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Abstract

A new method for noise removal of arbitrary surfaces
meshes is presented which focuses on the preservation
and sharpening of non-linear geometric features such
as curved surface regions and feature lines. Our method
uses a prescribed mean curvature flow (PMC) for sim-
plicial surfaces which is based on three new contribu-
tions: 1. the definition and efficient calculation of a
discrete shape operator and principal curvature proper-
ties on simplicial surfaces that is fully consistent with
the well-known discrete mean curvature formula, 2. an
anisotropic discrete mean curvature vector that com-
bines the advantages of the mean curvature normal with
the special anisotropic behaviour along feature lines of
a surface, and 3. an anisotropic prescribed mean curva-
ture flow which converges to surfaces with an estimated
mean curvature distribution and with preserved non-
linear features. Additionally, the PMC flow prevents
boundary shrinkage at constrained and free boundary
segments.

1 Introduction

Noise is an omnipresent artifact in 2d and 3d meshes
due to resolution problems in mesh acquisition pro-
cesses. For example, meshes extracted from image data
or supplied by laser scanning devices often carry high-
frequency noise in the position of the vertices. Many
filtering techniques have been suggested in recent years,
among them Laplace smoothing is the most prominent
example. In practice, denoising is still a delicate task
and left to the hands of a user who carefully chooses
different filtering algorithms.

Anisotropic denoising concentrates on the preserva-
tion of important surface features like sharp edges and
corners by applying direction dependent smoothing.
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Mathematics for key technologies (FTZ 86) in Berlin.

For example, a sharp edge remains sharp when smooth-
ing is avoided to happen across the edge.

In geometry, different notions of curvature have been
established to detect and measure the bending and the
geometric disturbance of a shape. One approach to de-
noise a shape therefore concentrates on the removal of
unwanted curvature peaks while a feature preservation
simultaneously tries to keep certain curvature distribu-
tions, for example, the high curvature along sharp cor-
ners. Anisotropic mean curvature flow addresses this
problem by constraining the isotropic mean curvature
flow to preserve features encountered in a shape.

A good knowledge of curvature is an eminent pre-
requisite for constrained mesh smoothing. Especially
for feature constrained denoising the computation of
principal curvatures on simplicial surfaces is important
since it measures the individual bending of a surface
in different directions. The results of this paper are
based on the novel definition and explicit calculation of
a shape operator and principle curvature information on
a simplicial surface. These definitions rely on a small-
est possible stencil for curvature calculations and are
still fully consistent with the known vertex-based dis-
crete mean curvature formulas. We incorporate these
operators in new kinds of diffusion algorithms for the
feature preserving denoising of meshes.

1.1 Related Work

On simplicial surfaces the definition of discrete versions
of the various curvature notions has a long history. The
discrete Gauß curvature defined as angle defect at a
vertex played a major role in the work of Alexandrov
[AZ67]. The simplicial mean curvature defined as gra-
dient of the simplicial surface area has a simple intrinsic
description as the sum of the weighted edges emanat-
ing from a vertex, and led to several algorithms for the
computation of minimal and constant mean curvature
surfaces, see [Pol04] for an overview.
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Different approaches have been made to calculate
the principal curvature directions of a simplicial sur-
face. A common adhoc approach uses a quadratic sur-
face to estimate a pair of principle curvatures at the
center of a triangle. Here the quadric is the unique
surface which interpolates the six vertices of a trian-
gle and its three neighbors. The principle curvatures
of this quadric are evaluated at zero and assigned as
constant discrete principle curvatures of the inner tri-
angle. This method is easy to implement but the larger
stencil tends to smooth sharp curvature distributions be-
fore any anisotropic techniques are able to apply. Meyer
et al. [MDSB03] combine the scalar-valued simplicial
Gauß and mean curvatures to estimate principal curva-
ture values with a formula known from the smooth case.
They derive principal directions by a best quadratic fit
of a pair of two orthogonal tangent vectors. A relation
of the obtained principle curvature directions and the
otherwise obtained discrete mean curvature is not ob-
vious. Cohen-Steiner and Morvan [CSM03] define an
integrated shape operator for subsets of a surface in R

3

using the theory of normal cycles. Their shape opera-
tor differs from our operator only in second order of the
circumradius of the triangles adjacent to an edge.

The most common techniques for fairing and de-
noising of surfaces are based on Laplace smoothing
[DDH∗93][GH00]. This can be modeled as a solu-
tion of the diffusion equation ∂tF = ∆MF where F
is the parametrization of the surface and ∆M is the
Laplace-Beltrami operator. On surfaces the Laplace
smoothing is equivalent to the mean curvature flow
since the Laplace-Beltrami operator equals the mean
curvature vector. Many improvements and extensions
of the Laplace smoothing for surface fairing and de-
noising have been proposed. Taubin [Tau95] developed
a fast and simple iterative scheme to integrate the dif-
fusion equation and designed a low pass filter by alter-
nating the sign in the Laplace smoothing. Desbrun et
al. [DMSB99] suggested to use an implicit integration
scheme to allow larger time-steps and to stabilize the
flow. To compensate shrinkage of the surface and to
additionally avoid undesired deformations of the shape
Liu et al. [LBSP02] proposed a method that keeps
the volume of each star of a vertex and Vollmer et al.
[VMM99] suggested a method that is based on the idea
to push the vertices back to their previous positions.
Ohtake [OBB01] extended the Laplace smoothing by
combining it with mesh regularization. Kuriyama and
Tachibana [KT97] and Rumpf et al. [DMR02] con-
nected surface fairing to subdivision.

Anisotropic smoothing schemes were developed to
preserve direction dependent features of noisy meshes.
Compared to isotropic methods the anisotropic algo-
rithms modify the smoothing process in areas with
highly different principle curvatures. Usually, such ar-
eas contain significant shape information such sharp
edges, and the goal is to preserve and enhance these
features. Unfortunately, the Laplacian smoothing tends
to converge against linear features like straight lines
and flat planes. One of the contributions of this paper
is the extension of this technique to allow non-linear
curved features as stable limits. Anisotropic scheme
were introduce first in image processing and later ex-
tended to geometric problems, for example, by Des-
brun et al. [DMSB00] to smooth high fields and by
Rumpf et al. [CDR00] for surfaces, level sets [RP02]
and to process textures [CDR03] on the surface as
well. Bajaj and Xu [BX03] developed a scheme to
smooth higher order functions on surfaces while fair-
ing it. Other methods use diffusion filters to smooth the
normal field and then integrate this to get the smoother
surface [Tau01][TWBO02].

Alternative methods use surface energies like the
total curvature [WW94][KS00], a membrane energy
[KCVS98] and more recently statistical measures
[JDD03] and a Wiener filter to denoise surface meshes
[PSZ01].

1.2 Contributions

The focus of our work targets three problems:

• A discrete shape operator and principal curvature
directions.

We define an edge based shape operator and princi-
pal curvatures of simplicial surfaces explicitly in terms
of a discrete surface. The direct calculation avoids the
need of higher order interpolating surfaces, and effec-
tively simplifies and accelerates curvature calculations.
The small stencil of our operators also avoids smooth-
ing side-effects introduced when using higher order ap-
proximations.

• An anisotropic mean curvature vector and flow.

The small stencil of our shape operator is used to de-
velop an improved anisotropic diffusion algorithm with
a better feature recognition. Our anisotropic mean cur-
vature flow reproduce sharp features with very high
quality when compared to previous approaches.
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(a) (b) (c)

Figure 1: Noisy mesh with curved feature lines is smoothed using the anisotropic PMC flow. (a) Noisy surface. (b)
Surface after denoising. (c) The surface is colored by the absolute value of the predominating principal curvature.

• Smoothing algorithm based on a prescribed mean
curvature flow (PMC).

An anisotropic prescribed mean curvature flow that
solves the problem of shrinkage and undesired defor-
mation of the surface for anisotropic smoothing. It
additionally extends the known anisotropic smoothing
techniques by allowing to correctly preserve non-linear
features like a sharp circular border of a drilled hole.
Cylindrical shapes like those shown in Fig. 5 appear as
stable limits of the flow.

1.3 Paper Organization

In Section 2 we derive a novel discrete shape opera-
tor for simplicial surfaces and explain its connections to
the known discrete mean curvature vector. Based in the
shape operator we define in Section 2.1 an anisotropic
mean curvature vector and an anisotropic mean curva-
ture flow. In Section 3 we introduce a discrete pre-
scribed mean curvature flow that solves the problem of
shrinkage of curved surface regions and allows curved
surfaces such as cylinders to appear as stable limits of
the smoothing. In Section 4 we incorporate anisotropy
into the PMC flow to denoise and sharpen non-linear
features like the curved edges which typically appear in
CAD models. Section 5 summarizes the experimental
results and discusses of different integration schemes.

2 Discrete Shape Operator and
Principal Curvatures

The shape operator determines the principle curvature
values and directions on a surface. In this section we
derive a discrete shape operator based on the smallest
possible stencil consisting of two adjacent triangles. Es-
pecially the detection of sharp surface features requires
a curvature notion based on a small stencil to avoid blur-
ring of sharp features.

The well-known mean curvature vector
−→
H at a vertex

equals the gradient of the area functional whose explicit
representation

−→
H (p) =

1
2

∑
q∈link p

(cotαq + cotβq)(p − q) (1)

was derived in the context of discrete minimal surfaces
[PP93]. This vertex based mean curvature can be re-
formulated in terms of an edge based mean curvature
vector −→

H (e) = He
−→
N e (2)

which is the area gradient of a non-conforming mesh
[Pol02]. If θe denotes the dihedral angle of the edge
e and

−→
N e = N1+N2

‖N1+N2‖ the edge normal then He =
2 |e| cos θe

2 is the mean curvature at the edge. Follow-
ing [Pol02] both mean curvature vectors (1) and (2) are
related by the vector equation

−→
H (p) =

1
2

∑
e=(p,q),q∈link p

−→
H (e). (3)

For smooth surfaces the shape operator S is a sym-
metric operator that applies to tangential vector fields.
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In the discrete case we specify S(e) to be an operator

in R
3 that has the edge normal

−→
N e in its null space. We

base the operator on the following remarks. Let −→e de-
note the unit vector in direction of the edge e. Since
the normal does not change along the edge e, −→e is in
the null space of S. For all other tangential directions v
the normal curvature 〈v, Sv〉 is either strictly positive,
strictly negative or zero. This means that each point on
an edge is parabolic or flat. As a consequence we see
that S has rank≤ 1, that −→e is an eigenvector with eigen-
value 0 and that −→e ×−→

N e is the non-trivial eigenvector.
The requirement traceS(e) = He determines the non-
trivial eigenvalue.

Therefore, we define the shape operator of a piece-
wise linear surface Mh in R

3 at the inner edges e of
Mh by

S(e) = He(−→e ×−→
N e)(−→e ×−→

N e)t, (4)

where θe denotes the dihedral angle at the edge e, −→e the
unit vector in direction of the edge e and

−→
N e the edge

normal.
At a vertex p ∈ Mh the tangent space TpMh is given

by the two dimensional subspace orthogonal to the ver-
tex normal. Let

−→
t e denote the unit vector in the direc-

tion of −→e ×−→
N e projected onto TpMh. The representa-

tion of the shape operator of Mh at a vertex p is

S(p) =
1
2

∑
e=(p,q),q∈link(p)

ωeHe
−→
t e

−→
t t

e, (5)

where ωe = 〈N, Ne〉. Note that traceS(p) = Hp is
ensured by the choice of ω.

Using the theory of normal cycles Cohen-Steiner and
Morvan [CSM03] define a similar integrated shape op-
erator. Their operator differs from our operator only in
second order which allows to apply the same error es-
timates and convergence analysis. Additionally our op-
erator fits well with other discrete differential operators
such as the discrete mean curvature vector (1). As inte-
gral entities, both operators may be naturally extended
over a larger domains.

2.1 Anisotropic Mean Curvature Vector

In the previous section we decomposed the mean cur-
vature vector into a sum of vectors of the form H e

−→
N e

located at the edges (3) and showed that the term He

measures the directional curvature of the surface in the
direction orthogonal to the edge. Now we obtain the

AnisotropicSmoothing (M, λ, s,
n)
for (steps=1... n)

∆λ = 0
for each edge e = (vi, vj)
compute He, Ne

∆λ[vi]− = (wλ(He)He) ∗ Ne

∆λ[vj ]− = (wλ(He)He) ∗ Ne

for each triangle t = (vi, vj , vk)
compute areat

areaStar[vi]+=areat

areaStar[vj]+=areat

areaStar[vk]+=areat

for each vertex v
v+ = 3s/(2areaStar[v]) ∗ ∆λ[v]

return M

Table 1: The explicit anisotropic mean curvature flow.
The parameters are: M a mesh, λ the feature detec-
tion parameter, the scaling factor s determines the step
width, and n is the number of explicit smoothing steps.

anisotropic mean curvature vector �HA at a vertex p as a
weighted sum over the contributions He

−→
N e at the edges

incident to a vertex p:

�HA(p) =
1
2

∑
e=pq,q∈link p

w(He)He
−→
N e. (6)

The choice of the weight function w determines the
anisotropic mean curvature vector. We use the function

wλ, r(a) =

{
1 for |a| ≤ λ

λ2

r(λ−|a|)2+λ2 for |a| > λ.
.

that provides a smooth transition between those areas
that are smoothed and those that are kept as features.
We call the parameter λ the feature detection parameter.
It is handed to the user and specified for each process
individually. The parameter r controls the width of the
transition. In our experiments we used r = 10 ensuring
that wλ,10(2λ) < 0.1.

2.2 Explicit Anisotropic Mean Curvature
Flow

In this section we present an explicit anisotropic mean
curvature flow that combines the advantages of the
mean curvature flow with the ability to preserve and
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(a) (b) (c) (d)

Figure 2: The anisotropic mean curvature flow preserves and sharpens linear features like edges or corners of a
surface. (a) Original surface. (b) Surface with normal and tangential noise. (c) Reconstructed surface after 25
steps of anisotropic mean curvature flow. (d) Difference of each vertex of the smoothed surface and the original
mesh is indicated by a vector.

(a) (b) (c)

Figure 3: The prescribed mean curvature flow used to filter the dragon corrupted with noise. The features of the
surface are preserved and the shape of the features is kept. (a) The original surface. (b) The model corrupted with
noise. (c) The reconstructed dragon. (Mesh from Stanford University - 3D scanning repository.)

sharpen linear features like edges and corners of a sur-
face while removing noise. It can be seen as a dis-
cretization of the anisotropic geometric diffusion equa-
tion

∂

∂t
F (x) = ∆AF

used by Rumpf et al. [CDR00] although we solely rely
on intrinsic information of our discrete shape operator
and avoid the usage of any higher order interpolating
surfaces.

Here we integrate the flow defined by the anisotropic
mean curvature vector �HA with an explicit Euler
method that leads to an algorithm that is easy to un-
derstand and implement. The description of a semi-
implicit integration scheme and a comparison of both
methods is given in Section 5.1.

In terms of its vertices P = {p1, ..., pm} an explicit
iteration step of the anisotropic mean curvature flow is
given by

Pj+1 = Pj − s M−1 �HA(Pj), (7)

where s is the adaptive size of the integration step and
M−1 is the inverse of the mass matrix M of the surface
M j

h. The mass matrix M of a simplicial surface Mh

with m vertices, is the (m × m)-matrix with entries:

Mpq =

⎧⎨
⎩

1
6area star p if p = q
1
12area star e if there is an edge e = (p, q)

0 in all other cases
.

Computing a step of the flow (7) involves solving a lin-
ear system to invert the mass matrix. A problem here is
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that the mass matrix can have a large condition number.
An adequate solution in our case is to use of a lumped
mass matrix with diagonal elements Mpp = 1

3area
star p. Then the integration step for each vertex p is
given by an explicit formula:

pj+1 = pj − 3s

area(star(pj))
�HA(pj). (8)

The advantage of our explicit representation of the
anisotropic mean curvature vector is that the analytic
machinery of the resulting algorithm reduces to less
than 30 lines of code.

The smoothing process can be fine-tuned with two
parameters:

• The feature detection parameter λ determines the
weight function wλ, and hence the anisotropic
mean curvature vector. This provides control over
what is regarded as a feature and what will be pre-
served during the smoothing.

• The scaling factor s determines the amount of
smoothing done in a single step.

2.3 Smoothing Surfaces with Boundary

A common problem of the Laplacian is the strong tan-
gential component at the boundary related to the tan-
gential surface tension. Computing the Laplacian as a
weighted sum of edge normals instead of the edges, see
(1) and (6), leads to the same result at all inner vertices
but solves the shrinkage problems at the boundary.

Figure 4: Avoiding boundary shrinkage. The tangential
tension shown in the standard discrete Laplacian (a) is
clearly avoided in the modified Laplacian (b).

At an inner vertex the Laplacian (1) is normal to the
surface such that it is often used to define the normal of
a vertex. But at the boundary that Laplacian has a strong

tangential component since the outer edges are missing
to compensate the surface tension. For smoothing al-
gorithms the tension causes the problem of boundary
shrinkage. To compensate for this effect Taubin [Tau01]
proposed to project the Laplacian of each boundary ver-
tex onto a normal vector that is computed by averaging
over the normals of the adjacent faces.

Computing the Laplacian as a sum of the edge nor-
mals instead can be interpreted as a weighted sum of the
face normals where the weights are determined by the
edge curvatures. Consequently it provides a better def-
inition of a normal at boundary vertices. The problem
of boundary shrinkage is efficiently reduced by this op-
erator without any projection or other extra treatments.
This also ensures that the boundary is smoothed with
the same speed as the interior parts of a surface.

3 Prescribed Mean Curvature
Flow

For surfaces, the Laplacian applied to the identity map
equals the area gradient at each vertex of the surface.
Hence, Laplacian smoothing is equivalent to minimiz-
ing surface area. Depending on the boundary con-
straints the limit is therefore a minimal surface, or a de-
generate situation like a singular point. For smoothing
this causes the problem of shrinkage of the surface. For
each region of the surface the speed of the shrinking de-
pends on the curvature in that part, i.e. areas with high
mean curvature shrink faster than others. This leads to
undesired deformations of the surface. The anisotropic
smoothing slows down the smoothing process in re-
gions with high curvature, hence suppresses the shrink-
ing in these areas. This can causes even stronger defor-
mations of the surface or even degeneration of mesh, cf.
Fig. 5. To the authors knowledge no adequate method
to compensate the deformations for the anisotropic case
is known.

In this section we introduce a fairing technique that
during the evolution of the surface smoothes its mean
curvature distribution rather than only reducing it. The
method preserves the features of the surface during
the smoothing process and avoids the deformations de-
scribed above. It is applicable to the anisotropic case,
too. The algorithm is described in two steps. First we
extend the mean curvature flow such that instead of con-
verging to a surface with zero mean curvature, the new
flow allows to evolve the surface towards a surface hav-
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(a) (b) (c)

Figure 5: Starting with a noisy mesh (a) the anisotropic PMC flow converges to a stable limit (b). In contrast, the
anisotropic MC flow tends to contract the round feature lines and fails to recover the curved edges (c).

(a) (b) (c) (d)

Figure 6: Comparison of the anisotropic mean curvature flow and the PMC flow on the fandisk model that has
a vanishing ridge. Whereas the PMC flow preserves the ridge, the anisotropic flow flattens it. The models are
colored by the absolute of the predominant principal curvature. (a) Original model. (b) Noisy model. (c) Denoised
model using the PMC flow. (d) Model processed by anisotropic MC flow. (Original mesh courtesy of H. Hoppe.)

ing a prescribed mean curvature. We call this flow pre-
scribed mean curvature flow (PCM). Then instead of
smoothing the surface directly, we compute its mean
curvature, smooth this scalar field and use the PCM flow
to evolve it towards a surface with this smoothed mean
curvature. We describe the isotropic PMC flow in this
section and generalize it to the anisotropic case in the
next section.

The design of the PMC flow is motivated by proper-
ties of surfaces of constant mean curvature. These are
known to be critical with respect to the area functional
for any variation that preserves the volume and fixes the
boundary. For discrete surfaces the same characteriza-
tion means that

∇p area = H ∇p vol (9)

is valid for all interior vertices p and a constant H
[PR02]. The volume of a surface is the orientated vol-

ume enclosed by the cone of the surface over the origin
in R

3,

vol Mh =
1
6

∑
T=(p,q,r)∈Mh

< p, q × r > .

Note that if p is an interior vertex, the boundary of
star p is closed and

∑
T∈star p p × (r − q) = 0. There-

fore, for interior vertices p the term q × r in the above
equation can be replaced by 2 areaT · NT . Hence the
volume gradient equals a third of the vector area

∇pvol = 3
∫
star p

NdA = 3
∑

T∈star p

areaT · NT .

We define the normalized vector area by
−→
V = ∇pvol

‖∇pvol‖ .
Then the isotropic prescribed mean curvature flow of a
simplicial surface Mh with vertices P = {p1, ..., pm}
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and a function f(P) on the vertices of Mh is given by

∂

∂t
P = −M−1(

−→
H (P) + f(P) · −→V (P)), (10)

where M is the mass matrix of Mh.
An explicit step of the isotropic smoothing algorithm

consists of two parts. First, compute the scalar mean
curvature Hp of the actual surface Mh and smooth Hp

at each vertex p of by averaging over the neighbors of
p. Secondly, compute a step of the PMC flow of Mh

using the smoothed Hp as the function that prescribes
the curvature.

4 Denoising Non-Linear Surface
Features

A main characteristic of anisotropic smoothing, in com-
parison to isotropic methods, is the way sharp edges of
a surface are processed. Sharp edges are features char-
acterized by a large and a smaller principal curvature
value. The anisotropic smoothing sharpens the edges,
this means that the smaller principal curvature is re-
duced until it vanishes. The results are sharp edges
that are part of a straight line. This works fine, un-
less the feature itself is curved. In this section we ex-
tend the PMC flow described in the last section to the
anisotropic mean curvature. This allows to denoise sur-
faces with sharp curved features like the curved bound-
ary of a hole.

Analog to the isotropic case the anisotropic PMC
flow is defined by

∂

∂t
P = −M−1(

−→
HA(P) + f(P) · −→V A(P)), (11)

where
−→
HA is the anisotropic mean curvature vector de-

fined in Section 2.1 and f is a function, that prescribes
the anisotropic mean curvature. The term

−→
V A is an

anisotropic analog of the normalized vector area
−→
V . We

call the vertices p with
−→
HA(p) �= −→

H (p) the feature ver-

tices and set
−→
V A(p) =

−→
V (p) for all non-feature ver-

tices p. For the other vertices we set

−→
V A(p) = sign(

〈−→e HA(p),
−→
V (p)

〉
)−→e HA(p)

where −→e HA is the unit vector field of
−→
H s

A and we get−→
H s

A by performing a simple smoothing step on
−→
HA. In

our experiments we used

−→
H s

A(p) =
1
2
(
−→
HA(p) +

1∑
q∈link p

ωq

∑
q∈link p

ωq
−→
HA(q))

−→e HA(p) =
−→
H s

A(p)/
∥∥∥−→H s

A(p)
∥∥∥ .

where ωq is the sum of the vertex angles at p in the
triangles adjacent to the edge pq.

An explicit integration step of the PMC flow consists
of two parts. First, compute and smooth HA,p and sec-
ondly, compute the new positions of the vertices by us-
ing the formula

pj+1 = pj− 3s

area(star(pj))
(
−→
HA(pj)+HA,pj ·−→V A(pj))

(12)
for each vertex pj of M j

h. When smoothing the
anisotropic scalar mean curvature HA,p, we must take
care to keep the sharp features. Analog to the isotropic
case, we smooth HA,p by averaging over the neighbor
vertices of p. But to preserve the sharp edges, at each
feature vertex p we only average over those neighbor
vertices that are feature vertices as well.

The thresholds to control the method are the same as
those for the anisotropic mean curvature flow in Section
2.1, namely the feature detection parameter λ to deter-
mine what is regarded as a feature and the scaling factor
s to control the magnitude of the smoothing steps. Ad-
ditionally the control of the amount of smoothing done
to HA,p can be handed to the user.

5 Experimental Results

We demonstrate our results in Fig. 1-3 and 5-9.
The models in Fig. 2 and 7 are smoothed with the
anisotropic smoothing introduced in Section 2.1, and
the other models with the prescribed mean curvature
flow described in Section 3 and 4. A comparison of
the anisotropic and the prescribed smoothing is given
in Fig. 5 and 6.

Fig. 2 shows an example of the anisotropic smooth-
ing applied to recover the surface of an octahedron, that
has been corrupted with noise. Due to the explicit mea-
surement of curvature based only on quantities of the
simplicial mesh, the detection and sharpening of the
features is very precise. The recovering of the edges
therefore has a high quality, especially when compared
to other approaches using interpolating higher order
surfaces to measure curvature.
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(a) (b) (c) (d)

Figure 7: Application of the anisotropic mean curvature flow to the venus head corrupted with noise. The features
of the surfaces are preserved, while the noise is removed. Models are colored by the absolute of the predomi-
nant principal curvature. (a) Original mesh consisting of 260k triangles. (b) Noisy head. (c) Anisotropic mean
curvature flow is used to remove the noise and (d) to additionally smooth the model. (Mesh from Cyberware
Incoporated.)

Model Fig. #Vert. Method
Armadillo 8 173k Prescr.
Bearing 1 6k Prescr.
Bone 9 137k Prescr.

Dragon 3 125k Prescr.
Fandisk 6 6k both

Octahedron 2 4k Aniso.
Ring 5 6k both
Venus 7 130k Aniso.

Table 2: The table lists the models used in our experi-
ments.

An application of the anisotropic mean curvature
flow to a noisy higher resolution model is shown in Fig
7. Different states of the evolution are displayed. For
comparison the original mesh is shown.

Whereas the anisotropic MC flow can only recover
straight edges, the anisotropic PMC flow is able to
sharpen curved feature lines. We demonstrate this with
different examples. Fig. 5 shows the surface of a ring
that has been corrupted with noise. The PMC flow re-
covers the shape and removes the noise. The ring is
a stable limit of the flow. For comparison we have
processed the ring with the anisotropic MC flow, too.
The flow contract the feature lines and fails to recover
the shape. While the ring surface has circular feature
lines the surface shown in Fig. 1, has different types of
curved feature lines, especially the curvature of some

feature lines varies strongly. The prescribed mean cur-
vature flow correctly sharpens the features. The fandisk
(Fig. 6) model is a model with a vanishing and curved
ridge. For comparison we tested it with both smoothing
methods. The PMC flow correctly preserves the ridge
while the anisotropic smoothing does not.

We tested the flows on surfaces that do not have
such artificial and regular feature lines but have differ-
ent kinds of features, cp. Fig. 3, 8 and 9. The PMC flow
proved to be very well suited to denoise the surfaces and
to preserve the surface features.

5.1 Implicit Integration of the Flow

In Section 2.1 and 4 we derived explicit integration
schemes for the anisotropic MC flow (8) and the PCM
flow (11), because explicit methods are simple to under-
stand and to implement. Implicit methods stabilize the
flow and allow larger integration steps, but require to
set up and solve a system of equations. Desbrun et al.
[DMSB99] introduced a semi implicit scheme for the
mean curvature flow and Rumpf et al. [CDR00] used
a semi implicit method to integrate the anisotropic dif-
fusion equation. In this section we describe an analog
semi implicit integration scheme for the anisotropic MC
flow and for the PMC flow.

The anisotropic mean curvature vector
−→
HA, compare

equation (6), can be represented by a matrix KA de-
fined by

−→
HA = KAP where P lists the coordinates of

all vertices of the surface Mh. An implicit integration
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(a) (b) (c)

Figure 8: The prescribed mean curvature flow is applied to denoise a surface with many different features. (a)
The original model. (b) The mesh corrupted with noise. (c) The reconstructed surface. (Mesh from Stanford
University - 3D scanning repository.)

(a) (b) (c)

Figure 9: The anisotropic PMC flow is used to denoise the surface of a bone. Features of the surface are pre-
served. (a) Original model. (b) Model corrupted with noise. (c) Reconstructed surface. (Mesh from Cyberware
Incoporated.)

Model Octahedron Venus
#Steps 10 10

Ex. AMC flow 0.3s 13.7s
Im. AMC flow 0.9s 52.6s
Ex. PMC flow 1.8s 103.1s
Im. PMC flow 2.8s 152.4s

Table 3: Comparison of the computation time needed
for 10 steps of the different flows and integration meth-
ods. Time measured using our Java implementation on
a PC with a 1.6 GH Pentium 4 CPU.

step of the anisotropic MC flow is the solution of the
equation

(M i + sKi
A)P i+1 = M iP i, (13)

where M i is the mass matrix of the surface M i
h and s a

scaling factor controlling the size of the step. The trick
that keeps this scheme linear and easy to implement is
that the mass matrix and the matrix KA are still com-
puted on the given surface M i

h. To solve this system
of linear equations we use a preconditioned biconjugate
gradient method as described in [PTVF92].

To extend this scheme to the PMC flow (11) we add
the term HA

−→
V A that prescribes the curvature. Since the

computation of the term HA already involves a smooth-
ing process, it varies only little compared to

−→
HA. Thus

we compute the term HA
−→
V A on the surface M i

h. A step
of the semi implicit scheme for the PMC flow is given
by

(M i + sKi
A)P i+1 = M iP i + s(HA

−→
V A)i. (14)

10



6 Conclusion

We presented a novel discrete shape operator whose
trace is fully consistent with the well-known discrete
mean curvature, and defined an anisotropic mean cur-
vature vector. The curvature operators were used for
feature preserving noise removal algorithms. Using
the computation technique for constant mean curvature
surfaces we modified the anisotropic mean curvature
flow such that it converges to a surface with prescribed
(anisotropic) mean curvature. This allows to sharpen
also non-linear features such as cylindrical hole which
are typical in CAD models.
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