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Abstract

This paper deals with the mathematical modeling and simulation of crystal growth pro-
cesses by the so-called Czochralski method and related methods, which are important
industrial processes to grow large bulk single crystals of semiconductor materials such as,
e. g., gallium arsenide (GaAs) or silicon (Si) from the melt. In particular, we investigate a
recently developed technology in which traveling magnetic fields are applied in order to
control the behavior of the turbulent melt flow. Since numerous different physical effects
like electromagnetic fields, turbulent melt flows, high temperatures, heat transfer via radi-
ation, etc., play an important role in the process, the corresponding mathematical model
leads to an extremely difficult system of initial-boundary value problems for nonlinearly
coupled partial differential equations. In this paper, we describe a mathematical model that
is under use for the simulation of real-life growth scenarios, and we give an overview of
mathematical results and numerical simulations that have been obtained for it in recent
years.

1 Introduction

Large bulk single crystals of semiconducting materials like, e. g., gallium arsenide (GaAs), ger-
manium (Ge), and silicon (Si), form an indispensable prerequisite for modern electronic and
optical technologies. Entire industries depend on the availability of semiconductor single crys-
tals. It is therefore of utmost technological importance to develop and improve effective and
cheap industrial growth methods.

The most important industrial techniques for growing bulk semiconductor are the Czochralski
growth(Cz), the vapor pressure controlled Czochralski growth (VCz), and the liquid encapsu-
lated Czochralski growth (LEC). In this paper, we will use the notion Czochralski type to describe
any of these growth processes and related ones. In the growth processes of Czochralski type,
a rotating crystal seed is dipped into the molten semiconductor material, which is contained in
a crucible that rotates in the opposite direction. The seed is then slowly pulled out of the melt,
and a single crystal solidifies.

A typical growth apparatus is depicted in Fig. 1; here, the left side shows the geometry, while
the right side shows the temperature distribution during a growth run calculated with the soft-
ware package WIAS-HiTNIHS developed at the Weierstrass Institute for Applied Analysis

1This papers combines results that were derived in project C9 of the DFG Research Center MATHEON in Berlin
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and Stochastics (WIAS) in Berlin.

For many growth processes of Czochralski type, the melt flow is turbulent, which creates the
problem that impurities can find their way into the crystal, lowering its quality. Also, crystal grow-
ers want the solid-liquid interface to have a certain shape, and the temperature oscillations
below the crystal should have small amplitudes and not too small frequencies.
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Figure 1: Left-hand side: Configuration
of Czochralski furnace; right-hand side:
Temp. field computed by WIAS-HiTNIHS.
For details, see section 4.

Since the melt is electrically conducting, electro-
magnetic fields can play the role of a control, since
a Lorentz force is induced into the melt in their
presence. In the past, time-dependent magnetic
fields were successfully applied to improve crys-
tal growth processes from the melt. Typically, the
magnetic fields were generated by magnets or in-
duction coils placed outside of the growth appara-
tus. However, with this kind of configuration it re-
quires much energy to produce a magnetic field
of sufficient magnitude in the melt, especially in
cases when the thick walls of the pressure cham-
ber shield the magnetic field significantly (e. g., in
the growth of III–V compounds with the LEC or

VCz processes). In the project KRISTM̃AG
R©

, an
internal heater-magnet module (HMM) has been
developed, which consists of several coils that op-
erate as a resistance heater while simultaneously
generating a traveling magnetic field (TMF). It was
demonstrated that this HMM can produce appro-
priate magnetic fields in the melt with moderate
power consumption, see [15, 20, 24, 25].

An important role for the success of the

KRISTM̃AG
R©

project played mathematical mod-
eling and simulation. In this contribution, we give
an overview of the mathematical model that was
used to solve the problem, and we report on some
theoretical and numerical results that were ob-
tained.

The paper is organized as follows: in Section 2 we
discuss the main physical effects that occur in processes of Czochralski type under the influence
of traveling magnetic fields, and we describe the mathematical model. Section 3 brings a num-
ber of mathematical results that have been proved for various aspects of the general problem;
here, we deal with problems like well-posedness, regularity, and optimal control of the model
equations (or of appropriate simplified versions thereof). In the final Section 4 we present some
results of numerical simulations obtained for real-life configurations, namely the LEC crystal
growth of GaAs.
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2 A mathematical model for processes of Czochralski type

2.1 Processes of Czochralski type and TMFs

The single crystal growth processes of Czochralski type are technologically complicated. Quality
and size of the grown crystals are influenced by a number of parameters that act on very different
time and space scales.

Global variables on the macroscale, which are important in the whole apparatus (and beyond)
are the temperature field and the electromagnetic field. On the intermediate scale, locally within
the crucible, we have the velocity field of the melt flow and the concentrations of impurities (e. g.,
oxygen, nitrogen, silicon carbide, silicon nitride) that should not be incorporated in the crystal.
Moreover, the free boundary between melt and solidified crystal should have a certain (convex)
shape in order that perfect single crystals grow. A problem on the microscale of a few millimeters
is the interaction between melt and container wall, which influences the shape of the interface
in the close vicinity of the wall.

Another problem, this time a temporal one, is given by the fact that the turbulent melt flow in-
duces temporal oscillations of the melt temperature below the growing crystal; these oscillations
should have a small amplitude and a high frequency in order that the solid-liquid interface have
no time to react to their occurrence. Using a TMF to improve the melt flow during crystal growth
processes requires practical and theoretical investigations.

From the mathematical point of view, the following facts complicate analysis and simulation:

– due to temperatures of up to 2000 K , many of the physical coefficients depend on tempera-
ture,

– physical coefficients and boundary conditions jump between the different materials of the
growth apparatus,

– the geometry of the apparatus is very complex and multiscale,
– the main energy transport in the gas cavities is due to radiation.

The latter complication presents a particular challenge, since it leads to both nonlocal and non-
linear boundary conditions for the temperature in the gas cavities.

In the following, we describe the mathematical model that was used in the project. Here, we
follow closely the exposition in [6].

2.2 Geometry of the problem

We denote by Ω ⊂ Ω̃ ⊂ IR3 two bounded domains3, which respectively represent the region
of interest for the computation of the temperature and of the electromagnetic field. In our case,
Ω , whose boundary is denoted by Γ , represents the furnace depicted in Fig. 1. The domain Ω̃

3Here, and throughout the paper, a domain is a connected open set.
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has the form

Ω̃ =
m⋃
i=0

Ω̃i, where Ω̃i, i = 0, . . . ,m,

denote disjoint domains that represent materials having heterogeneous electromagnetic and
thermodynamic properties. Setting Ωi := Ω̃i∩Ω for i = 0, . . . ,m , we have Ω =

⋃m
i=0 Ωi .

We further denote by Ω̃c the set containing the electrical conductors of the whole system, and
we set Ωc := Ω̃c ∩ Ω . By Ω̃nc , Ωnc , we denote the complements of these sets with respect
to Ω̃ and Ω .

Let T > 0 the final time of the process. We further denote:

Q := (0, T )× Ω, Qi := (0, T )× Ωi, for i = 0, . . . ,m ,

Q̃ := (0, T )× Ω̃, Q̃i := (0, T )× Ω̃i, for i = 0, . . . ,m .

2.3 The fluiddynamical problem

The liquid semiconducting melt is confined in the bounded domain Ω1 ⊂ Ω within the crucible.
We assume that the liquid obeys the Navier-Stokes equations for an incompressible, viscous
and electrically conducting fluid,

ρ1

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ div(η(θ)D v) + f + j ×B , (2.1)

div v = 0 , in (0, T )× Ω1 , (2.2)

where ρ1 is the reference density of the fluid, η its viscosity, f the gravitational force, and
j ×B the Lorentz force. Here and throughout the paper, we use the notations

Dv := (Di,j(v)) , where Di,j(v) :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
for 1 ≤ i, j ≤ 3 ,

D(u, v) := Du : Dv :=
3∑

i,j=1

Di,j(u)Di,j (v) .

Since the flow is buoyancy-driven, thermal expansion must be accounted for, and we set

ρ = ρ(θ) = ρ1 (1− α (θ − θ1)) , (2.3)

where ρ denotes the mass density of the fluid, α its thermal expansion coefficient, θ is the
absolute temperature, and θ1 a reference temperature.

The gravitational force f is given by

f = f(θ) = ρ(θ)~g , (2.4)

where ~g is the fixed vector of gravity. The modeling assumptions (2.3) and (2.4), in combination
with (2.2), are constitutive for Boussinesq’s approximation in the setting of the low Mach-number
limit of compressible fluids.
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At the boundary, we assume that the velocity is imposed, that is,

v = vg on (0, T )× ∂Ω1 , vg · ~n = 0 on (0, T )× ∂Ω1 , (2.5)

where ~n is the outward-pointing normal to ∂Ω1 , and “ · ” stands for the standard euclidean
scalar product in IR3 . Moreover, at time zero, a velocity distribution v0 is prescribed,

v(0) = v0 in {0} × Ω1 . (2.6)

2.4 The heat transfer problem

In accordance with the Boussinesq approach, we assume that the dissipative heating due to
viscous friction and to the Joule effect is negligible in the fluid. Therefore, assuming that heat
convection is significant only in Ω1 , we have

ρ1 cV 1

(
∂θ

∂t
+ v · ∇θ

)
= div(κ(θ)∇θ) in (0, T )× Ω1 , (2.7a)

ρi cV i
∂θ

∂t
= div(κi(θ)∇θ) +

|j|2

s(θ)
in (0, T )× Ωi , for Ωi ⊂ (Ωc \ Ω1) , (2.7b)

ρi cV i
∂θ

∂t
= div(κi(θ)∇θ) in (0, T )× Ωi , for Ωi ⊂ Ωnc , (2.7c)

where ρi , cV i , and κi denote density, specific heat, and thermal conductivity of the corre-
sponding material, in that order, and θ , s , and j denote absolute temperature, electrical con-
ductivity, and current density, in that order.

At the high temperatures occurring in crystal growth, heat transport due to radiation is of prime
importance. To describe this effect, we assume that the domain Ω0 ⊂ Ω represents the cavity
filled with transparent material. The sets Ω1, . . . ,Ωm represent diffuse grey, opaque materials.
The cavity Ω0 is enclosed in Ω in the sense that

IR3 \
m⋃
i=1

Ωi is disconnected. (2.8)

The surface Σ := ∂Ω0 , the boundary of the transparent enclosed cavity, is nonconvex and
possibly disconnected. We use the notation S := (0, T )× Σ .

The heat radiation at Σ is described by a standard model in crystal growth ([19, 18]), namely
the boundary condition [

−κ(θ)
∂θ

∂~n

]
= R− J on (0, T )× Σ . (2.9)

Here, R is the radiosity, J the incoming radiation, ~n the unit normal pointing inwards to Ω0 ,
and the symbol [ · ] denotes the jump of a quantity across Σ . In order to model R and J , we
need to introduce on Σ× Σ the so-called view factor, which is given by

w(z, y) :=


~n(z) · (y − z) ~n(y) · (z − y)

π|y − z|4
V (z, y) if z 6= y ,

0 if z = y ,
(2.10)
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where V is the visibility function that penalizes the presence of opaque obstacles, given by

V (z, y) =

{
1 if conv{z, y} ⊂ Ω0 ∪ {z, y} ,
0 otherwise.

In this connection, the set conv{z, y} = {(1− λ)z + λy |λ ∈ [0, 1]} denotes the convex
hull of the points z, y . The unknown functions R, J are connected through the relations

R = ε σ θ4 + (1− ε) J , J = K(R), on (0, T )× Σ ,

that is, R solves the so-called radiosity equation

(I − (1− ε)K)(R) = σ ε θ4 on (0, T )× Σ . (2.11)

Here, σ is the Stefan-Boltzmann constant, and ε denotes the given emissivity of the surface
Σ . The linear integral operator K is defined by

(K(f))(t, z) :=

∫
Σ

w(z, y) f(t, y) dSy for (t, z) ∈ (0, T )× Σ . (2.12)

Under mild assumptions on the function ε and the regularity of the surface Σ , the solution
operator of the equation (2.11) is well-defined (see Thm. 2.4 in [11] for a sharp result). One can
therefore introduce an operator G by

G := (I −K) (I − (1− ε)K)−1 ε , (2.13)

and equivalently reformulate the conditions (2.9) and (2.11) as[
−κ(θ)

∂θ

∂~n

]
= G(σ θ4) on (0, T )× Σ . (2.14)

For further details concerning the boundary condition (2.14), the reader can consult one of the
references ([17, 19]).

On the outer boundary (0, T )× Γ , we consider the condition

θ = θg on (0, T )× Γ . (2.15)

On the other boundaries, we simply assume that the conductive heat flux is continuous. More-
over, we have at time zero

θ(0) = θ0 in {0} × Ω . (2.16)

We complement the system (2.7) by the boundary conditions (2.9) and (2.15), and by the initial
condition (2.16).

2.5 The electromagnetic problem

To describe the electromagnetic phenomena originating from the heating system and from the
applied magnetic fields, we introduce some further notation.
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We denote by Ω̃c0 ⊂ Ω̃c the conductors where current is applied, which is typically the system
that supplies the furnace with current, resp. the conductors that serve to generate a magnetic
field. We assume for simplicity that apart from Ω̃c0 , the region Ω̃ \ Ω consists only of vacuum.

We consider the low-frequency, i.e., diffusive approximation of Maxwell’s equations with applied
current, described for example in the textbook [1]. The electric field E and the magnetic induc-
tion B satisfy Faraday’s law of induction

curlE +
∂B

∂t
= 0 , in (0, T )× Ω̃ . (2.17)

Putting the local density of free charges to zero in the nonconducting parts, the electrical dis-
placement D satisfies

divD = 0 in (0, T )× Ω̃nc . (2.18)

The magnetic induction B satisfies

divB = 0 in (0, T )× Ω̃ . (2.19)

We need a constitutive relation between B and H , as well as between E and D . We consider
only linear materials, that is, we assume that

B = µH, D = eE in (0, T )× Ω̃ , (2.20)

where µ and e , respectively, denote magnetic permeability and electrical permittivity. Finally,
we have to take into account Ampère’s law,

curlH = j in (0, T )× Ω̃ , (2.21)

as well as Ohm’s law in the conductors,

j = s(θ) (E + v ×B) in (0, T )× Ω̃c . (2.22)

It remains to model the presence of a current source in the conductors Ω̃c0 . Observe that from
(2.17) and (2.19) it follows that

E = −∂A
∂t

+∇χ ,

with a magnetic potential A of the magnetic induction B , and a scalar potential χ . In our
model, we assume that only the current s∇χ originating from an applied voltage can be con-
sidered as imposed, and we write

s∇χ ≈ jg in (0, T )× Ω̃c0 ,

with the given current density jg . It follows that (2.21) and (2.22) have to be written in the form

curlH = s(θ)

(
−∂A
∂t

+ v ×B
)

+ jg , (2.23)

with jg 6= 0 only in (0, T )× Ω̃c0 . The potential A is related to B by the identity curlA = B ,
and its choice can be fixed, for example, by requiring the gauge divA = 0 .
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The boundary conditions for these fields are the natural interface conditions[
H × ~n

]
i,j

= 0 ,
[
B · ~n

]
i,j

= 0 ,
[
E × ~n

]
i,j

= 0 on (0, T )× (∂Ω̃i ∩ ∂Ω̃j) , (2.24)

where
[
·
]
i,j

denotes the jump of a quantity across the surface (0, T )× (∂Ω̃i ∩ ∂Ω̃j) , i, j =

0, . . . ,m , i 6= j . We consider that the outer boundary can be modeled as a magnetic shield
and set

B · ~n = 0 , E × ~n = 0 on (0, T )× ∂Ω̃ . (2.25)

Finally, we impose the initial condition

H(0) = 0 in {0} × Ω̃ . (2.26)

2.6 The full problem

We define the problem (P) as the problem of finding a vector field v and a function p in (0, T )×
Ω1 , vector fields H, B, E, D, j in (0, T )× Ω̃ and a nonnegative function θ in (0, T )× Ω
such that the relations (2.1), (2.2), (2.7), (2.17), (2.18), (2.19), (2.20), (2.23) together with the
boundary conditions (2.5), (2.14), (2.15), (2.24), (2.25) and the initial conditions (2.6), (2.16) and
(2.26) are satisfied.

In the following sections, we will study various aspects of problem (P).

Remark. 1. The above model is still incomplete, since it ignores the presence of the solid-
liquid interface.

2. We have not accounted for the presence of impurities in the melt flow.

3. We have restricted our model to the macro- and intermediate scales; effects on the microscale
such as the interaction between solid-liquid interface and the container wall are neglected.

4. The heat flux by gas convection in the cavity is ignored as well.

3 Existence, uniqueness and optimal control

The existence of weak solutions to the model described in the section 2.1 was first investigated
in the doctoral thesis [6]. Uniqueness statements could also be proved, but only for classical
solutions, which is typical for Navier-Stokes systems. In [5], some aspects of the existence
proof could be simplified. We will briefly discuss the essentials of these results in subsection 3.1
below.

A second direction of investigations concerns the optimal control of the PDE system. The main
relevant control parameters for the real problem are the current source jg in the conductors

Ω̃c0 (cf. (2.23)) and the velocity vg imposed on the boundary ∂Ω1 of the fluid (cf. (2.5)). The
state to be optimized is primarily the temperature θ , either in the entire apparatus or locally,
in the vicinity of the crystal. Obviously, also the velocity of the fluid v and the magnetic field
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H are of interest. In a first attempt, we tried to derive first-order optimality conditions for the
control-to-state mapping under pointwise state constraints for the temperature. It turned out that
a drastic simplification of the real model is necessary to follow this approach. Nevertheless, we
were able to make significant analytical progress in [10], which we are going to resume below
in the second subsection 3.4.

3.1 The weak solution approach

Recall that j and B are related to H via the linear relations (2.20) and (2.21), respectively.

Let v satisfy the equations (2.1) and (2.2). It is well known that, for all φ ∈ [C∞c ([0, T )×Ω1)]3

such that div φ(t) = 0 in Ω1 for all t ∈ [0, T ) , we have the integral relation

−
∫
Q1

ρ1 v ·
∂φ

∂t
+

∫
Q1

ρ1 (v · ∇)v · φ+

∫
Q1

η(θ)D(v , φ)

=

∫
Ω1

v0 · φ(0) +

∫
Q1

(curlH × µH) · φ+

∫
Q1

f(θ) · φ , (3.1)

where the unknown pressure p does no longer occur. Now assume that H and E satisfy the
relation (2.17) and the modeling assumption (2.23). Then it holds, for all ψ ∈ C∞c ([0, T )×Ω̃)]3

such that curlψ(t) = 0 in the nonconductors Ω̃nc for all t ∈ [0, T ) , the relation

−
∫

eQ µH ·
∂ψ

∂t
+

∫
eQc

s−1(θ) curlH · curlψ

=

∫
Q1

(
v × µH

)
· curlψ +

∫
eQc

s−1(θ) jg · curlψ, (3.2)

where the magnetic field strength H is the only remaining unknown.

Assume that the (reference) mass density ρ1 of the fluid is a given constant, and assume that
there exist positive constants sl, su, µl, µu, κl, κu, ηl, ηu such that

0 < sl ≤ s ≤ su < +∞ , 0 < µl ≤ µ ≤ µu < +∞ ,

0 < ηl ≤ η ≤ ηu < +∞ . (3.3)

It is possible to choose φ = v − vg in (3.1) and ψ = H in (3.2). Standard inequalities yield
the a priori estimate∫

Q1

η(θ)D(v, v) +

∫
eQc

s−1(θ) | curlH|2

≤ C
(
‖vg‖2

W 1
2 (Q1) + ‖vg‖2

L∞(Q1) + ‖jg‖2
L2( eQc0 )

+ ‖f(θ)‖2
L2(Q1)

)
. (3.4)

In (3.4), the constant C depends on the constants of condition (3.3) and on the structure of
Ω1 . In order to obtain a uniform estimate for the MHD energy on the left-hand side of (3.4), it is
therefore sufficient to assume that

vg ∈ [W 1
2 (Q1)]3 ∩ [L∞(Q1)]3, jg ∈ [L2(Q̃c0)]

3 , (3.5)

f ∈ [L∞(R)]3 . (3.6)
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While the conditions (3.5) are completely natural, the restriction (3.6) is more demanding, since
it is actually incompatible with the linear model (2.3), (2.4). Another option that keeps (2.3)
untouched, but leads to a higher mathematical technicality in the proofs, is to treat the thermal
expansion coefficient α as a small perturbation.

Next, we take a look at the heat equation (2.7). We deduce in a standard way that for all ξ ∈
C∞c ([0, T )× Ω) it holds

−
∫
Q

ρ cV θ
∂ξ

∂t
−
∫
Q1

ρ1 cV 1 θ v · ∇ξ +

∫
Q

κ(θ)∇θ · ∇ξ +

∫
S

G(σ θ4) ξ

=

∫
Ω

θ0 ξ(0) +

∫
Qc\Q1

s−1(θ) | curlH|2 ξ . (3.7)

In the analysis of (3.7), the following difficulty arises: if the estimate (3.4) is the best we can
obtain for curlH then the right-hand side of the heat equation belongs to at most L1 . Under
the assumptions that the specific heat cV 1 of the fluid is a constant, and that there are constants
κl , κu such that

0 < κl ≤ κ ≤ κu < +∞,
we can expect from general techniques for parabolic systems with right-hand sides in L1 a
bound for ∇θ in Lp(Q) , but only for the range 1 ≤ p < 5/4 . This is far away from being
sufficient to control the radiation energy that grows like ‖θ‖L4(S) .

Note, in addition, that the mentioned techniques are even not designed for the case of nonlocal
and nonlinear radiation boundary conditions. In this context, an important part of our effort was
dedicated to obtaining an a priori bound for θ in L4(S) (see [9]). Here, we need to impose on
the surface Σ where radiation takes place the restriction that

Σ ∈ C1,α, α ∈ (0, 1] , (3.8)

which ensures the compactness of the integral operator K (cf. (2.12)) in Lp(Σ) . Moreover, it
is required for the emissivity ε (cf. (2.11)) that

0 < εl ≤ ε ≤ εu < 1 on Σ . (3.9)

This condition, while excluding the presence of white and of black bodies in the apparatus,
guarantees a minimal coercivity of the operator G defined in (2.13).

To prove the existence of weak solutions, one needs to construct a solvable approximation of the
PDE system such that the a priori estimate (3.4) and the radiation bound are preserved. In [5], a
truncation approach for the quadratic nonlinearities of the system proved to be successful. In the
passage to the limit as the approximation parameter δ > 0 approaches zero, another important
problem occurs, since no compactness is available for the sequence {| curlHδ|2} . Therefore,
the approximation scheme converges, but only to a weak solution with defect measure. This
means that, instead of the heat equation (3.7), the weak solution satisfies

−
∫
Q

ρ cV 1 θ
∂ξ

∂t
−
∫
Q1

ρ1 cV 1 θ v · ∇ ξ +

∫
Q

κ(θ)∇θ · ∇ξ +

∫
S

G(σ θ4) ξ

=

∫
Ω

θ0 ξ(0) +

∫
Qc\Q1

s−1(θ) | curlH|2 ξ +

∫
[0,T ]×∂Ωc

ξ d ν̄ . (3.10)
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Here, ν̄ ∈M(Q) is a Borel regular, positive Radon measure concentrated in the set [0, T ]×
∂Ωc .

In order to precisely state the definition of a weak solution and the existence theorem, we now
introduce or recall the definition of some functional spaces. For 1 ≤ q ≤ ∞ , we introduce the
space

Lqcurl(Ω̃) :=
{
H ∈ [Lq(Ω̃)]3

∣∣∣ curlH ∈ [Lq(Ω̃)]3
}
, (3.11)

where the differential operator curl has to be understood in its generalized sense. It is well
known that L2

curl(Ω̃) is a Hilbert space with respect to the inner product

(H1 , H2)L2
curl(

eΩ) :=

∫
eΩ(curlH1 · curlH2 +H1 ·H2),

and that Lqcurl(Ω̃) is a Banach space when endowed with the graph norm.

To represent currents, we need spaces of vector fields that vanish in the nonconductors, namely

Hq(Ω̃) :=
{
H ∈ Lqcurl(Ω̃)

∣∣∣ curlH = 0 in Ω̃nc

}
. (3.12)

These spaces are closed linear subspaces of Lqcurl(Ω̃) . Moreover, the space H(Ω̃) := H2(Ω̃)
is a Hilbert space.

It is possible to deal with the divergence constraint (2.19) and with the boundary conditions
(2.25) by introducing the space

Hµ(Ω̃) :=
{
H ∈ H(Ω̃)

∣∣∣ div(µH) = 0 in Ω̃ ; µH · ~n = 0 on ∂Ω̃
}
, (3.13)

where the divergence constraint and the boundary condition are also intended in the sense
of the generalized div operator. In general, we denote by the subscript µ spaces of vectors
satisfying the (weak) constraints div(µH) = 0 (with respect to Ω̃ ) and µH · ~n = 0 (with
respect to ∂Ω̃ ).

In connection with the Navier-Stokes equations, we need the usual spaces

D1,q(Ω1) :=
{
u ∈ [W 1,q(Ω1)]3

∣∣∣ div u = 0 a. e. in Ω1

}
,

D1,q
0 (Ω1) :=

{
u ∈ [W 1,q

0 (Ω1)]3
∣∣∣ div u = 0 a. e. in Ω1

}
.

For 1 ≤ p <∞ , we use the Sobolev spaces

W 1,0
p (Q) :=

{
u ∈ Lp(Q)

∣∣∣ ∃uxi
∈ Lp(Q) (i = 1, 2, 3)

}
,

W 1
p (Q) :=

{
u ∈ W 1,0

p (Q)
∣∣∣ ∃ut ∈ Lp(Q)

}
,
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where all partial derivatives are to be understood in the weak sense. In connection with heat
radiation, we define for 1 ≤ p <∞ , 4 ≤ q ≤ ∞ , the spaces

V
p,q
0 (Q) :=

{
u ∈ W 1,0

p (Q)
∣∣∣ traceu ∈ Lq(S)

}
,

Vp,q(Q) :=
{
u ∈ W 1

p (Q)
∣∣∣ traceu ∈ Lq(S)

}
.

Here, we have used the abbreviation S := (0, T )× Σ . In analogy to (3.11), we can define the
spaces Lqcurl(Q̃) , and referring to (3.12), (3.13), we introduce the spaces Hq(Q̃) , Hµ(Q̃) . If

we require a q -integrable partial derivative with respect to time then we write H1
q(Q̃) , H1

µ(Q̃) .

Next, we define D1,0
q (Q1) (resp. D1

q(Q1) ) to be the subspace of [W 1,0
q (Q1)]3 (resp. [W 1

q (Q1)]3 )
that contains all elements having an almost everywhere vanishing divergence. Using the sub-
script C , we denote subspaces of functions that vanish on the surface ]0 , T [×Γ . We some-
times abuse notation and denote spaces of both scalar and vector variables by the same sym-
bols Lp , respectively, W 1,0

p .

We are now ready to technically define the notion of a weak solution: in fact, it can be verified as
in [5], using various embedding relations of Sobolev-type, that all duality pairings occurring in the
relations (3.1), (3.2), and (3.10) are finite for the following classes of solution and testfunctions.

Definition 3.1 (Weak solution with defect measure) Suppose that the triple {v, H, θ} be-
longs to the space[

D1,0
2 (Q1)×Hµ(Q̃) ∩ ×

⋂
1≤p<5/4

V
p,4
0 (Q)

]
∩
[
L∞,2(Q1)× L∞,2(Q̃)× L∞,1(Q)

]
and satisfies v = vg on ]0, T [×∂Ω1 and θ = θg on ]0, T [×Γ in the sense of traces, as well

as the integral relations (3.1) and (3.2) for all {φ, ψ} ∈ D1
s1

(Q1) × H1
3(Q̃) (s1 > 3 ) such

that φ(T ) = 0 = ψ(T ) .

Moreover, assume that there exists a Borel regular, positive Radon measure ν̄ ∈ M(Q) con-
centrated in the set [0, T ] × ∂Ωc such that {v, H, θ} satisfies the integral relation (3.10) for
all ξ ∈ W 1

s2,C
(Q) (s2 > 10 ) with ξ(T ) = 0 . Then {v, H, θ} is called a weak solution to (P)

with defect measure ν̄ .

The following existence theorem was proved in [5] under the simplifying assumption θg =constant.
Its extension to sufficiently regular given boundary temperatures is a technical exercise.

Theorem 3.2 Suppose that the assumptions (3.3), (3.5), (3.6), (3.8), and (3.9) are satisfied.
Then the problem (P) possesses at least one weak solution with defect measure in the sense of
Definition 3.1.

3.2 The time-harmonic regime for the electromagnetic fields

A crystal growth process of Czochralski type takes the order of hours or days. This is an over-
whelming obstacle for a complete time-dependent simulation of all quantities of interest. In this
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context, it is very helpful that under certain plausible hypotheses the electromagnetic fields
are in a time harmonic regime. This means that on the time scale of heat transport and of
fluid movement in the melt these fields can be considered as sine functions of time having a
position-dependent amplitude and phase shift, and a quite small time period of the oscillations.
We assume that the given current density has the simple form of an alternating current,

jg(t, x) = sin(ω t+ β) jg(x) in (0, T )× Ω̃c0 , (3.14)

where, β denotes the phase shift, which is constant on each subdomain of Ω̃c0 . This assump-
tion makes it possible to model the generation of traveling magnetic fields.

We make the following additional assumptions:

1. The applied alternating current jg has a characteristic frequency ω > 0 such that the
corresponding time period is smaller than the typical relaxation times for momentum and heat
transfer. On the time scale of the electromagnetic evolution, for example, on the interval (t, t+
2 π/ω) , the quantities v, p and θ are very close to being stationary.

2. Sufficiently far away from the beginning of the evolution, the electromagnetic fields are inde-
pendent of the initial conditions, and they all reach a time-harmonic regime. On the time scale
of momentum balance and energy balance, this happens almost immediately.

Due to the hypotheses, we can average the equations (2.1) and (2.7) over the interval (t, t +

2 π/ω) to obtain the same equations just with j ×B and |j|2
s(θ)

replaced by

[j ×B]av :=
ω

2 π

∫ t+2π/ω

t

(j ×B) ds , (3.15)[
|j|2

s(θ)

]
av

:=
ω

2 π

∫ t+2π/ω

t

|j|2

s(θ)
ds , (3.16)

respectively.

Moreover, owing to the second hypothesis, we have

j(t, x) = Im(j(x) exp(i ω t)), H(t, x) = Im(H(x) exp(i ω t)) ,

and so on for the other electromagnetic quantities, where j(x), H(x) are complex-valued
vector fields, called the amplitudes of the time-harmonic fields j(t, x), H(t, x) . It follows that

[j ×B]av = 1/2 (Re(j(x))× Re(B(x)) + Im(j(x))× Im(B(x))) , (3.17a)[
|j|2

s

]
av

=
|Re(j(x))|2 + | Im(j(x))|2

2 s(θ)
. (3.17b)

In the time-harmonic setting, the relation (2.17) yields curlE + i ω B = 0 , whereas the other
Maxwell’s relations, which are linear and free of time derivatives, are valid for the fields j, H, E .
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3.3 The quasistationary approach

Considering the equations (2.1) and (2.7) with j × B and |j|2
s(θ)

replaced by the time averages,
and using afterwards (3.17) to compute the averages, one realizes that the stationary versions
of (2.1) and (2.7) are

ρ1 (v · ∇)v = −∇p+ div(2 η(θ)D v) + f(θ) + [j ×B]av ,

ρ1 cV v · ∇θ = div(κ(θ)∇θ) +

[
|j|2

s(θ)

]
av

.
(3.18)

The quasistationary version of the problem (P) also admits weak solutions. It is not the right
place here to enter into the details. The core of the argumentation is the same as that for the
stationary system (see [7]). A condensed version of the result is available in [8], which was
followed closely for the exposition here. Note that we just need jg ∈ [L2(Ω̃c0)]

3 for the proof,
so that it is also allowed for a piecewise constant phase shift like in (3.14).

3.4 Optimal control theory

Since our main interest in the field of optimal control theory concentrated on the establishment
of rigorous first-order optimality conditions, we decided for the paper [10] to simplify the prob-
lem in such a way that we could expect a differentiable control-to-state mapping, meaning: we
considered the quasi-static case described above, with no melt motion (v = 0 ), and without
dependence of the electrical conductivity on temperature (s = s(x) ). Note that under these as-
sumptions the corresponding Maxwell equations can be solved independently for a given current
source jg . Pairs H, θ of weak solutions satisfy for suitable test functions ψ, ξ the relations

i

∫
eΩ ω µ(x)H · ψ +

∫
eΩc

s−1(x) curlH · curlψ =

∫
eΩc

s−1(x) jg · curlψ ,∫
Ω

κ(θ)∇θ · ∇ξ +

∫
Σ

G(σ θ4) ξ =
1

2

∫
Ωc

s−1(x) | curlH|2 ξ , (3.19)

where the superscript ·̄ means complex conjugation.

One essential point for the analysis of the optimal control problem is to prove that the variable θ
in (3.19) is continuous and bounded in Ω . To guarantee this, we need to know that the solution
H to the quasistationary Maxwell system satisfies | curlH|2 ∈ Lr(Ω) for some r > 3/2 .
This regularity property was proved in [10], and it represents an interesting advance in the field
of regularity theory for the Maxwell system. Once that higher integrability of curlH is available,
recent advances in the regularity theory of elliptic equations imply that the weak solution to
the heat equation with nonlocal radiation boundary conditions belongs to W 1,q(Ω) for some
q > 3 , which is even more than Hölder continuity.

Let us only point out the additional assumptions on geometry and coefficients that are needed
in this case. For the regularity of the magnetic field, the main geometrical restriction considered
throughout the paper is the following:

∂Ω̃i ∈ C1, for i = 0, . . . ,m , ∂Ω̃ ∈ C0,1 . (3.20)
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We moreover assume that the conductors are isolated from each other,

dist(Ω̃i, Ω̃j) > 0 for all Ω̃i, Ω̃j ⊆ Ω̃c, Ω̃j 6= Ω̃j . (3.21)

In addition, we require the uniform continuity of the coefficients in each material, i. e.,

si, µi ∈ C(Ω̃i) , (3.22)

where si, µi are the restrictions of s, µ to the set Ω̃i .

For the regularity of temperature, the same kind of hypothesis is needed, i. e.,

∂Ωi ∈ C1, κi ∈ C(R+), for i = 0, . . . ,m . (3.23)

We have the following result (see [10]).

Theorem 3.3 Suppose that the assumptions (3.20), (3.21), (3.22), and (3.23) are satisfied.
Then there is some q > 3 such that the control-to-state mapping S : jg 7→ {θ, H} is well

defined and continuous from [Lq(Ω̃c0)]
3 into W 1,q(Ω)× Lqcurl(Ω̃) .

Another important advance established in [10] is a uniqueness result for the linearized sys-
tem, which exploits techniques developed in [19] to handle the nonlinear radiation operator. We
cannot enter into the details of this rather technical estimate here.

On the basis of these two results, and using techniques from standard optimal control theory, it
was possible to perform a rigorous derivation of the adjoint system associated with the first-order
optimality conditions under state constraints. For details, we refer the reader to [10].

4 Numerical simulations

4.1 General remarks

The numerical results presented in this section were already published in a slightly different form
in [16]. We considered a growth vessel (an “LPA MARK 3”) for the LEC growth of GaAs crystals,
see the left-hand side of Fig. 1. The crucible contained 4 kg of GaAs melt having a diameter of
15.2 cm and a height of 4.5 cm . The GaAs melt was covered by a boric oxide layer of height
1.35 cm that was assumed to be opaque.

4.2 Global simulation of an LEC growth configuration

The electromagnetic quantities and the temperature distribution in the entire pressure chamber
were computed with the software package WIAS-HiTNIHS, using an axisymmetric approx-
imation of the growth vessel [15, 20, 17]. For the stationary energy balance, heat conduction
and radiative heat transfer between surfaces of cavities were taken into account.

We considered the time-harmonic setting considered in section 3.2 and assumed the electro-
magnetic fields to be axisymmetric [20]. Accordingly, we use in the following cylindrical coordi-
nates (r, γ, z) , with the corresponding unit vectors er, eγ, ez , and the complex representation
of sinusoidal functions.
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In [3, 23] it was shown that under these assumptions Maxwell’s equations and Ohm’s law allow
to find a complex-valued function φ(r, z) such that

A = eiωtφ(r, z)eγ,

where A is the complex representation of the magnetic vector potential A introduced in section
2.5.

The electric current j has the form j = jγ ~eγ , and φ and jγ are computed from the following
reformulation of (2.23):

− ν div

(
grad(rφ)

r2

)
=
jγ
r
, jγ =


0 in the insulators,

−iω sφ + s vk

2πr
in the k-th coil ring,

−iω sφ in the other conductors.

(4.24)

Here, ν = 1/µ is the inverse of the magnetic permeability, the angular frequency of the applied
voltage has the value ω = 2 π 300 rad/s , and vk is the voltage applied to the k -th coil ring.
Following [17, Sec. II], we determine vk in such a way that the total current is the same in all
coil rings belonging to the same coil.

The software package WIAS-HiTNIHS employed for the numerical simulations is based on
the finite volume method and was implemented in the framework of the program package pdelib
(see [13]). It uses the grid generator Triangle (see [27]) and the sparse matrix solver PARDISO
(see [26]).
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Figure 2: Global temperature distribution evaluated in melt, crystal boric oxide encapsulation,
and crucible in the considered LEC configuration. The solid isotherms are spaced at 20 K , the
dotted isotherms in between at 10 K . The points “1” (purple) and “2” (brown) mark the monitor
points used in the following analysis of the temperature oscillations.

The total input power P was adjusted in such a way that the given trijunction between melt,
crystal, and boric oxide was maintained at the melting temperature of GaAs (1511 K ), leading
to a power request of 6.97 kW . Fig. 2 shows the global temperature distribution in the vicinity
of the melt.
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In the temperature computation the heat transport due to gas convection was neglected. There-
fore, the required input power was lower than in the real system. To compensate for this under-
estimation, while computing the Lorentz force, the input power was increased to approximately
10.5 kW .
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Figure 3: Lorentz force density in the melt. The reference vector corresponds to a force density
of 500 N/m3 . The maximum of the density is about 570 N/m3 .

The HMM consisted of three vertically placed coils surrounding the crucible. These coils gener-
ated a downwards moving TMF with a phase shift of 70◦ between the voltages applied to them.
Following patent [12], these coils were combined with two additional coils below the crucible,
see Fig. 1. These coils generated an additional outward moving TMF, also with a phase shift of
70◦ .

The resulting Lorentz force density is depicted in Fig. 3. This density is maximal close to the
side wall of the crucible. Because of coils placed below the crucible (following patent [12]), the
Lorentz force also acted with comparable strength halfway inwards at the bottom of the crucible,
see [16].

4.3 Local simulation of an LEC growth configuration

In the melt, we solved the transient Navier-Stokes equations ((2.1) and (2.2)), together with the
energy equation ((2.7)) in Boussinesq approximation:

∂tu+ (u · ∇)u+∇p =
1

Re
4u+

Gr
Re2T ez +

L

ρ0V 2
FL ,

∇ · u = 0, ∂tT + (u · ∇)T =
1

Re Pr
4T .

(4.25)

Here, u , p , and T denote the dimensionless velocity, pressure, and temperature. The radius
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Rc = 7.6 cm of the crucible was taken as the length scale, and the scale for the velocity was
V = ΩXRc = 3.98 cm/s , with ΩX = 5 rpm being the rotation rate of the crystal.

Moreover, for GaAs with a kinematic viscosity ν = η
ρ1

= 0.00488 cm2/s and a thermal ex-
pansion coefficient α = 0.0001867 1/K , the corresponding Reynolds number was Re =
Rc V
ν

= 6.197×103 and, for typical temperature differences δT of 30 K occurring in the melt,

the Grashof number was Gr = α δT R3
c g

ν2 = 1.013 × 108 , where g denotes the gravitational
acceleration.

Furthermore, the density of the GaAs melt at the melting temperature 1511 K is ρ1 = 5.71323×
103 kg/m3 , the specific heat is cV 1 = 434 J

kg K , and the thermal conductivity is

κ1 = 0.178 W
cm K . Hence, the Prandtl number resulted to Pr = ν ρ1 cV 1

κ1
= 0.068 . The Lorentz

force density FL was taken from the global simulation.

The axisymmetric numerical simulations were performed with the finite element code NAVIER
developed by E. Bänsch [2]. We used a time step size of 0.00141 s and a grid with 27032
triangles. The boundary conditions for temperature (respectively, normal heat flux) in the melt
were taken from the global simulation, see [20, 15]. In order to numerically investigate the effect
of the Lorentz force vs. buoyancy, we kept the crucible at the (low) rotation rate of ΩC =
−5 rpm .
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Figure 4: Snapshots of velocity and temperature distribution from the local simulation of the
LEC configuration without Lorentz force (left-hand side) and with the Lorentz force from Fig. 3
(right-hand side). Note the different velocity scales.

Fig. 4 shows snapshots of velocity and temperature distribution in the melt without the action
of a Lorentz force (left) and with the Lorentz force shown in Fig. 3 (right). The snapshot shown
on the left-hand side of Fig. 4 reveals that the natural convection due to buoyancy generates
an inward-rotating roll near to the crucible wall (right-hand side of the melt). This roll is partially
suppressed by the Lorentz force, which generates in the upper outer part of the melt an outward-
rotating toroidal roll. An additional (non-permanent) counter-rotating roll seems to provide for a
better mixing of temperature in the melt down to the middle radius.

This is also reflected in the temperature variations close to the trijunction point. Figs. 5 and 6
show the temperature oscillations in two points (marked by “1” and “2” in Fig. 2). In both points,
the amplitude of the low frequency temperature oscillations is reduced by the application of the
TMF.
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Figure 5: Temperature oscillations in the monitor point “1” from the local simulation of the LEC
configuration without Lorentz force (left-hand side) and with the Lorentz force from Fig. 3 (right-
hand side).
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Figure 6: Temperature oscillations in the monitor point “2” from the local simulation of the LEC
configuration without Lorentz force (left-hand side) and with the Lorentz force of Fig. 3 (right-
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