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Abstract

We propose a model for the integrated optimization of vehicle rota-
tions and vehicle compositions in long distance railway passenger trans-
port. The main contribution of the paper is a hypergraph model that
is able to handle the challenging technical requirements as well as very
general stipulations with respect to the “regularity” of a schedule. The hy-
pergraph model directly generalizes network flow models, replacing arcs
with hyperarcs. Although NP-hard in general, the model is computation-
ally well-behaved in practice. High quality solutions can be produced in
reasonable time using high performance Integer Programming techniques,
in particular, column generation and rapid branching. We show that, in
this way, large-scale real world instances of our cooperation partner DB
Fernverkehr can be solved.

1 Introduction

Vehicle rotation planning is concerned with the assignment of vehicles to trips
of a timetable and the concatenation of these trips to rotations. A ICE railcar,
as operated by Deutsche Bahn, is a very expensive asset. Therefore, the inte-
grated mathematical optimization of vehicle resources and deadhead trips' is
of enormous interest. However, despite intense research efforts of the railway
optimization community in the past decades, see [1], [2], [4], [6], and [8], the
solution of large-scale scenarios that integrate vehicle scheduling, train com-
position, and regularity aspects remains a mathematical and computational
challenge until today.

*This research was funded by DB Fernverkehr AG.
LA deadhead trip is a trip without passengers transferring vehicles between passenger
trips.



A high level description of the vehicle rotation planning problem is as follows.
A timetabled trip can be operated by several alternative vehicle configurations.
A vehicle configuration is a composition of a multiset of single vehicles. It is
a planning decision which vehicle configuration is used for timetabled and
moreover for deadhead trips. The choice of vehicle configurations is governed
by a set of rules.

We focus in this paper on strategic rolling stock decisions by considering a
cyclic planning horizon over one standard week. The structure of the timetable,
which is our input schedule, is almost periodic. Only few trips or parts of the
trips differ over the single week days of the standard week. In view of this
structure, it is desirable to also construct a regular vehicle rotation plan. Such
a plan is compactly representable, easy to communicate, and easy to operate.
We propose a novel concept to define and optimize regularity.

The above mentioned requirements of a vehicle rotation plan, i.e., train compo-
sition and regularity, can be handled by constructing a suitable dense directed
hypergraph, that represents a compact formulation for the train composition
and regularity requirements. Based on this hypergraph, the vehicle rotation
planning problem can be modeled by an integer program. The structure of
this IP resembles a classical network flow problem (although the problem is
NP-hard in general). It can be solved by column generation and large scale
Integer Programming techniques. To our best knowledge there is no standard
approach in the literature which can handle all of these technical requirements
from practice in a fully integrated way.

The paper is organized as follows. In Section 2 we describe the Vehicle Ro-
tation Planning Problem from a practical point of view. Section 3 explains
the developed graph-theoretic and Integer Programming model. The solution
method is described in Section 4. We use an adaption of the arc generation
LP solving technique, see [7]|, as well as a specialization of the well known
IP branching heuristic — called rapid branching, see [9]. We work in a close
cooperation with our partner DB Fernverkehr AG, who is one of the largest in-
tercity railway companies in Europe. We have extensively evaluated our model
and algorithm on a large set of real world problem instances. In Section 5 we
present computational results for a large set of real-world instances.

2 The Vehicle Rotation Planning Problem

In this section we give a formal description of the considered vehicle rotation
planning problem (VRP) by introducing major technical concepts of our railway
application at DB Fernverkehr.

As mentioned above we focus on a cyclic planning horizon of one week. A date
is a certain point in time in our standard week specified by a week day and
a time of the day. The duration from date a to date b is the minimal time



needed to wait from a until b. Therefore, the duration is well defined since, by
definition, a duration is always less the duration of the week.

Consider a set of timetabled trips T'. A trip ¢t € T consists of a list of successive
stops. A stop has a location, an arrival date, and a departure date. The first
stop of a trip has no arrival date, the last stop has no departure date.

A wehicle group is the most basic type of the physical vehicle resources. In
other contexts this is called vehicle type, fleet, or even commodity. It is called
"group"’ because it can represent a traction unit, an aggregated composition
of wagons or locomotives, or even single rail cars. The set of vehicle groups is
denoted by F'. The amortization costs for one week for a vehicle group f € F
are denoted by c(f).

A wehicle configuration (or short configuration) is a non-empty multiset of ve-
hicle groups. It represents a temporary coupling of its vehicle groups. A trivial
configuration is a configuration of cardinality one. The set of vehicle configu-
rations is denoted by C'. The operational cost per kilometer of a configuration
¢ € C is denoted by c(c). Note that the operational costs are per vehicle con-
figuration and not per vehicle group. This is because the costs for allocating
a track — for passenger and also for deadhead trips — are per trip and not per
rail car. It is much cheaper to allocate a track for two vehicles in a non-trivial
configuration than for two vehicles in trivial configurations individually.

For each trip ¢ € T there exists a set of feasible vehicle configurations C(¢t) C C
which can be used to operate t. A vehicle configuration can be changed at the
departure of the first stop and at the arrival of the last stop of a trip but not
inside a trip. A change of a vehicle configuration is called coupling®. Fort € T
and ¢ € C(t) we have a special technical time — called turn time for cleaning
and maintaining the involved vehicle resources after the trip t is done. Note
that this time depends on the used vehicle configuration:

Example 1. Consider a set of two vehicle groups F' = {f1, fa} and a tript € T
which has three feasible vehicle configurations C(t) = {c1,c2,c3} C C. Let ¢ =
{f1}, ca ={f1, fo}, and c3 = {f1, f1}. This can be interpreted as follows. It is
possible to operate t with a trivial and two non-trivial configurations. Moreover
it is sufficient to cover t by the trivial configuration ci. But in addition it is
possible to haul two alternative vehicle groups by operating t. Another point
of view for the feasible vehicle configurations of t is that co and c3 are two
alternatives for c¢i1. Both can be used to enforce the passenger capacity of c1.

Let t1,t2 € T be two trips with vehicle configurations ¢; € C(t1) and ¢y €
C(t2). We denote by d(t1,t2) the duration from the arrival date of ¢; to the
departure date of t5. In order to check if it is feasible to connect t; with to
several technical requirements must be fulfilled.

Rule 1. If ¢; = co we check if the turn time after operating t1 with c1 plus

2We consider only coupling activities that can be made on the fly, i.e., without the need
of special machines and crews.



the driving time from the arrival location of t1 to the departure location of to
is smaller or equal than d(t1,t2).

Rule 2. If ¢; # co we first decouple c1 and cy into trivial configurations and
consider all connections between two equal trivial configurations of t1 and ts.
We proceed as in the first rule using the turn time of c1 for these connections.

A wehicle rotation is a cyclic concatenation of trips which are operated by a
vehicle group. The number of physical vehicle groups needed to operate a
vehicle rotation is the number of times the cycle passes the whole standard
week. It is not decidable whether a single rotation is feasible or not without
knowing the vehicle configurations of the involved trips.

A wvehicle rotation plan is an assignment of vehicle configurations, timetabled
trips, and a set of feasible connections between these configurations such that
each used vehicle group rotates in a vehicle rotation.

As motivated in Section 1 regularity in vehicle rotation planning is an impor-
tant aspect of the VRP. A train is a non-empty set of at most seven trips having
the same departure time, departure location, arrival time, and arrival location
but pairwise different days. The set of all trains is denoted by ¥.

The main aim of regularity is to construct the vehicle rotation plan such that
the connections of trains are preferably repeating on the seven week days like
the trips of an almost periodic timetable repeating on the seven week days.

The vehicle rotation problem is to find a cost optimal vehicle rotation plan.

3 Hypergraph based Integer Programming model

The considered vehicle rotation planning problem can be modeled by using a
hypergraph based Integer Programming formulation. First of all, we describe
how all the technical aspects from Section 1 are handled in our graph theoretic
model. Second, we introduce an Integer Programming model which integrates
the whole VRP.

3.1 Hypergraph model

Since a vehicle configuration ¢ € C' is a multiset, we denote the number of
elements — called multiplicity — in ¢ of a vehicle group f € F by m(f,c). In
order to clearly identify the elements of a vehicle configuration ¢ € C we index
all elements of vehicle group f € F in ¢ by natural numbers {1,...,m(f,¢)} C
N.

We define a directed hypergraph G = (V, H, A) with node set V', hypernode
set H and hyperarc set A. Our definition of a directed hypergraph is slightly



different to definitions from the literature (see [5]) and therefore we define the
sets V., H, and A as follows:

A node v € V is a four-tuple v = (¢, ¢, f,m) € T x C x F x N and represents
a trip t € T operated with a vehicle configuration ¢ € C(t) and with vehicle
group f € c of multiplicity m € {1,...,m(f,c)}.

The set V(t,¢) = {(t,c, f,m)|t = t, ¢ = ¢} denotes all nodes belonging to a
trip t € T operated with a vehicle configuration ¢ € C(t). Each V (¢, c) with
t € T and ¢ € C(t) is a hypernode h € H. A hypernode can been seen as a
feasible assignment of a vehicle configuration to a trip.

A link is a tuple (v,w) € V. x V. A hyperarc a € A — or short arc — is a non-
empty set of links, thus a C V x V. For a € A we define the tail component
of a by tail(a) ={v e V|3w eV : (v,w) € a} and the head component by
head(a) = {v € V|3u € V : (u,v) € a}. Note that in contrast to [5] we
assume that the tail set and head set of a hyperarc must be not empty and of
equal cardinality. In addition we do not assume that the tail set and head set
have to be disjoint.

The arcs A of the graph G can be partitioned in three sets. In the following
we describe the construction:

Step 1. We construct all configuration conserving arcs — all arcs without a
coupling activity. This means that we iterate over all pairs of trips t1,to € T
having a common feasible vehicle configuration ¢ € C(t1) N C(t2). Then we
apply Rule 1 to check if this connection is possible. If so, we add a hyperarc a
to the arc set A of our graph G. The arc a consists of |V (t1,c)| = |V (t2, )|
links. Each link (v,w) € a with v € V(t1,¢) and w € V (t2,c) connects nodes
with the same vehicle group and multiplicity and so a is well-defined.

Step 2. Regular hyperarcs are conjunctions of configuration conserving arcs
as introduced in Step 1. For each tail train t; € X, head train to € T, vehicle
configuration ¢ € C, and number of overnights o € {0,...,6} we create a
reqular hyperarc as follows. We collect all arcs a C A connecting t1 € t1 and
to € to with configuration c, such that midnight is passed o times if one waits
from the arrival date of t1 until the departure date of to. The set a can be seen
as mazximal "hyper-connection”’ of t1 and ty with configuration c. In the non-
trivial case, i.e., |a| > 2, we add a regular hyperarc a = {(u,v) € VxV|Ja* €
a: (u,v) € a*} to the arc set A of our graph G.

Step 3. The last step constructs all arcs that implement a coupling activity,
called coupling arcs. We apply Rule 2 to all links (v,w) € V x V' having the
same vehicle group and which have not been considered in Step 1. If the link
(v,w) fulfills Rule 2 we add a simple arc a = {(v,w)} to the arc set A of our
graph G.

Example 2. Figure 1 gives an example of our construction of reqular hyper-
arcs. It shows two trains t1,ts € T connected by configuration conserving arcs
ai,...,a7 € A and regular hyperarc a, € A. For the sake of simplicity all nodes
have only trivial configurations.
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Figure 1: Hyperarc model for regularity.

Let a € A be an arc of G with vehicle configuration c¢(a) € C. The deadhead
distance of a is denoted by I(a) € Q. Let v(a) € Qt be the duration of
the tail trip of a plus the duration from the arrival of the tail trip of a to the
departure of the head trip of a divided by the duration of the standard week.
Thus v(a) is the fractional number of physical vehicles "’consumed"’ by a.

For example, if the tail trip of a departs on Monday at 12 p.m., arrives on
Monday at 18 p.m., and the head trip of a departs on Tuesday at 12 p.m., we
have v(a) = 1/7. Note that v(a) can be greater than one if the departure of the
head trip of a is between the departure and arrival of the tail trip of a.

If a is a coupling arc then p(a) € QT is a constant penalty for the involved
coupling activities, otherwise p(a) is zero. Finally, if a is not a regular arc
r(a) € QT is a constant penalty for violating regularity. In case of a regular
arc r(a) is zero. The objective function c : A — QT is defined as follows:

cla)i=co:i=  r(a) + pla) +cle(a)-Ua)+ > m(f,c(a)-c(f) v(a).
— —~
(ir-)regularities ~ couplings deadheads fec(a)

vehicles

As denoted above, the multi-objective function, which minimizes vehicle cost,
minimizes deadhead cost, minimizes coupling cost, and maximizes regularity
is combined in a single objective function c.



3.2 Integer Programming formulation

Let G = (V,H, A) be a hypergraph modeling the VRP as described above.
We introduce binary decision variables x, € {0,1} and y, € {0,1} for each
hyperarc a € A and each hypernode h € H of G. Those variables take value
one if the corresponding nodes and hyperarcs are used in the vehicle rotation
plan and otherwise zero. The set of all hypernodes h € H for trip t € T is
denoted by H(t) and H(v) denotes the set of all hypernodes of G containing v.
By definition, the set H(v) for v € V has cardinality one. The set of all ingoing
hyperarcs of v € V is defined as 6™ (v) := {a € A|I(u,w) € a : w = v} C A,
in the same way §°%(v) := {a € A|,3(u,w) € a : w=v} C A denotes the set
of all outgoing hyperarcs of v.

Our hyperflow based Integer Programming formulation states:

min Z Caq (HFIP)
acA
Z yn =1, VteT (covering)
heH (1)
Z Tg — Z yn =0, YveV (in-flow)
a€din(v) heH (v)
Z Ty — Z yp =0, YveV (out-flow)
a€dout(v) heH (v)

xq € {0,1}, Va € A
yn € {0, 1}, Vh € H.

Our objective function minimizes the total cost. The covering constraints
assign one hypernode of graph G to each trip of the VRP. This models the
configuration assignment of vehicle configurations to trips. Constraints in-
flow and out-flow can be seen as flow conservation constraints for each node
v € V. If one interprets an in-flow equation as a departure and the out-flow
equation as an arrival node, a hypernode h € H can be even seen as a hyperarc
between these departure and arrival nodes. With this interpretation the in-
flow and out-flow constraints become constraints conserving hyperflow on the
trips and connections between trips.

Example 3. Figure 2 shows a part of our hypergraph. The set of nodes is
V = {vi,...,vig}. The pair of red and blue circles for each v € V indicates
the in-flow and out-flow accordingly the departure and arrival of a node. The
colors of the circles indicating two vehicle groups — a red and a blue one. The
set of hypernodes is H = {h1,...,hi1}. Trips t1 € T and ty € T have both
two trivial and two non-trivial configurations, trip t3 € T has only one possible
non-trivial configuration. Arc a; € A implements a coupling activity after the



(@59 () - (@59 )
>

t3 €T

a6

Figure 2: Hypernodes and hyperarcs of the hypergraph.

arrival of t1. The hyperarcs ag,as,a4,a5 € A are configuration conserving
hyperarcs.

Note that the pure row representation of model HFIP does not directly involve
any vehicle composition or regularity requirements. This is because vehicle
composition and regularity is solely modeled by the underlying hypergraph.
Thus, the main aspects of the VRP are modeled by columns.

4 Solving the Vehicle Rotation Planning Problem

In case of only trivial configurations and without regular hyperarcs the hyper-
graph is a standard graph. In this case our problem reduces to the Integer
Multi-Commodity-Flow problem, which is known to be NP-hard, see [7]. Fur-
thermore, if all trip configurations are fixed, problem VRP is a simple assignment
problem and hence an optimal solution of the LP relaxation of model HFIP is
already integral.

Due to the NP-hardness of problem VRP, we propose in this section a heuristic
Integer Programming approach to solve model HFIP. We are mainly utilizing
two general techniques.

First we use a column generation approach to solve the LP-relaxation of
model HFIP. Note, that the number of variables is very large, i.e., one for
each hyperarc and hypernode. We start with all rows of model HFIP and add
all y-variables and a few z-variables representing arcs with a duration from the
departure to the arrival smaller or equal 90 Minutes in advance. The remain-
ing pricing problem is to decide whether there is a hyperarc left with negative



reduced cost — we simply answer this question by enumeration. The best out-
going arc of each node v € V and the best outgoing arc of each hypernode
h € H with negative reduced cost are priced in each column generation round.
Furthermore, this allows us to compute in each column or arc generation round
a valid global lower bound.

Second, we apply the rapid branching method introduced in [9] and [3] for
integrated vehicle and duty scheduling in public transport and for railway track
allocation to produce high quality integral solutions. We adapt this heuristic
to consider only a subset of the variables — in our case the y-variables for the
hypernodes assigning the vehicle configurations to the trips. The reason is the
observation that the model is almost integral and rather easy to solve if the
configurations for the trips are fixed.

After the arc generation and rapid branching we use CPLEX 12.2 to solve the
generated model so far, i.e., a restricted variant of model HFIP, as a static IP.
By means of this approach we can provide valid global lower bounds, as well
as high quality solutions as we will see in the next section.

5 Computational Results

We tested the hypergraph based model HFIP and our algorithmic approach
on a large set of real world instances that are provided by our project partner
DB Fernverkehr. The problem set contains small and rather easy instances,
e.g., instance vrp019 and vrp028 with only 8 trains, as well as very large scale
ones, e.g., instance vrp011 and vrp014 with more than 24 million hyperarcs.
We consider instances for the current operated high speed intercity vehicles
(ICE) of DB Fernverkehr as well as instances of conceptional studies for future
rolling stock fleets. Today, there are some fleets in operation that can not
be coupled on the fly and some of the conceptional studies also consider only
scenarios with trivial configurations. Therefore half of the instances contain
only trivial configurations. Those instances with non-trivial configurations
contain up to 19 configurations of 10 vehicle groups. However, most of them
do not contain as many as this. This is because a vehicle group represents a
whole traction with engine car and passenger wagons and only a few of them
can be coupled together to ensure some constraints about the length of the
passenger platform. Note that due to the regularity requirements an instance
with only trivial configurations does not reduce to an other problem class.

Table 1 gives some statistics on the number of trains ||, the number of vehicle
groups |F|, and the number of vehicle configurations |C|. In addition, the
number of nodes |V| and the total number of hyperarcs |A| of the hypergraphs
associated with model VRP are listed. The number of regular arcs constructed
in Step 2 is denoted by |A,|. Column |H| gives the number of hypernodes. In
case of only trivial configurations this number equals |V|, otherwise it has to



test case I<| I 7| v 2| ]| 1A
vrp001 410 8 8 10913 10913 19372792 2421599
vrp002 61 1 1 310 310 109480 15290
vrp003 288 6 4 2433 2038 1687668 118097
vrp004 298 6 6 7379 7379 10706855 1614334
vrp005 298 24 24 26396 26396 34414338 5191325
vrp006 298 2 2 2753 2753 4327785 634147
vrp007 298 8 8 9896 9896 14016078 2059788
vrp008 298 18 18 7474 7474 8078048 1217626
vrp009 298 8 8 3619 3619 3932239 590485
vrp010 298 7 7 2913 2913 3312612 486636
vrp0O11 443 16 16 13538 13538 24996096 3124512
vrp012 443 16 16 9275 9275 10314664 1289333
vrp013 252 1 1 406 406 167231 8434
vrp014 443 24 24 20124 20124 24278320 3498895
vrp015 19 4 2 534 387 47542 2236
vrp016 19 4 2 534 387 47542 2236
vrp017 19 2 1 534 387 90973 2267
vrp018 11 4 2 323 232 16688 669
vrp019 8 4 2 288 204 12119 393
vrp020 19 4 2 534 387 47535 2236
vrp021 61 1 1 310 310 109317 15267
vrp022 288 6 4 2435 2040 1685008 118054
vrp023 137 7 3 2373 1815 1397044 69337
vrp024 19 5 2 486 360 40948 2208
vrp025 19 2 1 486 360 74052 2233
vrp026 11 5 2 305 224 14985 656
vrp027 8 5 2 270 196 10879 380
vrp028 19 5 2 486 360 40948 2208
vrp029 556 19 10 6145 4753 4659823 243805
vrp030 135 6 3 1848 1288 1747578 51761

Tab. 1: Characteristics of the VRP test instances.

be smaller because H is a partition of V.

All our computations were performed on computers with an Intel Core 2 Ex-
treme CPU X9650 with 3 GHz, 6 MB cache, and 16 GB of RAM. CPLEX Bar-
rier was running with 4 threads as well as the CPLEX MIP solver. We were
able to solve all 31 instances to nearly optimality by the solution approach
presented in Section 4. Table 2 shows the detailed results, i.e., the number of
vehicles b to operate the |%| trains, the total objective value of the solutions,
the optimality gap?, and the total running time in seconds. We marked 5 in-
stances which are solved to proven optimality. Except for instance vrp005 the
gap is considerably below 1%. This demonstrates that our solution approach
can be used to produce high quality solutions for large-scale vehicle rotation
planning problems.

6 Conclusions

We proposed a novel model for the integrated optimization of vehicle rota-
tions, vehicle compositions, and regularity requirements in long distance rail-
way passenger transport. Our main contribution is a new hypergraph based
IP formulation that is able to handle challenging technical requirements of
railway optimization in a very compact model. We introduced an associated
large-scale method to solve the model and we showed that the overall approach

3The relative gap is defined between the best integer objective UB and the objective of

the best lower bound LB as 100 - %.
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test case 1T o objective value gap in % run time in seconds

vrp001 410 175 22846 0.14 2755
vrp002 61 17 1742 0.41 19
vrp003 288 104 5571434 0.14 410
vrp004 298 117 5875729 0.55 33564
vrp005 298 118 5979407 1.72 74946
vrp006 298 116 6442855 0.00 634
vrp007 298 116 6472379 0.00 42558
vrp008 298 117 5949035 0.43 6529
vrp009 298 117 6270215 0.18 2551
vrp010 298 117 6533280 0.02 478
vrp011 443 187 26378130 0.34 45438
vrp012 443 190 26390306 0.00 757
vrp013 252 127 9266682 0.00 84
vrp014 443 192 26033013 0.80 28125
vrp015 19 13 792806 0.08 24
vrp016 19 13 1064958 0.06 20
vrp017 19 13 1090950 0.05 27
vrp018 11 9 692496 0.04 18
vrp019 8 7 580740 0.05 16
vrp020 19 14 1112983 0.05 20
vrp021 61 17 1102914 0.00 22
vrp022 288 105 5700622 0.31 197
vrp023 137 66 4013914 0.38 3639
vrp024 19 13 792670 0.09 28
vrp025 19 13 819773 0.09 26
vrp026 11 8 483145 0.09 25
vrp027 8 7 437217 0.10 29
vrp028 19 13 792670 0.09 23
vrp029 556 230 21078623 0.38 9916
vrp030 135 60 7244557 0.67 3995

Tab. 2: Results for all 30 instances.

can be used to produce near optimal and sometimes proven optimal solutions
for large-scale real world problem instances of our cooperation partner DB
Fernverkehr.

In the near future, we must calibrate the regularity part of the model in a
way that is most useful in practice. Many possible variants of our regularity
approach must be considered, varying the cost for regularity and alternatives
for ""partial regularity"’. At present it has already become clear that ignoring
regularity leads to solutions that are not accepted by the practitioners. In the
long run, we have to integrate further constraints and optimization goals, e.g.,
maintenance and robustness.
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