POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING*

A. EICHHORN' AND W. ROMISCH'

ABsTrRACT. Stochastic programs that do not only minimize expected cost but also take into account
risk are of great interest in many application fields. We consider stochastic programs with risk mea-
sures in the objective and study stability properties as well as decomposition structures. Thereby
we place emphasis on dynamic models, i.e., multistage stochastic programs with multiperiod risk
measures. In this context, we define the class of polyhedral risk measures such that stochastic pro-
grams with risk measures taken from this class have favorable properties. Polyhedral risk measures
are defined as optimal values of certain linear stochastic programs where the arguments of the risk
measure appear on the right-hand side of the dynamic constraints. Dual representations for polyhe-
dral risk measures are derived and used to deduce criteria for convexity and coherence. As examples
of polyhedral risk measures we propose multiperiod extensions of the Conditional-Value-at-Risk.

1. INTRODUCTION

Stochastic programs are essentially known to minimize, maximize, or to bound expected values.
From a theoretical point of view they easily offer the possibility to minimize or to bound risk functionals
since they rest upon stochastic models. However, in practice it may happen that incorporating risk
measures in stochastic programs makes them much harder to solve. In addition, other favorable
properties like stability with respect to approximations or duality results may get lost. In this paper
considerations are made about the question how risk measures should be designed so that stochastic
programs incorporating them show similar properties as stochastic programs based on expected values
only. As a result, the class of polyhedral risk measure is introduced.

Of course, when analyzing risk measures with respect to their practicability for stochastic programs,
one has to determine first of all what is understood by the expression risk measure and what properties
are required from the viewpoint of economic considerations. Here, a (one-period) risk measure p will
be understood as a functional from some set of real random variables Z to the real numbers, the
random variables z € Z represent some uncertain (usually monetary) value for which large outcomes
are preferred to lower ones. The value p(z) gives information about the riskiness of z, i.e., a high value
p(z) indicates a high danger of reaching low values, whereas a low value represents low danger of low
values.

Risk measures are broadly discussed in financial mathematics. For one-period risk measures, i.e., for
risk measures that depend on one random variable only, there is a relatively high degree of agreement
among the community about the desirable properties. Possibly the most important work in this context
is the axiomatic characterization of coherent risk measures [1], where the risk p(z) is understood as
the minimal amount of additional (risk-free) capital that is required to make the position z acceptable.
Several generalizations of this paper followed, e.g. [5, 12, 9, 25|, see also Chapter 4 in the monograph
[10]. Further desirable properties, namely, the consistency of risk measures with stochastic dominance
rules, were suggested in [13, 15, 16]. In addition, there are papers dealing with specific risk measures
such as Value-at-Risk or Conditional-Value-at-Risk, e.g., [6, 24, 17], see also the volume [37]. Recently,
an optimization theory of convex risk measures has been developed in [33].
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Currently, generalizations of one-period risk measures to different dynamic settings are discussed in
the literature. Such generalizations become necessary when a sequence of random variables z1, ..., zp is
to be assessed with respect to its riskiness and when information is revealed gradually with the passing
of time. In the literature, the settings as well as the postulated properties for risk functionals differ
more than in the one-period case. Generally speaking, there are two classes of settings depending on
whether liquidity risk over a time period is considered or intermediate monitoring by supervisors is
to be anticipated. In some work an entire risk measure process p1, ..., pr is defined, see [22, 39| and
also [2, 3]. The more important case from the viewpoint of optimization is the case where one has one
real number p(z1, ..., 27) that represents the risk of the entire process. Such concepts are presented in
[19, 34, 18] and again in [2, 3]. As in the one-period case, the number p(z1, ..., zr) can be understood as
minimal capital requirement for the overall time period so that the strategy corresponding to z1, ..., 21
is acceptable.

In the present paper, we consider (mixed-integer) multistage stochastic programs of the form

T T € Xt,
(1.1) min { E lZ(bt(&),m] z; is F-measurable, (t=1,..,T)
t=1 S Anr (E)T—r = ha(€e)

as starting point, where (&)tT:1 is a stochastic process and F; = o(&q,...,&), the sets X; are closed
and have polyhedral convex hulls, b.(-) are cost coefficients, h:(-) right-hand sides and A;,(-), 7 =
0,...,t — 1, matrices having appropriate dimensions and possibly depending on &; for t =1,...,T.

Much is known for expectation-based stochastic programs, e.g., on optimality and duality, decompo-
sition methods, statistical approximations and stability (cf. [32]). Most of these results are essentially
based on the fact that E is a linear operator. As it will be seen below in Chapter 2, risk measures
p are usually by no means linear. Hence, if we change from expectation to a risk measure in (1.1),
many known results will be no longer valid. Nevertheless, there are results about incorporating certain
risk functionals into (stochastic) optimization problems, e.g. [24, 17, 35, 36, 33]. In particular, the
Conditional-Value-at-Risk turns out to behave very opportunely in stochastic programs. However,
from an economic point of view not every risk measure is suitable for any application. In particular,
for multistage stochastic programs it may become necessary to incorporate risk measures for processes,
i.e., to minimize terms like p (21, ..., 27) with z; = — Ziﬂ(bf (&), z,). Hence, it would be convenient
to have an entire class of risk measures at hand such that every risk measure from this class behaves
opportunely in stochastic programs.

Such a class will be introduced in Chapter 2, namely the class of polyhedral risk measures. Condi-
tions implying that polyhedral risk measures are coherent and consistent with second order stochastic
dominance are provided. In Chapter 3 this class will be extended to the multiperiod case. Briefly,
polyhedral risk measures are defined as optimal values of certain simple linear stochastic programs.
In Chapter 4 it will be shown that, indeed, several properties of expectation-based stochastic pro-
grams remain valid for stochastic programs with polyhedral risk measures as objectives. This is due
to the fact that a problem of the form (1.1) with E replaced by a polyhedral risk measure p can easily
be transformed into a stochastic program with an objective consisting of the expectation of a linear
function where the original objective occurs in some additional dynamic constraints.

2. POLYHEDRAL RISK MEASURES

Let Z denote a linear space of real random variables on some probability space (Q,F,P). We
assume that Z contains the constants, e.g. Z = L,(Q, F,P) with some p € [1,00]. According to [10] a
functional p : Z — R is called a risk measure if it satisfies the following two conditions for all z, Z € Z:
(i) If z < z, then p(z) > p(2) (monotonicity).

(ii) For each r € R we have p(z +r) = p(z) — r (translation invariance).
A risk measure p is called convez if it satisfies the condition

p(pz + (1= p)z) < pp(z) + (1 — p)p(2)
for all z, Z € Z and p € [0,1]. A convex risk measure is called coherent if it is positively homogeneous,
ie., p(uz) = pp(z) forall g >0 and z € Z.
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There is a number of representation theorems for convex and especially for coherent risk measures in
the literature emerging from convex duality. Next, we cite one of these representations adapted to our
needs. Therefore, we set

D:={feLi(QF,P): f>0,E[f] =1},

the set of all density functions for (2, F,P).

Theorem 2.1. Let p : L,(Q,F,P) — R with p € [1,00]. Assume that p satisfies the following
continuity property:

zn 1 20 a.s. = lim p(z,) = p(z0)

n—oo

Then the following equivalence statement holds:

p is a coherent risk measure <= 3P, C D convex : p(z) = sup E[—fz] Vz € L,(Q, F,P)
fe€Py

Proof. Follows from [10], Corollary 4.14 + Proposition 4.17 + Lemma 4.25. See also [5, 25, 33]. O
Now we are ready to define the class of polyhedral risk measures.

Definition 2.2. A risk measure p on L, (2, F,P) with some p € [1, oo] will be called polyhedral if there
exist ki1,ky € N, c1,w; € RF1| ¢y, wy € R¥2, a nonempty polyhedral set Y; C R*' and a polyhedral
cone Yy C R¥2 guch that

Y1 € Yla
(2.1) p(z) =inf < (c1,y1) + E[(c2, y2)] | v2 € Lp(%, F,P), y2 € Yo,
(wi,y1) + (w2, y2) = 2

for every z € L,(Q,F,P). Here, E denotes the expectation on (2, F,P) and (-,-) a scalar product on
Rt or RF2,

Hence, expressed in the language of stochastic programming, a polyhedral risk measure is given as
the optimal value of a certain two-stage stochastic program with random right-hand side. We use the
term polyhedral because, for #() < oo, the space L, (€2, F,P) can be identified with R#‘* and in this
case a risk measure defined by (2.1) is indeed a polyhedral function on R#¢,

Remark 2.3. Of course, a convex combination of (negative) expectation and a polyhedral risk measure
is again a polyhedral risk measure: Let i € [0, 1] and p be a polyhedral risk measure with dimensions k;,
vectors ¢; and wy (t = 1,2), and polyhedral set/cone Y; / Y,. Then the risk measure p := up—(1—p)E
is polyhedral with the same dimensions k; and the same sets Y; and vectors w; = wy, W = wa,
¢1:=per — (1 — p)wy and ég == pea — (1 — p)we. Thus, so-called mean-risk-models, where expectation
and risk are optimized simultaneously, do not need to be considered separately.

Next, we derive dual representations for (2.1). To this end, we do not need to assume that p is a
risk measure in the sense of [9, 10], i.e., that it is monotone and translation invariant. We conclude in
our first result that p is a convex functional. To state this result, we use the notation!

D, ={ueR:uws —c; €Y' uwy —c2 €Yy} C D,:={u€R:uwy —c2 €Y}
for the so-called dual feasible sets.
Theorem 2.4. Let p be a functional of the form (2.1) on L,(Q, F,P) with p € [1,00). Assume
(i) complete recourse: (wq,Ys) =R,
(it) dual feasibility: D, # (.
Then p is finite, Lipschitz continuous, and convex. Further, it holds that

(2.2 ol = jnt {ten i) + 8 g e = twron|}

Y1€Y1

1Yt" is the polar cone of Y;. For a nonempty set Y the polar cone Y* is defined by Y* = {y* : (y,y*) <0OVy € Y}.
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with two real numbers uy and us that are the endpoints of Dp which is a compact interval in R.
Furthermore, if p > 1, then p admits the dual representation

(2.3) p(z) = sup {—E Az] 4+ inf (1 +E[Nwi,y1) : A€ Ly (L F,P), — (ca + Aws) € YQ*} )

Y1EYL
where % + i = 1. In particular, if Y1 is a cone, then p is positively homogeneous and (2.3) becomes
(2.4) p(z) =sup{—E[Az] : A € Lpy(Q,F,P), —(c1 + E[MNwi) € Y[", —(ca + dwz) € Y5'}.

Proof. Finiteness, Lipschitz continuity, and the representations (2.3) and (2.4) will be proved in a more
general framework in Section 3, Theorem 3.9.

Representation (2.2) follows from LP duality applied to the second stage program. Namely, it holds
for each y; € Y7 and each z € R that

min {(c2, y2) : y2 € Ya, (w1,y1) + (w2, y2) = 2} = max {u (z — (w1,y1)) : uwa —c2 € Y5'}.

Due to complete recourse and dual feasibility the feasible sets of both problems are nonempty and the
joint optimal value is finite for each y; € Y7 and each z € R. Since the expression z — (wy,y1) can
reach any real number and the feasible set of the right problem D, = {u € R : uws — ¢y € Y5} does
not depend on y; and z it is clear that the latter is bounded, i.e., a compact interval in R. Of course,
the maximum is attained for u being an endpoint of D,.

Convexity of p follows from the fact that the real-valued function

(y1,2) — (c1,y1) + E max ue (z — (w1,91))

is convex on Y7 x L, (€2, F,P). Positive homogeneity of p holds if Y7 is a cone. O

If a functional p on Lq($2, F,P) is defined by formula (2.1), the question arises, for which choice of
ce,wy and Y: (t = 1,2) this functional is a (convex) risk measure in the sense of [10]. Formula (2.4)
provides a sufficient criterion for a functional of the form (2.1) to be a coherent risk measure:

Corollary 2.5. Let p be a functional on L, (£, F,P) of the form (2.1) with ¥; being a polyhedral cone
and 1 < p < co. Let the conditions of Theorem 2.4 be satisfied (complete recourse, dual feasibility)
and assume that A, C D where A, is defined by

(2.5) A, ={ e Ly(QF,P):—(ci +ENwi) € Y], —(ca + A wp) € Y5}
Then p is a coherent risk measure.

Proof. Regarding Theorem 2.1 and Theorem 2.4 it remains to show that Lipschitz continuity in
L1(Q, F,P) implies condition (2.1). This, however, follows by the monotone convergence theorem:
Let zp, 1 2o, thus |z0 — zn| = 20 — zn | 0. Hence, |p(20) — p(zn)| < L -E[|z0 — zn|] — 0. O

The following result provides another sufficient criterion for a functional of the form (2.1) to be a
convex risk measure in case Y7 is not a cone:

Proposition 2.6. Let p be a functional on L,(Q, F,P) of the form (2.1) with p € [1,00). Assume
that complete recourse and dual feasibility hold and that Dp CR_ and let ¢c1, w1 and Yy be of the form
c1 = (é1,1), wy = (W1,-1) and Y1 = Y] x R, where ,,¢, € RF~1 and Y, C Rki—1,

Then p is a (polyhedral) convex risk measure on L,(Q, F,P).

Proof. The monotonicity property (i) follows from the representation (2.2) and the fact that u; and
ug are nonpositive. Indeed, let z, 2 € L,(2, F,P) be such that z < Z. Then we have

E én_lfitgw(z—(whyﬁ)] ZELH_l%W(Z—WhyD) , Ve
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The translation invariance condition (ii) follows by setting yg D= yg Yirasa consequence of the
identity

plz+7r) = inf{(él,gh} + yikl) +E [én%)éw (z +r — (1,91) +y§k1))} 1 eV, yikl) € R}

— inf {(él,gh} + g%’“) +E [énlz%)éue (z — (1, 91) + 1751“))] U1 € ?1,17?“’ € R} —r
= p(z)—r

for each r € R and z € L,(2, F,P). Finiteness and convexity of p follow from Theorem 2.4. 0

The assumptions of Proposition 2.6 guarantee even a stronger type of monotonicity than imposed
earlier for risk measures. Such stronger monotonicity properties are based on so-called integral sto-
chastic orders or stochastic dominance rules (see [13] for a recent survey). For real random variables
z and Z in L1(Q, F,P), stochastic dominance rules are defined by classes F of measurable real-valued
functions on R. A stochastic dominance rule is defined by

z=2rz it E[f(2)] <E[f(2)]

for each f € F such that the expectations exist. Important special cases are the classes F,,q and
Fnde of nondecreasing and of nondecreasing concave functions, respectively. In these cases the rules
are also called first order stochastic dominance and second order stochastic dominance and denoted
by <psp and =<ggp, respectively. Clearly, z <pgp Z implies z <gsp Z. The relation z <pgp Z is
equivalent to P(z > t) < P(Z > t) for each t € R. Furthermore, z <ggp Z is equivalent to the condition
E[min{z,t}] < E[min{Z,¢}] for each ¢t € R (cf. [13, Section 8]).

In [15, 16] the consistency of risk measures p with certain stochastic dominance rules <z is studied.
In particular, it is said that p is consistent with second order stochastic dominance if z <ggp Z implies
p(2) > p(2).

Proposition 2.7. Let p be a functional on L,(Q, F,P) of the form (2.1) with p € [1,00). Assume
that complete recourse and dual feasibility hold and that D, C R_. Then p is consistent with second
order stochastic dominance.

Proof. Due to Theorem 2.4 the representation (2.2) holds with u;,us € R_. Define for y; € Y; the
real-valued function g,, given by gy, (t) := (c1,y1) + maxe—1 2 u¢ (t — (w1, y1)) for ¢ € R. Note that g,,
is convex and, because of u1, up < 0, nonincreasing. Let z <ggp Z. Then E [—g,, (2)] < E[—g,, (Z)] for
all y1 € Y1 and, thus, p(z) = infy, ey, E[gy, ()] > infy, ev; E gy, (2)] = p(2).

Remark 2.8. For a risk measure p the acceptance set A, is given by A, = {z € Z: p(z) < 0} [2, 10].
Let the conditions of the Theorem 2.4 be satisfied. Then, since p is a convex functional, A, is a
convex set. If, in addition, Y7 is a cone then A, is a convex cone. Regarding (2.5) it is obvious that
Ay ={2 € Lp(Q,F,P)[VA€ A, : E[A2] >0} = —Aj in this case. Of course, if Q = {w1,...,ws}, then
A, is a polyhedron in RS, thus A, = —A7} is a polyhedral cone.

Example 2.9. We consider the Conditional- or Average- Value-at-Risk at level a (CVaR, or AVaR,)
defined by

CVaRa(z) =~ /Oa VaR,(2)dy = inf {7’ +2E [(r+2)7] } ,

where VaR,(z) := inf {r e R: P(z+r < 0) < a} is the Value-at-Risk at level a € (0,1) (see [10,

Section 4.4] and [24]) and ¢~ = max {0, —a} denotes the negative part of a real number a. Note that
. 1 - . 1 W] v1 ER, y2 €Ry xRy,

2. f —E = inf —E

S | R CRE R | K Sttt

thus, CVaR,, is of the form (2.1) by setting k1 = 1, ks =2, w1 = —1,¢1 =1, ¢ = (é,o), wy = (—1,1),
Y1 = R and Yo = R%, and, hence, it is polyhedral. Moreover, (w2,Y2) = R, D, = {—1} and
D, = [-1,0] € R_, thus the dual representation (2.4) holds and CVaR, is consistent with second
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order stochastic dominance. The representation (2.2) holds with u; = —é and ug = 0. The condition
—(c2 + Awz) € Y5 in the dual representation (2.4) is equivalent to A € [0,1]. Hence, (2.4) becomes

(2.7) CVaRy(z) =sup{-E[Az] : A € Ly (L, F,P), A€ [0,1] ,E[N] =1}

for each z € L,(Q, F,P), 1 < p < +oo. Corollary 2.5 applies, thus, CVaR is a coherent risk measure,
too.

Example 2.10. Consider the expected regret or expected loss defined by

p(z) =E[(z=)"]

with some fixed threshold v € R. This functional, too, can be written in the the form (2.1) with k; = 1,
ka=2, w1 =1,¢1=0,co =(1,0), wy = (—1,1), Y1 = {7}, Y2 = Ry x R;. Note that, actually, Y7 is
not a cone here. Further, (ws,Y2) =R, D, # 0 and D, = [—1,0] C R_, thus the dual representations
(2.2) and (2.3) hold and p is consistent with second order stochastic dominance. However, p is not
translation invariant, i.e. not a risk measure in the sense of [9, 10]. Nevertheless, it is used as a risk
measure in some applications.

3. MuLTIPERIOD RISK

When random variables z1, ..., zp with z; € L,(Q, F,P), p > 1, are considered and the available
information is revealed with the passing of time, it may become necessary to use multiperiod risk
measures (see [1, 19]). We assume that a filtration of o-fields F, ¢t = 1,...,T, is given, i.e., F; C
Fir1 C F, and that Fy = {0,Q}, i.e., that z; is always deterministic. We will now generalize the
concepts of the previous section to this multiperiod framework.

Remark 3.1. When dealing with multiperiod risk measures one has to determine whether the random
variables represent (potentially financial) incomes or payments as, e.g., in [19, 34, 39], or if they have
to be understood in a cumulative sense, i.e., as a wealth or value process as in [2, 3]. Of course, the
one can easily be transformed into the other: If Z; is an income, then one can consider accumulation
2z = Z1+ ...+ Zy, if z; is an accumulated value, then the income is given by Z; = z; — z;_1. Throughout
this paper we consider z = (21, ..., 27) to be a value process.

We give the definition of coherence in the multiperiod case as introduced? in [2, 3].

Definition 3.2. A functional p on x7_;L,(Q, F;,P) is called multiperiod coherent risk measure if:
(i) If 2, <z as., t=1,..,T, then p(z21,...,20) > p(21, ..., Zr) (monotonicity)

(ii) for each r € R we have p(z1 + 7, ...,z + 1) = p(2) — r (translation invariance)

(iil) p(pzr+ (1 —p) 21, ey pzr+ (1 —p)27) < pp(z1, ..oy 27) + (1 — p)p(21, ..., Z1) for p € [0, 1] (convexity)
(iv) for p > 0 we have p(uz1, ..., pzr) = pp(z1, ..., 27) (positive homogeneity).

Remark 3.3. How translation invariance is to be defined in the multiperiod case is still subject to
discussion in the ongoing research in financial mathematics. Different suggestions were made, e.g., in
[34, 22, 39] such that nonrandom amounts can be shifted in time by means of credits. However, from
the viewpoint of capital requirement and optimization it appears reasonable to keep with [2, 3].

Example 3.4. In [2], Example 3, it was shown that

ple) =~ | i =

1<t<T
is a multiperiod coherent risk measure on x7_; Lo (Q, F;,P).
2In [2, 3] the definition is slightly different since another framework was considered: The first time stage (i.e. the

deterministic stage) was denoted by index 0. Here, the formulation is adapted to our framework with index 1 for the
deterministic time stage (i.e., 71 = {0, Q}).
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Remark 3.5. Let p; be (one-period) coherent risk measures on L,(Q, F;,P), t = 1,...,T. Let further
0 #SC{1,..,T}. Then

p(zlv ey ZT) = I?Gag(pt(zt)

is multiperiod coherent. Let further yu, € Ry, ¢t =1,...,7 and Zthl e = 1. Then also

T
p(215 s 27) = Z,utpt(zt)
t=1
is a multiperiod coherent risk measure. This can easily be verified by checking the four properties of
Definition 3.2.

As shown in [2, 3], the representation result for (one-period) risk measures (Theorem 2.1) can be
carried over to the multiperiod case:

Theorem 3.6. Let p: xI L,(Q,F;,P) — R and set
Dri={f e xILLi(QFP): fi20(t=1,....T), SILE[f] = 1}.
Assume that p satisfies the following continuity property:
ztn T 210 as.(t=1,...,T) = nliﬁn;op(zlyn, ey 20m) = P(21,05 -es 2T,0)-
Then, the following equivalence holds:
p multiperiod coherent risk measure <= 3P, C Dr convex: p(z) = sup{ - ZtT:lIE [frzt] s f € 7),)}

Proof. We follow the ideas of [2, 3], but in reverse order. Obviously, p is coherent if and only if
the corresponding one-period risk measure p’ on L,(QY, F',P’) is coherent in the usual sense, where
(U, F',P') and p’ are defined as follows:

Q=0x{1,..,T}
! T

Fo={UL (A x () A € i}

P (U (Acx {8)) = % 01, P(A)

p'(z") = p(2(2"))
and z(z') is defined by z(z')(w) := (' (w, 1), 2’ (w, 2), ..., 2’ (w, T)). Theorem 2.1 says that there exists a
convex set of density functions P, C D such that, for 2 € X1 L,(Q, F:, P),

p(z) = p'(z'(2)) = sup {-E'[f'2"] : f' € P}

with 2/(z)(w,t) := 2z (w). Note that also the conditions from Definition 3.2 are equivalent to those
from Theorem 2.1 for (€', 7', ') here. By setting

P, = {f _ (%f’(.,l),%f’(.,Q),...,%f’(.,T)) L p e7>,g}

the assertion follows. O

Now we are ready to extend Definition 2.2 to the multiperiod case.

Definition 3.7. A multiperiod risk measure p on x7_; L,(Q, 73, P) with p € [1, 00] is called multiperiod
polyhedral if there are k; € N, ¢; € R¥, t = 1,.... T, wyy € RF—, t =1,.... T, 7=0,...,t — 1, a
polyhedral set Y; C R¥', and polyhedral cones Y; C R¥*, t = 2,..., T, such that

T yp € LP(Q,}},P;R’“),
(3.1) p(z)=inf ¢ E Z<Ct’yt>1 Yt €1Y}, (t=1,...,7)
t=1 Zj—_:o<wt,'rvyt7'r> = Zt
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Remark 3.8. The reader might wonder why, for 7' = 2, this definition does not precisely coincide with
the Definition 2.2 for the one-period case. This is due to the fact that, in the literature, the risk of
a process 21, ..., zr is allowed to depend also on z; although this value is constant, i.e., deterministic
(see |2, 3, 22]), whereas one-period risk depends on one scalar random variable only. Nevertheless, the
one-period case can be regarded as a special case of Definition 3.7 because for 7' = 2 the parameters
Y1, 1 and wy o can easily be set such that z; does not contribute to the optimal value of (3.1).

Theorem 3.9. Let p be a functional of the form (8.1) on x_ L,(Q,F;,P). Assume
(i) complete recourse: (wo,Y:) =R (t=1,..,T),
(%) dual feasibility: {u eRT: — (ct + Zfzt uuwu,l,_t) eyYy (t=1, ...,T)} £ 0.

Then p is Lipschitz continuous on x7_, L,(2, F;,P) and the following dual representation holds when-
ever p € (1,00) and % + ﬁ =1:

(3.2)
—E [0 Aoz At(e Ly (. FP) (1=1,... ,?7
p(z) = sup , T (o + T BN F wyt) €Yy
+ yluelfl./l <Cl + Zy:lE [)\1/] wl/7u—1’ y1> (t - 2’ . T)

If, in addition, Y1 is a polyhedral cone, (3.2) simplifies to
T )\teLp’(Qa]:taP)a
Z Atz

t=1

t=1,..,7T) ;.
(et ST BN R w) e vy T >}

Proof. a) We first prove the Lipschitz continuity of p. Let z,Z € x7_,L,(Q,F;,P) and € > 0. Due
to complete recourse and dual feasibility p(Z) and p(Z) are finite (see part b) of the proof) and there
exists § € X1 L,(Q, F, P;R*) such that g, € V; and Zi;%(mm Jt—ry =zt forallt =1,..,T,ie., 7
is feasible, and f(7) < p(Z) + ¢, i.e., ¥ is e-optimal. Here, f is defined by

i xthle (Q,]:t,P;Rkt) —R, f(y):=E {ZtT:l@t,yt)} .

Next we show that there exist a constant Ly > 0 and an element § € x}_; L,(, 7, P; R¥*) such that
17 — Gllzx < Lar |2 — Z|lgr and that §; € Y; and S0 (wyr, §s—r) = 2 for t = 1,..., T.

To prove this we first note that, for each t = 1,...,T, the graph of the set-valued mapping M; from R
to Rt given by

(3.3) p(z) = sup {—IE

Mi(u) :=={y: € Yy : (we0,y) =u} (u€R)

is polyhedral. Hence, M; is Lipschitz continuous with respect to the Hausdorff distance dy on the
closed subsets of R*t (see [38], [27, Example 9.35]), i.e., there exist constants Ly, > 0 such that

yeM,(u) yEM, ()

du (My(u), My () = max{ sup d(y, My(q)), sup d(vat(ﬁ))} < L, | —1q

holds for all 4 and @ in R. Thus, for all 4,4 € R and § € M;(a), we have that

(3.4) Ly, lu—al > sup d(y,Mi(a)) >d(y, M(d)) = min_|lg—y|.
yeM, () yeM, (@)

We prove the existence of § by verifying the following assertion by induction with respect to t:

Vt e {1, ,T} dLy > 03y € LP(Q,ft,P;Rkt) :

L. ”gt - gt” S Lt H(Zlv "'72t> - (51; agt)” P P— a.8.,

~ —1 ~ ~

2.9t €Yy, z::0<wt,r, Jt—r) = 2, P—as..
t =1: Set u := zy, & := Z;, then, due to (34), d9; € Ml(ﬂ) : ||y1 — :Ih” < Ly, |’l_1, — ﬂ| = Ly, |21 — §1|
t—1~t: Weset a:= 2z — Zi;ll (We,ry Yp—r)y U= Z — . (Wi,r, Ji—r) and consider the following
set-valued mappings from ) to R** given by

w— M; (u(w and w min Ue(w) — vyl
(@) min () =l
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Both are measurable with respect to the o-field F; due to the induction hypothesis and well known
measurability results for set-valued mappings (e.g., [27, Theorem 14.36]). Hence, due to [27, Theorem
14.37] there exists a measurable selection §; of the second mapping. From (3.4) and the induction
hypothesis we obtain the estimate

A
b‘
S
E
&

\
<
£

19¢(w) = Ge (W)l

|
h
2

2(w) = 21(w) = T2 e, e (@) = Gi-r ()]
Lag, (J2w) = 2@)] + £024 e | 15— (@) = Ge—r ()]
I

71(0-)); ceey Zt(w)) - (21(&}), ) 215((“}))”

with some constant L;. Moreover, 7:(.) belongs to L, since g, Z and Z do so. Thus, the induction step
is proved and there exists a constant L,; (only depending on T and L, ..., Lr) such that

15(w) = §(@)I| < Lar [|2(w) = 2(W)]| - (w € Q).

Of course, the objective f is Lipschitz continuous, say, with modulus Ly > 0. Hence, we obtain

p(Z) = f@) +e< f@) = f@) +e<|f(®) = @) +e€
LE[g = llpx] + € < Ly (LME[[[Z = Z||gr]) + ¢

Ly (L ||z - 5||X;:1L1(Q,ft,ﬁ’)) te

IN N

p(2) = p(2)

INIA

Since € was chosen arbitrarily, we have p(2) — p(2) < LyLy||Z— Z||. Changing the role of z and
Z leads to |p(2) — p(2)| < LyLa ||z — 2|, i-e., Lipschitz continuity holds on x7_,L;(Q,F;,P) with
modulus L = L¢Lys. In turn, this implies Lipschitz continuity on x7_; L, (2, 7, P).

b) Now we prove the dual representation (3.3) of p. We make use of the results of [8] and [23], see
also [26]. The stochastic program (3.1) is of the form? (SP) in [8, Section 3], i.e.,

min{<y,c+>|y€KE, Ty—bEKF}

with the spaces E = L,(Q, F,B;RX), K := Y1 ki, F = Ly(Q,F,P;RT), dual spaces Et =
Ly(Q,F,P;RE), Ft =L, (Q,F,P;RT), cones Qg ={y e E:yr € Yy as. (t=1,..,T)}, Qr = {0} C
F, KE = PEEQQE = PEQE and KF = Pglﬂp = {’U e F: ]E[Ut|ft] = O(t: 1,...,T)}. Here, PE
is the projection given by Pry = (E [y1|F1],E [y2|F2], ..., Eyr|Fr]) and Pr, Pg+, Ppy are defined
analogously, ¢t = (c},...,cy)" € ET (constant on ), b = (z1,...,2r) € Fand T : E — F is the
mapping defined by (Tu)(-) = A (u(-)) with the matrix

w’LO 0 0 0
/ /

wh Wy o 0 0
_ / TxK
A= w3 o (O w3 o 0 eR .

0

! A A A

Wpr_1 Wprr-2 Wrr_3 Wr o

Note that A is a lower block triangular matrix that is constant on 2. The corresponding dual program
(SP*) in [§] is of the form

max{<b,v+> ‘c"’ — Tt e K;E,v"’ S ng } .
Further, it is shown in [8] that the dual cones are of the form K} = Pr+Qf = Pr+ FY N QL and
Kf = (Ppe) ' Qh = {yt € BT : (B [y |A],....E[yf|Fr]) € Qf}-
Translated back into our notation this becomes (setting A = —v™)

T ct+ANe Kf o
maX{E {thlktzt} A €ELy(QFP), t=1,....T [ p(2).

3We use the superscript + here to indicate the dual objects, i.e., dual space, vectors in dual spaces, adjoint operator,
dual cone, whereas the superscript * denotes the polar cone and A’, w’ are the transpose of matrix A and vector w,
respectively. Note that for a cone C it holds that CT = —C* since C* = {cT : (¢,cT) > 0Vc e C}.
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This is exactly (3.3) since A and ¢ are constant on Q (thus (TTv")(w) = A’vt(w)) and it holds that
Qf ={yt e Et:—yf €Y P—as}.

It remains to prove that (3.1) and (3.3) have the same optimal values, i.e., strong duality, p(z) = p(z).
To this end, note that (3.3) is the (concave) dual in ET of the convex program (3.1) in the reflexive
real Banach space FE. Complete recourse, dual feasibility, and Lemma 1 in [23] ensure that

—00 < p(2) < p(z) < 400

(weak duality). Due to Theorem 7 in [23], normality implies strong duality. Normality means (cf. [23])
that for the perturbed problem given by

min {{(y,c*) |y € Kp, Ty—b—a € Kr } = p(z + Pga)

with perturbation a € F it holds that liminf,_o p (z + Pra) = p(z). The latter condition, however,
is satisfied since p is even Lipschitz continuous. Thus it holds indeed 5(z) = p(z).

¢) Finally, we briefly sketch the extension of the proof for the dual representation (3.2), i.e., for the
case that Y7 C R*! is not a cone but a polyhedral set. Let Y; be given by a matrix D € R™**1 and
a vector a € R™ with some m € N, i.e., Y] = {y1 € RF : Dy, > a}. The condition y; € Y7 has to be
integrated into the condition Ty — b € K in part b) of the proof. Therefore, the following definitions
have to replace the earlier ones:

F=L(0F PR, Qp={ycE:y1 eRM, y, €V, as. (t=2,...T)}, Qp =R x {0}
and the matrix A and and the vector b have to be replaced by

. (DO~~-O

A= A )ER(W+T)XK, and b:= ( Z) with b= (z1,...,27),

respectively. This leads to m additional (scalar, non-random) dual variables vy, ..., v, and the dual
program reads

T UERT, )\tGLp/(Q,j:t,]P)) (t:17,T),
Z )\tzt‘| —la+ 23:1 E[A/] wvyufl) +D'v =0,
=1 (e + 3T ENF ww_t) ey (t=2,..,T)

sup (a,v) — E

Indeed, this is equivalent to (3.2) since LP duality lead to

ingf <cl + ZZZIIE A wyp—1, y1> =min{(h,y1): Dy1 < a} = max{(a,v> :D'v="h,v € RT} ,
Y1€EY1

where h :=c¢; + Zle E [A,]wy,,—1. This completes the proof. O

Corollary 3.10. Let p be a functional on x}_, L, (€2, F;,P) of the form (3.1) with Y; being a polyhedral
cone. Let the conditions of Theorem 3.9 be satisfied (complete recourse, dual feasibility) and assume

(35) A, := {A e xT, L, (Q, Fi,P) ‘f (ct + 7 E[NIF] wU,H) cYy (t=1, ...,T)} C Dy
Then p is a multiperiod coherent risk measure.

Proof. As for Corollary 2.5, only the continuity condition from Theorem 3.6 needs to be verified here,
since P, := A, does the job. This continuity condition, however, is again a consequence of the Lipschitz
continuity of p and the monotone convergence theorem. O

Example 3.11. A straightforward approach to incorporate risk in terms of the Conditional-Value-at-
Risk at all time stages consists in considering a weighted sum

p(z) = Z CVaR,, (zt)

t=2
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with some weights v, > 0 (e.g. v+ = 7= ) and some confidence levels as, a3, ..., ar € (0,1). Note that

p(z) = ZtT:Q Ve inf, er {Tt + a%E {(zt + Tt)i} }

= inf(,, . prp)erT1 {Zthg Vt (Tt + Q%E |:(Zt + Tt)_})}

ygl) — y§2) =zi+r (t=2,...,7),

T

' 1 .

inf Z% (Tt + Q—E [yt(Q)D yt(l), yt@) > 0 Fp-measurable (t = 2,...,T),
t=2 t (7“2,...,7“7“) GRT_l

ie., pp is of the form (3.1) with k&y = T, kxt = 2 (t = 2,...,T), c1 = (0,72, ...,y7), ¢t = (0,2—’;)
(t=2..T), wo=e1, wpo=1-1)t=2..T), we1=—e (t=2,...T), w, =0 (=
1ont—2,t=3,..,7), Y1 =RT)Y; =R, xR, (t =2,...,T) (with e; denoting the t-th standard basis
vector in RT).

Thus, the risk measure p defined in this way is multiperiod polyhedral. Due to Remark 3.5 it is
multiperiod coherent, too, if Zthg ~¢ = 1. This can also be seen by means of Corollary 3.10. The set

of feasible multipliers is given here by

A =0,
(3.6) Apy = ANEXLy(QF,P)| 0< N < 2 (t=2,..,T),

E[A] =7
and, of course, A, C Dr. Moreover, the conditions from Theorem 3.9 are satisfied: Complete recourse
and dual feasibility (take u = (0,72, ...,vr)’)-

Next we present more involved examples, which extend the Conditional-Value-at-Risk to the multi-
period situation. The characteristic thing about C'VaR is that, in the dual representation, the density
functions resp. Lagrangian multipliers are bounded pointwise from above (cf. Example 2.9). This idea
will be found somehow in all of the following examples.

Example 3.12. In this example, we define a multiperiod coherent risk measure where not every
timestep contributes with a fixed weight. When looking at the dual representation (3.2) and at condi-
tion (3.5), it becomes obvious that each of the dual constraints c¢; + Zfzt E M\ |Fe]wy,p—¢ € =Y has
toimply Ay > Ofor¢t =1,...,7. A natural candidate for implying 2321 E[A\,] = 11is the corresponding
constraint for ¢ = 1, which reads c; + 23:1 EN\Jwy,,—1 € =Y7.

Now, setting k: =2 (t =1,...,T), ¢1 = (0,1), ¢t = (0, ;) with some 3; > 0 (¢t = 2,...,T) such that
S B>l wo=(1,-1)(t=1,...T), w1 = (0,—1) (t=2,...,T) and wyr =0 (7 = 1,...,t — 2,
t=3,.,7), 1 =RxR, Y; =Ry xR} (t=2,...,T) leads to

(e +TIENwa) €Yy = =0 and LI EN] =1,
— (e + SILENNF wi) €Y7 = 0<A and A< (E=2..,T)
since Y7* = {0} x {0} and Y =R_ xR_ (t =2,...,T). Hence, the dual set A,, is of the form

A =0,
(3.7) Apy = NE XTI Ly(Q,F,P)| 0 ST/\t <B (t=2,..,T),
Zt:l Ep\t] =1

Note that complete recourse and dual feasibility hold. Thus, Corollary 3.10 implies that the functional

g € Lp(Q, Fr, P;R2) (t=1,...,7T),

y1 ERXR, yr €eRy xRy (t=2,...,T),
a =",

a+yd =y —y? (t=2,..T)

T
po(z) = inf $ P + 3" B o}
t=2

or simply pa(z) = inf,cr {r + Zthz GE {(zt +7“)7}} is a multiperiod polyhedral and coherent risk

measure for 1 < p < co. Variants of this risk measure result from other choices of w; ,, 7=2,...,t -2,
t=2,...,T.
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The remaining examples present multiperiod polyhedral coherent risk measures that depend on the
filtration {F;}~ ;, i.e., on the information flow over time.

Example 3.13. To incorporate the information structure we adapt the previous example in such a
manner that successive timesteps are associated. Hence, we choose everything as before, only the
assignment wy » =0 (7 =1,...,t — 2, ¢t = 3,...,T) has to be replaced by w1 = (0,-1) (t =2,...,T),
wer =0(r=2,...,t—2,t=4,..,T). In addition, we set ¢; = (0,d;) with 6; > 0 for t = 2,...,T.
Hence, the dual set A, is of the form
M =0, BN =1,
(38) APS = )\E Xt 1 (Q ‘7:75’ ) OS Ata At%>]E[>\t+1|‘f't] Sét (t:2aaT71)a
0 < Ap <ér.
Again, the complete recourse condition is satisfied and dual feasibility holds if the parameters J; are
chosen sufficiently large. Altogether, Corollary 3.10 implies that the functional
yr € Lpy(Q, F,;R?) (t=1,...,T)
nERXR, yy e Ry xRy (t=2,...,T),

T
@) () o
p3(z) ==inf ;" + > 6E |y 21 =91
20 [t } 2)_ y<2>

2 2 1 ’ 2 T
is a multzpef 10d polyhed1 al and coherent risk measure.

Example 3.14. In this approach, the concatenation of the timesteps is even stronger than in the
previous example. We set ks = 2 (t = 1,...,T), ¢1 = (0, ﬁ), ¢t = (B,0) (t = 2,...,T) with some
numbers ﬁ < 62 S 53 S S ﬂTa wLo = (71,0), ww = (7171) (t = 2,...,T), wt71 = (0,71)
(t=2,...T), ws, =0for7>1,V1 =RxR, Y, =Ry xR (t=2,...,T—1), Y = R, x R.

The dual constraints — (ct + ZZ:,JE (A | F] wl,,,,,t) € Y/ imply that A has to be a martingale with
respect to the filtration (F;)_;. This implies E [A\2] = ... = E[Ar] and A; > 0 since A\ > 0. Together
with (3.5) we obtain:

)\1 = 05

0< N <B(t=2,. T)

A =E [)\t+1|}}] (t=2,...T—1),

E[As] = ... =E[Ar] =

(3.9) Ay =S A€ xE Ly (Q, i, P)

T 1

Complete recourse is satisfied and dual feasibility holds since the vector u € R” with v; = 0 and
uy = 7= for t = 2,...,T defines a (constant) element of A,,. Hence, Corollary 3.10 applies and the
resulting functional

gt € Ly(Q, Fy, P;R?) (t=1,..,T),
1 1 ERXR, yr e Ry xRy,
pa(z) := inf —y?) + Zﬂ E [ (1)} Y € Ry (T)R (t=2,..,T-1),
1= "Y1 >
2t = 7%(1) + yt@) yt( )1 t=2,..,T)
is a multiperiod coherent risk measure (and, due to its definition, multiperiod polyhedral).
Comparing (3.9) for §; = = 1) with the dual representation (2.7) of the Conditional-Value-at-Risk

it turns out that the multlperlod risk measure p, define in this way is a kind of canonical extension of
the Conditional-Value-at-Risk in terms of [2, Sections 4 and 5] and of [22]*.

The next example is motivated from the viewpoint of the value of information (cf. [18, 19]):

4The framework in these papers assumes that the multiperiod risk measure is determined only by a set of (scalar)
density functions P, C L1(Q, F,P) rather than C xI_,L1(Q, F;,P). Then, the risk p(z) is given by expressions like
sup{—% Z;l E[fzt] : f € Pp} or sup{—E[fz;] : f € P,, 7 stopping time}. Indeed, A,, is nothing else but the set of
densities for the Conditional-Value-at-Risk (2.7), i.e., all density functions bounded by é
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Example 3.15. In [19], the following multiperiod risk measure was suggested. Given some constants
0 <d<bpq <..<by<b and b1 < ¢ for t = 2,...,T this risk measure is defined® on
Xi—1Lp(Q, F1, P) by

T-1
E b1 A; + Z (b Ay — M) + dKp — QTMT‘|

t=2
ps(Z) = —supq A, € L,(Q,Fi,P) (t=1,..,T),
Ki=[Ki1+Z— A1) (t=2,..,T),
M, =K1+ 2y — Al (t=2,...T)

with K3 := 0. However, in [19] Z = (Z3, ..., Z7) is understood as income process with Z; = 0, thus
this definition does not fit in our framework.

Therefore, we rewrite this definition taking the value processes z = (z1,...,27) with 21 = Z; = 0,
2 = 2321 Zry 1€, Zy = zz — z—q for t > 2. This reformulation leads to the representation (3.1)
with ks =3 (t =1,.,7), Vi = RxRx {0}, ¥; = Rx Ry xRy (t = 2,....7), yr = (A, My, K,),
weo = (0,-1,1) (t = 1,..,T), wrr = (1,—1,0) (r = 1,...,t —2,¢t = 3,..,T), w41 = (1,0,0)
t=2,...,T),¢c1 =(=b1,0,0), ¢; = (=bt,¢:,0) (t=2,...,T —1), cr = (0, g7, —d).

To understand this reformulation note that w; o = (0, —1,1) implies M; = —z; = 0 and that for
t = 2,...,T the recursion Ky — M; = K;_1 + Z; — A;_1 with Ky > 0 and M; > 0 must hold. This
recursion can be transformed into a recursion of the type of the definition of multiperiod polyhedrality:

a=K 4+ YA - M, (t=2,..,T)

T=

with K7 = 0. Thus, this risk measure fits into the framework of multiperiod polyhedral risk measures.
Furthermore, it is multiperiod coherent if by = 1. This can be shown by Corollary 3.10. Note that

~ (e + ZILE NS w1) €Y7 = SILEN] = by and A =0

and
— (e + S EDNF w) €Y (t=2,.,T) =
d<A<qr, 0S X <q by, S0 BRI =b (t=2,..,T 1),
thus
A =0,
OS At S qt*bt (t:2,,T*1),
ps = AN E X{ Ly (Q,F, P)| d <M < qr,
E [MAr|Fr-1] = br-1,
E[M|Fio1]) =bio1 — by, (t=2,...,T—1)
Further, complete recourse is obviously satisfied and dual feasibility holds since the vector v € RT
with vy = 0 and up = by—; and uy = by — b, for t = 2,..., T — 1 defines a (constant) element of A .
Furthermore, Zthl E [A] = b1 for X € A, thus the inclusion A,; C Dr holds indeed if b; = 1.
An interesting specific case appears for d =0, ¢¢ = b;—1 (t =1,...,T) and with o € (0, 1), where
=bi_1 — b (t=2,...7T) and 0 = by < byp_1 < ... <by <b; =1. Then we obtain

A

1
(T—1)ov
A =0,
Apy =re XTI Ly(Q,F, P)| 0< N < 7=y 1(lt =2,...,7T),
E[A¢|Fi-1] = T=Da; (t=2,..,T)

and the risk measure p5 on x/_; L,(Q, F;, P) takes the form

(3.10) ps(z) =E [ﬁ ST, mf{uH + L (o wr) | weer € Ly(Q, Fiy, P)H .

5In [19], ps is called a (negative) utility measure rather than a risk measure. Moreover, the first time stage (i.e., the
deterministic stage) is denoted by index O there. Here, the formulation is adapted to our framework with index 1 for
the deterministic time stage (i.e., 71 = {0,Q}). In addition, the notations c¢; and a; were replaced by the definitions
bt = Ct41 and At = Q41
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The t-th summand can be interpreted as the Conditional-Value-at-Risk of z; conditioned with respect
to the o-field F;_;. Clearly, (3.10) boils down to the one-period CVaR (2.6) for T = 2.

Remark 3.16. Of course, it is interesting to compare these examples. To this end, it is useful to
consider the dual representations, i.e., the Lagrange multiplier sets A,, (j = 1,...,4). Hence, regarding
formulas (3.7), (3.8), and (3.9), it is obvious that for 6; = 3; it holds that A,, C A,, D A, thus, since

(3.11) p;(z) = sup {fEtT:l]E ezt A € Ap].} :

the relation py < po > ps is valid. On the other hand, comparing ps and p4 for the case 6; = 203;
leads to A,, C A,,, thus ps < p3. Hence, ps is more cautious than p, in this case. Moreover, if we set
Y = 7 and 3 = @%%’ formula (3.6) shows A,, C A, C A,,, hence, ps < p1 < p2. Thus, ps is
the most cautious or most pessimistic of these risk measures.

More precisely: For a fixed random variable z let A = M\ (z) € A,, be a maximizer for the dual
representations (3.11) of p;, respectively. Then, roughly speaking, A’ is big where z is small in compli-
ance with the respective restrictions. For j =1 and j = 4, the weighting of the time steps is fixed in
advance since E[\]] is fixed. For j = 2 the weighting of the time steps is variable, hence, the available
probability mass of A? is concentrated at time steps at which z is low. Thus, p» is a kind of worst time
step risk measure. This might be desirable or not, depending on the application.

Comparing p; with py, one sees that in the first case \} is big where 2; is small, independent of
the other time steps. In the second case, A? is completely determined by A} since A} = E [A}|F]
because of the martingale property. This means that the maximization (3.11) takes all time steps
into account simultaneously, i.e., the maximization occurs along the paths of the treelike information
structure given by the filtration (F;)I_,. This latter approach seems to be more efficient in case the
risk of paths is of interest. Then, p; may be more pessimistic than necessary. Furthermore, it does not
incorporate the information structure of the problem. On the other hand, the martingale property of
p4 Sseems very restrictive.

Comparing p3 and p4 for the case d; = 23; leads to A,, € A,,, thus ps < p3. Hence, p3 is more
cautious than p, in this case. Regarding the dual sets for ps, one obtains A,; C A, for v = by—1 — b,
and oy = (by—1 — b)/(g — bs), and A,; C A,y for 6, = ¢ — byy1. Hence, p1 > ps < ps, Le., p5 is less
cautious for this choice of the coefficients.

P37

However, cautiousness is not necessarily a desirable property, because in applications one usually
has to pay a price for being cautious. Which risk measure to take depends highly on the intention of
the application. It seems that p3 may be a good compromise, since the information structure is taken
into account and there is no fixed weighting of the time steps.

4. RISK MEASURES IN STOCHASTIC PROGRAMS

In this section we study the effect of replacing expectation-based objectives of stochastic program-
ming problems by polyhedral risk measures. In particular, we are interested in consequences for
structural and stability properties of the resulting models. We assume that randomness occurs as a
(possibly multivariate) stochastic data process (§t)tT:1 and set F; = o(&1,..,&%), t = 1,...,T. We
consider multistage stochastic programs of the form

Tt € Xt,
T J—
(41) min < E lz<bt(§t), zt>] g:((g‘:))xt_g’dt(gt)’ (t = 1, ceny T)

S A (€)Te—r = h(&)

with closed sets X; having the property that their convex hull is polyhedral, cost coefficients b;(-),
right-hand sides d;(-) and h(-), and matrices A .(-), 7 = 0,...,t — 1, and By(-) all having suitable
dimensions and possibly depending affine linearly on &; for ¢ = 1,...,7. The constraints consist of four
groups, where the first 2; € X; models simple fixed constraints, the second Hy(z) := z —E[z|F] =0
ensures the non-anticipativity of the decisions x;, and the third and fourth are the coupling and the

dynamic constraints, respectively. By X'(£) we denote the set of decisions satisfying all constraints of
(4.1).



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING* 15

When replacing the expectation of the stochastic costs ZtT:l(bt (&), z+) by some polyhedral multi-
period risk measure p applied to the random vector (— 20 _, (b, (&), 2,))E, of negative intermediate
costs, we arrive at the following risk averse alternative to problem (4.1):

(42)  min{p (=Or(&0) @), ~(ba(€),21) = (ba(&)sw2)s o, — LT (br () 20) )| @ € X (O]
The polyhedral risk measure p is defined by the minimization problem

Hi(y:) =0, y; € Y3, (t=1 T)}

z) =inf<E [ T (e , } 7
pl2) { Zt*1< o 4) i:t<wt,nyt7'r> =zt
This gives rise to the question whether (4.2) is equivalent to the optimization model
T x € X(§),
(4.3) min { E [Z(ct,yt>‘| Hi(y) =0, gy, €Yy (t=1,...,T),
t=1 Zj—;%(wt,‘ra Y—r) + Efr:l<b7(§‘r)a zr)=0(@=1,....T)

where the minimization with respect to the original decision = and the variable y defining p is carried
out simultaneously. Of course, the answer is positive.

Proposition 4.1. Minimizing (4.2) with respect to x is equivalent to minimizing (4.3) with respect
to all pairs (x,y) in the following sense: The optimal values of (4.2) and (4.3) coincide and a pair
(x*,y*) is a solution of (4.8) iff «* solves (4.2) and y* is a solution of the minimization problem

defining p ((— S (b (&), $:>)T

t=1

Proof. The minimization with respect to all feasible pairs (z,y) of (4.3) can be carried out by mini-
T

mizing with respect to y, thus arriving at p (( Zi:1<b7 (&), zT>) 1), and then by minimizing the
t=

latter residual with respect to x € X(§). Hence, the optimal values coincide and, if the pair (z*,y*)
solves (4.3), its first component z* is a solution of (4.2) and y* is a solution of the problem

. T Hi(y:) =0, y: € Y3, _
(4.4) min {]E [Zt:1<ctayt>:| tT;10<wt’T’yt_T> N Ei:1<b‘r(€r)7x:> —0 t=1,...,7) } ,

T

whose optimal value is just p ((— S (b, (&), xi)) 1). Conversely, if 2* is a solution of (4.2) and
t=

y* a solution of (4.4), the pair (z*,y*) has to be a solution of (4.3). O

Thus, minimizing a stochastic program with a polyhedral risk measure in the objective leads to a
“traditional” stochastic program with linear expectation-based objective and with additional variables
y and constraints, respectively. Both, the variables and the constraints are convenient for stochastic
programs since the variables are nicely constrained by polyhedral sets (no integer requirements). Thus,
if the original expectation-based stochastic program (4.1) has convenient properties, there is good
reason to expect that these properties are maintained when using a polyhedral risk measure for risk
aversion.

4.1. Stability of Stochastic Programs. Stability of solutions and optimal values of stochastic pro-
grams with respect to the perturbation of the underlying probability measure is an important issue
since in applications the true measure P is usually unknown and has to be approximated by some other
measure Q. Such an approximation may be gained by sampling techniques.

In [28] various stability results involving distances d(P, Q) of probability measures are developed for
different types of (mainly) expectation-based stochastic programs. It is shown there that certain ideal
probability metrics (see [20] for an exposition) may be associated with classes of stochastic programs.
Here, we briefly show that these stability results remain valid for important classes if the expectation is
replaced by a polyhedral risk measure. We restrict ourselves to the two-stage case here since stability
properties are best understood for such programs. In the context of distances of probability measures
it turns out to be useful to assume that Q@ = = C R™ and F = B(5).
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4.1.1. Linear two-stage programs. In [21, Theorem 3.3] and [28] it is shown that two-stage stochastic
programs with fixed recourse of the form

with X; and = being polyhedral sets, X5 a polyhedral cone and p(-), h(-), T(-) being affine linear
functions (of £ € Z), are known to be stable® with respect to the probability metric ¢, given by

C2(P,Q) = sup {|Ez [F] - Eq [F]| : F € BZ, |F(€) — F(¢')] < max{L, €]l |¢'ll} € - &'l ¥&.&' € =)

if the following three conditions hold:

(i) V(21,8) € X1 Xx E Jag € Xo : Wag = h(§) — T(§)x; (relatively complete recourse),
(i) V€€ 23z: W2+ p(§) € X5 (dual feasibility),

(iil) Ep {Hﬁ ||2} < oo (finite second moments).

If we exchange from (negative) expectation to a (one-period) polyhedral risk measure p = pp according
0 (2.1), we obtain the problem

which is equivalent to

Ws(€) = h(&) — T (&)1,

@0)  ming (eryn) + B f{ea,pa()]| 122507 WO = () = o).

Y1 €Y1, 42(§) € Y2
The latter program has almost the same structure as (4.5) with

i1<$1 ),ig(m , X1 = X1 x Y1, Xo = Xy X Yo,
Y1 Y2

0= ( ey zgg)j(f?(T—(bg') w )= ) a=( 5 )= 5,)

but now the recourse matrix W is random while the cost coefficient p is non-random.

Moreover, if we also impose complete recourse and dual feasibility for the polyhedral risk measure
p in the sense of Section 2, i.e., (i) (we,Y2) =R and (i) 0 # {u € R: uws — 2 € Y5} CR_, then we
can conclude both, relatively complete recourse and dual feasibility, for the risk aversive alternative
(4.6):
(i) Relatively complete recourse:
Let (z1,y1,8) € X1 x Y7 x E, then Juz5 € Xo : Wao = h(§) — T(§)z1 and y2 € Y can be chosen such

that (w2, y2) — (p(£), 22) = (b, x1) — (w1, 1), thus W(&)zy = h(§) — T(§)21-

(i) Dual feasibility:

Let £ € Z. Choose z such that W'z + p(¢) € X; and v € {u € R: tuws —cy € Y5} C R_, set
2 = (—wvz,v)’, then one obtains

!/

wierz+i=( O THO ) exg - 55,
VW — Co

by making use of the fact that —v € Ry and that X, is a cone.

Since the randomness enters only the last row of T (¢) except for the coefficient in the main diagonal,
the stability results from [30] for the random recourse situation with only lower diagonal randomness
apply. The model (4.6) with non-random costs, however, is again stable with respect to the same
metric (2 as for (4.5).

SWe do not give a precise definition of stability here, see [28] for this. Briefly, stability means that optimal values
and solution sets behave (quantitatively) continuous at the original measure P with respect to a distance d(PP, Q).



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING* 17

4.1.2. Linear mized-integer two-stage programs. In [28, Theorem 35|, it is shown that programs of the
form

@) min{ B (o) + ) + (rana(l| QO MO - e

with a closed Euclidean set X, a polyhedral set =, polyhedral cones X, and X, are known to be
stable with respect to the probability metric (i ,n, with some k € N if the following four conditions
are satisfied:

() V(21,€) € X1 X2 Jx9 € XoNZ™, Tg € Xo : Waa +Wizy = h(€) —T(£)z1 (rel. complete recourse),
(i) IzeR": W'z +pe X5 and W'z + p € X3 (dual feasibility),

(iii) Ep [||€]]] < oo (finite first moments),

(iv) W and W have rational coefficients only (rational recourse).

The metric (i pp, is given by

C1ph, (P, Q) = sup {|Ep [Fx5] — Eq [Fx5]: B € Bpn, (5), F € R, [F(§) — F(§)] < [|€ - §'[| V¢, & € B}

where By, () is the set of polyhedra contained in = with at most & faces and x denotes the charac-
teristic function, i.e., xp(§) =1 if £ € B and = 0 otherwise.

If we exchange from (negative) expectation to a polyhedral risk measure p = pp according to (2.1)
we obtain the problem

Wa(€) + Wz (€) = h(€) — T(E)a1,

(w2, 92(€)) — (p,22(€)) — (P, T2(€)) = (b,21) = (W, 1),
xr1 EXl,LL'Q(f)EXQﬁZm (f)EXQ,

Y1 €Y1, y2(§) € Yz

The latter program has the same structure as (4.7) with

~ xr A a .i' S kg ES gl
z1<yi ),ﬂﬂzxz,xz yi , X1 = X1 XYy, Xo = Xg, Xo = X5 XY,

= )= (0 ) mo= (T ) o= ("),
0 0

As in the previous paragraph, this combined program here satisfies relatively complete recourse and
dual feasibility if both, (4.7) and p, do so. To have all the conditions (i) to (iv) satisfied one has to
impose additionally that also ¢, § and wy have only rational coefficients. Then, however, the same
stability (with respect to the metric (i ,n,) as for the original program is guaranteed.

min < {c1,y1) + Ep [{c2,y2(.))]

4.2. Lagrangian Relaxation and Decomposition. We consider again the multistage stochastic
program (4.1) and its risk averse alternative (4.2), which, according to Proposition 4.1, is of the form

e € X, Yt €Ys,

T Hy(z¢) =0, He(y:) =0,
(48) min < E [Z(Ct, yt>‘| Bt(gt)xt S dt(gt)a (t = 1’ e T)
=1 Zt;:lo A (&)ai—r = h(&),

Zj—;lo(<wt,ra yt—7'> + <b7—+1(€7—+1),l‘7—+1>) =0

Obviously, (4.8) has the same structure as (4.1), but additionally with T" vector valued random variables
and T dynamic (equality) constraints. Thus, decomposition methods that work for (4.1) are likely to
work for (4.8), too. We exemplify this here by two important dual decomposition methods.

4.2.1. Scenario Decomposition. When solving problems like (4.1) or (4.8) one usually has to approx-
imate P or, equivalently, £ by a finite number of scenarios (more precisely: by a finite scenario tree).
This can be expressed by co > #{ =: S and one can assume without loss of generality O = {¢*, ..., ¢}
and F = (). Then the problem is no longer infinite-dimensional and can be solved by standard
mixed-integer linear programming techniques, but it is very large scale in most cases. Thus, specialized
decomposition techniques are of great interest (cf. [7, 31, 29]).
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Scenario Decomposition means Lagrange-dualizing the non-anticipativity constraints of (4.8) and
solving the dual scenario-wise. Setting m; := dim z; we obtain the dual problem

max { D(A1, A2) : My € L1 (Q, F, B R™), Moy € L1(Q, F,P;R™)}
with the dual function D(A1, \2) given by

T € Xy, Yyt €Yy,
T By(&)we < di(&),
D, Ag) = min QB | ({er ye) + (Aaes Hi(r)) + ar, Ho(w)) | | 520 Avr (€)e—r = h(&),
=1 th_:lo“wt,nyt—r%
+(br+1(§r+1); T741)) =0

Solving this problem is an iterative process: D(A1, A2) has to be computed for a fixed pair (A1, A2)
and then (A1, \2) has to be updated via subgradient-type methods and so on. If the sets X; are
non-convex, this procedure only leads to lower bounds of the optimal value of (4.1) and suitable
globalization techniques based on these lower bounds have to be used in addition.

With ps =P ({£°}), 2§ = 24(£%), y; = y:(€°) and A3, = A%, (£°) the dual function reads

SC? EXtv yts E}/tv

T Bi(§f)z} < di(€7),
D(A1; A2) Zps min Z e, yp) + (HP (M), ) + (HP (A2e), 97)) ZZT_:P At e (&) = h(&),
=1 ZT;O(<wt,T) y‘tsf‘r>

+
(br+1(&741),2714)) =0
and, thus, decomposes across scenarios. To derive the above form of D, the identities E[(A1;, Hi(z¢))] =
E[(H:(A1¢), z¢)] and E[(Aat, Hi(y:))] = E[(H:(A2t), y¢)] were used. Hence, instead of one problem with
S- Zthl (m¢ + k¢) variables one only has to solve S subproblems each with Zthl (my + k¢) variables to
update the multipliers. In comparison with the (dualized form of the) purely expectation based problem

(4.1) one has T additional equality constraints and Zthl k: additional variables in each subproblem.
Note that the dimensions k; of y; are typically small compared to the dimensions m; of ;.

4.2.2. Geographical Decomposition. In many practical applications problem (4.1) shows the following

kind of separability with respect to blocks x; = (z1,...,2r), ¢ = 1,..., I, of components of x:
- i € Xy,
Hi(zi) =0,
4.9 inq E bit (&),
IS E1) 3p SRCI] [ EC s

Ztr;lo Ait,'r(ét)xi,tf'r = hit(ft)

Hence, the I blocks of z are only coupled by the sum 2521 B;t(&:)xi+- By exchanging from E to a
multiperiod polyhedral risk measure this property is maintained, but an additional block consisting of
the y; variables and T additional (dynamic) coupling constraints appear:

-th € Xit, Y1 € Y3,
Hi(wi) =0, He(y:) =0,
] 21:1 Bit(&) i < de(&r),
> _10 At r (&) i i—r = hit (&),
S (Wt Ye—r) + S0 Bir i1 (E4) i r41)) = O

For such block-separable programs, geographical or component decomposition may lead to efficient al-
gorithms for computing lower bounds. Geographical decomposition is just another notion for Lagrange
relazation of coupling constraints. The latter means (cf. [7, 29]) to assign Fi-measurable Lagrange
multipliers A1; and Ao to the third and fifth constraint in (4.10), respectively, and to arrive at the
dual problem

T
(4.10) min < E lz<0t, Yt)

t=1

max { D(A1,A2) : Ay € Ly (Q, F, Py RY), Agy € Ly (2, i, P) }
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The dual function D(A1, A2) given by
D(M\, A2) =

E (S ((eo,ye) + (e, S5y Bir(€) i — de(&:) ) + Tit € Kit, U € 11,
[ t=1 ( < ! > Hy(xi) =0, Hi(y:) =0,

Aot Zt;:lo (<wt,nyt4> + Zf:1<bi,'r+1(£'r+1)7xi,'r+1>)):| il Ai (€0 Ti0—r = hir(&)

7=0

min

and by rearranging with respect to blocks in the objective, the dual function D decomposes into [ + 1
minimization subproblems and is then of the form

D(A1,\e) = ZDi()\1,)\2) + Dr(X2) —E Z()\lt,dt(ft»

i=1 t=1
The functions D; correspond to I geographical subproblems and Dy to the risk subproblem:

i € Xit,
D;i(A1,X2) =min{ E {Zthl <Bit(§t)')\1t + bit(ft)ZZ:t)\%, xit>} Hy(z) =0,
S Air (E)Ti—r = hit(&2)
Dg(X2) = min {IE S (e + ST darwrr )] ?ﬁfy?’: 0 }
Compared to the (dualized form of the) purely expectation-based problem (4.9), the subproblems for
the z;-blocks have the same structure, therefore the same solution methods can be applied. The only
change consists in the additional factors Zf:t Ao of bi1(&) in the objective. If Y7 is a cone the

subproblem for the additional y-block represents a cone constrained linear stochastic program and can
be solved explicitly, namely, it holds

0, if — (ct +3T AQTwT,T_t) eYr(t=1,...,T),
—o0 , otherwise.

Dpr(A2) =

Hence, the dual problem reads

I T )\lt S Lp’(Qvfta]P);Rit)a )\Qt S Lp’(Qa]:taP)a
max 0 3 Di(hi,Ao) —E | > (e di(&))| | _ (ct +37, AQTwT,T_t) ey (t=1,...,7)

i=1 t=1
and the whole Lagrangian decomposition strategy has the same favorable features for the risk averse
model (4.10) as for the expectation-based one (4.9). For example, the known Lagrangian relaxation
based algorithms for electricity portfolio optimization (e.g., [4, 11, 14]) apply to risk averse models
after only minor modifications.
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