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Vehicle Rotation Planning for Intercity Railways∗

Ralf Borndörfer∗∗ Markus Reuther∗∗ Thomas Schlechte∗∗
Steffen Weider∗∗

February 17, 2012

Abstract

This paper provides a generic formulation for rolling stock planning
problems in the context of intercity passenger traffic. The main con-
tributions are a graph theoretical model and a Mixed-Integer-Program-
ming formulation that integrate all main requirements of the consid-
ered Vehicle-Rotation-Planning problem (VRPP). We show that it is
possible to solve this model for real-world instances provided by our
industrial partner DB Fernverkehr AG using modern algorithms and
computers.

1 Introduction

Railway Vehicle-Rotation-Planning is the task to schedule vehicle resources,
also called rolling stock, in order to cover the trips of a given timetable by a
cost optimal set of vehicle rotations. The problem differs significantly from
application to application. We consider the case of long distance passenger
traffic, namely, the Strategic Vehicle-Rotation-Planning problem (VRPP) of
DB Fernverkehr AG (Deutsche Bahn AG [2009]), which is one of the largest
intercity railway companies in Europe.

The main challenge in the VRPP is to integrate the treatment of vehicle
composition, maintenance, and regularity :

Vehicle composition. The types of basic units of rail cars are called ve-
hicle groups. The set of vehicles of the same vehicle group can be seen as a
fleet. A timetabled trip can be operated by several alternative vehicle config-
urations. A vehicle configuration is a multiset of vehicle groups. It is part of
∗This work was funded by DB Fernverkehr AG.
∗∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Email mailto:[surname]@zib.de,

URL http://www.zib.de
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the VRPP to decide which vehicle configuration is used for which timetabled
and, moreover, for which deadhead trip.

Maintenance. A major problem in rolling stock rotation planning is that
rail vehicles must be maintained frequently. To ensure safety and robust-
ness of the rolling stock roster, many different maintenance rules have to be
obeyed. We focus on cumulative resource constraints with predefined time
or distance intervals, i.e., time or distance bounds. This means that one
has to sum up the resources (driven length or elapsed time) consumed by a
physical vehicle since the last maintenance. If the resource consumption is
going to exceed a bound of a maintenance constraint, a suitable maintenance
task has to be performed in order to replenish the resource.

Regularity. We focus on strategic rolling stock decisions. That is, we con-
sider a cyclic planning horizon over one week – called a standard week. The
structure of our input schedule is an almost periodic timetable. Only a part
of all given trips differ over the week days of the standard week. It is desir-
able to produce a regular rolling stock roster which is compact representable,
easy to communicate, and easy to operate, utilizing the periodicity of the
timetable. This objective is called regularity and is explicitly integrated in
our optimization model.

Each of these requirements is already complex in its own right. Moreover, it
is almost impossible to treat them sequentially, i.e., a step by step approach
easily produces infeasibilities and/or high costs.

The main contributions of this paper are a generic integrated problem de-
scription of rolling stock planning problems, a graph theoretical concept for
the VRPP, as well as a corresponding Mixed-Integer-Programming formula-
tion. We show that it is possible to solve the resulting model for instances
provided by our industrial partner DB Fernverkehr AG using modern algo-
rithms and computers in a reasonable amount of computation time.

The paper is organized as follows. Section 2 gives a literature overview of
the known approaches with an emphasis on the maintenance constraints.
Section 3 defines the considered problem from a mathematical point of view
by introducing a formal description of the VRPP. We embed the rolling stock
optimization problem of our industrial partner into our modelling frame in
Section 4. Section 5 presents our Integer-Programming approach to solve the
VRPP. Computational results for instances given by our industrial partner
DB Fernverkehr AG are presented in the final Section 6.
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2 Literature

Vehicle scheduling is extensively discussed in the literature, see Löbel [1997]
for a survey. Basic multi-commodity flow versions of the problems can nowa-
days be solved well. Advanced algorithmic approaches, such as Lagrangian
pricing, have been developped and it was shown that such methods are able
to solve models with up to 70 million arc variables. Current research con-
centrates on the integration of additonal aspects into the problem; this is
indispensible in a railway context. We survey here only the literature that
is relevant for this application.

The authors of Ahuja et al. [2005] present a Mixed-Integer-Programming
formulation for a locomotive scheduling problem. The model is solved by
a very large-scale neighborhood search technique but does not include any
maintenance constraints. Savings of over 400 locomotives resulting in over
one hundred million dollars annually are reported.

Ziarati et al. [1997] developed a large-scale non-linear Integer-Programming
formulation for the integrated optimization of locomotive schedules including
maintenance constraints. The proposed model is solved by a Dantzig-Wolfe
decomposition within a Branch-and-Bound framework.

Cordeau et al. [2001] proposed an Integer-Programming model based on a
Multi-Commodity-Flow formulation for the integrated assignment of loco-
motives and passenger cars to passenger trips. Maintenance constraints are
taken into account by using a time-expanded graph model. Various decom-
position techniques embedded in a Branch-and-Bound-and-Cut framework
are utilized to solve the problem.

A three stage heuristic approach to incorporate maintenance tasks in pre-
computed rolling stock rosters is described in Anderegg et al. [2003].

Furthermore two Integer-Programming formulations which can be used to
post-optimize rolling stock rosters to incorporate maintenance tasks with
very detailed models can be found in Maróti & Kroon [2005] and Maróti &
Kroon [2007].

Constraints similar as in vehicle rotation planning come up in related prob-
lems as well. In Duty-Rostering problems (especially for public transport
companies) there are several constraints on the maximal working time per
week and the maximal number of successive working days of the drivers,
see Borndörfer et al. [2009]. These constraints are very similar to the mainte-
nance constraints in the VRPP. Behrendt introduced several Mixed-Integer-
Programming formulations for the Duty-Rostering Problem in Behrendt
[2008] including constraints on cumulative resources, e.g., working time. The
author of Behrendt [2008] proposed an integrated model (page 24) for the
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optimization of duty rosters under working time constraints. This model
is an integration of a binary and a continuous flow modeling the rostering
and resources, respectively. The possibility to use this model to solve real
world problems was evaluated on data sets from public transport companies
of Santiago de Chile and Potsdam in 2008. We will present an adaption of
this model for the VRPP.

An alternative "Kanalmodell" is described by Uffmann in her diploma the-
sis Uffmann [2010]. This model is a transformation of the assignment prob-
lem. It uses the structure of the objective function,i.e., all possible assign-
ments within a single station are separately considered. This is done by
introducing a so called "Kanal" (engl. channel) which is a kind of cyclic
time-line for each station. The transformation is only valid if the objective
function satisfies several conditions and has the goal to reduce the num-
ber of variables to be considered. A concept for integrating maintenance
constraints in this model in an exact way is not provided.

Our adaptation of the formulation for the maintenance requirements pro-
posed in Behrendt [2008] is mathematically equivalent to the model devel-
oped independently in Giacco et al. [2011]. The authors of Giacco et al.
[2011] reported very promising preliminary computational results for scenar-
ios of an Italian railway company.

Unlike Giacco et al. [2011], we do not assume that the same timetable is
repeated every day. Further we do not use sub-tour elimination constraints
in our problem specification. In Giacco et al. [2011] sub-tour elimination
is done by the approach proposed in Miller et al. [1960] which can also be
combined with our model. In addition our objective function is directly
related to the cost of a rolling stock roster, in particular it does incorporate
deadhead costs and real vehicle cost.

Our previous paper Borndörfer et al. [2011] shows how vehicle composition
and regularity aspects can be integrated in a very compact hypergraph based
Integer-Programming formulation. The model of this paper is a further
development of this work in order to handle maintenance constraints.

3 The Vehicle-Rotation-Planning Problem

In this section we will introduce the VRPP using a graph theoretical descrip-
tion. We start with a formal description. Afterwards we will describe how
the VRPP can be instantiated and interpreted for intercity railway planning
and we will explain some technical aspects.

First, we define the main technical sets to provide a relation between the
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graph theoretical definitions and the real-world problem. We use the follow-
ing terminology.

The set of timetabled passenger trips is denoted by T . In a solution of the
VRPP one has to perform maintenance tasks on vehicles. Let M be the
set of all possible maintenance tasks. A service s is a non-empty set of
maintenance tasks, i.e., s ∈ 2M \ {∅} =: S. We say that s ∈ S implements
m ∈M if m ∈ s.

The Vehicle-Rotation-Planning problem integrates three main aspects, na-
mely vehicle composition, regularity, and maintenance. To express the spe-
cific settings clear, and exact, we define the problem in terms of a hypergraph,
i.e., a graph which contains standard arcs as well as hyperarcs. From a high
level point of view, one could say that the standard arcs model what is pos-
sible to do for physical vehicles while the hyperarcs model what is possible
to decide for the VRPP.

Definition 1 (VRPP hypergraph) Let V be a set of nodes, S be a set of
services, and let A ⊆ (V ∪ S)2 be a set of directed arcs. We define a set
A ⊆ 2A, called hyperarcs. The VRPP hypergraph is denoted by G = (V ∪
S,A,A).

In contrast to most of the hypergraph literature, it is convenient in our setting
to conceive a hyperarc as a set of standard arcs. Namely, the hypergraph G
can then be seen as a standard directed graph (V ∪ S,A) extended by a set
of hyperarcs A.

A node v ∈ V of G represents the departure or arrival of a physical vehicle
which operates a timetabled trip of T . A node v ∈ S represents a service,
i.e., a set of maintenance tasks.

We say that the arc a = (u, v) operates a trip t ∈ T if u ∈ V represents the
departure of t and v ∈ V represents the arrival of t. Therefore the arcs of G
model how vehicles can operate the timetable, how they can move between
trips, and how they can be maintained.

A hyperarc a ∈ A is a set of arcs of A, i.e., a ⊆ A. We say that the hyperarc
a ∈ A covers t ∈ T , if each arc a ∈ a ⊆ A operates t.

Definition 2 (maintenance constraint) A maintenance constraint l is rep-
resented by a resource function rl : S ∪ A 7→ Q+, a resource upper bound
Ul ∈ Q+, and a set of maintenance tasks ml ⊆ M . We say that a main-
tenance task of ml must be performed to reset the resource rl to fulfill the
bound Ul.

Definition 3 (feasible path) A feasible path P ⊆ A in G w.r.t. the mainte-
nance constraint l is a simple path starting and ending at nodes of S (which
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implement a appropriate maintenance task of ml ⊆ L) resetting the resource
of l such that:

∑
S(P )

rl(v) +
∑
a∈P

rl(a) ≤ Ul. (1)

The inequality (1) states that the sum of all consumed resources on a feasible
path P has to be smaller then or equal to the bound of a maintenance
constraint. Note that even a service s ∈ S(P ) ⊂ S can consume resources if
it does not implement a maintenance task resetting the constraint.

Definition 4 (feasible rotation) A feasible rotation w.r.t. the maintenance
constraint l is a cycle C ⊆ A such that each node covered by C is contained
in a feasible path w.r.t. l.

Performing a maintenance tasks consumes some commodities, i.e., crew,
machines, and infrastructure. Those commodities have usually a limited
availability.

Definition 5 (capacity constraint) A capacity constraint b is represented by
a resource function rb : A 7→ Q+ and a capacity bound Ub ∈ Q+. The set
of all capacity constraints is denoted by B. We say that the set of hyperarcs
A0 ⊆ A fulfills the capacity constraint b ∈ B if

∑
a∈A0

rb ≤ Ub.

Now we have defined all needed terms to state the problem.

Definition 6 (Vehicle-Rotation-Planning Problem (VRPP))

Given a VRPP hypergraph G = (V ∪ S,A,A) with a cost function c : A 7→
Q+, a set of maintenance constraints L, and a set of capacity constraints B.
The VRPP is to find a cost minimal set of hyperarcs A0 ⊆ A such that:

• Each timetabled trip t ∈ T is covered by exactly one hyperarc a ∈ A0.

• The set
⋃

a∈A0
a is a set of feasible rotations w.r.t. all maintenance

constraints of L.

• The set A0 fulfills all capacity constraints of B.

Let t ∈ T be a trip. We define the set of all hyperarcs covering t as A(t) :=
{a ∈ A | a covers t}.

If we assume that all arcs of the set A have cardinality one, we call the
resulting problem the non-hyper relaxation of the VRPP and if we assume
that the VRPP does not have any maintenance constraints and also does
not have any capacity constraints, we call the relaxed problem the non-
maintenance relaxation of the VRPP.
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If we consider the non-hyper relaxation which is also a non-maintenance re-
laxation of the VRPP, the problem reduces to an Integer Multi-Commodity-
Flow problem, which is known to be NP-hard, see Löbel [1997]. In this
reduction the commodities are represented by the sets A(t). Therefore, the
VRPP is also an NP-hard combinatorial optimization problem. In addition,
if we assume that each set A(t) has cardinality one, the problem reduces to
the standard assignment problem. It should also be mentioned that the non-
hyper relaxation of the VRPP with exactly one maintenance constraint is
closely related to a variant of the Vehicle-Routing-Problem, see Crevier et al.
[2007].

4 The VRPP for intercity railway planning

In this section we give some motivation to explain how our formalism in-
troduced in Section 3 is related to a real-world instance of the VRPP for
intercity railway planning w.r.t. the main requirements as vehicle composi-
tion, regularity, and maintenance.

4.1 Vehicle composition

As introduced in Section 1 the types of basic vehicle units are called vehicle
groups. A vehicle group can be seen as a fleet.

Definition 7 (vehicle problem data) Let F be the set of vehicle groups and
C be the set of vehicle configurations. A vehicle configuration c ∈ C is a
multiset of vehicle groups of F . The set C(t) ⊆ C denotes the set of feasible
vehicle configurations to cover the timetabled trip t ∈ T .

The relation of vehicle groups and vehicle configurations plays an important
role in intercity planning. This is because rail vehicles can be coupled to-
gether. In intercity problems even on the fly. This means that no technical
equipment or crew is needed for a coupling. There exist vehicle groups for
which the coupling time does not exceed ten minutes. Coupling activities
create a huge number of degrees of freedom in intercity planning.

On the other hand, there are a lot of technical rules regarding to this coupling
activities, e.g., rules for the position of vehicles in a configuration. Moreover
there are rules for the orientation of vehicles in a configuration, namely there
are two possible directed orientations of physical vehicles. An orientation of
a vehicle can be determined by considering the direction of movement of the
vehicle on a track. In intercity planning these orientations are characterized
by the alignment of the first-class carriages. For some stations it is desired
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Figure 1: Hypergraph model.

that first-class carriage arrives or departs at special parts of the passenger
platform.

Our model is directly based on decisions for coupled vehicles and thus it is
able to handle all technical requirements in an integrated manner. This pa-
per is not about detailed position and orientation requirements for intercity
planning. We only wanted to mention that such rules exist and have to be
integrated in a decision support system for real-world railway applications.

Figure 1 shows how vehicle groups and vehicle configurations are related
and how they are modeled in the VRPP. The picture shows three timetabled
trips t1, t2, t3 ∈ T . All red and blue circles are nodes of the node set V of
the VRPP hypergraph G = (V,A,A), i.e., departures or arrivals of physical
vehicles of the three timetabled trips. The set of services S as well as the set
of standard arcs A are not illustrated in this picture, i.e., it only shows the
decisions of the VRPP.

The colors of the circles indicate two vehicle groups, i.e., two fleets – a red
and a blue one. As one can imagine, in intercity rotation planning it is not
allowed to connect nodes of different vehicle groups in the VRPP hypergraph
and therefore this picture illustrates also the reduction of the VRPP to an
Integer Multi-Commodity-Flow problem which was described in Section 3.
Here the vehicle groups are the commodities.

The hyperarcs a1, a2, a3, a4 ∈ A form the set A(t1), i.e., the set of alternative
hyperarcs which can be used to cover the timetabled trip t1, i.e., A(t1)
represents the set C(t1) of feasible vehicle configurations to operate t1. From
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a practical point of view this can be seen as follows: It is feasible to cover
t1 by a single vehicle of the red or blue fleet, see arcs a1 and a2. But it
is also feasible to haul up to two vehicles by operating t1, see arcs a3 and
a4. As mentioned above, the position and orientation of vehicles in vehicle
configurations must be also taken into account. This can be easily done
by extending this approach, i.e., declaring the nodes of G as states w.r.t.
position and orientation of vehicles at departures and arrivals of trips. But
all this hyper-detail-rocket-modeling can only be done at the expense of a
growth of the VRPP hypergraph.

While the arcs a1, a2, . . . , a11 model how the trips can be covered, the arcs
a12, a13, . . . , a17 model how the trips can be connected to build a set of feasible
rotations. Arc a12 ∈ A implements a coupling activity after the arrival of t1.
The hyperarcs a13, a14, a15, a16 ∈ A model connections between trips without
coupling activities.

As defined in Section 3, each hyperarc a1, a2, . . . , a17 is a set of arcs of A. This
implies that the arcs a1, a2, a5, a6, a9, a11, a12, a15, a17 are sets of cardinality
one of the arc set A, while the arcs a3, a7, a10, a13, a16 are of cardinality two,
and the arcs a4, a8, a14 are of cardinality three. Note that it is important
for the VRPP that hyperarcs are defined as sets of standard directed arcs
because the set of rotations must be well defined for the exact treatment of
the maintenance requirements, which we consider in the next sub-section.

4.2 Maintenance constraints

To model these requirements, we consider each possible path of length two
of the form {(v, s), (s, w)} ⊆ A with s ∈ S and v, w ∈ V , called service
path, as a single hyperarc a = {(v, s), (s, w)} ∈ A. We call a a replenishment
arc. Because we assume that our objective function is non-negative, we do
not have to consider any other structures where service nodes appear, e.g.,
cycles, paths, or loops of service nodes.

. . .

v ∈ V

s ∈ S

w ∈ V

. . .
(v, s) ∈ A(s, w) ∈ A

avw = {(v, w)} ∈ A

avsw = {(v, s), (s, w)} ∈ A

Figure 2: Service path representation.

Figure 2 illustrates the treatment of service paths in our VRPP hypergraph.
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The hyperarc avw models a direct connection of the arrival node v ∈ V and
the departure node w ∈ V . These connections can include deadhead trips
(i.e., empty rides) if the involved locations are different. The service path
{(v, s), (s, w)} ⊆ A is represented by the hyperarc avsw ∈ A. It models that
a vehicle configuration arrives at v, traverses all maintenance tasks that are
implemented in the service s ∈ S, and finally departs on w. Also avsw can
include several deadhead trips. Note that the consideration of a service path
as a single arc is necessary for the construction of the VRPP hypergraph for
intercity railway planning, because it can only be decided if an arc exists or
not by evaluating technical rules w.r.t. to a whole service path.

Since a service is an element of the power-set of all maintenance tasks the
number of parallel hyperarcs representing service paths can grow very ex-
cessive. Especially in case of different locations of the maintenance tasks on
a service path or if the number of maintenance constraints is large, the set
of parallel service paths must be considered implicitly. In addition, if the
detailed schedule of the maintenance tasks on a service path is important,
the number of service paths to be considered does also increase significantly.

4.3 Regularity

As mentioned in Section 1, we focus in this paper on a cyclic planning hori-
zon over one standard week. The structure of the given timetable is almost
periodic. Only few trips of the timetable differ over the single week days of
the standard week. In view of this structure, it is desirable to construct a
vehicle rotation plan which utilizes this periodicity. We call such a plan a
regular vehicle rotation plan.

Imagine that we are given a timetable for that each trip repeats every day in
the standard week as it was considered in Giacco et al. [2011]. We call such
a timetable a periodic timetable and we call a set of repeating trips in the
standard week a train. The set of trains is denoted by T. A periodic timetable
can also be considered as input data for the VRPP. But in this case the set
of trains T can be viewed as the set of trips T (this is not quite accurate
w.r.t. maintenance constraints). In case of a standard week with seven week
days, this reinterpretation leads to a VRPP hypergraph where the number
of nodes is reduced by a divisor of seven. Since an instance of the VRPP
hypergraph is very dense (almost complete), the number of arcs reduces by a
divisor of 49. A hyperarc in the VRPP hypergraph for a periodic timetable
can be seen as a set of hyperarcs if the trips are individually considered.
This motivates our approach for integrating regularity aspects to the VRPP.
We easily construct a set of hyperarcs which are sets of other (individual)
hyperarcs.
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a7
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t1 ∈ T t2 ∈ T

Figure 3: Hyperarc model for regularity.

Figure 3 illustrates our regularity approach. The red circles for train t1 ∈ T
can be seen as equal arrivals of each trip t ∈ t1 ⊆ T . Equal means equal
arrival locations and equal points in time in the standard week. The set of
circles for train t2 ∈ T represents equal departures of all trips of t2. The
individual hyperarcs a1, a2, . . . , a7 may not be simultaneously chosen in a
solution of the VRPP. To express that this is desired, we create the hyperarc
ar ∈ A as ar =

⋃7
i=1 ai ⊆ A. From an applied point of view, the purpose

of this regularity policy is to create rolling stock plans that are compactly
representable, easy to communicate, and easy to operate. A more detailed
description of the technical aspects of train composition and regularity can
be found in Borndörfer et al. [2011].

5 A Mixed-Integer-Programming approach

Let G = (V ∪ S,A,A) be a given VRPP hypergraph with a cost function
c : A 7→ Q+, c(a) := ca as introduced in Section 3. Further, let L be a set
of maintenance constraints with a resource function rl : S ∪ A 7→ Q+ and a
resource upper bound Ul ∈ Q+ for each constraint l ∈ L. In addition, let B
be a set of capacity constriants with a resource functions rb : A 7→ Q+ and
capacity bounds Ub ∈ Q+.

Let t ∈ T be a trip and a ∈ A be a set of standard arcs. We define the set
A(t) of arcs covering t and the set A(a) of hyperarcs of a as:
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A(t) := {a ∈ A | a covers t},
A(a) := {a ∈ A | a ∈ a}.

W.l.o.g. we assume that A(a) 6= ∅ for each arc a ∈ A. If A(a) = ∅, the
standard arc a can never be contained in a feasible set of rotations.

For a node v ∈ V we define sets of incoming and outgoing (hyper-) arcs of v
in the VRPP hypergraph G as:

A(v)in := {a ∈ A | ∃ a ∈ a : a = (u, v)},
A(v)in := {(u, v) ∈ A},
A(v)out := {a ∈ A | ∃ a ∈ a : a = (v, w)},
A(v)out := {(v, w) ∈ A}.

We introduce a binary decision variable xa for each hyperarc a ∈ A. In
addition we define a non-negative continuous variable wl

a for each standard
arc a ∈ A and each maintenance constraint l ∈ L fulfilling the upper bound
Ul.

Let a ∈ A be a hyperarc and a = (u, v) ∈ a a standard arc. To permit simple
notation we define the resource consumption rl(v) := 0 for a node v ∈ V
and we introduce the symbol rvl (a):

rvl (a) := rl( (u, v) ∈ a ) + rl(v). (2)

The symbol rvl (a) states the sum of the resource consumption of the from v
outgoing standard arc (u, v) ∈ a and the resource consumption of the node v.
W.l.o.g. we can assume that the standard arc (u, v) is unique in a, because
we the set of standard arcs of a hyperarc must forms a perfect matching
between the tail and head nodes of this arc set. If this is not the case, there
must be a node with two or more incoming/outgoing standard arcs and this
can not be contained in a set of rotations.

5.1 Mixed-Integer-Program

The VRPP can now be stated as a Mixed-Integer-Program as follows:
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min
∑
a∈A

caxa, (objective)

∑
a∈A(t)

xa = 1 ∀t ∈ T, (3)

∑
a∈A(v)in

xa =
∑

a∈A(v)out

xa ∀v ∈ V, (4)

wl
a ≤

∑
a∈A(a)

Ul xa ∀a ∈ A, l ∈ L, (5)

∑
a∈A(v)out

wl
a −

∑
a∈A(v)in

wl
a =

∑
a∈A(v)out

rvl (a)xa ∀v ∈ V, l ∈ L, (6)

∑
a∈A

rb(a)xa ≤ Ub ∀b ∈ B, (7)

xa ∈ {0, 1} ∀a ∈ A, (8)

wl
a ∈ [0, Ul] ⊂ Q+ ∀a ∈ A, l ∈ L. (9)

The linear (objective) function minimizes the total cost and is directly related
to the cost of operating a timetable. For each trip t ∈ T the covering
constraints (3) assign exactly one hyperarc of A(t) to t. The equalities (4)
are flow conservation constraints for each node v ∈ V that imply the set of
rotations in the arc set A. The subset of constraints (3), (4), and (8) state
the non-maintenance relaxation of the VRPP. This can also be seen as a
hyper-assignment as it was considered in Borndörfer et al. [2011].

The constraints (5) and (6) ensure that the hyper-assignment is feasible w.r.t.
to all maintenance constraints l ∈ L.

Let the x-variables be fixed such that they imply a set of rotations, i.e., a
set of cycles. The constraints (5) imply that a wl

a can only be non-zero if
a corresponding hyperarc of A consists of a standard arc which corresponds
to a. Therefore the w-flow traverses the same set of cycles that the x-flow
implies. Let v ∈ V be a node and let l ∈ L be a maintenance constraint.
Suppose that aout ∈ A(v)out, ain ∈ A(v)in, and a ∈ A(v)out are the in v
outgoing and incoming (hyper-) arcs in the considered fixed x. Since xa = 1
equation (6) for v and l reduces to:

wl
aout = wl

ain + rvl (a). (10)

Equation (10) states that the flow value of an arc, namely wl
aout , is always

the sum of the flow value of the predecessor arc wl
ain and the actual resource
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consumption rvl (a). We call (6) resource flow constraints. Note that there
are no resource flow constraints for service nodes, such that the cumulative
flow for each constraint is replenished by arcs that implement appropriate
maintenance tasks.

The inequalities (7) are the canonical formulation of the capacity constriants.

5.2 Solving the VRPP

In this sub-section we describe the current state of our algorithm to solve
the VRPP. Currently, this algorithm is under development and we therefore
give a short high-level description at this time.

Since the number of variables and constraints is very large, i.e., one variable
for each hyperarc and one constraint for each standard arc (this is the dom-
inating part), we shrink the set of active variables by a column generation
algorithm. This algorithm is quite simple. The pricing problem is to decide
whether there exists a hyperarc with negative reduced cost. Note that we
only have to price x-variables, if we add the corresponding w-variables si-
multaneously. More precisely, if we found a hyperarc a ∈ A with negative
reduced cost to be added to the active model, we add also all wa with a ∈ a.
This is correct because constraints (5) state that the w-variables can only
be active if the corresponding x-variables are active. Moreover we add the
coupling constraints (5) dynamically, i.e., if the corresponding w-variable is
not in the active model, we do not have to consider the corresponding con-
straint. Which hyperarcs are priced during an iteration can be summarized
by: The best (w.r.t. the reduced cost) n ∈ N+ outgoing hyperarcs for each
node. This simple strategic provides the ability to solve the LP-relaxation
within a Branch-and-Bound search tree in a reasonable amount of time. We
do not price any variables in the nodes of the search tree.

After we generated a set of columns and constraints such that no more arcs
with negative reduced cost can be found we try to fix the hyperarcs which
cover the timetabled trips, i.e., we declare all variables for the columns⋃

t∈T A(t) to be integer feasible. This is done by the Rapid-Branching
method, see Weider [2007], Borndörfer et al. [2010], and Borndörfer et al.
[2011]. After that algorithm is finished, it is fixed which hyperarc covers
which timetabled trip and this decisions are fixed during the whole algo-
rithm. An Integer-Multi-Commodity-Flow problem would be solved at this
state.

To compute a primal upper bound we use a local search heuristic, which
starts with the optimal solution of the non-maintenance relaxation of the
active model and aims to find an integer feasible solution.
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After the column generation, Rapid-Branching, and primal heuristic we use
CPLEX 12.2 to solve the generated model so far, i.e., a restricted variant of
the overall model, as a static MIP. If the local search heuristic succeeded,
we provide the primal solution to CPLEX. By means of this approach we can
provide valid global lower and upper bounds for the value of the objective
function of a optimal solution.

6 Computational study

In this section we provide a computational study for real-world instances
of our industrial partner DB Fernverkehr AG. The considered instances
include scenarios for the currently operated high speed intercity vehicles
(ICE) as well as studies for future rolling stock fleets. All our computa-
tions were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20GHz, 12MB cache, and 48GB of RAM. CPLEX Barrier as LP-
solver was running with 4 threads as well as the CPLEX MIP-solver.

Table 1 summarizes characteristics of our instances. The second column
(|T|) states the number of trains, which result in the number of trips (|T |,
column 3) in the considered timetable. The next two columns indicate how
many vehicle configurations C and vehicle groups F (fleets) are given. The
number of maintenance constraints that we consider is denoted in column
|L| and the last column states the number of capacity constraints.

Table 2 gives our computational results including some facts about the VRPP
hypergraph. The overall number of hyperarcs is denoted in column |A|, while
the columns |AC |, |AS |, and |Areg| state the number of hyperarcs a ∈ A with
|a| > 1 to model vehicle composition, the number of replenishment arcs, and
the number of hyperarcs that where constructed to model the regularity
requirements. The column v is the number of physical vehicles that are
needed to operate the given timetable in the computed solution. The values
in column gap are defined by the difference between the objective value of
the best integer feasible solution cUB and the objective value of the best lower
bound cLB as 100 · (cUB−cLB)/(cUB+10−10). Finally, we denote the total running
time in CPU seconds.

A zero in column |L| of Table 1 indicates an instance of the non-maintenance
relaxation of the VRPP. All other instances include one maintenance con-
straint. If the value of the column |C| is equal to the value of the column |F |
in Table 1 the instance has no train composition aspects. In addition, if there
are no regularity aspects, i.e., if |Areg| = 0 in Table 2, the resulting prob-
lem is an instance of the non-hyper relaxation of the VRPP. Therefore the
instances vrp14, vrp16, vrp18, vrp20, vrp23, vrp25, vrp27, vrp29, vrp31,
vrp33, vrp35, and vrp37 are standard Integer Multi-Commodity-Flow prob-
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lems of large scale. Instances of real practical interest are the instances vrp38
– vrp69. The results show the expected behavior of algorithms that try to
solve the VRPP. Train composition and regularity aspects are not too hard
to tackle. While the maintenance constraints and moreover capacity con-
straints increase the complexity of the VRPP significantly. As one can see,
we have to do further development of our algorithm, see instances vrp63,
vrp61, vrp52, and vrp50.

Our computational study demonstrate that our solution approach can be
used to produce high quality solutions for large-scale Vehicle-Rotation-Plan-
ning problems.
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instance |T| |T | |C| |F | |L| |B|

vrp01 126 617 1 1 1 0
vrp02 126 617 1 1 1 0
vrp03 126 617 1 1 1 0
vrp04 126 617 1 1 0 0
vrp05 288 884 1 1 0 0
vrp06 165 884 1 1 1 0
vrp07 126 617 1 1 1 0
vrp08 43 267 1 1 0 0
vrp09 43 267 1 1 1 0
vrp10 61 310 1 1 1 0
vrp11 61 310 1 1 1 0
vrp12 288 2031 6 4 1 0
vrp13 298 1443 6 6 0 0
vrp14 298 1443 6 6 0 0
vrp15 298 1443 24 24 0 0
vrp16 298 1443 24 24 0 0
vrp17 298 1443 2 2 0 0
vrp18 298 1443 2 2 0 0
vrp19 298 1443 8 8 0 0
vrp20 298 1443 8 8 0 0
vrp21 298 1443 18 18 1 0
vrp22 298 1443 18 18 0 0
vrp23 298 1443 18 18 0 0
vrp24 298 1443 8 8 0 0
vrp25 298 1443 8 8 0 0
vrp26 298 1443 7 7 0 0
vrp27 298 1443 7 7 0 0
vrp28 443 3101 16 16 0 0
vrp29 443 3101 16 16 0 0
vrp30 443 3101 16 16 0 0
vrp31 443 3101 16 16 0 0
vrp32 252 406 1 1 0 0
vrp33 252 406 1 1 0 0
vrp34 252 406 1 1 1 0
vrp35 443 3101 24 24 0 0
vrp36 443 3101 24 24 0 0
vrp37 443 3101 24 24 0 0
vrp38 19 278 4 2 1 0
vrp39 19 278 4 2 1 0
vrp40 19 278 2 1 1 0
vrp41 11 168 4 2 1 0
vrp42 8 140 3 2 1 0
vrp43 19 278 4 2 0 0
vrp44 61 310 1 1 1 56
vrp45 61 310 1 1 1 0
vrp46 61 310 1 1 1 56
vrp47 61 310 1 1 1 56
vrp48 61 310 1 1 1 56
vrp49 288 2033 6 4 1 70
vrp50 288 2033 6 4 1 70
vrp51 137 1426 6 3 1 147
vrp52 137 1426 6 3 1 147
vrp53 137 1420 6 3 1 0
vrp54 137 1113 7 3 1 315
vrp55 19 270 4 2 1 315
vrp56 19 270 2 1 1 0
vrp57 11 174 4 2 1 315
vrp58 8 146 3 2 1 315
vrp59 137 1113 7 3 1 0
vrp60 19 270 4 2 1 0
vrp61 556 4194 19 10 1 318
vrp62 135 1048 6 3 1 318
vrp63 559 4194 19 10 1 343
vrp64 19 270 4 2 1 84
vrp65 19 270 4 2 1 84
vrp66 19 270 4 2 1 84
vrp67 19 270 4 2 1 91
vrp68 19 270 4 2 1 84
vrp69 137 1113 7 3 1 294

Table 1: Table of VRPP instances of intercity railway planning.
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instance |A| |AC | |AS | |Areg| v gap in % run time [sec]

vrp01 582086 0 152914 58854 39 2.96 179670.64
vrp02 563309 0 134137 58854 39 2.85 179643.36
vrp03 574530 0 145358 58854 39 3.22 179646.88
vrp04 429172 0 0 58854 39 0.87 340.76
vrp05 878234 0 0 121339 53 0.75 858.88
vrp06 1105810 0 227576 121339 53 1.35 179636.74
vrp07 563309 0 134137 58854 39 1.43 179677.37
vrp08 80149 0 0 11245 16 0.17 56.29
vrp09 103308 0 23159 11245 16 0.77 249.47
vrp10 130222 0 21007 15249 17 0.32 236.20
vrp11 130258 0 20778 15290 17 0.99 332.66
vrp12 2264050 32794 576566 118074 104 0.72 10114.59
vrp13 10706858 0 0 1614334 117 0.67 21429.34
vrp14 9092524 0 0 0 117 0.65 11332.22
vrp15 34414350 0 0 5191325 116 0.76 34712.70
vrp16 29223025 0 0 0 116 0.63 26242.76
vrp17 4327786 0 0 634147 116 0.00 6032.71
vrp18 3693639 0 0 0 116 0.00 3936.92
vrp19 14016082 0 0 2059788 116 0.00 23229.05
vrp20 11956294 0 0 0 116 0.00 10569.47
vrp21 9843154 0 1768479 1217166 117 1.59 179602.63
vrp22 8078051 0 0 1217626 117 0.33 17438.61
vrp23 6860425 0 0 0 117 0.29 6723.69
vrp24 3932241 0 0 590485 117 0.30 4917.49
vrp25 3341756 0 0 0 117 0.01 3017.92
vrp26 3312613 0 0 486636 117 0.01 4434.07
vrp27 2825977 0 0 0 117 0.00 3335.84
vrp28 24996128 0 0 3124516 187 0.47 11560.39
vrp29 21871612 0 0 0 0 0.00 231.70
vrp30 10314680 0 0 1289335 190 0.00 3493.52
vrp31 9025345 0 0 0 0 0.00 116.24
vrp32 167231 0 0 8434 127 0.00 314.45
vrp33 158797 0 0 0 127 0.00 276.71
vrp34 240130 0 73000 8432 127 0.52 1141.47
vrp35 52823198 0 0 0 189 1.13 179602.12
vrp36 24278350 0 0 3498899 192 0.86 29996.07
vrp37 20779451 0 0 0 191 0.55 20786.69
vrp38 63639 1043 16082 2237 13 0.39 57.11
vrp39 63639 1043 16082 2237 13 0.29 51.74
vrp40 122158 1260 31163 2268 13 0.85 92.50
vrp41 22150 329 5462 669 9 0.87 35.36
vrp42 17301 329 5182 393 7 0.30 34.57
vrp43 47733 1043 0 2237 14 0.04 29.49
vrp44 130222 0 21007 15249 17 0.78 83751.80
vrp45 129988 0 20677 15266 17 0.36 220.39
vrp46 129988 0 20677 15266 17 0.89 51523.46
vrp47 130222 0 21007 15249 17 0.49 23812.34
vrp48 129988 0 20677 15266 17 0.45 22052.07
vrp49 2258455 32518 575472 117978 105 3.44 179571.16
vrp50 2258455 32518 575472 117978 105 5.14 179623.26
vrp51 1864911 22806 434878 67647 66 1.72 179550.38
vrp52 1864911 22806 434878 67647 66 6.05 179548.87
vrp53 1865198 22807 435163 67646 66 0.75 10444.74
vrp54 1446648 22621 307601 67398 64 5.69 179565.14
vrp55 52180 861 11793 2209 13 0.29 48.61
vrp56 94924 1042 22421 2234 13 0.29 84.98
vrp57 19491 261 4582 659 8 0.35 27.31
vrp58 15171 261 4369 383 7 0.39 35.45
vrp59 1465441 22804 321943 67570 65 0.79 7044.00
vrp60 52180 861 11793 2209 13 0.29 52.20
vrp61 6273258 178259 1647562 243456 230 7.18 179617.94
vrp62 2486160 119495 743222 51632 60 1.04 179541.27
vrp63 6195808 179713 1560894 244117 228 9.24 179598.80
vrp64 51882 851 11708 2198 13 0.39 49.64
vrp65 51882 851 11708 2198 13 0.39 46.48
vrp66 51882 851 11708 2198 13 0.39 58.21
vrp67 51882 851 11708 2198 13 0.39 52.91
vrp68 51882 851 11708 2198 13 0.39 53.27
vrp69 1446381 22611 307591 67377 64 2.09 179545.53

Table 2: Computational results for VRPP instances.
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