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Abstract. Large-scale stochastic models are relevant in many different fields such as com-
putational biology, finance, social sciences, communication and traffic networks. In order to both
efficiently simulate and analyze such models and to understand the essential properties of the sys-
tem, it is desirable to have model reduction techniques that much reduce the dimensionality of the
model while at the same time preserving the system’s essential dynamical properties. In this paper,
a general model reduction technique for the class of discrete space and time Hidden Markov Models
is presented, thereby also including the more special class discrete Markov Chains. The method is
illustrated on some model applications.
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1. Introduction. Large-scale stochastic models arise in many quantitative sci-
ences, such as biophysics and physical chemistry [27, 28, 30], computational biology
[36, 37], computational finance [33, 16], web navigation modeling [47], traffic modeling
[26], and many others. In many cases of practical interest, the state space of mod-
els capturing the dynamics of the system at a faithful level of resolution is so large
that simulating or analyzing them is computationally challenging and understanding
their essential dynamical properties is a difficult task requiring significant expertise.
Therefore, it is essential to have automatic methods that are able to compute models
with a much reduced size while at the same time preserving the essential dynamical
properties.

Most research in stochastic model compression has focused on Markov chains
(MCs) because of their wide applicability and also because there is a well developed
theory for MCs. The central idea of MC compression is to aggregate states which
have similar dynamic characteristics. A well-known approach is based on the nearly
completely decomposable Markov chain (NCDMC) model, which can be characterized
by a transition matrix A ∈ RN×N that takes the form

A = G + ǫH

where

G =











G11 0 · · · 0

0 G22 · · · 0
...

...
. . .

...
0 0 · · · Gnn











Gii ∈ R
Ni×Ni ,

∑n
i=1 Ni = N and ǫ is a small positive parameter. For systems of this

type, the states can be clustered into n groups such that there is strong interaction
within each group and weak interaction among the groups. Here, the clusters corre-
spond to metastable states of the system. It was demonstrated for many applications,
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such as parameter estimation [22], solution of steady state probability distribution [2]
and optimal control [1], that NCDMC based aggregated MCs can well approximate
the behavior of the original model if ǫ is sufficient small. Several clustering approaches
have been proposed to find the nearly completely decomposable structure in general
transition matrices, such as lumping of rapidly-interconverting states [3, 43] and the
Perron-cluster cluster analysis (PCCA) algorithm [38], which was later extended to in-
clude fuzzy clustering of MC states [44, 10]. Another widely used compression method
was developed by Spears [41], which aggregates states having similar transition behav-
iors with respect to the remaining state space into a new state. For example, states i
and j can be combined if the probabilities of transitions into states i, j and from states
i, j are both approximately equivalent. The transition probabilities into and out of
the new state are obtained from the transition probabilities between the aggregated
states and the remaining state space. It can be shown that if the aggregated states
consist of states that are sufficiently similar to each other, the compressed Markov
model satisfies

(An)c ≃ (Ac)
n

where the subscript c denotes compression operator and A is the original transition
matrix. In a more general sense, the “lumpability” of MCs was discussed in [18, 9, 31],
where some necessary and sufficient conditions for an MC to be (approximately)
lumpable have been proposed. However, there is no practical algorithm which can
test the lumpability conditions efficiently.

Compared to MCs, the model compression for the more general class of hidden
Markov models (HMMs) is much less well understood as both state transition and
observation properties need to be considered. In a number of studies, HMM com-
pression was based on generalizing MC compression [21, 39, 11]. This is done by
clustering the hidden states according to the transition matrix as in MCs (often using
the NCDMC model) with an additional constraint that states belonging to the same
cluster should have similar observation probability distributions. White [45] proposed
a definition of lumpability and approximate lumpability of HMMs, but there is no
efficient procedure for testing this lumpability. A compression method specifically
designed for HMMs proposed in [20, 19] transforms the HMM to a certain class of
stochastic jump linear systems (JLS’s) and then uses balanced truncation of JLS’s
to reduce the size of the HMM. For this method, no additional assumptions about
the structure of the hidden chain is required. However, result of the compression
is a “black box” and does not provide a mapping which can relate the structure of
the compressed model to the structure of the original model. Finesso [13] analyzed
the Kullback-Leibler (KL) divergence rate between an arbitrary stationary stochastic
process and an HMM, and proposed a method to construct an optimally compressed
HMM with respect to the divergence rate based approximation criterion for a given
stationary stochastic process. However, this method involves an infinite dimensional
optimization problem. Although it can be solved using approximate techniques, the
computation complexity increases dramatically with the number of states, therefore
effectively limiting it to small-to-moderately sized stochastic models.

The objective of this paper is to propose a new compression method for HMMs
based on a probability distance measure. Recently, probability distances, which can
measure the difference between probability measures, have received increased inter-
est, because they allow one to decide whether the proposed stochastic model is a
satisfactory approximation to the real model [15]. In this paper, we derive an easily
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computable criterion for the HMM compression based on the total variation (TV)
distance [24] between the observation sequences of HMMs, and develop a smoothing
approximation based search strategy to optimize this criterion. In contrast to previous
approaches, the present compression method does not assume a specific structure of
the original model, such as NCDMC or similar transient behaviors [41, 40]. Moreover
the compressed model can be directly related to the structure of the original model
via a fuzzy partition [14].

Notation. Let R, R
n and R

m×n denote the sets of real numbers, real n-vectors
and real m × n matrices, respectively. The cardinality of a set S is denoted by |S|.
Given a matrix G = [gij ] ∈ R

m×n, the 1-norm of G is defined by

‖G‖1 = max
j

∑

i

|gij |(1.1)

And for a vector g = (g1, . . . , gn),

‖g‖1 =
∑

i

|gi|(1.2)

‖g‖2 =

√

∑

i

g2
i(1.3)

The notation G � 0 stands for each element of G being nonnegative. 0 and 1 de-
note the column vectors of zeros and ones of appropriate size. Given a sequence
{xt|t = 0, 1, 2, . . .}, we denote the set {xt|k ≤ t ≤ l} by xk:l. Uniform distribution on
the set S is denoted as US . And 1{x=y} is defined by

1{x=y} =

{

1, x = y
0, x 6= y

(1.4)

2. Background.

2.1. Total variation distance for probability distributions. There are var-
ious possibilities to measure distances between probability distributions [15]. Here we
introduce the total variation (TV) distance. Suppose µ, ν are two probability distri-
butions on a space Ω, the TV distance between µ and ν is defined by

dTV (µ, ν) = sup
A⊂Ω

|µ (A) − ν (A)|(2.1)

For a finite state space Ω = {1, . . . n}, this can be easily computed as:

dTV (µ, ν) =
1

2

n
∑

i=1

|µ (i) − ν (i)| =
1

2
‖µ̄ − ν̄‖1(2.2)

where µ̄ = (µ (1) , . . . , µ (n)), ν̄ = (ν (1) , . . . , ν (n)). It is obvious that dTV (µ, ν) = 0
iff µ = ν.
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2.2. Hidden Markov models. HMMs are extensively described in many pub-
lications (e.g. [35, 34, 12]). We just state the HMM nomenclature used in this paper.
A HMM is a stochastic finite state machine, specified by a 5-tuple H = (S,O, A, B, π)
where

• S is the set of hidden states with cardinality N . We denote the individual
states as S = {1, . . . , N}, and the state at time t as st.

• O = {1, . . . , M} is the set of observations and the observation at time t is
denoted by ot.

• A = [aij ] ∈ R
N×N is the state transition matrix with probabilities

aij = p (st+1 = i|st = j)

• B = [bkj ] ∈ R
M×N is the observation probability matrix

bkj = p (ot = k|st = j)

• π = [πi] ∈ R
N is the probability distribution for the initial state

πi = p (s0 = i)

Remark 2.1. In this paper, we only consider the case that A and B are both
constant, i.e., the HMM is time-homogenous.

For a given HMM H = (S,O, A, B, π), the probability distribution of all available
observations o1:T up to time T is

p (o1:T ) =
∑

s0:T

(

T
∏

t=1

p (ot|st) p (st|st−1)

)

p (s0)

=
∑

s0:T

(

T
∏

t=1

bot,st
ast,st−1

)

πs0(2.3)

In practice, the above p (o1:T ) defined in (2.3) can be calculated through the forward-
backward procedure [34] as

p (o1:T ) = 1Two1:T (H)(2.4)

where

wo1:t (H) = Pot
(A, B) . . . Po1 (A, B) π(2.5)

and Pk (A, B) are observable operators defined as

Pk (A, B) =







bk1

. . .

bkN






A, 1 ≤ k ≤ M(2.6)

Moreover, it is easy to verify that wo1:t (H) and Pk (A, B) satisfy the following equa-
tions

wo1:t (H) =







p (st = 1, o1:t)
...

p (st = N, o1:t)






(2.7)
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∑

o1:t

‖wo1:t (H)‖1 = 1(2.8)

and

‖P (A, B)‖1 = 1(2.9)

where

P (A, B) =







P1 (A, B)
...

PM (A, B)






(2.10)

3. HMM Compression.

3.1. TV distance for HMMs. Based on the above definitions, the set of all
observations up to time t generated by an HMM with observation set O can be
treated as a random variable on the space Ot, and its probability distribution is given
by (2.4). Therefore, the similarity between two HMMs H1 =

(

S1,O, A1, B1, π1
)

and H2 =
(

S2,O, A2, B2, π2
)

with the same observation set can be measured by
calculating the distance between the distributions of o1:t|H

1 and o1:t|H
2 for different t.

However, explicit evaluation of the full distributions o1:t|H
1, o1:t|H

2 is very expensive
for long t and is not practical as a part of an optimization procedure. Therefore, we
instead consider the following function which can be computed quickly and can be
proved to provide an upper bound to the TV distance between two HMM outputs:

DTV

(

H1,H2, R
)

=
∥

∥P
(

A1, B1
)

R − (IM ⊗ R)P
(

A2, B2
)
∥

∥

1
(3.1)

where R is a parameter matrix which satisfies 1TR = 1T, IM ∈ R
M×M is the identity

matrix and ⊗ denotes the Kronecker product. In our case, R will turn out to be the
compression operator which is explained in detail below. First, let us summarize a
number of important facts about DTV (·) :

Theorem 3.1. Let H1 =
(

S1,O, A1, B1, π1
)

and H2 =
(

S2,O, A2, B2, π2
)

be

two HMMs with
∣

∣S1
∣

∣ = N1 ≤
∣

∣S2
∣

∣ = N2, |O| = M . Then DTV

(

H1,H2, R
)

defined
in (3.1) satisfies the following properties:

1. For any t ≥ 1, we have
∑

o1:t

∥

∥wo1:t

(

H1
)

− Rwo1:t

(

H2
)∥

∥

1
≤
∑

o1:t−1

∥

∥wo1:t−1

(

H1
)

− Rwo1:t−1

(

H2
)∥

∥

1

+DTV

(

H1,H2, R
)

(3.2)

where wo1:0

(

H1
)

and wo1:0

(

H2
)

are set to π1 and π2.
2. The TV distance between o1:t|H

1 and o1:t|H
2 remains bounded as

2dTV

(

o1:t|H
1, o1:t|H

2
)

≤
∑

o1:t

∥

∥wo1:t

(

H1
)

− Rwo1:t

(

H2
)∥

∥

1

≤
∥

∥π1 − Rπ2
∥

∥

1
+ tDTV

(

H1,H2, R
)

(3.3)

3. There exists a matrix R such that 1TR = 1T and

DTV

(

H1,H2, R
)

= 0(3.4)

if dTV

(

o1:t|H
1, o1:t|H

2
)

= 0 for any t ≥ 1.
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Proof.

Part (1): According to (2.5), for a given observation sequence o1:t−1,

∑

ot

∥

∥wo1:t

(

H1
)

− Rwo1:t

(

H2
)∥

∥

1
=
∥

∥P
(

A1, B1
)

wo1:t−1

(

H1
)

− (IM ⊗ R)P
(

A2, B2
)

wo1:t−1

(

H2
)∥

∥

1
(3.5)

For simplicity, we denote P 1 = P
(

A1, B1
)

, w1
o1:t

= wo1:t

(

H1
)

and P 2 = P
(

A2, B2
)

,

w2
o1:t

= wo1:t

(

H2
)

. Then

∑

ot

∥

∥w1
o1:t

− Rw2
o1:t

∥

∥

1
=
∥

∥

∥
P 1w1

o1:t−1
− (IM ⊗ R)P 2w2

o1:t−1

∥

∥

∥

1

=
∥

∥

∥
P 1w1

o1:t−1
− P 1Rw2

o1:t−1
+ P 1Rw2

o1:t−1
− (IM ⊗ R)P 2w2

o1:t−1

∥

∥

∥

1

≤
∥

∥

∥
P 1w1

o1:t−1
− P 1Rw2

o1:t−1

∥

∥

∥

1

+
∥

∥

∥
P 1Rw2

o1:t−1
− (IM ⊗ R)P 2w2

o1:t−1

∥

∥

∥

1

≤
∥

∥P 1
∥

∥

1

∥

∥

∥
w1

o1:t−1
− Rw2

o1:t−1

∥

∥

∥

1

+
∥

∥P 1R − (IM ⊗ R)P 2
∥

∥

1

∥

∥

∥
w2

o1:t−1

∥

∥

∥

1
(3.6)

By summing both sides of equation (3.6) with respect to o1:t−1 and using (2.8), (2.9),
we get

∑

o1:t

∥

∥w1
o1:t

− Rw2
o1:t

∥

∥

1
≤
∑

o1:t−1

∥

∥

∥
w1

o1:t−1
− Rw2

o1:t−1

∥

∥

∥

1
+
∥

∥P 1R − (IM ⊗ R)P 2
∥

∥

1

=
∑

o1:t−1

∥

∥

∥
w1

o1:t−1
− Rw2

o1:t−1

∥

∥

∥

1
+ DTV

(

H1,H2, R
)

(3.7)

Part (2): From (2.4) and TV distance definition (2.2) we have

2dTV

(

o1:t|H
1, o1:t|H

2
)

=
∑

o1:t

∣

∣1Two1:t

(

H1
)

− 1Two1:t

(

H2
)∣

∣

=
∑

o1:t

∣

∣1T
(

wo1:t

(

H1
)

− Rwo1:t

(

H2
))∣

∣

≤
∑

o1:t

∥

∥wo1:t

(

H1
)

− Rwo1:t

(

H2
)∥

∥

1
(3.8)

Using the definition of wo1:0 and summing relation (3.2) from 1 to t, we obtain

∑

o1:t

∥

∥wo1:t

(

H1
)

− Rwo1:t

(

H2
)∥

∥

1
≤
∥

∥π1 − Rπ2
∥

∥

1
+ tDTV

(

H1,H2, R
)

(3.9)

Part (3) is an immediate consequence of equivalence theorems for observable operator
models (OOMs) (see Propositions 14, 15 and 16 in [17]).

This theorem shows that the operator DTV (·) can be used to evaluate quantita-
tively the differences between dynamics of HMMs.
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3.2. Optimal compression model. Based on the function DTV we can now
develop a framework for compressing HMMs.

First of all, it is important to define what is meant by “perfect” compression.
Let H0 =

(

S0,O, A0, B0, π0
)

be the original HMM and Hc = (Sc,O, Ac, Bc, πc) be
the compressed model obtained by some compression algorithm where |Sc| = N c <
∣

∣S0
∣

∣ = N0 and |O| = M . Since both H0 and Hc generate observation sequences from
observation set O, the output of Hc should have (nearly) the same distribution as
that of H0. In other words, perfect compression has occurred if

dTV

(

o1:t|H
c, o1:t|H

0
)

= 0, ∀o1:t ∈ Ot, t ≥ 1(3.10)

However, (3.10) cannot be satisfied in most cases for N c < N0. As an al-
ternative, we compress the original model through minimizing the upper bound of
dTV

(

o1:t|H
c, o1:t|H

0
)

presented in Theorem 3.1:

dTV

(

o1:t|H
c, o1:t|H

0
)

≤
1

2

∥

∥πc − Rcπ0
∥

∥

1
+

t

2
DTV

(

Hc,H0, Rc
)

=
t

2

(

1

t

∥

∥πc − Rcπ0
∥

∥

1
+ DTV

(

Hc,H0, Rc
)

)

(3.11)

Note that the upper bound is a positive linear combination of DTV

(

Hc,H0, Rc
)

and the “initial TV distance”
∥

∥πc − Rcπ0
∥

∥

1
/2, and the value of DTV

(

Hc,H0, R
)

is
independent of πc. Considering that for a given (Hc, Rc),

1

t

∥

∥πc − Rcπ0
∥

∥

1
+ DTV

(

Hc,H0, Rc
)

≃ DTV

(

Hc,H0, Rc
)

when t is sufficiently large, here a greedy strategy is adopted to optimize the com-
pression model. First, Ac, Bc, Rc are obtained by minimizing DTV

(

Hc,H0, Rc
)

,
i.e.,

(Ac, Bc, Rc) = arg min
A,B,R

∥

∥P (A, B) R − (IM ⊗ R)P
(

A0, B0
)∥

∥

1

subject to:
1TA = 1T,1TB = 1T,1TR = 1T

A, B � 0

(3.12)

then the initial distribution πc is obtained by

πc = arg min
π

∥

∥π − Rcπ0
∥

∥

1

subject to:
1Tπ = 1, π � 0

(3.13)

In this paper, we denote the solutions of (3.12), (3.13) by

(Hc, Rc) = OCH
(

H0, N c
)

.

Remark 3.2. Obviously the greedy strategy is a “suboptimal method” since the
optimization problems (3.12) and (3.13) are coupled via Rc. But it is easy to show
that the solution (Hc, Rc) = OCH

(

H0, N c
)

also satisfies

(Hc, Rc) = arg min
H,R

1

t

∥

∥π − Rπ0
∥

∥

1
+ DTV

(

H,H0, R
)
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with πc = Rcπ0 for any t > 0 if Rcπ0 � 0. More specifically, if Rc � 0, which means
the dynamics of H0 can be well compressed through a fuzzy partition on S0 (see
Subsection 3.3), Rcπ0 � 0 must hold.

Remark 3.3. An important issue for solving the compression problem is deter-
mining the value of N c. One possible approach is to run the compression algorithm
many times with different N c, and choose a best value according to a user-defined
criterion C

(

N c, DTV

(

Hc,H0, Rc
))

(e.g. DTV

(

Hc,H0, Rc
)

+ wrN
c with wr > 0).

Certainly, N c1 > N c2 implies that DTV

(

Hc1,H0, Rc1
)

< DTV

(

Hc2,H0, Rc2
)

, but
depending on the application there may be a tolerable upper bound to N c. Here, we
do not address the problem of choosing the number of compressed hidden states in
this paper, and assume that N c is given.

3.3. Optimal compression based fuzzy partition. In contrast to typical
MC compression methods, the proposed optimal compression model does not involve
any explicit state aggregation. However we can infer a fuzzy partition over the set of
original hidden states from the optimal compression model.

Suppose the model compression has been performed well, then

DTV

(

Hc,H0, Rc
)

≃ 0(3.14)

and
∥

∥π − Rcπ0
∥

∥

1
≃ 0(3.15)

From (3.3) we have

wo1:t (Hc) ≃ Rcwo1:t

(

H0
)

(3.16)

That is to say, the joint probability distribution of the hidden states and observations
in the compressed model can be approximated by

p (sc
t = i, o1:t|H

c) ≃
N0
∑

j=1

Rc
ijp
(

s0
t = j, o1:t|H

0
)

(3.17)

where Rc
ij denotes the element in the i-th row and j-th column of Rc, s0

t , s
c
t are original

and compressed hidden states at time t.
On the other hand, if we define a fuzzy partition on S0 by N c fuzzy sets Ã1, . . .,

ÃNc with membership functions

mÃi
(j) = µij(3.18)

and a probability distribution on S0, the probability distribution of fuzzy sets and
observations can be expressed as [46, 14]

p
(

s0
t ∈ Ãi, o1:t|H

0
)

=

N0
∑

j=1

µijp
(

s0
t = j, o1:t|H

0
)

(3.19)

Comparing (3.17) and (3.19), we can conclude that Rc represents a fuzzy partition
on S0 with membership function

mÃi
(j) = Rc

ij(3.20)

which plays a similar to the “almost characteristic functions” in robust PCCA [10],
and the dynamics of hidden states in Hc is approximately equivalent to that of fuzzy
hidden states in H0, if Rc � 0.
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3.4. Compression algorithm. In the optimal compression model, it is easy
to convert (3.13) into a linear programming model problem that can be solved using
standard software packages. So we only discuss how to solve (3.12).

3.4.1. Smooth approximation. The main difficulty in solving the optimal
compression model (3.12) is that the objective function involves computation of ma-
trix 1-norm which is not differentiable. In this subsection, we will propose a smoothing
strategy to overcome this problem, that takes advantage of the “soft maximum” op-
erator [32]

fs
γ (x) = γ log

k
∑

j=1

exp

(

xj

γ

)

(3.21)

where x = (x1, . . . , xk) and γ > 0 is the smoothing parameter. The function fs
γ (·) is

twice continuous differentiable and provides a good approximation of maxk xk with a
small γ in the sense that [32]

max
k

xk ≤ fs
γ (x) ≤ max

k
xk + γ log k(3.22)

Replacing the maximum operation in (1.1) by fs
γ (·) (note that the absolute value

function |x| can also be written as max {x,−x}), we can approximate the matrix
1-norm as

‖G‖1 ≃ F s
γ (G) = γ log

n
∑

j=1

exp

(

m
∑

i=1

log

(

exp

(

gij

γ

)

+ exp

(

−
gij

γ

))

)

(3.23)

for G = [gij ] ∈ R
m×n. It is easy to prove that

‖G‖1 ≤ F s
γ (G) ≤ ‖G‖1 + γ (log n + m log 2)(3.24)

from (3.22).
Therefore, (3.12) can be approximately solved by minimizing the smooth objective

function

Ds
γ (A, B, R) = F s

γ

(

P (A, B) R − (IM ⊗ R)P
(

A0, B0
))

(3.25)

with a decreasing sequence of γ. The sequential optimization algorithm is then de-
scribed as follows:

Let the numbers β ∈ (0, 1), γ1 > 0 and a small enough number ǫs > 0 be given.
Step 1 Select an initial feasible solution

(

A(1), B(1), R(1)
)

. Set k = 1.
Step 2 Perform a local search algorithm to compute

(

A(k+1), B(k+1), R(k+1)
)

= arg min
A,B,R

Ds
γk

(A, B, R)

subject to:
1TA = 1T,1TB = 1T,1TR = 1T

A, B � 0

(3.26)

starting at
(

A(k), B(k), R(k)
)

.
Step 3 Terminate if

γk

(

log N0 + MN c log 2
)

≤ ǫs(3.27)
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Step 4 Let γk+1 = βγk and go to Step 2 with k replaced by k + 1.

Remark 3.4. In Step 3 the condition (3.27) guarantees that

∣

∣Ds
γk

(A, B, R) − DTV

(

H,H0, R
)∣

∣ ≤ ǫs

Remark 3.5. In Step 2, the subproblem (3.26) is a smooth optimization problem
with linear constraints, and a variety of methods can be used to search the solution.
Here we select the projected gradient algorithm (PGA) proposed in [6] (see Appendix
A for details).

3.4.2. Heuristic search. Note that (3.12) is an optimization problem with
N c
(

N c + M + N0
)

variables, and A, B and R are strongly coupled. The algorithm
in Subsection 3.4.1 might be inefficient and get stuck in local minima for large M
or N0. To avoid this problem, we propose a heuristic search strategy for finding a
good initial solution, which reduces the solution space and improves the global search
ability by utilizing the relationship between optimal compression models and fuzzy
partitions. It consists of the following steps:

Step 1 Suppose that R can be described by N c parametric fuzzy sets Ã1, . . . , ÃNc

as

Rij (θ) = mÃi
(j|θ)(3.28)

where θ is a parameter vector.
Step 2 Suppose the compressed model is approximately equivalent to the fuzzy par-

tition model, then A (θ) , B (θ) can be calculated as

aij (θ) ∝ p
(

s0
t+1 ∈ Ãi, s

0
t ∈ Ãj |H

0, s0
t ∼ πs, θ

)

∝
∑

k,l

πs
l a

0
klRik (θ)Rjl (θ)(3.29)

and

bkj (θ) ∝ p
(

ot = k, s0
t ∈ Ãj |H

0, , s0
t ∼ πs, θ

)

∝
∑

l

πs
l b

0
klRjl (θ)(3.30)

where πs = [πs
i ] denotes the stationary distribution of A0, A0 =

[

a0
ij

]

, B0 =
[

b0
kj

]

.

Step 3 Solve

θ∗ = arg min
θ

Ds
γ1

(A (θ) , B (θ) , R (θ))(3.31)

Step 4 Perform the algorithm in Subsection 3.4.1 to solve (3.12) with initial feasible
solution

(

A(1), B(1), R(1)
)

= (A (θ∗) , B (θ∗) , R (θ∗)).

Obviously, the size of problem (3.31) is much smaller than (3.12) since dim (θ) =
O (N c) in most cases. Therefore we can often find a suboptimal but satisfactory
compression model quickly by solving (3.31).
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Remark 3.6. R (θ) in Step 1 can be defined according to the actual situation of
H0. For example, assume that each element of S0 can be associated with a coordinate
in R

nHS , we can define R (θ) by the following fuzzy partition model [4]:

Rij (θ) = mÃi
(j|θ) =

∥

∥xj − zi
∥

∥

−2

2
∑Nc

k=1 ‖x
j − zk‖

−2
2

(3.32)

where xj denotes the coordinate of the j-th element of S0, zi is the center of i-th
fuzzy set of the fuzzy partition, and θ =

(

z1, . . . , zNc)

.
Remark 3.7. πs in Step 3 is just a weight vector for the fuzzy combination, which

can be replaced with some other vector as needed. For example, we can set [29]

πs
i = lim

T→∞

1

T
E

[

T
∑

t=0

1{st=i}

]

(3.33)

if A0 has multiple stationary distributions.
Remark 3.8. In this paper, (3.31) is solved by the estimation of distribution

algorithm (EDA), which is a global optimization algorithm and whose effectiveness
have been evaluated by many works [23]. See Appendix B for details.

4. Numerical Experiments. In this section, the proposed compression pro-
posed in this paper will be applied to three examples of HMM models. The algorithm
parameters are chosen as

β = 0.5, γ1 = 1, ǫs = 10−4, µPG = 0.1, γPG = 1, ǫPG = 10−6,
Pp = 500, Pse = 250, Kmax = 4000

4.1. Quasi-lumpable model. Consider an HMM H0 with N0 = 7 and M = 2
characterized by

A0 =





















∗ 0 0.4 + ǫ 0.2 0 0 0
0 ∗ 0 0.2 0.4 0 0

0.4 + ǫ 0 ∗ 0 0 0.4 0
0.4 0.4 0 ∗ 0 0.2 0.4
0 0.4 0 0 ∗ 0 0.2
0 0 0.4 + ǫ 0.0 0.4 ∗ 0
0 0 0 0.4 0 0 ∗





















(4.1)

B0 =

[

0.8 0.8 + ǫ 0.5 0.5 − ǫ 0.5 + ǫ 0.3 0.3 + ǫ
∗ ∗ ∗ ∗ ∗ ∗ ∗

]

(4.2)

and π0 equals to the stationary distribution of A0, where elements ∗ make each column
of matrices sum up to 1. In this example, the transition matrix A0 is ǫ-quasi-lumpable
with respect to the partition P = {S1, S2, S3} = {{1, 2} , {3, 4, 5} , {6, 7}} (see Section
6.1 in [31] for details), and it is easy to verify that H0 is a lumpable HMM if ǫ = 0
according to the lumpability condition proposed in [45].

Here we let ǫ = 0.01, N c = 3, and apply the proposed compression method with
the parametric fuzzy partition model in heuristic search procedure defined by

Rij (θ) = mÃi
(j|θ) =

∣

∣

∣
R̃i,j

∣

∣

∣

∑3
k=1

∣

∣

∣
R̃k,j

∣

∣

∣

(4.3)
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Fig. 4.1. Optimization results of the smooth approximate problem (3.26) for different γk where

D
(k)
TV

= DTV

(

H(k),H0, R(k)
)

and
(

H(k), R(k)
)

denotes the solution of the approximate model with
smoothing parameter γk.

and θ =
(

R̃1,1, R̃1,2, . . . , R̃Nc,N0

)

. For the sake of comparison, we also perform the

smooth approximation based optimization algorithm starting with a random initial
solution. Fig. 4.1 plots the optimization results under different initialization schemes.
As observed from the figure, the randomly generated initial solution leads to the
algorithm getting stuck in a local optimum. It shows that the sequential optimization
algorithm proposed in Subsection 3.4.1 is sensitive to initial conditions as a local search
algorithm, and some global method (e.g. the heuristic search algorithm presented in
this paper) is needed to provide a satisfactory initial solution.

The obtained optimal compression results are given by

Rc =





0.9667 0.9540 0.0045 0.0172 0.0123 0.0138 0.0010
0.0223 0.0387 0.9800 0.9602 0.9572 0.0193 0.0216
0.0110 0.0073 0.0155 0.0226 0.0305 0.9670 0.9774



(4.4)

Ac =





0.1951 0.4071 0.0000
0.8049 0.1912 0.5962
0.0000 0.4017 0.4038



(4.5)

Bc =

[

0.7948 0.4983 0.3091
0.2052 0.5017 0.6909

]

(4.6)

Obviously, the fuzzy partition
{

Ã1, Ã2, Ã3

}

defined by Rc is consistent with the par-

tition P . We generate an observation sequence o1:T randomly by H0 with T = 1000,
and apply both H0 and Hc to calculating the likelihood p (o1:t) and the conditional
distribution of hidden state p (st|o1:t) for different t. Fig. 4.2 shows the relative error
between log p (o1:t|H

c) and log p
(

o1:t|H
0
)

, where

Ell =

∣

∣log p (o1:t|H
c) − log p

(

o1:t|H
0
)∣

∣

|log p (o1:t|H0)|
(4.7)

We also compare the distribution p (sc
t |o1:t,H

c) with p
(

s0
t ∈ Ãi|o1:t,H

0
)

by the dis-
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Fig. 4.2. Relative error of log p (o1:t) estimated by Hc

tance

Ew =
1

2

Nc

∑

i=1

∣

∣

∣

∣

∣

∣

p (sc
t = i|o1:t,H

c) −

N0
∑

j=1

Rc
ijp
(

s0
t = j|o1:t,H

0
)

∣

∣

∣

∣

∣

∣

(4.8)

The mean value of Ew is 4.3044 × 10−3 and the variance is 5.4864 × 10−6 in this
simulation. It can be seen that p (o1:t|H

c) provides a good estimate of p
(

o1:t|H
0
)

, and
the conditional distribution of hidden states sc

t for given o1:t remains approximately
equal to the conditional distribution of fuzzy partitions of the original hidden states.

4.2. Metastable model. In this example a metastable HMM H0 with 289
states is investigated, where

S0 = {(x, y) |x = −2 + 0.25i, y = −1.5 + 0.25j, i, j = 0, . . . , 16}(4.9)

is a grid space,

p
(

xt+1, yt+1|xt, yt,H
0
)

=
{

min{1,exp(V (xt,yt)−V (xt+1,yt+1))}
|Nb(xt,yt)|−1 , (xt+1, yt+1) ∈ Nb (xt, yt) \ {(xt, yt)}

0, (xt+1, yt+1) /∈ Nb (xt, yt)

(4.10)

defines the transition matrix based on the potential function

V (x, y) = 3 exp
(

− (x − 1)
2
− (y − 1/3)

2
)

− 3 exp
(

− (x − 1)
2
− (y − 5/3)

2
)

−5 exp
(

− (x − 1)2 − y2
)

− 3 exp
(

− (x + 6/5)2 − y2
)

(4.11)

which is shown in Fig. 4.3,

Nb (x, y) =
{

(x′, y′) | |x′ − x| + |y′ − y| ≤ 0.25, (x′, y′) ∈ S0
}

(4.12)

denotes the neighbors of state (x, y), and the output is defined by

p (ot|xt, yt) =

{

(2 − xt) /4, ot = 1
(2 + xt) /4, ot = 2

(4.13)

The stochastic process (x1:t, y1:t) has three metastable states centered at (−1.75, 0),
(1, 1.75) and (1,−0.25).
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Fig. 4.4. Values of elements of Rc (Nc = 2)

We apply the proposed compression method to H0 with θ =
(

x1, y1, . . . , xNc

, yNc)

and parametric fuzzy sets
{

Ã1, . . . , ÃNc

}

defined as in Remark 3.6 with coordinates

{(x, y)}, and let H2 = OCH
(

H0, 2
)

, H3 = OCH
(

H0, 3
)

. Figs. 4.4 and 4.5 show Rc

with N c = 2 and 3. It can be observed that our method identify the three metastable
states successfully when N c = 3. For N c = 2, the metastable states at right side are
lumped since they have similar observation probabilities. Figs. 4.6 and 4.7 display
the errors of H2 and H3 for a o1:T generated by H0. It is not surprised that the Ell

of H3 is smaller than H2 because it can capture the dynamics of H0 more accurately.
However, Ew of H3 is larger H2, because it is difficult for H3 to distinguish the right
two metastable states in the case that only the observations o1:t are known.

4.3. Traffic model. In this example, we investigate a grid based cellular au-
tomaton traffic model [5] of an agent moving in a building as shown in Fig. 4.8, which
is similar to the traffic model used in [26]. At each time t, the position of the agent
is denoted by (xt, yt), i.e., the agent is located in a grid with row xt and column yt.
If the agent is on a position (xt, yt) with a sensor, the agent will be detected with
probability 0.9 and report the corridor number. However, the receiver does not know
which exact sensor sends the information. The agent movement is Markovian and the
detailed dynamics are given in Appendix C.

The objective of this experiment is to estimate which corridor the agent is in at any
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Fig. 4.5. Values of elements of Rc (Nc = 3)
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Fig. 4.6. Relative errors of log p (o1:t) estimated by Hc

time based on the past sensor information. According to [25] and [26], the estimation
can be performed based on a model H = (S,O, A, B, π) with O = {os

1, o
s
2, o

s
3, o

c
1, o

c
2, o

c
3}

and

ot =

{

os
i , agent is detected by a sensor in Corridor i

oc
i , agent is in Corridor i and not detected

(4.14)

Here S only contains the states in the building, thus the exit state is excluded from
S, and H is similar to an HMM except that 1TA 6= 1T and 1T − 1TA � 0, which
means that the sequences of st and ot are finite and stop when the agent would hit
the exit state (i.e. with probability 1 −

∑

i aij at time t + 1 if st is the j-th state of
S).
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Fig. 4.8. Grid layout of traffic model where gray squares are obstacles, the black square is the
exit, ◦ are the sensor positions, × indicates the start area, the heavy black lines mark the divisions
between the corridors. The agent moves from a random starting square with a random walk until it
finds the exit.

Remark 4.1. Actually, the observations oc
1, o

c
2, o

c
3 can not be distinguished by the

sensor information. The sensor observation value is o′t ∈ {os
1, o

s
2, o

s
3, o

c}, where o′t = oc

if no sensor detects the agent.
Let ct be the number of the corridor where the agent is located at time t. By

using H to approximate the distribution of o1:t, we can calculate the Bayesian estimate
p (ct|o

′
1:t) online as follows
• If o′t = oc,

p (ct|o
′
1:t) =

∑

st∈S

p (st|o
′
1:t) p (ct|st, o

′
1:t)

=
∑

st∈S

p (st|o
′
1:t) p (ct|st, o

′
t)

=
∑

st∈S

p (st|o
′
1:t)

p
(

oc
ct
|st

)

p (oc|st)
(4.15)

where p (st|o
′
1:t) can be calculated recursively by

p (st|o
′
1:t) ∝

∑

st−1∈S

p (o′t|st) p (st|st−1) p
(

st−1|o
′
1:t−1

)

(4.16)
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and p (oc|st) =
∑3

i=1 p (oc
i |st).

• If o′t = os
i ,

p (ct|o
′
1:t) =

{

1, the agent is in Corridor ct

0, otherwise
(4.17)

And the estimate of ct can be set as ĉt = argmax
i

p (ct = i|o′1:t).

Clearly, the most accurate model is the “full order” model H0 =
(

S0,O, A0, B0, π0
)

where S0 is the reachable grid set and the elements of A0, B0, π0 are identical to the
true probability values of the original traffic model. However, it was found [25, 26]
that “reduced order” models Hc = (Sc,O, Ac, Bc, πc) obtained by compressing H0 can
also be used in order to save storage space and computation time. We now discuss
how to obtain a compressed Hc with the method proposed in this paper. Considering
the sequences of states and observations are both finite for H, we firstly introduce a
“null state” sn and “null observation” on. and let

{

(s̄t, ōt) = (st, ot) , t < L
(s̄t, ōt) = (sn, on) , t ≥ L

(4.18)

where L is the time at which state and observation sequences stop. Then H can be
translated into an equivalent augmented HMM H̄ =

(

S̄, Ō, Ā, B̄, π̄
)

with S̄ = S∪{sn},
Ō = O ∪ {on},

Ā =

[

A 0

∗ 1

]

, B̄ =

[

B 0

0T 1

]

(4.19)

and π̄T =
(

πT, 0
)T

, where elements ∗ make each column of matrices sum up to 1. It
is easy to show that

p
(

ō1:t|H̄
)

= p
(

o1:min{L−1,t}|H
)

(4.20)

and for two models H1 and H2,

dTV

(

ō1:t|H̄
1, ō1:t|H̄

2
)

= dTV

(

o1:min{L−1,t}|H
1, o1:min{L−1,t}|H

2
)

(4.21)

where L is also a random number and
{

o1:min{L−1,t}

}

means all the possible obser-
vation sequences up to time t (including the sequences that stop by time t ). Hence
our proposed method can be applied to compressing H̄0 =

(

S̄0, Ō0, Ā0, B̄0, π̄0
)

and

optimizing H̄c =
(

S̄c, Ōc, Āc, B̄c, π̄c
)

with the extra linear constraints shown in (4.19).
Remark 4.2. Because the stationary distribution of the transition matrix Ā0 is

πs = (0, . . . , 0, 1)
T
, we replace πs with the pseudo-stationary distribution π̂s = [π̂s

i ]
in Step 2 of the heuristic search, where

π̂s
i ∝ E [Number of times (xt, yt) = i-th grid position until time L](4.22)

The calculation approach of π̂s can be seen in [25].
We apply our compression method to the traffic model and the definition of para-

metric fuzzy sets in heuristic search is the same as in Subsection 4.2 with |Sc| = 4. For
comparison, we also compress H0 using the spectral clustering and entropy methods
proposed in [25, 26]. These two methods are in fact MC compression methods, which
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(a) Spectral method (b) Entropy method

(c) Aggregation derived from R̂c

Fig. 4.9. Depictions of state aggregations found by the three different compression methods.
Equal signs refer to assignment to the same aggregate state. The empty squares are unreachable
from the start area and thus not part of the compressed state space.

reduce the size of H0 through state aggregation only according to A0. Fig. 4.9 shows

the state aggregation results obtained by the three methods, where R̂c =
[

R̂c
ij

]

and

R̂c
ij = 1{

i=arg max
k

Rc
kj

}(4.23)

In addition, we generate 1000 trajectories of the agent, and use the full model and
compressed models to get estimates of ct. Table 4.1 summarizes the estimation per-
formance of the models, where

ER =
1

L − 1

L−1
∑

t=1

(

1 − 1{ĉt=ct}

)

(4.24)

is the error rate. Fig. 4.10 plots the trajectory generated from a single run and
Fig. 4.11 displays corresponding the posterior probabilities of the corridors at each
time, where δC

i (t) = 1{ct=i}. As observed from the table and figures, in comparison
with the MC compression based methods, our approach takes into account the influ-
ence of spatial distribution of sensors and corridors when compressing, and estimates
the value of ct more accurately.

5. Conclusions. We have presented a computationally efficient approach to op-
timally compress HMMs. Optimality is defined in terms of the similarity between
the outputs of the original and the compressed model. The optimization procedure
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Table 4.1

Estimation results. This table shows the mean and variance of the ER calculated over 1000
independent simulations.

full model our method spectral method entropy method
mean of ER 0.1489 0.2121 0.5276 0.3581

variance of ER 0.0144 0.0292 0.0633 0.0403

Fig. 4.10. A sample trajectory of the agent
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Fig. 4.11. Estimated p
(

ct|o′1:t
)

for different ct.
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does not evaluate these outputs explicitly, but rather minimizes a function which is
an upper bound to the distance between the output distributions. This makes the
presented approach efficient and permits applications that require large-scale stochas-
tic models. The method is straightforwardly applicable to normal MC compression if
the output probabilities are taken to be unit vectors.

The main result of the method is the fuzzy association matrix R which assigns
the states in the large original state space to the small state space in a probabilis-
tic way and is therefore a more general result compared to stochastic compression
methods that assign states in a crisp way (i.e. lumping). Based on R a lumping
can subsequently be performed by assigning each state of the original state space to
the state of the compressed state space it belongs to most. Such a procedure will
reduce the quality of the compressed model compared to the fuzzy compression, but
is more easily interpreted and its error can be evaluated a posteriori by comparing
the output distributions of the original and the lumped model. This is most easily
done by evaluating the upper bound suggested in this paper.

Stochastic compression of HMMs will be useful for a wide variety of applications
in different fields of the quantitative sciences. The following are examples of some
possible applications:

1. MC compression: The method is straightforwardly applicable to normal
MC compression if the output probabilities are taken to be unit vectors.

2. Compression of molecular dynamics in terms of experimental ob-

servables: The HMM compression method is an extension of MC compres-
sion in the sense that the property of observations are accounted for. As in
the toy example of Subsection 4.2, two metastable states can be merged when
they have similar observation probabilities. Therefore, our method can be ap-
plied to Markov models of molecular dynamics derived from simulations [28]
with an observation probability distribution that mimics the observable of an
experiment. In this way, effective models of MD as they appear to the ex-
perimental observer, can be computed. Subsequently, the essential stationary
and dynamical features of the output sequence observed in the experiment
can be interpreted in terms of the simulated structures that are encoded in
the uncompressed state space of the original HMM.

3. Reduced order estimation in signal processing: This problem arises
in many engineering fields, especially positioning, navigation and tracking.
In these areas, the large size of original target movement model will cause
difficulty for real-time estimation. The example of Subsection 4.3 shows that
the proposed compression method has an application potential for reduced
order estimator design.

But for the practical application of our methods, two problems still require inves-
tigation in the future. First, the HMMs are inferred from statistical data in many
practical cases, so the influence of the original model error on compression result
requires further study. Second, practical large-scale problems need a more efficient
algorithm, which will be designed based on further analyzing the objective function
of compressed model optimization.

Appendix A. Projected gradient algorithm.

Here we describe the PGA used in this paper so that it is self-contained (see
[6, 42] for more details).
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The optimization problem (3.26) can be formulated as

min f(x)
subject to:

x ∈ Ξ
(A.1)

where the vector x ∈ R
Nc(Nc+M+N) consists of elements of A, B, R, and Ξ denotes

the feasible set defined by the linear constraints in (3.26). The PGA is similar to
the gradient descent algorithms for unconstrained optimization except that the PGA
utilize the projection PΞ,

PΞ (x) = argmin
y∈Ξ

‖y − x‖2(A.2)

to make the solution feasible at each iteration.
The algorithm with initial solution x(0) can be stated as follows:
Let the numbers µPG ∈ (0, 1), γPG > 0 and a small enough number ǫPG > 0 be

given.
Step 1 Let α0 = 1 and k = 1.
Step 2 Compute the least nonnegative integer l such that αk = 4−l max {2αk−1, γPG}

satisfies

f
(

x(k) (αk)
)

≤ f
(

x(k)
)

+ µPG

(

x(k) (αk) − x(k)
)T

∇f
(

x(k)
)

where x(k) (αk) = PΞ

(

x(k) − αk∇f
(

x(k)
))

. Set x(k+1) = x(k) (αk).

Step 3 Terminate if
∥

∥x(k+1) − x(k)
∥

∥

2
≤ ǫPG, otherwise let k := k + 1 and go to Step

2.

Appendix B. Estimation of distribution algorithm.

For an optimization problem maxx∈Rn f (x), the EDA can be summarized by the
following algorithm:
Step 1 Randomly generate Pp feasible solutions D0 =

{

x1,0, . . . , xPp,0
}

. Let k = 1.

Step 2 Select Pse best solutions DS
k−1 =

{

y1,k, . . . , yPs,k
}

from Dk−1.

Step 3 Estimate an n-dimensional probability density function (pdf) pE (x) based
on DS

k−1.

Step 4 Sample Pp new solutions Dk =
{

x1,k, . . . , xPp,k
}

from pE (x).
Step 5 Return the best solution found so far if k = Kmax, otherwise let k := k + 1

and go to Step 2.
The main issue of implementing the EDA is how to estimate the accurate distribution
that can capture the structure of the selected solutions in Step 3. Here we assume
that pE (x) can be factorized according to

pE (x) =

n
∏

i=1

pN
(

xi|νi, σ
2
i

)

where pN
(

·|ν, σ2
)

denotes the pdf of the normal distribution with mean ν and variance

σ2, and parameters
{

νi, σ
2
i

}

can be estimated by the maximum likelihood method [7].

Appendix C. Agent movement model.

Let

Nb (x, y) = {(x′, y′) | |x′ − x| + |y′ − y| ≤ 1}(C.1)
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be the neighbor set of grid (x, y), and G = (V , E) be a graph model with vertex set

V = {(x, y) | (x, y) is not an obstacle grid}(C.2)

and edge set

E = {((x, y) , (x′, y′)) | (x′, y′) ∈ Nb (x, y) \ {(x, y)} , (x′, y′) , (x, y) ∈ V}(C.3)

From time t to t + 1,

(xt+1, yt+1) =

{

(xt, yt) , ut < 0.2
(

x′
t+1, y

′
t+1

)

, ut ≥ 0.8
(C.4)

where ut
iid
∼ U[0,1], i.e., the agent will stay in the same grid with probability 0.2. The

probability model of
(

x′
t+1, y

′
t+1

)

consists of the following two parts:
• Movement toward the exit:

(x′
t, y

′
t) | (xt, yt) ∼ U arg min

(x,y)∈Nb(xt,yt)

V (x,y)

where V (x, y) is the distance of the shortest path from (x, y) to the exit in
the graph G under the assumption that the weight of each edge is 1, and can
be calculated by the Dijkstra algorithm [8].

• Noise:

(

x′
t+1, y

′
t+1

)

| (x′
t, y

′
t, xt, yt) ∼ p

(

x′
t+1, y

′
t+1|x

′
t, y

′
t, xt, yt

)

where

p
(

x′
t+1, y

′
t+1|x

′
t, y

′
t, xt, yt

)

∝







2,
(

x′
t+1, y

′
t+1

)

= (x′
t, y

′
t)

1,
(

x′
t+1, y

′
t+1

)

∈ No\ {(x
′
t, y

′
t)}

0, otherwise

and

No = {(x, y) | (x − x′
t) (x′

t − xt) + (y − y′
t) (y′

t − yt) = 0}

∩Nb (x′
t, y

′
t) ∩ V

In other words, the agent tries to move along the direct path towards, but is disturbed
by some noise which causes it to make random side-steps.
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