
H�older and Lipschitz Stability of Solution Setsin Programs with Probabilistic ConstraintsRen�e HenrionWeierstrass Institute forApplied Analysis and Stochastics10117 Berlin, Germanyemail: henrion@wias-berlin.de and Werner R�omischHumboldt-University BerlinInstitute of Mathematics10099 Berlin, Germanyemail: romisch@mathematik.hu-berlin.deAbstractWe study perturbations of a stochastic program with a probabilistic constraintand r-concave original probability distribution. First we improve our earlier resultssubstantially and provide conditions implying H�older continuity properties of thesolution sets w.r.t. the Kolmogorov distance of probability distributions. Secondly,we derive an upper Lipschitz continuity property for solution sets under more restric-tive conditions on the original program and on the perturbed probability measures.The latter analysis applies to linear-quadratic models and is based on work by Bon-nans and Shapiro. The stability results are illustrated by numerical tests showingthe di�erent asymptotic behaviour of parametric and nonparametric estimates in aprogram with a normal probabilistic constraint.2000 Mathematics Subject Classi�cation. 90C15, 90C31.Keywords. probabilistic constraints, chance constraints, Lipschitz stability, stochasticoptimization.1 IntroductionWe consider the following optimization problem with chance constraints:(P ) minfg(x) j x 2 X; P(� � h(x)) � pg:Here � is an s-dimensional random vector de�ned on some probability space (
;A;P),g : Rm ! R is an objective, X � Rm is some abstract constraint set, h : Rm ! Rsde�nes a system of inequalities and p 2 (0; 1) is some probability level. The meaning ofthe probabilistic constraint above is that the system of inequalities � � h(x) has to besatis�ed with probability p at least. The most prominent representative of (P ) is givenby linear constraints, i.e. h(x) = Ax for some matrix A. By � := PÆ ��1 2 P(Rs) (the1



space of Borel probability measures on Rs) we denote the probability distribution of �.Throughout the paper we shall make the following basic convexity assumptions:g is convex, X is closed and convex, h has concave components andthe probability measure � is r-concave for some r < 0. (BCA)The latter property means that �r is a convex set function, i.e.,�r(�A+ (1 � �)B) � ��r(A) + (1 � �)�r(B)holds true for all � 2 [0; 1] and for all Borel measurable and convex A;B � Rs suchthat �A + (1 � �)B is Borel measurable too. Note that many prominent multivariatedistributions (e.g. normal, Pareto, Dirichlet or uniform distribution on convex, compactsets) share the property of being r-concave for some r < 0 (see [12]).Introducing the distribution function of the probability measure � as F�(y) = �(z 2Rsjz � y), the problem (P ) can be equivalently rewritten as(P ) minfg(x) j x 2 X; F�(h(x)) � pg:Usually, only partial information about � is available, and (P ) is solved on the basis ofsome estimation � 2 P(Rs) of �. Typically, � is chosen as a parametric or nonparametricestimator of �. Hence, rather than the original program (P ), some substitute(P�) minfg(x) j x 2 X; F�(h(x)) � pgis solved. Although, at least in principle, arbitrarily good approximations � of � canbe obtained, it is by no means obvious that the solutions of (P�) will well approximatethose of (P = P�) as � tends to �. A counterexample illustrating 'wrong convergence' oremptiness of approximating solutions is provided by Example 15 in the appendix.Although the original data are supposed to be convex, we do not make any assumptionson the data of the perturbed problems (P�). This allows to admit the important class ofempirical approximations which lack any convexity or smoothness properties. Since, ingeneral, the solutions of (P�) are not unique under the assumptions (BCA), we have todeal with solution sets. The dependence of solutions and optimal values on the parameter� is described by the set-valued mapping 	 : P(Rs) � Rm and the extended-valuedfunction ' : P(Rs)! �R via	(�) = argminfg(x) j x 2 X; F�(h(x)) � pg'(�) = inffg(x) j x 2 X; F�(h(x)) � pg.We are interested in conditions formulated for the data of the original problem (P ) suchthat 	 and ' behave stable locally around the �xed measure �. In order to measuredistances among parameters and among solutions, we mostly rely on the Kolmogorovmetric between probability measuresdK(�1; �2) = supz2Rs jF�1(z)� F�2(z)j (�1; �2 2 P(Rs))2



and on the Hausdor� distance between closed subsets of RmdH(A;B) = max�supa2A d(a;B); supb2B d(b;A)� (A;B � Rm):Qualitative stability results in the sense of dH(	(�);	(�)) ! 0 as dK(�; �) ! 0 havebeen obtained in [5] based on earlier works like [15] and [6]. These results guarantee that,under the imposed conditions (see Theorem 1 below), cluster points of approximatingsolutions will be solutions of the original problem and that any solution of the originalproblem is the limit of a sequence of approximating solutions. For further work in thisdirection we refer to [4, 9, 11, 17, 18].Beyond qualitative stability it is of much interest to know how fast solutions or optimalvalues of approximating problems converge to original solutions, which is a question ofquantitative stability. Recall that 	 is Hausdor�-H�older continuous with rate � > 0 at �,if there are L; Æ > 0 such thatdH(	(�);	(�)) � L [dK(�; �)]� 8� 2 P(Rs); dK(�; �) < Æ: (1)There exists an immediate link between Hausdor�-H�older continuity with rate � of thesolution set mapping and exponential bounds for empirical solution estimates. Considerindependent s-dimensional random vectors �1; : : : ; �N on (
;A;P) having common distri-bution �. Then, �N(!) := N�1PNi=1 Æ�i(!) (with Æz denoting the Dirac measure placingmass one at z 2 Rs) is an empirical measure approximating � as N !1. The deviationbetween the original solution set and its empirical approximation can be estimated asfollows (see Proposition 6 in [6]):9C > 08N 2 N 8" > 0P (dH(	(�);	(�N )) � ") � C [N � �("; Æ; �; L)]s�0:5 exp(�2N � �("; Æ; �; L)); (2)where �("; Æ; �; L) = �minfÆ; ("=L)1=�g�2 and Æ; L; � refer to (1).Conditions for Hausdor�-H�older continuity of 	 at rate � = 1=2 were obtained in [6]for the special case of linear chance constraints with convex-quadratic objective and in [7]for the more general setting of the above data assumptions (BCA). The �rst part of thispaper is devoted to a substantial improvement of the previous results in two directions:�rstly, the mentioned results relate to so-called localized solution sets rather than to thesolution sets themselves. This technical restriction seemed to be a necessary consequenceof considering non-convex perturbations of the original convex measure. It turns out,however, that one can exploit additional arguments provided in [5] in order to get ridof localizations. Of course, statements on stability of solution sets themselves as in (1)are easier to interpret than their localized counterparts. Secondly, all previous results onquantitative stability of 	 essentially relied on the condition	(�) \ argminfg(x) j x 2 Xg = ;; (3)which means that no solution of (P ) is a solution of the relaxed problem with the chanceconstraint removed and vice versa. In this paper we shall obtain the same results withoutrequiring such kind of strict complementarity condition.3



Specializing our setting to linear chance constraints, the best (largest) rate we canobtain is � = 1=2 provided that the random variable has at least dimension s = 2. Ofcourse, the exponential bound in (2) improves with increasing �. Thus, it is of muchinterest to �nd conditions ensuring even Hausdor�-Lipschitz continuity of 	 (� = 1).It is interesting to note that a Lipschitz rate results for linear chance constraints with1�dimensional random variable � (but with arbitrary dimension of the decision variablex). Yet, this observation seems to be too restrictive for practical relevance. The secondpart of the paper investigates more reasonable settings and conditions for Lipschitz rates.Two basic additional requirements turn out to be crucial then: �rstly the approximatingmeasures � can no longer be arbitrary but have to be restricted to class C1;1 in a sense tobe precised. Secondly, the strict complementarity condition (3) which was dispensable forthe H�older rate � = 1=2, has to be incorporated into the set of conditions now. Doing so,one may derive an upper Lipschitz result for solution sets, but now with respect to a C1;1-type distance between probability measures which is stronger than the previously usedKolmogorov distance. Such a result might be useful for studying the asymptotic behaviourof nonparametric density estimators (cf. [16], Sect. 24) of the original distribution �.2 H�older StabilityThe main result of this section is stated with the technical details of proof left to theappendix. We start by recalling a result on qualitative stability of solution sets andquantitative stability of optimal values which is needed for the proof of our main theorembut which is also of independent interest:Theorem 1 (see [5], Th. 1) In addition to the basic convexity assumptions (BCA), letthe following conditions be satis�ed at the �xed probability measure � 2 P(Rs):1. 	(�) is nonempty and bounded.2. There exists some x̂ 2 X such that F�(h(x̂)) > p.Then, 	 : P(Rs)� Rm is upper semicontinuous in the sense of Berge at �, and thereexist constants L; Æ > 0, such that	(�) 6= ; and j'(�)� '(�)j � LdK(�; �) for all � 2 P(Rs) with dK(�; �) < Æ:We note that the Lipschitz estimate for ' in the previous theorem is restricted in thesense that one of the measures (�) has to be kept �xed. A full Lipschitz result, whereboth measures are allowed to vary freely around � does not hold true under the givenassumptions (see Example 1 in [8]).The key for obtaining quantitative stability results for solution set is a two-level decom-position of the parametric program (P�). To this aim, we introduce the following objects,4



where V is an open ball containing 	(�) under the boundedness assumption of Theorem1: YV = [h(X \ clV ) +Rs�] \ F�1� ([p=2; 1])�(y) = inffg(x) j x 2 X \ clV; h(x) � yg;�(y) = argmin fg(x) j x 2 X \ clV; h(x) � yg (y 2 YV ):Y (�) = argmin f�(y) j y 2 YV ; F�(y) � pg (� 2 P(Rs))Note that � and � denote the solution set and optimal value, respectively, of a lower levelparametric program, the parameter y of which refers to right-hand side perturbations ofthe inequalities de�ned by the mapping h. In contrast, the multifunction Y represents thesolution set of an upper level parametric program, where the explicit inequality constraintreduces to a description based on distribution functions F�. This allows to separate theinuence of F� and h in the inequality de�ning (P�). The relation between lower andupper level solution sets and optimal values on the one hand and overall solution set andoptimal value of (P�) is characterized in Proposition 10 in the appendix.Now, we are in a position to state the main result of this section which is proved in theappendix (following the proof of Prop. 12).Theorem 2 In addition to the basic convexity assumptions (BCA), let the following con-ditions be satis�ed at some �xed � 2 P(Rs):1. 	(�) is nonempty and bounded.2. There exists some x̂ 2 X such that F�(h(x̂)) > p.3. F r� is strongly convex on some convex open neighbourhood U of Y (�), where r < 0is chosen from (BCA) such that � is r- concave.4. � is Hausdor� H�older continuous with rate ��1 on YV .Then, 	 is Hausdor� H�older continuous with rate (2�)�1 at �, i.e., there are L; Æ > 0such that dH(	(�);	(�)) � L [dK(�; �)]1=(2�) 8� 2 P(Rs); dK(�; �) < Æ:The �rst assumption of Theorem 2 is of technical nature. It can be enforced, for instance,by compactness of X (the nonemptiness of the compact constraint set is then a conse-quence of the second assumption). The second assumption can be interpreted as a Slatercondition (see proof of Prop. 12). In special situations, its veri�cation is possible withoutexplicit knowledge of the measure �. For instance, in the situation of linear chance con-straints under nonnegativity restrictions (h(x) = Ax;X = Rm+), it suÆces to know thatA � 0 and that A does not contain zero rows. Indeed, for v := A1 with 1 =(1; : : : ; 1),one has vi > 0 for all i. Consequently, lim�!1 F�(�v) = 1. Since p < 1, there is some� > 0 such that F�(�v) > p. Hence, F�(Ax̂) > p for x̂ := �1 2 X, which is condition5



2. in Theorem 2. An alternative situation occurs when X = Rm and A has linearlyindependent rows.The third assumption of Theorem 2 is satis�ed for r- concave measures (r < 0) forwhich F r� is strongly convex on bounded, convex sets (because Y (�) is compact, seeProp. 10). An example for such measure is the multivariate normal distribution withindependent components, as it is shown in Proposition 14 in the appendix. To prove thesame result in the correlated case appears to be much more involved. But even measureslacking the mentioned property of 'global' strong convexity may still satisfy the thirdassumption. For instance, the uniform distribution over multidimensional rectangles is r-concave for any r < 0 and F r� is strongly convex on this rectangle. All one has to know thenis that Y (�) is contained in the rectangle too. Unfortunately, not all uniform distributionsover polytopes share the required strong convexity property (e.g., the uniform distributionover the triangle convf(1; 0); (0; 1); (1; 1)g is r- concave for any r < 0 but F r� fails evento be strictly convex on this triangle). If h is linear, i.e., h(x) = Ax, then the strongconvexity assumption can be simpli�ed in the sense that it is supposed to hold on someconvex open neighbourhood U of A(	(�)).In the last assumption of Theorem 2, it is assumed that some H�older continuity of �with respect to the Hausdor� distance is known. This is the case, for instance, for linearmappings h, polyhedral sets X and convex-quadratic functions g . Then the H�older ratefor � equals 1 (see Th. 4.2 in [10] or Prop. 2.4 in [7]) and we have the following Corollaryto Theorem 2:Corollary 3 In addition to the basic convexity assumptions (BCA), let g be convex-quadratic, h linear and X polyhedral. Then, supposing the �rst three assumptions ofTheorem 2, 	 is Hausdor� H�older continuous with rate 1=2 at �, i.e., there are L; Æ > 0such that dH(	(�);	(�)) � LpdK(�; �) 8� 2 P(Rs); dK(�; �) < Æ:Apart from this application to linear chance constraints de�ned by h, there is also a chanceof identifying a H�older rate of � in the more general situation considered here, when hhas concave components (see Prop. 2.4 in [7] for more details).Example 16 in the appendix demonstrates that the H�older rate obtained in Theorem 2and in Corollary 3 is sharp. This observation is re�ned in Example 17 in the appendix, inorder to show that the H�older rate 1=2 in Corollary 3 is realized, in particular, by discreteapproximations of �. In both of these counter-examples, the objective function was de�nedby a degenerate convex quadratic form. Using more sophisticated constructions, one couldverify the sharpness of the H�older rate also in case of linear or strongly convex objectivefunctions g (e.g., Example 2.10 in [7]).On the other hand, all these examples live in R2. The following Proposition whichis proved in the appendix (following the proof of Prop. 13) con�rms that the H�olderrates of Theorem 2 and Corollary 3 can be improved as long as the random variable � isone-dimensional (the decision variable x is arbitrary). Moreover, in this special case nostrong convexity assumption is needed for the measure � (condition 3. in Theorem 2):6



Proposition 4 In addition to the basic convexity assumptions (BCA), let s = 1 andassume conditions 1.,2. and 4. of Theorem 2. Then, 	 is Hausdor� H�older continuouswith rate ��1 at �. In the context of Corollary 3, 	 is even Hausdor� Lipschitz continuous(rate � = 1) at �. 23 Lipschitz StabilityThe Lipschitz result of Proposition 4 (in the context of Corollary 3) is based on theone-dimensionality of the random variable which is rather restrictive in stochastic pro-gramming. In order to derive Lipschitz stability in a multivariate setting, one has toimpose further conditions and also to restrict the class of considered measures (for theoriginal as well as the approximating one). The subsequent analysis relies on general sta-bility results obtained in [1, 2]. The following theorem gives a reduction of those resultsto the setting which will be of interest here:Theorem 5 (see [2], Th. 4.81) Consider the parametric optimization problemminff(x)jG(x; u) 2 Kg;where f : Rm! R, G : Rm�U ! Rq, U is a Banach space, K = Rq1� �f0gq2, q1+q2 = q.Denote by S(u) := arg minff(x)jG(x; u) 2 Kg the parametric solution set and �x someparameter u0 2 U . Let the following conditions hold true:1. f and G are C1;1 functions (di�erentiable with Lipschitz continuous derivative).2. S(u0) 6= ; and S is uniformly bounded in a neighbourhood of u0.3. f satis�es a second order growth condition with respect to S(u0), i.e., there exist aneighbourhood V of S(u0) and a constant c > 0 such thatf(x) � f0 + cdist2(x; S(u0)) 8x 2 V; G(x; u0) 2 K(f0 = infff(x)jG(x; u0) 2 Kg).4. For all x 2 S(u0) it holds thatfrxGi(x; u0)gi=1;:::;q2 [ frxGj(x; u0)gj2I(x)is a set of linearly independent vectors in Rm, whereI(x) = fj 2 f1; : : : ; q1gjGj(x; u0) = 0g:Then, S is upper Lipschitz at u0, i.e., there are constants L; Æ > 0 such thatdist(x; S(u0)) � L ku� u0k 8x 2 S(u)8u 2 U; ku� u0k < Æ.7



In order to apply Theorem 5 to our parametric problem (P�), we have to interpret theparameter u as distribution functions F� where � 2 P(Rs). However, condition 1. requiresto restrict the admissible class of measures to those having C1;1 distribution function. Moreprecisely, we introduce the following space:C1;1b (Rn) := ff 2 C1(Rn)jf is bounded and has a bounded, Lipschitzian derivativegWith the normkfk1;1b := max� supx2Rn jf(x)j ; supx2Rn krf(x)k ; supx;y2Rn;x6=y krf(x)�rf(y)kkx� yk � ;C1;1b (Rn) becomes a Banach space.In the parametric problem (P�), let us specify the general convexity assumptions(BCA) in the following sense:� The objective function g is convex-quadratic, i.e., g(x) = hx;Hxi+ hc; xi for somepositive semide�nite (m;m)-matrix H (H = 0 possible) and some c 2 Rm.� h(x) = Ax, where A is a matrix of order (s; n).� X is a polyhedron and has an explicit descriptionX = fx 2 Rmj h�j ; xi � aj (j = 1; : : : ; ~q1); h�i; xi = bi (i = 1; : : : ; ~q2)g.� For some �xed probability measure � 2 P(Rs) it holds that � is r-concave for somer < 0.In this setting, the following result was proved in [6] (Th. 8):Theorem 6 Let the following conditions be satis�ed at � �xed in the setting above:1. 	(�) is nonempty and bounded.2. F r� is strongly convex on some convex open neighbourhood U of the compact setA(	(�)):3. There exists some x̂ 2 X such that F�(Ax̂) > p.4. 	(�) \ argminfg(x) j x 2 Xg = ;.Then, there exist a neighbourhood V of 	(�) and a constant c > 0 such thatg(x) � '(�) + cdist2(x;	(�)) 8x 2 V \X; F�(Ax) � p .Now, we are in a position to formulate the desired stability result:8



Theorem 7 Let the following conditions be satis�ed at � �xed in the setting above:1. 	(�) is nonempty and bounded.2. F r� is strongly convex on some convex open neighbourhood U of the compact setA(	(�)):3. F� 2 C1;1b (Rs).4. For all x 2 	(�), the following set is linearly independent, where J(x) = fj 2f1; : : : ; ~q1gj h�j ; xi = ajg:frF�(Ax) �Ag [ f�jgj2J(x) [ f�igi=1;:::;q2:5. 	(�) \ argminfg(x) j x 2 Xg = ;.Then, the solution set mapping 	 is upper Lipschitz continuous at � in the accordinglyrestricted class of probability measures, i.e., there are constants L; Æ > 0 such thatdist(x;	(�)) � L kF� � F�k1;1b 8x 2 	(�)8� 2 P(Rs); F� 2 C1;1b (Rs); kF� � F�k1;1b < Æ.Proof.We are going to apply Theorem 5 with U := C1;1b (Rs), u0 := F�, q1 := ~q1 + 1, q2 :=~q2, G1(x; u) := p � u(Ax), Gj(x; u) := h�j�1; xi (j = 2; : : : ; ~q1 + 1), Gi(x; u) := h�i; xi(i = 1; : : : ; ~q2). Then, obviously, the constraint sets in Theorems 5 and 7 coincide for allu := F� 2 C1;1b (Rs), � 2 P(Rs):G(x; u) 2 K () x 2 X; u(Ax) � p.In particular, S(u) = 	(�). The partial derivatives of G are calculated asrxG(x; u) = 0@ �ru(Ax)A�Tj (j = 1; : : : ; ~q1)�Ti (i = 1; : : : ; ~q2 1A ; ruG(x; u) = � L0~q1+~q2 � ;where Lu = �u(Ax). From the de�nition of C1;1b (Rs) one easily veri�es that G belongs tothe class C1;1, hence, assumption 1. of Theorem 5 is satis�ed.Next, we show: there is some x̂ 2 X such that F�(Ax̂) > p. (4)To this aim, choose some x 2 	(�) according to condition 1. in our theorem. Then,x 2 X and F�(Ax) � p. Owing to condition 4., there is a solution v of the linear systemhr(F� ÆA)(x); vi = 1; h�j; vi = h�i; vi = 0 (j 2 J(x); i = 1; : : : ; ~q2).Then, for " > 0 suÆciently small, x̂ := x+ "v satis�es (4). Now, (4) along with condition1. entails upper semicontinuity of 	 at � via Theorem 1, whence assumption 2. of9



Theorem 5. The quadratic growth of f required in assumption 3. of Theorem 5 followsfrom Theorem 6 together with (4) upon taking into account that f0 = '(�). Finally,assumption 4. of Theorem 5 follows immediately from condition 4. in our theorem (recallthat rxG1(x; u0) = �rF�(Ax) �A). 2When comparing the last Theorem with Corollary 3 which imposes the same data re-quirements, the stronger Lipschitz result is mainly based on two additional assumptions(leaving apart the condition 4. of linear independence in Theorem 7 which can be un-derstood as a modi�cation of the Slater type condition in the previous results): �rstly,condition 5. requires that the chance constraint F�(Ax) � p a�ects the solution of theproblem. If this condition is violated, no Lipschitz rate can be expected for solutionseven when all remaining assumptions of Theorem 7 hold true. This can be seen froma small modi�cation of Example 16 upon replacing the uniform distribution there bysome bivariate normal distribution with independent components in order to meet thedata requirements of Theorem 7. In that example, the solution set of the �xed problemwith chance constraint is the same as the solution set of the unconstrained problem withremoved chance constrained. As a consequence, a H�older rate of 1/2 results.Secondly, the probabiliy measures in Theorem 7 are restricted to have distributionfunctions in the space C1;1b (Rs). This applies for the �xed measure � as well as to its per-turbations � (see statement of the result in Theorem 7) Again, without such restriction noLipschitz rate could be obtained. We refer once more to Example 2.10 in [7] (which wouldhave to be slightly modi�ed in the same sense as before). In this example, all assumptionsof Theorem 7 are satis�ed. However the perturbed measures are just Lipschitz continuousand do not belong to C1;1b (Rs). They are constructed in such a way that the perturbedsolution set 	(�) grows at a H�older rate of 1/2 away from the unperturbed solution set	(�).Although the result in Theorem 7 is stronger than that of Corollary 3 in that itimproves the H�older rate towards a Lipschitz rate, it provides only an upper estimatewhereas the estimate of Corollary 3 is two-sided by relying on the Hausdor� distance.Furthermore, even the upper estimate of Theorem 7 is slightly weaker than its one-sidedcounterpart in Corollary 3, since, by de�nition of k�k1;1b and of dK , one haskF�1 � F�2k1;1b � dK(�1; �2) forall �1; �2 2 P(Rs); F�1 ; F�2 2 C1;1b (Rs).Of course, imposing new restrictions raises the question of which class of probabilitymeasures still meets the new assumptions. Theorem 7 requires that both the originaland all the perturbed measures have distribution functions in C1;1b (Rs). The followingproposition identi�es two classes of such measures:Proposition 8 Let � 2 P(Rs).1. If � is a nondegenerate multivariate normal distribution, then F� 2 C1;1b (Rs).2. If � is the distribution of a random vector with independent components and ifthe 1-dimensional distributions �i 2 P(R) of these components have bounded andLipschitzian densities f�i, then F� 2 C1;1b (Rs).10



Proof. Ad 1.: Without loss of generality, one may consider standard normal distributions(zero mean and unit variances). It is well known then (e.g. [12], p. 203), that the partialderivatives of F� can be calculated as@F�@xi (x) = ~F~�(~xi) � f(xi) (i = 1; : : : ; s),where ~F~� is the distribution function of some nondegenerate multiv ~� 2 P(Rs�1), ~xi 2Rs�1 and f is the density of the 1-dimensional standard normal distribution. Taking intoaccount that F�; ~F~� and f are bounded (say by some M > 0), it follows immediatelythat F� 2 C1(Rs) is bounded and has bounded derivative. Since ~F~� (as a nondegeneratemultivariate normal distribution function) and f are Lipschitzian on Rs�1 and R, respec-tively, it follows that the partial derivatives of F� are Lipschitzian on Rs (as products offunctions which are bounded and Lipschitzian on Rs). Hence, F� 2 C1;1b (Rs).Ad 2.: Clearly, F� is bounded as a distribution function. By the assumption of indepen-dence, F� = F�1 � � �F�s , where F�i are the marginal distributions of �. Since the marginaldensities f�i were assumed to be Lipschitzian, the F�i and, hence, F� itself are of class C1.The assumed boundedness of the f�i yields that the F�i are Lipschitzian. Furthermore,@F�@x1 = f�1 � F�2 � � �F�s.Therefore, @F�@x1 is bounded and Lipschitzian according to the assumptions. The sameargumentation applies to the other partial derivatives, whence F� 2 C1;1b (Rs). 24 Illustration of the Stability ResultsIn this section we illustrate the obtained stability result for a simple 2-dimensional exam-ple. We consider the problemminfx1 + x2jP (�1 � x1; �2 � x2) � 1=2g;where � is assumed to have a distribution � which is normal with independent componentsof mean zero and unit variance. Clearly, this problem satis�es the basic data assumptions(BCA). The solution set of this problem consists of a singleton 	(�) = fq; qg, whereq � 0:55 is the 1=p2-quantile of the 1-dimensional standard normal distribution. First,we check the assumptions of Theorem 2. Obviously, 	(�) is nonempty and bounded. Next,a Slater point certainly exists, any x̂ with x̂1 = x̂2 > q satis�es F�(x̂) > F�(q; q) = 1=2.Furthermore, as � is a normal distribution with independent components, F r� is stronglyconcave for any r < 0 and on any bounded, convex set (see remarks below Theorem 2).As a consequence, F r� is strongly concave on some convex, open neighbourhood of 	(�).Summarizing, the �rst three assumptions of Theorem 2 are satis�ed. Finally, in ourexample, g is linear (in particular: convex-quadratic), X = R2 is trivially polyhedral andh is linear as the identity. Hence, Corollary 3 guarantees the Hausdor� H�older continuitywith rate 1/2 of the solution set mapping 	 for any approximation � 2 P(Rs) of �.11
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dK(�; �) dK(�; �)Figure 1: Illustration of stability results for simulated dataWe want to focus now on two speci�c approximations both of which are based on asample Z1; : : :ZN of observations of �. The empirical measure derived from this sampleis de�ned as � = N�1PNi=1 ÆZi, where ÆZ is the Dirac measure placing mass one at thepoint Z. The empirical measure is a suitable approximation when no information at allis available about the true measure �. If, on the other hand, partial information about �is given, better adapted approximations may be favorable. For instance, if we know that� in our problem is some nondegenerate multivariate normal distribution (but do notknow its parameters), then a parametric approximation de�ning a normal distributionwith mean and (co-) variances estimated from Z1; : : :ZN may be useful. We want tosymbolize this parametric approximation by � 0. Of course, with increasing sample sizeN , dK(�; �) and dK(� 0; �) will tend to zero in a probabilistic sense, and dK(� 0; �) willdo so even faster than dK(�; �). The issue we want to address here is convergence of theapproximating solution sets, i.e., dependence of dH(	(�);	(�)) on dK(�; �) . To this aim,several thousand samples of � were simulated according to its distribution �. The samplesize varied up to a few hundred.Figure 1 a) illustrates the results for the parametric (black dots) and empirical (gray dots)approximations. Clearly, in both cases the approximating solutions converge to the truesolution when the approximating measure converges to the true measure. Indeed, thiskind of qualitative stability is already ensured by the �rst two assumptions of Theorem 2via Theorem 1. From a quantitative point of view, however, the solution sets of parametricapproximations seem to converge much faster (in the worst case) than those of empiricapproximation. This is particularly obvious in a region close to the origin which has12



been magni�ed in Figure 1 b). According to the diagram, there is no doubt that thereexists an upper Lipschitz estimation for the parametric approximation, whereas in caseof the empiric estimation increasingly large ratios between the two distances seem tobe possible when dK(�; �) tends to zero. This suggests a Non-Lipschitzian relation inaccordance with the observation from Example 17 that discrete approximations may leadto H�older rate 1/2 for the stability of solution sets. At least, Corollary 3 guarantees thatthe corresponding cloud of points lies below some function �pdK(�; �), where � > 0 issuÆciently large.As far as the parametric approximation is concerned, its Lipschitzian behavior issupported by Theorem 7. To see this, recall that both the original and the approximatingmeasures are normal distributions, hence, their distribution functions belong to the spaceC1;1b (Rs) according to Proposition 8. Furthermore, the gradient of a (nondegenerate)normal distribution function is always nonzero which yields condition 4. of Theorem 7.Finally, owing to the fact that the objective function in our example is linear, condition 5.of Theorem 7 is trivially ful�lled. It has to be noted, that Theorem 7 provides a Lipschitzresult with respect to the distance kF� � F�k1;1b , whereas Figure 1 b) even suggests aLipschitzian relation with respect to the stronger Kolmogorov distance dK(�; �).As far as optimal values are concerned, Theorem 1 guarantees a Lipschitzian estimationfor any approximating measure. This is observed empirically in Figure 1 c) for the exampleof empirical approximation (the better behaved parametric case is omitted here).Finally, we may reduce our example to a 1-dimensional setting, i.e., to the problemminfxjP (� � x) � 1=2g;where � is assumed to have a standard normal distribution �. In this situation, the de-pendence of Hausdor� distances between solution sets on Kolmogorov distances betweenmeasures is seen from Figure 1 d) to be of Lipschitzian nature for both types of approxima-tions (black dots on top of gray dots). Again, this observation is supported by our resultsvia Proposition 4, according to which the Lipschitz rate results for any approximatingmeasure.5 AppendixLemma 9 For r < 0 and � 2 P(Rs) it holds: If F�(y) � w > 0 for all y 2 Q � Rs, thenthere exist constants c; Æ > 0 such thatjF r� (y)� F r�0(y)j � cdK(�; � 0) 8y 2 Q8� 0 2 P(Rs); dK(�; � 0) < Æ.Proof. Note that jur � vrj � jrjmaxfur�1; vr�1g ju� vj 8u; v > 0.Then, choosing Æ := w=2, one hasF�0(y) � w=2 > 0 8y 2 Q8� 0 2 P(Rs); dK(�; � 0) < Æ:13



Fix c as jrj (w=2)r�1. 2The next lemma provides a two-level decomposition for solutions and optimal values ofthe parametric problem (P�):Proposition 10 (see [5], Lemma 1) Under the assumptions of Theorem 1 let V be anopen ball containing 	(�). With the notations introduced in front of Theorem 2 it holdsthat1. YV is convex and compact.2. � is convex, �nite and lower semicontinuous on YV .3. There is some Æ > 0 such that for all � 2 P(Rs) with dK(�; �) < Æ'(�) = inff�(y) j y 2 YV ; F�(y) � pg (5)	(�) = �(Y (�)) (6)4. Y : P(Rs)� Rs is upper semicontinuous at �.The following Proposition allows separately to study quantitative stability of lower andupper level solution sets, respectively, in order to derive quantitative stability of the overallsolution set:Proposition 11 In addition to the assumptions of Theorem 1 suppose that1. Y is Hausdor� H�older continuous with rate 1/2 at �, i.e., there are constants �; Æ > 0such that dH(Y (�); Y (�)) � �d1=2K (�; �) 8� 2 P(Rs); dK(�; �) < Æ:2. � is Hausdor� H�older continuous with rate ��1 on YV , i.e., there exists L > 0 suchthat dH(�(z); �(y)) � Ld��1(y; z) 8z; y 2 YV :Then, 	 is Hausdor� H�older continuous with rate (2�)�1 at �. More precisely, it holdsthat dH(	(�);	(�)) � L���1 [dK(�; �)](2�)�1 8� 2 P(Rs); dK(�; �) < Æ:Proof. For a nonempty and closed subset Q � Rs and y 2 Rs denote by projQ(y) theprojection of y onto Q. Note that for � 2 P(Rs) with dK(�; �) < Æ and small enoughÆ, one has 	(�) 6= ; (Theorem 1) and Y (�) 6= ; by (6). Furthermore, the sets Y (�) areclosed. Indeed, by de�nition and by (5), they can be represented asY (�) = fy 2 YV jF�(y) � pg \ fy 2 YV j�(y) � '(�):14



The �rst set on the right is closed due to the upper semicontinuity of distribution functionsand by statement 1. of Proposition 10. The second set is closed because of the lowersemicontinuity of � (statement 2. of Proposition 10). Consequently, proj applies to thesesets Y (�). Recalling that Y (�) � YV , it follows from the assumptions and from (6), thatfor � 2 P(Rs) with dK(�; �) < ÆdH(	(�);	(�)) = maxf supx2	(�) d(x;	(�)); supx02	(�) d(x0;	(�))g= maxf supy2Y (�) sup�2�(y) d(�; �(Y (�))); supy02Y (�) sup�2�(y0) d(�; �(Y (�)))g� maxf supy2Y (�) sup�2�(y) d(�; �(projY (�)(y)));supy02Y (�) sup�2�(y0) d(�; �(projY (�)(y0)))g� Lmaxf supy2Y (�) d��1(y; projY (�)(y)); supy02Y (�) d��1(y0; projY (�)(y0))g� L"maxf supy2Y (�) d(y; Y (�)); supy02Y (�) d(y0; Y (�))g#��1� L [dH(Y (�); Y (�))]��1� L���1 [dK(�; �)](2�)�1 : 2The next proposition, which may be considered as the technical core of our analysis,provides a veri�able condition for the upper level solution set Y being Hausdor� H�oldercontinuous with rate 1/2. The key here is an argument of strong convexity.Proposition 12 Under the assumptions of Theorem 1 consider the parametric program( eP�) min f�(y) j y 2 YV ; F�(y) � pg (� 2 P(Rs))near � 2 P(Rs), the solution set mapping and optimal value function of which are givenby Y and ', respectively (see Prop. 10). Let the following assumption be satis�ed inaddition, where r < 0 refers to the exponent of concavity of �� F r� is strongly convex on some convex open neighbourhood U of Y (�).Then, Y is Hausdor� H�older continuous with rate 1/2 at �.Proof. Setting b�(y) := F r� (y) � pr for � 2 P(Rs), the original problem ( eP�) may bewritten as ( eP�) min f�(y) j y 2 YV ; b�(y) � 0g.As a consequence of the r- concavity of � (where r < 0), F r� is a convex (possibly extended-valued) function. Therefore, b� is a convex function �nite-valued on YV (see de�nition of15



YV ). Then, in view of 1. and 2. in Proposition 10, ( eP�) is a convex program which satis�esthe Slater condition b�(ŷ) < 0 for some ŷ 2 YV . Indeed, we may choose x� 2 	(�) 6= ;(�rst assumption of Th. 1), hence x� 2 X \ V and b�(h(x�)) � 0. Furthermore, x̂ 2 Xtaken from the second assumption of Theorem 1 satis�es b�(h(x̂)) < 0. With F� beingnondecreasing as a distribution function, the composition F r� Æ h is convex too due to F r�being nonincreasing (r < 0) and to h having concave components. Therefore, b� Æ h isconvex and, for suÆciently small � > 0, x� := �x̂ + (1 � �)x� satis�es b�(h(x�)) < 0.Now, one may take ŷ := h(x�).Statement 4. in Proposition 10 and Lemma 9 guarantee that for some c; Æ0 > 0Y (�) � U; jb�(y)� b�(y)j � c dK(�; �) 8y 2 YV ; 8� 2 P(Rs); dK(�; �) < Æ0: (7)Finally, the additional assumption on strong convexity of F r� on U means in particularthat b�(y1=2 + y2=2) � b�(y1)=2 + b�(y2)=2� � ky1 � y2k2 8y1; y2 2 U (8)for some � > 0. We proceed by case distinction with respect to the relation between Y (�)and the solution set Q := argminf�(y) j y 2 YV g of the relaxed problem ( eP�) where thechance constraint b�(y) � 0 is omitted.case 1: Y (�)\ Q = ;:Choose some y� 2 Y (�) (recall that Y (�) 6= ; due to 	(�) 6= ; and to (6)). Since � andb� are �nite-valued on YV (statement 2. of Prop. 10 and '(�) = �(y�) > �1 (see (5)),the Slater condition shown above for problem ( eP�) ensures the existence of a Lagrangemultiplier �� � 0 such that (cf. [13], Cor. 28.2.1)�(y�) = min f�(y) + ��b�(y) j y 2 YV g and ��b�(y�) = 0. (9)By the case 1- assumption, one has �� > 0 and so � + ��b� is strongly convex on YV \ Udue to the additional assumption in this lemma. This implies~� ky � y�k2 � �(y) + ��b�(y)� �(y�) for all y 2 YV \ U: (10)for some ~� > 0 (due to ��b�(y�) = 0 and y� being a minimizer in (9)). In particular, y� isthe unique minimizer of ( eP�), i.e., Y (�) = fy�g. For an arbitrary � taken from (7), (10)applies. Using the results of Proposition 10 and the fact that b�(y) � 0 for all y 2 Y (�)one arrives at the asserted H�older continuity with respect to the Hausdor� distance:dH(Y (�); Y (�)) = supy2Y (�) d(y; y�) � ~��1=2 supy2Y (�) ��(y)� �(y�) + ��(F r�(y)� pr)�1=2� ~��1=2 supy2Y (�) ['(�) � '(�) + ��(b�(y)� b�(y))]1=2� ~��1=2 [LdK(�; �) + ��cdK(�; �)]1=2� ~��1=2(L+ ��c)1=2dK(�; �)1=2for all � 2 P(Rs); dK(�; �) < minfÆ0; Æg and with L; Æ > 0 from Theorem 1.16



case 2: Y (�) \Q 6= ;:In this case, Y (�) has the simple representationY (�) = fy 2 Q j b�(y) � 0g: (11)Note that Q is closed and convex by the properties of � and YV stated in Proposition 10.case 2.1 9 �y 2 Y (�), b�(�y) < 0.Then, �y is a Slater point of the constraint b�(y) � 0 with respect to Q. Then, by theRobinson-Ursescu Theorem (cf. [14]), the inverse H�1 of the multifunctionH(t) := fy 2 Qjb�(y) � tg:is metrically regular at all points (y; 0) with y 2 Y (�). This amounts to the existence ofneighbourhoods Uy and constants "y; Ly > 0 such thatd(y0;H(t)) � Ly maxfb�(y0)� t; 0g 8t; t0 2 (�"y; "y)8y0 2 Q \ Uy (12)Now, let � 2 P(Rs) be arbitrary such that dK(�; �) < Æ0 with Æ0 from (7). If y0 2H(�cdK(�; �)) (where c refers to (7)), then y0 2 Q andb�(y0) � �cdK(�; �) � minf0; b�(y0)� b�(y0)gby de�nition of H and of dK(�; �). It follows thatH(�cdK(�; �)) � Y (�) \ Y (�): (13)Combining (12) with (13), we obtain for all � 2 P(Rs) with dK(�; �) < minfÆ0; c�1"yg:maxfd(y0; Y (�)); d(y0; Y (�))g � d(y0;H(�cdK(�; �))) � Ly maxfb�(y0) + cdK(�; �); 0g� � LycdK(�; �) 8y0 2 Y (�) \ Uy2LycdK(�; �) 8y0 2 Y (�) \ Uy ,where in the second estimation the relation b�(y0) � b�(y0) � b�(y0) � cdK(�; �) wasused (see 7). Summarizing, each y 2 Y (�) is supplied with neighbourhoods Uy of y andconstants ~"y; ~Ly > 0 such thatd(y0; Y (�)) � ~LydK(�; �) 8y0 2 Y (�) \ Uy 8� 2 P(Rs); dK(�; �) < ~"yd(y0; Y (�)) � ~LydK(�; �) 8y0 2 Y (�) \ Uy 8� 2 P(Rs); dK(�; �) < ~"y.The compactness of Y (�) � YV (statement 1. of Prop. 10) then allows to extractconstants "�; L > 0 and an open set ~U containing Y (�) such that for all � 2 P(Rs) withdK(�; �) < "� one has d(y; Y (�)) � LdK(�; �) 8y 2 Y (�)d(y; Y (�)) � LdK(�; �) 8y 2 Y (�) \ ~U .17



By upper semicontinuity of Y (statement 4. of Prop. 10), one has Y (�) � ~U for all� 2 P(Rs); dK(�; �) < "0 with some "0 > 0. Hence, even Hausdor� Lipschitz continuityof Y at � follows from the above inequalities: dH(Y (�); Y (�)) � LdK(�; �) for all � 2P(Rs); dK(�; �) < minf"�; "0g. This, of course, implies the asserted H�older continuitywith rate 1/2.case 2.2 b�(y) = 0 8y 2 Y (�).The convexity of Y (�) along with (8) yield that Y (�) reduces to a singleton, say Y (�) =fy�g. Then, b�(y�) = 0 and y� 2 Q � YV by (11). For any � satisfying (7), let y 2 Y (�) �U be arbitrary, hence y 2 YV and b�(y) � 0. Put�0 := inff� � 0 j b�(�y� + (1� �)y) � 0g.Then, �0 2 [0; 1]. De�ne y0 := �0y�+(1��0)y. Assume �rst that �0 > 0. Since the convexfunction �(�) = b�(�y� + (1 � �)y) is upper semicontinuous on [0; 1] and continuous on(0; 1), it follows that b�(y0) = 0. Since, for �0 > 0, b�(y) > 0, one has y0 6= y andb�(y=2 + y0=2) > 0 according to the de�nition of y0. Then, (7) and (8) yieldcdK(�; �) � b�(y)�b�(y) � b�(y)=2+b�(y0)=2 � b�(y=2+y0=2)+� ky � y0k2 � � ky � y0k2 ;whence ky � y0k �pc=�pdK(�; �): (14)In the excluded case of �0 = 0, the same inequality follows trivially from y0 = y. Now,we want to estimate the distance between y0 and y�, hence, without loss of generality, wemay assume that y0 6= y�. Then, �0 < 1 and y0 =2 Q (if y0 2 Q, then y0 2 Y (�) due tob�(y0) = 0 and (11), whence a contradiction to Y (�) = fy�g). Now, y =2 Q since y� 2 Qand Q is convex (otherwise the contradiction y0 2 Q). Consequently, �(y) > �(y�). Put,y00 := y�=2+ y0=2, hence y00 = �0+12 y� + 1��02 y, which is a convex combination of y� and y.Then, y00 2 YV \ U due to convexity of YV \ U . It follows that�(y00) � �0 + 12 �(y�) + 1� �02 �(y) < �(y):If b�(y00) � 0, then a contradiction to y 2 	(�) results, hence b�(y00) > 0. Again referringto (7) and (8), it follows thatcdK(�; �) � b�(y00)� b�(y00) � �b�(y�=2 + y0=2) � �(b�(y�) + b�(y0))=2 + � ky� � y0k2= � ky� � y0k2 :Combining this with (14), one arrives at the desired estimationdH(Y (�); Y (�)) = supy2Y (�) ky � y�k � 2pc=�pdK(�; �): 2Collecting the previous results allows to prove our main theorem on H�older rates:18



Proof of Theorem 2:The �rst two assumptions of the Theorem serve to apply Theorem 1 in Propositions 10,11 and 12. By virtue of the third assumption, Proposition 12 guarantees Hausdor� H�oldercontinuity of Y (upper level solution set) at � with rate 1=2. Combining this with thelast assumption of the Theorem (H�older rate for the lower level solution set), Proposition11 provides the stated result. 2In the case of a 1-dimensional random variable, the assertion of Proposition 12 can besharpened even without the strong convexity assumption made there:Proposition 13 If s = 1 then, under the assumptions of Theorem 1, Y is Hausdor�Lipschitz continuous (i.e., Hausdor� H�older continuous with rate � = 1) at �.Proof. We consider the parametric program from Proposition 12 which Y is the solutionmapping of: ( eP�) min f�(y) j y 2 YV ; F�(y) � pg (� 2 P(R))We have YV = [a; b] for some a; b 2 R (see 1. in Prop. 10). Choosing some x� 2 	(�) � Xaccording to the assumption of Theorem 1 , it follows that h(x�) 2 YV 6= ;, hence a � b.Since F� is upper semicontinuous and nondecreasing as a distribution function, one getsfy 2 R j F�(y) � pg = [�(�);1); �(�) := minfy 2 R j F�(y) � pg.Clearly, f�(�)g is the solution set of a parametric program of type (P�) (see introduction)which at the �xed measure � satis�es the basic data assumptions (BCA) (with g(x) =h(x) = x and X = R). Since p 2 (0; 1) and F� is a distribution function, there existssome �y 2 R with F�(�y) > p. Now, Theorem 1 allows to derive the existence of L; Æ > 0such thatj�(�) � �(�)j = j'(�) � '(�)j � LdK(�; �) 8� 2 P(R); dK(�; �) < Æ,where '(�) refers to the optimal value function of the parametric problem de�ning �(�).Summarizing, we may rewrite ( eP�) as( eP�) min f�(y) j y 2 [b(�); b]g (� 2 P(R)),where b(�) := maxf�(�); ag satis�esjb(�)� b(�)j � LdK(�; �) 8� 2 P(R); dK(�; �) < Æ: (15)We argue that b(�) � b for all � 2 P(R) with dK(�; �) < ~Æ and some ~Æ > 0. This isobvious from (15) if b(�) < b. If b(�) = b, then we refer to some ŷ 2 YV with F�(ŷ) > p(see proof of Prop. 12). Consequently, a = b = ŷ and F�(b) > p. Then, F�(b) � p and,hence, b(�) � b for all � 2 P(R) with dK(�; �) < ~Æ := F�(b)� p.Now, � is a lower semicontinuous, convex and �nite function on the nonempty intervals[b(�); b] � YV (see Prop. 10). In particular, Y (�) 6= ; for all � 2 P(R) with dK(�; �) < ~Æ.Elementary calculus shows thatdH(Y (�); Y (�)) � jb(�)� b(�)j 8� 2 P(R); dK(�; �) < ~Æ.19



Along with (15), this yields the assertion of the Lemma. 2Proof of Proposition 4:Proposition 13 yields the Hausdor� Lipschitz continuity of Y at �. This means that theH�older rate equals 1, so Proposition 11 provides the stated result. 2Proposition 14 Let � have an s-dimensional normal distribution with independent com-ponents. Then, the logarithm of the distribution function F� of � is strongly concave onany bounded, convex subset C � Rs. As a consequence, for any r < 0, F r� is stronglyconvex on C.Proof. We assume �rst the case of a 1-dimensional standard normal distribution havingthe distribution function � and the density '(x) = (2�)�1=2 exp(�x2=2). With 	 := log �,one has that 	0 = '=� and	00 = �'(x)�(x)�2(x) with �(x) = '(x) + x�(x). (16)We argue that �(x) > 0 for all x. Evidently, this is true for x > 0, and, for x < 0, onegets �(x) = '(x) + xZ x�1 '(�)d� = '(x) + Z x�1 �'(�)d� + Z x�1(x� �)'(�)d�= Z x�1(x� �)'(�)d� � Z 2x�1(�x)'(�)d� = �x�(2x) > 0.From (16), it follows that 	00(x) < 0 for all x. Now, let F� be the distribution function ofa 1-dimensional normal distribution with mean m and variance �2. Then, for~	 := logF� = log �(��1(x�m)) = 	(��1(x�m))one has that ~	00(x) = ��2	00(x) < 0 for all x. Therefore, on each compact interval I �R, ~	00 is bounded above by some negative constant, which implies that logF� is stronglyconcave on I with some modulus �(I) > 0 : for all x; y 2 I and all � 2 [0; 1], one haslog F�(�x + (1� �)y) � � log F�(x) + (1� �) log F�(y) + �(I)�(1� �)(x� y)2.Finally, let F� be the distribution function of an s-dimensional normal distribution withindependent components. Assume that m is the mean vector and � is the diagonalcovariance matrix of this distribution with nonzero variances �2i . Then,F�(x) = F�1(x1) � � �F�s(xs) 8x 2 Rs,20



where the F�i are the distribution functions of 1-dimensional normal distributions withmean mi and variance �2i . Let C � Rs be any bounded convex subset and choose I � Rlarge enough that C � Is. It follows that for all x; y 2 C and all � 2 [0; 1]log F�(�x + (1� �)y) = sXi=1 logF�i(�xi + (1� �)yi)� sXi=1 (� log F�i(xi) + (1� �) log F�i(yi)+�(I)�(1� �)(xi � yi)2)= � log F�(x) + (1 � �) log F�(y) + �(I)�(1� �) kx� yk2 ,which is the asserted strong concavity of log F� on C. The last statement of the propositionfollows from the fact that continuity and strong concavity of log F� on some compactconvex subset of fxjF�(x) > 0g implies F r� to be strongly convex on that same subset foreach r < 0 (see [6], Prop. 4). 2Example 15 Let m = 2, s = 2 andminfx2 � x1j(x1; x2) 2 X ; P(�1 � x1; �2 � x2) � 1=4g; X = f(x1; x2)jx1 + x2 � 3=2g,where � = (�1; �2) is assumed to have a uniform distribution � over the triangleconvf(1; 0); (0; 1); (1; 1)g:Clearly, our basic convexity assumptions (BCA) are satis�ed. The distribution functionof � is easily calculated asF�(x1; x2) = � minf1;minfx21; x22; (x1 + x2 � 1)2gg ifx1 � 0; x2 � 0; x1 + x2 � 10 else .Accordingly, the constraint set becomesfx 2 XjF�(x) � 1=4g = f(x1; x2)jx1 + x2 � 3=2; x1 � 1=2; x2 � 1=2; x1 + x2 � 3=2g= f(x1; x2)jx1 + x2 = 3=2; x1 2 [1=2; 1]g,and the (unique) solution of this problem is (1; 1=2). Now, consider a sequence of perturbedmeasures �n de�ned by uniform distributions over the (shifted) trianglesconvf(1 + n�1; n�1); (n�1; 1 + n�1); (1 + n�1; 1 + n�1)g:Then, F�n calculates much like F� but with the shifted arguments x1 � n�1, x2 � n�1.It follows that �n ! � in the sense of Kolmogorov distance. However, the feasible setbecomes empty:f(x1; x2)jx1 + x2 � 3=2; x1 � 1=2 + n�1; x2 � 1=2 + n�1; x1 + x2 � 3=2 + n�1g = ;.21



Hence, there are no solutions at all for this special sequence of approxiamting problems.Finally, consider a di�erent sequence of perturbed measures. To this aim, let � be theuniform distribution over the square [1=2; 1]2 and de�ne the sequence �n := (1 � n�1)�+n�1� of probability measures. The induced distribution functions calculate as F�n = (1 �n�1)F� + n�1F� , where F� has the explicit representation given above andF�(x1; x2) = 4 � (maxfminfx1; 1g; 1=2g � 1=2) � (maxfminfx2; 1g; 1=2g � 1=2).We claim that (3=4; 3=4) is the only feasible point in the perturbed constraint setMn = fx 2 XjF�n(x) � 1=4g.Indeed, one easily checks that F�(x); F�(x) � 1=4 for all x 2 X. Since F�n is a strict con-vex combination of F� and F�, any point x ofMn must satisfy x 2 X and F�(x) = F�(x) =1=4. However, the only x 2 X with F�(x) = 1=4 is evidently �x = (3=4; 3=4), which atthe same time ful�lls F�(�x) = 1=4. As the only feasible point, �x trivially coincides withthe solution set 	n of all the approximating problems. Consequently, the approximatingsolutions do not converge towards the solution (1; 1=2) of the original problem.Example 16 In problem (P), let m = s = 2, X = R2, h(x) = x, g(x) = (x1+x2�p2)2,p = 0:5 and � = uniform distribution over the unit square [0; 1]2. Evidently, these datasatisfy all the basic assumptions formulated in the introduction (in particular, � is log-concave, hence r-concave for any r < 0). Next we verify the assumptions of Theorem2: since the distribution function of � satis�es F�(x) = x1x2 for all (x1; x2) 2 [0; 1]2, itfollows that 	(�) = f(p1=2;p1=2)g which entails 1. in Theorem 2. It is elementary toverify that one may assume Y (�) � [0; 1]2 (after shrinking the open ball V � 	(�) usedin Prop. 10). Evidently, F r� is strongly convex for any r < 0, whence 3. With x̂ := (1; 1),one has F�(x̂) = 1 > p, which is 2. Finally, since g is convex-quadratic, X is triviallya polyhedral set and h is linear, it follows that � is Hausdor� Lipschitz continuous (seeremarks above Corollary 3). This provides 4. with � = 1, and, thus, Theorem 2 ensuresthat 	 is Hausdor� H�older continuous with rate 1=2 at �. This rate is sharp. Indeed,considering the perturbed measures �" 2 P(Rs) de�ned for " > 0 as uniform distributionsover the squares [�"; 1� "]2, a straightforward calculation shows that	(�") = convf(a"; b"); (b"; a")g and dK(�; �") = "(1 + "),where a"=b" =p1=2 �q"(p2 + "). Consequently,dH(	(�);	(�")) = p2q"(p2 + ") �p"(1 + ") =pdK(�; �");which shows that the H�older rate 1=2 cannot be improved in this example.Example 17 In the previous example, we �x an " > 0 and consider the associatedmeasure �" which is a uniform distribution over the square [�"; 1� "]2. Certainly, �"can be approximated by a discrete measure ~�" (by placing an increasing number of uni-formly distributed atoms in the square). In particular, ~�" may be chosen such that22



dK(�"; ~�") � dK(�; �")=3. It follows that, due to dK(�; �") = "(1+")! 0 (for "! 0), onealso has that dK(�; ~�"), i.e., ~�" approximates � for "! 0. Applying the triangle inequalityyields that dK(�"; ~�") � dK(�; ~�")=3 + dK(�"; ~�")=3;whence dK(�"; ~�") � dK(�; ~�")=2. Furthermore, one easily checks from the data in Example16 that all the perturbed problems(P") minfg(x)jF�"(x) � 0:5gcontinue to satisfy the assumptions of Corollary 3: the basic data assumptions remainvalid (�" is a uniform distribution over a square similar to �), the point x̂ := (1; 1)satis�es F�"(x̂) = 1 > p and the solution set 	(�") is nonempty and bounded. Finally,similar to F r� , it holds that F r�" is strongly convex for any r < 0. Now, Corollary 3 appliesto �" as the original measure and ~�" as the perturbed measure. Since ~�" may be choosenarbitrarily close to �", we may assume thatdK(�"; ~�") � (2L)�2d2H(	(�);	(�"));where L refers to the constant from Corollary 3. Now, the corollary providesdH(	(~�");	(�")) � LpdK(~�"; �") �dH(	(�);	(�"))=2:Summarizing, one may invoke the estimation from Example 16 and exploit the triangleinequality for the Hausdor� distance to arrive atdH(	(�);	(~�")) � dH(	(�);	(�"))� dH(	(~�");	(�"))� dH(	(�);	(�"))=2 �pdK(�; �")=2� pdK(�; ~�")� dK(�"; ~�")=2 �pdK(�; ~�")=2=2= pdK(�; ~�")=(2p2):From Example 16 we know that dK(�; �") = "(1 + ")! 0 (for "! 0). Since dK(�"; ~�") �dK(�; �")=3, it follows that ~�" is a discrete approximation of �. Now, the above chain ofinequalities con�rms, that discrete approximations may reslut in a H�older rate 1=2 forstability of solutions of program (P) under the assumptions of Corollary 3.6 AcknowledgmentThis research was supported by the DFG Research Center "Mathematics for key tech-nologies: modelling, simulation and optimization of real-world processes".23
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