τ). (8)

2.2 Estimation and Statistics

In practice, the transition probabilities cannot be directly calculated. Instead, we have a microscopic
model of the molecular system which permits us to calculate energies and forces at every state x and a
dynamical model (e.g. integrator + thermostat) which propagate these dynamics with short timesteps
(typically femtoseconds). Suppose we have this machinery to generate trajectories of our molecular
system. Then we can use these trajectories to estimate the transition probability between any pair of
discrete sets Si and Sj. Of course, such an estimation will involve an estimation error resulting from
finite sampling, and this error will become smaller the more trajectory data is generated.

More formally, consider one trajectory generated at equilibrium conditions with N configurations
stored at a fixed time interval ∆t:

X = [x(t = 0), x(t = ∆t), . . . , x(t = (N − 1)∆t)] (9)

= [x1,x2, ...,xN ] (10)

and consider that a state space discretization has been defined such that each structure can be
assigned to one discrete state xk ∈ Si → sk = i, and the trajectory information can be simply stored
as the sequence s1, ..., sN of discrete states.

We also assume that x1 was drawn from the equilibrium density pertaining to state s1, µs1(x) (see
discussion in [72, 64, 69]. We can now define the discrete state count matrix Cobs(τ) = [cobsij (τ)] at lag
time τ , where τ now needs to be an integer multiple of the available data resolution ∆t:

cij(τ) = cij(l∆t) =| {sk = i, sk+l = j}|k = 1...N − l | . (11)

which provides an estimator of the correlation matrix defined in Eq. (5) by:

ĉcorrij (τ) =
cij(τ)

N − l
. (12)
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C(τ) simply counts the number of observed transitions between discrete states, i.e. cij is the
number of times the trajectory was observed in state i at time t and in state j at time t+ τ , summed
over all times t. If multiple trajectories are available, then the count matrices of these trajectories are
simply added up. It can be shown [69] that based on C(τ), the transition matrix can be estimated
with maximum likelihood by:

T̂ij =
cij
ci

, (13)

where ci are the row sums of C:

ci :=

n
∑

k=1

cik, (14)

which are equal to the total number of times the trajectory was found in state i. This estimator
is asymptotically unbiased, i.e. for a long enough trajectory it will converge to the correct transition
matrix.:

lim
N→∞

T̂ij = Tij , (15)

Since simulation data is finite, all validation procedures (either consistency checks or comparisons
to experimental data) need to account for statistical uncertainties. For these, standard deviations
or confidence intervals induced by the posterior distribution of transition matrices are of interest. It
follows from well-known properties of the distribution of transition matrices [2] that the expectation
value for transition matrices is

T̄ij = E[T̂ij ] =
cij + 1

ci + n
, (16)

and the variance is given by

Var[T̂ij ] =
(cij + 1)((ci + n)− (cij + 1))

(ci + n)2((ci + n) + 1)
=

T̄ij(1 − T̄ij)

ci + n+ 1
. (17)

Also everything calculated from T(τ) will have statistical error associated. These errors can be
rigorously evaluated [35, 62, 16, 68].

It is important to note that T̂ij as given by Eq. 13 does not necessarily fulfill the detailed balance

equations: πiTij = πjTji, but generally πiT̂ij 6= πj T̂ji. This is a result of limited statistics and can be
avoided by using a maximum likelihood estimator that makes sure that the detailed balance equations
are fulfilled [69].

2.3 Predicting long-term kinetics from short simulations and the system-

atic error done by this

Markov models are an approximation of molecular kinetics in two ways: As discussed above, a Markov
model is estimated from a finite number of trajectories and thus involves statistical error. However,
there is a systematic source of error, which is addressed here: the fact that we discretize state space
into sets (S1, ..., Sn) erases the information where exactly the continuous process x(t) was. As a result,
the jump process on (S1, ..., Sn) is no longer Markovian even if x(t) is, nevertheless we approximate it
by a Markov chain. This apparent contradiction is what has raised criticism against Markov models.

The purpose of this section is to make clear that this criticism is equally justified or unjustified
as in any other area of numerics. Consider the numerical evaluation of the area under a curve by
approximating it with a finite number of step functions and adding up their areas. Despite the fact
that the curve of interest may not nearly be step-like, we trust numerical integrators, because we know
they can deliver the desired result to arbitrary precision by making the discretization finer - and that
“fine enough” is practically feasible. In other words, we have some way to control the error. For Markov
models we can get a similar result, although Markov model numerics is not yet as well developed as
other areas of numerics. We can make useful theoretical statements of the systematic error introduced
by the discretization. What may currently be more important, is that a practical test is available to
validate that a Markov model built is quantitatively acceptable.

The following two quantities are obtained from Markov models without systematic error:
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1. The propagation of transition probabilities by one step τ , pT (t+ τ) = pT (t)T(τ).

2. Stationary properties, such as the stationary distribution π and associated expectation of state
functions Eπ(a) = 〈π, a〉.

However, state space discretization introduces systematic error is in the reproduction of long-time
kinetics, i.e. the prediction:

pT (t+ kτ) ≈ pT (t)Tk(τ), (18)

is only approximately true. However, good approximation of this equation is essential, because
it represents one of the main advantages of Markov models, namely to predict long-time kinetics by
using short trajectories of length order τ . Based on rigorous theoretical results of [74, 22, 69], following
statements are true:

1. The error of Eq. (18) decreases with increasingly small discretization states. Quantitatively,
what matters is how well the discretization can approximate the slow eigenfunctions (weighted
with the stationary density, see Fig. 1e).

2. The error of the approximation of timescales ti decreases when the discretization better approx-
imates the corresponding eigenfunction.

3. For a given discretization, the error of both Eq. (18) and of the approximation of timescales ti
decreases with increasing lag time τ .

These results are illustrated in Fig. 2 and 3. A diffusion on the two-well potential shown in Fig. 2a
has a sigmodially-shaped eigenfunction (when weighted by the stationary density) shown in Fig. 2b.
When only using two states to discretize the state space, the separatrix is best placed on the transition
state (Fig. 2b), or otherwise may generate a very large error (Fig. 2c). However, the error of the
Markov model decreases when more than two states are used (Figs. 2d and e). Thus, in contrast to
previous assumptions, it is not the most metastable partition of state space that produces the best
Markov model. Fig. 3 compares the propagation of probability by the Markov model and the true
dynamics, shows the result of using the two- and the six-state partitions on the error in Eq. (18) over
time. The six-state partition clearly outperforms the two-state partition.
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Figure 2: Illustration of the eigenfunction approximation error on the slow transition in the diffusion
in a double well (top, black line). The slowest eigenfunction is shown in the lower four panels (black),
along with the step approximations (green) of the partitions (vertical black lines) at x = 50; x = 40;
x = 10, 20, ..., 80, 90; and x = 40, 45, 50, 55, 60. The eigenfunction approximation error δ2 is shown as
red area and its norm is printed. Figure adapted from [69].
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Figure 3: The so-called Chapman-Kolmogorov-Test. This corresponds here to compare between MSM
and original dynamics how the probability of being in the left minimum relaxes when starting in the
left basin. The test was done for the two-well potential using a trajectory of length 106 steps. Tested
are Markov models that use lag times τ = 100, 500, 2000 and (a) 2-state discretization (split at x = 50),
(b) 6-state discretization (split at x = 40, 45, 50, 55, 60). Figure adapted from [69].

2.4 Spectral properties

At the end of our theoretical investigation of Markov models we come to the spectral properties of the
operator Q(τ) and the associated transition matrix T(τ). Although this point is somewhat difficult to
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understand at first, it is essential in order to see what metastable states are, why some Markov models
work better than others, and eventually also how kinetics experiments work. At this point a comparison
to another approach that is more commonly used in the Chemical Physics community may be useful:
Consider the Principal Component Analysis method [1], where the relative distances of a set of data
points (e.g. molecular structures) is captured by a covariance matrix. When performing an eigenvalue
decomposition one obtains eigenvectors and eigenvalues. The eigenvectors with the largest eigenvalues
are called “prinicipal components” and describe where the directions along which the data set has the
greatest spatial extent. The corresponding eigenvalues capture the variance of the data set along these
principal directions. Analogously, a transition matrix T(τ) can also be decomposed into eigenvectors
and eigenvalues. The eigenvectors also represent “principal modes”, but since the transition matrix
contains probabilities these modes are vectors that contain changes of the probability for each discrete
state Si. The principal modes with the largest eigenvalues are indeed the main modes of probability flow
between the system’s substates. The corresponding eigenvalues have magnitude expressing how slow
or fast the corresponding probability flow occurs. Thus, the eigenvalue decomposition of a transition
matrix may be understood as a principal component analysis of the dynamics.

More formally, transition matrices can, as any diagonalizable matrix, be written as a linear combi-
nation of their left eigenvectors, their eigenvalues and their right eigenvectors. For the here assumed
case of matrices fulfilling detailed balance, the right eigenvalues can be replaced by the left eigenvalues
(and vice versa), leading to the decomposition:

T(τ) = Π−1
n
∑

i=1

λi(τ)lil
⊤
i . (19)

with the diagonal matrix Π−1 = diag(π−1
1 , ..., π−1

n ). Thus, for longer timescales:

Tk(τ) = Π−1
n
∑

i=1

λk
i (τ)lil

⊤
i . (20)

The transition matrix T(kτ) = Tk(τ) which transports an initial probability k time steps forward is
again a linear combination of the eigenvectors and eigenvalues. These linear combinations (eq. 19 and
20) are known as spectral decomposition of the transition matrix. They are very useful for connecting
the dynamics of the molecule to experimentally-measured signals, which is described in Sec. 6.

Eq. 20 is the key for understanding how the transition matrix transforms a probability vector. The
complete process consists of n subprocesses lil

⊤
i , each of which is weighted by the eigenvalue λi raised

to the power k. Because the transition matrix is a row-stochastic matrix, it always has one eigenvalue
which is equal to one λ1 = 1 [18]. Raising this eigenvalue to the power k does not change the weight
of the corresponding subprocess l1l

⊤
1 : 1k = 1. l1l

⊤
1 is the stationary process, which we postulated in

Eq. (8), and l1 = π. All other eigenvalues of the transition matrix are guaranteed to be smaller than
one in absolute value [18].

The weights of the processes hence decay exponentially with the implied timescale ti of the decay
process

ti = −
τ

lnλi
. (21)

Since the relaxation timescales ti are physical properties of the dynamics, they should be invariant
under change of the lag time τ used to parametrize the transition matrix [83]. For large enough τ ,
ti should converge to their true value (assuming sufficient statistics). Therefore, the convergence of
ti with increasing τ has often been employed as an indicator for selecting τ [83, 14, 59, 69]. For
the two-well potential diffusion dynamics of Fig. 2, the τ -convergence of the slowest timescale t2 is
shown in Fig. 4. These curves illustrate that discretizations that allow for better approximation of
the eigenfunctions also provide nearly-correct timescales at shorter lag times τ .
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Figure 4: Convergence of the slowest implied timescale t2 = −τ/ lnλ2(τ) of the diffusion in a double-
well potential depending on the MSM discretization. The metastable partition (black, solid) has greater
error than non-metastable partitions (blue, green) with more states that better trace the change of the
slow eigenfunction near the transition state. Figure adapted from [69].

The smaller the eigenvalue λi, the smaller the implied timescale ti, the faster the corresponding
process decays. To understand the interplay of multiple relevant eigenvalues and eigenvectors let us
review again Fig. 1 which shows the diffusion dynamics on an energy landscape with four basins
(A, B, C, D) and high intervening energy barriers. Fig. 1d shows the 15 largest eigenvalues of the
transition matrix in Fig. 1b. There is one eigenvalue, λ1, which is equal to one, followed by three
eigenvalues, λ2 to λ4, which are close to one. These four dominant eigenvalues are separated by a gap
from the remaining eigenvalues. Hence, the transition matrix consists of a stationary process, three
slow processes and many processes which decay quickly. After a few time steps, only the four dominant
processes contribute to the evolution of the probability vector. How these processes alter this vector,
is determined by the shape of the corresponding eigenvectors.

Fig. 1c shows the four dominant right eigenvectors. The first eigenvector corresponds to the sta-
tionary process and is, therefore, constant. The second eigenvector corresponds to the slowest process
and has positive signs in regions A and B and negative signs in regions C and D. This shape effectively
moves probability density across the largest barrier in the energy surface. Since the eigenvector is ap-
proximately constant within the combined region (A,B) and (C,D) left and right of the barrier, it does
not alter the relative probability distribution within these regions. The third eigenvector, analogously,
moves density between A and B, the fourth moves density between C and D.

3 Illustrative protein folding model

We use a simple protein folding model throughout this study in order to illustrate the concepts de-
scribed in this paper. We consider three structural elements called a, b and c that form independently
of another. A simple energy model has been designed in which the folding of each structure element
contributes a loss in potential energy and also a loss of entropy:
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U S

unfolded 0 10.3804 = log(60 + 120− 0.5)
a −1.5 6.76878 = log(30− 0.5)
b −1.5 5.94083 = log(20− 0.5)
c −1.5 4.88469 = log(12− 0.5)

a/b −3.75 4.50258 = log(10− 0.5)
a/c −3.75 3.4095 = log(6− 0.5)
b/c −3.75 2.50553 = log(4− 0.5)

a/b/c −4.5 0.81093 = log(2− 0.5)

Table 1: Energy model of the simple protein folding model. Shown is the potential energy ∆U and the
entropy ∆S depending of the folding state. The potential energy drops with the number of structural
elements formed, while the entropic part mimics a reduction of conformational space when one of the
elements forms (by a factor of a → 2, b → 3 and c → 5).

The entropic part is chosen that the formation of a structural element decreases the accessible
conformational space by a factor a → 2, b → 3 and c → 5 favouring the unfolded state for high
temperatures. A small additive number (0.5) is added to the conformation space volumes in order to
break the perfect independence of structure elements. In addition, for each formed structural element
the potential energy is lowered so as to favor the folding at low temperatures.

Thus, at any given temperature T , the free energy Fi = Ui − TSi for each of the eight possible
foldamers {0, a, b, c, ab, ac, bc, abc} can be calculated and also the associated stationary distribution

πi =
exp(−Fi/kBT )

∑

j exp(−Fj/kBT )
.

Assuming furthermore that the model protein can jump between states by forming or breaking one
structure element with transition probabilities

Tij = exp

(

−
∆+max(0, Fj − Fi)

kBT

)

with minimum barrier height ∆ = 4, we have a consistent dynamical model that can be used for
analysis. Fig. 5 illustrates this model at low, intermediate and high temperatures, showing that the
folded state is stable at low temperatures and the unfolded state is stable at high temperatures.
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Figure 5: Illustrative protein folding model for low, intermediate and high temperature. The colours
indicate the stationary probability of states, while the thickness of the arrows and the numbers next
to them quantify transition probabilities (within some fixed but arbitrary timescale).

Fig. 6 shows the eigenvectors in the protein folding model. For the low-temperature situation,
the folding process is interestingly not the slowest, but the third-slowest process, which exchanges
probability between unfolded-a-b-c and states ab-ac-bc-abc. The slowest process corresponds to the
formation of a, while the second-slowest process is a more complex transition involving the exchange
of unfolded, c and ac with the rest.

The intermediate-temperature situtation, the slowest process is the one that most closely resembles
folding - it mostly exchanges probability between unfolded−c and ab−abc. The second- and third-
slowest processes correspond to the formation of c and b, respectively.
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In the high-temperature situation, the slowest process is a folding process which exchanges prob-
ability between unfolded and the rest. It is therefore a different kind of folding process than the
third-slowest process in the low-temperature case. One might say that the transition state has shifted
towards the unfolded side. The second- and third-slowest processes again correspond to the formation
of c and b, respectively.
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Figure 6: Dominant eigenvectors and eigenvalues of the protein folding model.

4 Metastable States

The protein folding model used here for illustration consists of only 8 states and is thus easy to com-
prehend. When building Markov models from clustered molecular dynamics data one often requires
several thousands of states in order to approximate the system kinetics well. Network approaches have
been developed to visualize the network of transitions arising from such a model [70], but especially
when the network is dense, this is not straightforward. It is thus desirable to find en effective repre-
sentation that communicates the essential properties of the kinetics. In this section we describe a way
to cluster the large discrete state space into a few metastable sets that have the property that they
capture the dynamics for long times before jumping to another set. Let us stress that the purpose of
finding these sets is purely illustrative (e.g. for lumping fluxes, see Sec. 5). For quantitatively calcu-
lating kinetic properties, the full Markov model should be used, as the approximation of the system’s
kinetics will generally deteriorate when using a lumped Markov model [69, 45, 74].

Let us consider the coarse partition of state space Ω = {C1, C2, ..., Cn} where each cluster Ci

consists of a set of states Sj . We are interested in finding a clustering that is maximally metastable.
In other words, each cluster Ci should represent a set of structures that the dynamics remains in for
a long time before jumping to another cluster Cj . Thus, each cluster Ci can be associated with a free
energy basin.

As shown above (see Fig. 1 and Sec. 2.4), we can understand the slow kinetics in terms of
probability transport by the dominant eigenvectors of the transition matrix. Consequently, these
dominant eigenvectors can also be used in order to decompose the system into metastable sets [77, 90].
Consider the eigenvector corresponding to the slowest process in Fig. 1 (yellow line): This eigenvector
is almost a step function which changes from negative to positive values at the saddle point. When we
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Figure 7: Metastable states of the one-dimensional dynamics (see Fig. 1a) identified by PCCA+. (a),
(c), (e): Plot of the eigenvector elements of one, two, and three eigenvectors. The colors indicate groups
of elements (and thus conformational states) that are clustered together. (b), (d), (f): Clustering of
conformation space into two, three, and four clusters, spectively.

take the value of this eigenvector in each state and plot it along one axis, we obtain Fig. 7a. Partitioning
this line in the middle dissects state space into two the two most metastable states of the system (Fig.
7b). The two most metastable states exchange at a timescale given by the slowest timescale t2. If we
are interested in differentiating between smaller substates, we may ask for the partition into the three
most metastable states. In this case we consider two eigenvectors simultaneously, r2 and r3. Plotting
the coordinates in these eigenvalues for each state yields the triangle shown in Fig. 7c whose corners
represent the kinetic centers of metastable states. Assigning each state to the nearest corner partitions
state space into the three most metastable states (Fig. 7d) that exchange at timescales of t3 or slower.
The same partition can be done using three eigenvectors, r2, r3 and r4, yielding four metastable states
exchanging at timescales t4 and slower, and so on (Fig. 7e,f). Generally, it can be shown that when n
eigenvectors are considered, their coordinates lie in an n-dimensional simplex with n+1 corners called
vertices which allow the dynamics to be partitioned into n+ 1 metastable sets [90, 59].

Each of these partitionings is a valid selection in a hierarchy of possible decompositions of the system
dynamics. Moving down this hierarchy means that more states are being distinguished, revealing more
structural details and smaller timescales. For the system show in in Fig. 1, two to four states are
especially interesting to distinguish. After four states there is a gap in the timescales (t5 ≪ t4)
induced by a gap after the fourth eigenvalue (Fig. 1c). Thus, for a qualitative understanding of the
system kinetics, it is not very interesting to distinguish more than four states. However, note that
for quantitatively modeling the system kinetics, it is essential to maintain a fine discretization as the
MSM discretization error will increase when states are lumped (see Sec. 2.3).

Fig. 8 shows the metastable states of the protein folding model. Interestingly, there is no simple
partition that splits unfolded and folded states. In the interemediate temperature case this is most
closely the case as the unfolded state is a metastable state and separated from all other states with
partial structure. The remaining space and the conformation space at other temperatures is clustered
in a non-obvious manner. Sometimes these clusters are defined by the presence of particular structural
elements (e.g. red cluster in the high-temperature case is characterized by having c formed.
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Figure 8: Metastable sets of the Folding Model

5 Transition Pathways

Understanding the folding mechanism of macromolecules, and proteins in particular, is one of the
grand challenges in biophysics. The field was driven by questions such as [21]: How does an ensemble
of denatured molecules find the same native structure, starting from different conformations? Is folding
hierarchical [4, 5]? Which forms first: secondary or tertiary structure [31, 94]? Does the protein collapse
to compact structures before structure formation, or concurrently [3, 36, 80]? Are there folding nuclei
[39]? Is there a particular sequence in which secondary structure elements are formed?

Heterogeneity in folding pathways has been found in a number of experimental studies. For example,
using time-resolved FRET with four different intramolecular distances, it was found in Barstar [81] that
there are multiple folding routes, and that different routes dominate under different folding conditions.
Moreover, changing the denaturant can change the dominant pathway [46]. Extensive mutational
analysis of the seven ankyrin sequence repeats of the Notch ankyrin repeat domain has revealed its
funnel landscape [10, 48, 82]. Some folding is sequential, as in FynSH3[43], cytochrome [26], T4
lysozyme [13], and Im7 [28], and some folding is parallel, as in cytochrome C [32] and HEW lysozyme
[47].

Formally, the question about folding pathways boils down to the following: Let A and B be two
subsets of state space, defined so as to specify the transition process one wants to investigate. For
example, A may correspond to the strongly denatured set of sets while B is the metstable set around
the crystal structure when known [64]. All remaining states are unassigned “intermediate” states I.
What is the probability distribution of the trajectories leaving A and continuing on to B? I.e., what
is the typical sequence of I states used along the transition pathways?

When an MSM is already available, the information of transition pathways is easily accessible via
Transition Path Theory [91, 50, 64], which is explained below. Transition path theory is related to
Transition path sampling (TPS) in the sense that both are trying to generate statistical information
about the ensemble of A → B pathways. TPS is a direct approach to sampling pathways directly [8]
and could in principle be used to sample folding pathways. However, in TPS the sampled trajectories
are in practice of limited length and it is thus unpractical to use TPS when the intermediate states I
contain metastabilities. One can run multiple TPS-samplings between pairs of metastable states after
having identified them [88].

5.1 Transition Path Theory

The essential ingredient required to compute the statistics of transition pathways is the committor
probability q+i . q+i is the probability when being at state i, the system will reach the set B next rather
than A [86, 24, 8]. In protein folding contexts, it is the probability of folding [24]. By definition, all
states in A have q+i = 0 while all states in B have q+i = 1. For all intermediate states, the committor
gradually increases from A to B (see Fig. 9), and its value can be calculated by solving the following
system of equations:

∑

k∈I

Tikq
+
k = −

∑

k∈B

Tik

(see [64] for derivation). Fig. 9 shows the committor (color-coding) for the protein folding model: At
low temperatures, the committor changes rapidly after leaving the unfolded state and forming the first
structure elements. At high temperatures, it changes rapidly when entering the full-structured native
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state. At both temperatures, the folding process has thus essentially two-state character, although with
different definitions of the two states. At intermediate temperatures, the commitor increases gradually
from the unfolded to the native state, indicating that it is important to consider the intermediate
states in the folding process.

We further need the backward-committor probability, q−i . q−i the probability, when being at state
i, that the system was in set A previously rather than in B. For dynamics obeying detailed balance
(which is assumed here) this is simply

q− = 1− q+.

Consider the probability flux between two states i and j, given by πiTij (absolute probability of
finding the system at this transition). We are only interested in trajectories that successfully move
from A to B without recurring to A beforehand. The flux pertaining to these reactive trajectories only
is given by multiplying the flux by the probability to come from A and to move on to B:

fij = πiq
−

i Tijq
+
j .

This flux is the quantity that could be obtained directly from a converged TPS sampling by counting
transitions of the reactive path ensemble. However, we further want to remove contributions that come
from recrossings or detours. For example, a trajectory that would jump on its way from A to B multiple
times between two substates i and j would produce an increase in the flux i → j and the backward
flux j → i. However, we only want to consider a single transition per pathway and thus define the net
flux, given by:

f+
ij = max{0, fij − fji}.

Considering detailed balance dynamics and when ordering states along the reaction coordinate q+i
such that q+i ≤ q+j , an equivalent expression is [6]:

f+
ij = πiTij(q

+
j − q+i ).

f+
ij defines the net flux and is a network of fluxes leaving states A and entering states B (see Fig.

9). This network is flux-conserving, i.e. for every intermediate state i, the input flux equals the output
flux (see [64, 50] for proof). There only set in the network that produces flux is A and the only set
that consumes flux is B. Due to flux conservation, these amounts of flux are identical and are called
total flux F of the transition A → B:

F =
∑

i∈A

∑

j /∈A

πiTijq
+
j =

∑

i/∈B

∑

j∈B

πiTij(1− q+i ).

The value of F gives the expected number of observed A → B transitions per time unit τ that an
infinitely long trajectory would produce. Of special interest is the reaction rate constant kAB (see [64]
for derivation):

kAB = F

/(

τ

m
∑

i=1

πiq
−

i

)

.

Note that all states that trap the trajectory for some time will reduce kAB . The effect of these traps
is properly accounted for in the folding flux, even if they do not contribute to productive pathways.
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Figure 9: Committor and net flux from unfolded to folded state
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5.2 Transition paths between macrostates

Since the number of n conformational states used to construct a Markov model is often very large, it is
convenient for illustration purposes to compute the net flux of A → B trajectories amongst only a few
coarse sets of conformations. We consider a coarse partition of state space S = {C1, C2, ..., Cn}, which
may be based on a decomposition into metastable states as described in Sec. 4, or another partition
that the user defines e.g. based on order parameters of interest. We make the restriction, however,
that this decomposition preserves the boundaries of sets A, B and I, i.e. A and B are either identical
to individual Ci, or to a collection of multiple Ci.

The coarse-grained flux between two sets is then given by:

Fij =
∑

k∈Ci,l∈Cj

fkl.

and the net flux by

F+
ij = max{0, Fij − Fji}.

We note a technicality here: the second step of again removing backfluxes to obtain a coarse-grained
net flux is necessary only if the clusters used do not partition state space along the isocommitor surfaces.
Thus it may be desirably to use a partition that only groups states with similar committor values.

Fig. 10 shows the coarse-grained fluxed from the unfolded to the folded states where the coarse-
graining has been done according to metastable states. At low and intermediate temperatures, the
topology of the folding network is equal, but the flux becomes smaller and the ab intermediate is used
less. At higher temperatures, the topology of the folding network changes due to a change in the
boundaries of metastable states and the unfolded state first splits into three intermediate states before
converging to abc.

Coarse-graining generates a simplified view but correct on the folding flux. The actual dynamics,
represented by the Markov model T(τ) cannot easily be coarse-grained without loosing information,
and no statement is made here about the transition probability between two coarse sets Ci and Cj .
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Figure 10: Coarse-grained folding fluxes.

5.3 Pathway decomposition

The flux network can be decomposed into pathways from A → B. When the dynamics are reversible,
then the flux can be completely decomposed into such A → B pathways and no cycles will remain.
Consider a pathway consisting of k nodes

P = (i1 ∈ A → i2 → ... → ik−1 → ik ∈ B)

Along each of its edges, say il → il+1, the flux network can carry a flux of up to f+
ilil+1

. Thus, the
capacity or flux of the pathway is given by the minimum of these fluxes:

f(P ) = min{f+
ilil+1

| l = 1...k}

A pathway decomposition consists of choosing a pathway P1, and then removing its flux f(P1) from
the flux along all the edges of P1. This may be repeated until the total flux F has been subtracted
and the network is thus free of of A → B pathways. Note that while the flux network is unique,
such a decomposition is not unique, because one may choose different strategies to select pathways.
Nevertheless pathway decompositions are useful in at least the following aspects:
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1. The strongest pathway, i.e. the pathway whose minimum flux f(P ) is largest of all pathways, is
of special interest. Especially so, if f(P ) is not much smaller than the total flux F .

2. One reasonable way to perform a pathways decomposition is to first remove the strongest path-
way, then remove the strongest pathway of the remaining network, and so on [51]. This decom-
position is useful to estimate how many A → B are necessary to obtain a certain percentage of
the flux [64].

3. Any pathway decomposition, even a decomposition in which pathways are chosen randomly,
gives the same answer when calculating the probability of certain events. Let us consider the
probability that, in the protein folding model, one of the three structural elements, a, b, and c,
is formed before the other ones in the intermediate-temperature case. The network can, e.g. be
decomposed into the pathways with corresponding fluxes:

unfolded → a → ab → abc 0.000241655

unfolded → a → ac → abc 0.000276008

unfolded → b → ab → abc 0.0000782191

unfolded → b → bc → abc 0.000175341

unfolded → c → ac → abc 0.0000306848

unfolded → c → bc → abc 0.0000592429

and the probability of forming a, b or c first is given by the flux fraction of pathways where this
occurs:

P(a first) =
1

F

∑

i

f(Pi) χi(a first) = 60.11%

P(b first) =
1

F

∑

i

f(Pi) χi(b first) = 29.44%

P(c first) =
1

F

∑

i

f(Pi) χi(c first) = 10.44%

where χi is 1 if a/b/c forms first in pathway Pi, respectively, and 0 otherwise.

The pathway decomposition is usually done on the original flux network. It can also be done on a
coarse-grained flux network, provided that the coarse-graining does not lump states which need to be
distinguished in order to calculate the probabilities of the events investigated.

6 Experimental observables / dynamical fingerprints

In experimental studies of protein folding, the conformational dynamics is mapped onto an obervable
a which is measured. a could be a fluorescence or transfer efficiency in a fluorescence experiment, the
chemical shift in an NMR experiment, the intensity of a given spectral peak in an IR experiment, the
distance in a pulling experiment, and so forth. In the following we assume, that a has a scalar value
for every state Si, i.e. there is a mapping Si → ai, where ai is the mean values of a over the state
Si. We note that vector- or function-valued observables (such as entire spectra in IR or NMR data)
could be treated in a similar way, although this is not done here. Given the observable vector, various
experimental measurements can be expressed as derived in [63] and [41].

In equilibrium experiments, the observed molecule is in equilibrium with the current conditions
of the surroundings (temperature, applied forces, salt concentration etc.), and the mean value of
an observable a, Eπ[a], is recorded. This may be either done my measuring Eπ[a] directly from an
unperturbed ensemble of molecules, or by recording sufficiently many and long single molecule traces
a(t) and averaging over them. The expected measured signal is

Eπ [a] =

n
∑

i=1

aiπi = 〈a, π〉 . (22)
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where E [x] denotes the expectation value of an observable x(t) and 〈x,y〉 denotes the scalar product
between two vectors x and y. Since π is the eigenvector to eigenvalue 1 of the transition matrix T(τ),
it can easily be calculated from the MSM. Eπ [a] does not depend on time and therefore bears no kinetic
information.

Kinetic information is available through time-correlation experiments. These may be realized by
taking trajectories from time-resolved single molecule experiments, such as single molecule fluorescence
or pulling experiments, and computing time correlations from these trajectories. Given a partition into
states Si, the autocorrelation of a for time kτ can be expressed as:

E [a(t) a(t+ kτ)] =

n
∑

i=1

n
∑

j=1

aiP(st = Si) · ajP(st+kτ = Sj | st = Si) . (23)

The terms under the summation signs contain the product the signal in state i and the signal in state
j, aiaj , where ai is weighted by the probability of finding the system in state Si, and aj is weighted
by the conditional probability of finding the system in state j given that it has been in state i at
k timesteps τ earlier. In equilibrium, the former probability is given by the equilibrium probability
π. Assuming that the process is Markovian, the latter probability is given by the transition matrix
element of the corresponding transition matrix. Eq. 23 can be rewritten as a matrix equation in which
T(τ) appears explicitly

E [a(t) a(t+ kτ)] =

n
∑

i=1

n
∑

j=1

aiπi · aj
[

Tk(τ)
]

ij
= a⊤ΠTk(τ)a. (24)

Replacing Tk(τ) by its spectral decomposition (eq. 20), one obtains

E [a(t) a(t+ kτ)] = a⊤

[

n
∑

i=1

exp

(

−
kτ

ti

)

lil
T
i

]

a (25)

= 〈a, π〉2 +

n
∑

i=2

exp

(

−
kτ

ti

)

〈a, li〉
2 .

Likewise, cross-correlation functions can be computed as

E [a(t) b(t+ kτ)] = 〈a, π〉〈b, π〉 +

n
∑

i=2

exp

(

−
kτ

ti

)

〈a, li〉〈b, li〉 . (26)

Eq. 25 and 26 have the form of a multiexponential decay function

f(t) = γcorr
1 +

∑

i=2

γcorr
i exp

(

−
t

ti

)

, (27)

with amplitudes
γcorr
i = 〈a, li〉〈b, li〉 . (28)

Each of the amplitudes is associated with an eigenvector of the transition matrix and the decay constant
ti is the implied time scale of this eigenvector, ti = −τ/ lnλi.

Alternatively, relaxation experiments can be used to probe the molecules’ kinetics. In these experi-
ments, the system is allowed to relax from a nonequilibrium starting state with probability distribution
p(0). Examples are temperature-jump, pressure-jump, or pH-jump experiments, rapid mixing experi-
ments, or experiments where measurement at t = 0 starts from a synchronized starting state, such as
in processes that are started by an external trigger like a photoflash. After time t = 0 the conditions
are governed by a transition matrix T(τ) with stationary distribution π 6= p(0). The ensemble average
Ep(0)[a(t)] is recorded while the system relaxes from the initial distribution p(0) to the new equilbrium
distribution π. The expectation value of the signal at time t = kτ depends on the current probability
distribution p(kτ) and is given by
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Ep(0)[a(kτ)] =
n
∑

i=1

aipi(kτ) = 〈a,p(kτ)〉. (29)

Eq. 29is analogous to Eq. 26. p(kτ) evolves under the influence of the transition matrix T(τ) (eq.
18). Using the spectral decomposition of T(τ) (eq. 20) and expressing λk

i via implied timescales ti,
we obtain

Ep(0)[a(kτ)] = 〈p′(0), π〉〈a, π〉 +

n
∑

i=2

exp

(

−
kτ

ti

)

〈p′(0), li〉〈a, li〉 (30)

where p′(0) is the excess probability distribution p′(0) = Π−1p(0). Ep(0)[a(kτ)] is again a multiexpo-
nential decay function with amplitudes

γrelax
i = 〈p′(0), li〉〈a, li〉 . (31)

A summary of the amplitudes of various types of experiments is given in table 6.

equilibrium correlation experiment relaxation experiment

relaxation experiment - γrelax
i = 〈a, li〉

〈

p′⊤(0), li
〉

autocorrelation γ
eq, auto-cor
i = 〈a, li〉

2
γ
jump, auto-cor
i = 〈a,P′(0)li〉 〈a, li〉

cross-correlation γ
eq, cross-cor
i = 〈a, li〉 〈b, li〉 γ

jump, cross-cor
i = 〈a,P′(0)li〉 〈b, li〉

Table 2: Overview of the expressions for the amplitudes in correlation experiments.

These equations are useful to calculate based on simulations which processes a given experiment
will be sensitive to. To illustrate this, consider again the protein folding model and let us consider three
different observables. In observable A, we measure the formation of structure element a, i.e. a = 1 for
states in which a is formed while a = 0 for states in which a is not formed. Likewise observables B and
C measure the formation of structure elements b and c. This can be realized e.g. with a fluorophor
and a specific quencher at appropriate positions [23]. We also consider three ways of measuring each
of these three constructs, namely temperature jump experiments at three different temperatures from
0.15 to 0.2, from 0.6 to 0.65, and from 2.4 to 2.45. We calculate the amplitude that is in the slowest
and second-slowest processes and report the normalized results in Table 11.

It is apparent that the processes that can be measured drastically depends on the way the mea-
surement is done and the observable used. For example, at high temperatures, all observables yield
nearly single-exponential kinetics with the timescale of moving between the unfolded state and the
partially structured state. At low temperature, the kinetics may appear biexponential, provided that
measurement noise is sufficiently small, with the main amplitude being in the formation of a (γ2) and
c (γ3).

Obs A Obs B Obs C
T-Jump 0.15 → 0.20 γ2 0.71 0.19 0.13

γ3 0.29 0.81 0.87

T-Jump 0.60 → 0.65 γ2 0.94 0.89 0.17
γ3 0.06 0.11 0.83

T-Jump 2.40 → 2.45 γ2 0.98 0.95 0.89
γ3 0.02 0.05 0.11

Figure 11: Normalized amplitudes of the slowest and second-slowest processes of simulated
temperature-jump experiments of the folding model

The combination of Markov models and the spectral theory given is useful to compare simulations
and experiments via the dynamical fingerprint representation of the system kinetics [63]. Furthermore,
this approach permits to design experiments that are optimal to probe individual relaxations [63].
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7 Conclusions and Perspectives

The combination of Markov models with analysis methods such as transition path theory and dynamical
fingerprinting provides a theoretically solid and computationally feasible approach to obtain deep
insights into the microscopic complexity of protein folding and relate molecular simulation data (or
protein folding models) to experiments that probe the kinetics of the molecular system in reality.

In contrast to projections on few pre-defined order parameters, a sufficiently fine clustering in the
MSM will retain the relevant details of the complex energy landscape, specifically the information
which states are kinetically connected and which aren’t. This allows relatively detailed analyses such
as using transition path theory in order to calculate the ensemble of pathways that lead from the
unfolded to the folded state. Based on the resulting path ensemble, mechanistic questions such as
“with what probability does structure element a form before the others” can be answered.

With regard to connecting to experiments, the main advantage of the MSM approach over tradi-
tional MD analyses is that the processes that occur at given timescales are unambiguously given by
the theory. In the Markov model, this assignment is present by the one-to-one association of transition
matrix eigenvalues (that correspond to measurable relaxation timescales) and eigenvectors (that de-
scribe structural changes). When the experimentally-measured relaxation data is further subjected to
a spectral analysis, experiment and simulation can be reconciled on the basis of dynamical fingerprints,
i.e. by matching peaks of the timescale density. A comment is in order on the fact that in all cases,
the slow relaxations in kinetic measurements are found to have the form of a sum of single exponential
term, each term corresponding to an eigenvalue / eigenvector pair in our analysis. This is a general
result which can also be obtained by performing the analysis in full continuous state space (as opposed
to our discrete-state treatment here). The only assumptions that are made to arrive at this result
are the following (1) The dynamics of the system is Markovian in full continuous state space, (2) the
state space is ergodic, i.e. all states of the system can interconvert, (3) the relaxations are measured
at equilibrium conditions. These assumptions can be assumed to be fulfilled for most protein folding
measurements. However, even in such a situation, apparent nonexponentiality has been found over
significantly long timescales, such as stretched exponentials [42, 49] or power laws [52]. Note that this
is no contradiction because such apparent nonexponentialities can be easily explained by sums of a
few single exponential relaxations with particular spacings of timescales and amplitudes [33, 93, 63] -
and thus also correspond to dynamical fingerprints with multiple peaks (see [63], Supplementary Fig.
1 and 2).

The methodology introduced here is generally applicable to all dynamical processes that possess
a stationary distribution, and especially those which are in equilibrium (i.e. fulfill detailed balance).
Markovian dynamics and transition path theory has e.g. been used to calculate ligand binding pathways
[34]. Markov models have been used to characterize different native substate in a conformational
changes [53]. Applications worthwhile exploring include Physics-based models of matter, such as Ising
models. Moreover, chemical processes treated by ab initio dynamics are an interesting and challenging
field of application, because here direct simulation of sufficiently long trajectories is unfeasible.
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