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Zusammenfassung

In this paper, we prove the existence and global boundedness from above for a solution
to an integrodifferential model for nonisothermal multi-phase transitions under nonhomo-
geneous third type boundary conditions. The system couples a quasilinear internal energy
balance ruling the evolution of the absolute temperature with a vectorial integro-differential
inclusion governing the (vectorial) phase-parameter dynamics. The specific heat and the
heat conductivity k are allowed to depend both on the order parameter χ and on the ab-
solute temperature θ of the system, and the convex component of the free energy may or
may not be singular. Uniqueness and continuous data dependence are also proved under
additional assumptions.

1 Introduction

In this paper we consider a nonisothermal multi-phase transition process occurring in a bounded
container Ω ⊂ RN , N ∈ N , with Lipschitzian boundary ∂Ω . The state variables describing
the evolution of the system are the absolute temperature θ > 0 and the vectorial order para-
meter χ ∈ Rd , d ∈ N . Following the idea that was already described in the pioneering papers
[27] and [5], but which has been only recently analyzed in a more systematic way (cf., e. g., [1]–
[2], [6]–[7], [9]–[22], [25]), we take into account long range interactions between particles. Then
the model equations resulting from the energy and entropy balance relations have the form

(e(θ, χ))t + (λ(χ) + βϕ(χ))t + b[χ]χt − div (k(θ, χ)∇θ) = 0 in Q∞ := Ω× (0,+∞),
(1.1)

µ(θ)χt + λ′(χ) + b[χ] + (β + θ)∂ϕ(χ) + θσ′(χ) + eχ(θ, χ)− θsχ(θ, χ) 3 0 in Q∞,
(1.2)

k(θ, χ)∇θ · n + γ(θ − θΓ) = 0 on Σ∞ := ∂Ω× (0,∞), (1.3)

θ(·, 0) = θ0, χ(·, 0) = χ0 in Ω, (1.4)
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where n denotes the outward normal vector to ∂Ω , and (1.2) has to be understood as an
inclusion in Rd , where ∂ϕ is a possibly multivalued subdifferential of a general proper, convex,
and lower semicontinuous function ϕ : Rd → R ∪ {+∞} . The physical meaning of the
functions e , s , λ , σ and of the positive constant β is explained in (1.16–1.19), while b[χ]
(whose explicit form will be given) represents the nonlocal operator acting on χ . With an abuse
of notation we have used the symbols λ′ , σ′ , eχ , sχ for gradient vectors in Rd and omitted the
scalar product symbol between Rd vectors (like b[χ] and χt in (1.1)) in order not to overburden
the presentation. The function µ in (1.2) represents the (bounded away from 0) mobility of the
system, while γ denotes the heat transfer coefficient through the boundary ∂Ω . The external
temperature θΓ is a sufficiently regular boundary datum on Σ∞ , and θ0 , χ0 are supposed to
be two given initial configurations.

The main novelty here is to consider a multi-phase nonlocal phase field system in the case when
the specific heat cV (θ, χ) = ∂θe(θ, χ) and the heat conductivity k(θ, χ) are not constant
and depend on both the variables θ and χ . Suitable regularity and growth conditions will be
specified in the following section.

Let us only note that many typical expressions for cV in a two-phase system (i.e. in case d = 1 )
can be included in our analysis. In the solid-liquid system mentioned above, for example, we
may have different values c0

V (θ) in the solid and c1
V (θ) in the liquid phase, hence, we may

define cV (θ, χ) = c0
V (θ) + χ(c1

V (θ) − c0
V (θ)) (cf. [26, Section IV.4]). The value of χ can be

kept between 0 and 1 by setting ϕ = I[0,1] (the indicator function of [0, 1] ). The physically
meaningful case in which the behaviour of c0

V and c1
V are powers of θ (∼ θα , α ≥ 1 ) near

zero and bounded functions for large θ ’s can be covered by our analysis. Regarding the heat
conductivity k , typical expressions of the type k(θ, χ) = K1(θ)χ+K2(θ)(1− χ) , in case of
a two-phase system with χ ∈ [0, 1] , for quite general functions K1 and K2 , are also allowed
here.

The main goal of this paper is to study the global existence of solutions to system (1.1–1.4),
coupling a suitable variational formulation of the semilinear parabolic partial differential equati-
on (1.1) for θ to the integrodifferential inclusion (1.2) for χ . We also prove some uniform in time
upper bound for the absolute temperature of the system (see Theorem 2.2 below). Uniquen-
ess of solutions is obtained under additional assumptions, in particular, in case that the heat
conductivity k in (1.1) depends only on θ and not on χ .

Before entering into the mathematical discussion of the problem, let us give a brief derivation
of the system (1.1–1.4), emphasizing, in particular, the differences between local and nonlocal
models.

We assume here that the multi-phase transition process can be completely described by the
evolution of the state variables θ(x, t) > 0 , which represents the absolute temperature of the
system, and the order parameter χ(x, t) , which here is a vector in Rd . We fix some constant
reference temperature θc , which will be assumed to be equal to 1, for simplicity.

Inspired by the nonlocal Cahn-Hilliard model studied by Gajewski in [10], we consider the follo-
wing nonlocal specific free energy

F [θ, χ] = f0(θ, χ) +B[χ],
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where B is a potential that accounts for long range interaction between particles. More spe-
cifically, given a bounded, symmetric kernel κ : Ω × Ω → R and an even smooth function
G : Rd → R , we choose

B[χ](x, t) :=

∫
Ω

κ(x, y)G(χ(x, t)− χ(y, t)) dy. (1.5)

Note that the local potential (ν/2)|∇χ|2 used often in the literature, see [26] and the references
therein, can be obtained as a formal limit as n → ∞ from the nonlocal one with the choice
G(η) = |η|2/2 , κ(x, y) = nN+2κ̃(|n(x − y)|2) , where κ̃ is a nonnegative function with
support in [0, 1] and ν = 1/N

∫
RN κ̃(|z|2)|z|2 dz . This follows from the formula

∫
Ω

nN+2κ̃(|n(x− y)|2) |χ(x)− χ(y)|2 dy =

∫
Ωn(x)

κ̃(|z|2)

∣∣∣∣∣χ
(
x+ z

n

)
− χ(x)

1
n

∣∣∣∣∣
2

dz

n→∞−→
∫

RN

κ̃(|z|2) 〈∇χ(x), z〉2 dz = ν|∇χ(x)|2

for a sufficiently regular χ , where we denote Ωn(x) = n(Ω − x) . We have used the identity∫
RN κ̃(|z|2) 〈v, z〉2 dz = 1/N

∫
RN κ̃(|z|2)|z|2 dz for every unit vector v ∈ RN (cf. the

Introduction of [20] for further details on this topic).

Let E and S be the total energy and entropy densities, respectively. The process is governed
by the internal energy and entropy balance relations over an arbitrary control volume Ω′ ⊂ Ω ,

d

dt

∫
Ω′
E(θ, χ) dx+

∫
∂Ω′
〈q,n〉 dA = Ψ(Ω′) , (1.6)

d

dt

∫
Ω′
S(θ, χ) dx+

∫
∂Ω′

〈q

θ
,n
〉

dA ≥ 0 , (1.7)

where q is the heat flux vector, n is the unit outward normal to ∂Ω′ , and Ψ(Ω′) is the energy
exchange through the boundary of Ω′ due to the nonlocal interactions. Since B[χ] is a potential
field, it does not contribute to the entropy production in the Clausius-Duhem inequality (1.7).

The local form of the entropy balance reads

θSt(θ, χ) + divq− 〈q,∇θ〉
θ

≥ 0,

and it has to be understood in the regularity context of Theorem 2.2 below. This is certainly
satisfied if

〈q,∇θ〉 ≤ 0 ,

θSt(θ, χ) + divq ≥ 0 .

Assuming θ > 0 and a suitable regularity with respect to time (this will have to be justified in
the next sections), we obtain from (1.6) that∫

Ω′
(Et − θSt) dx ≤ Ψ(Ω′) . (1.8)
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Differentiating the identities F = E − θS = f0 +B[χ] with respect to t , we obtain

Ft = Et − θSt − θtS = ∂θf0θt + ∂χf0χt +B[χ]t , (1.9)

where ∂χf0 stands for an element of Clarke’s partial subdifferential of f0 with respect to χ ∈
Rd , and ∂θf0 is the partial derivative of f0 with respect to θ ∈ R . Consequently,

S = −∂θf0 = s0 , E = e0 +B[χ] , f0 = e0 − θs0 , (1.10)

and inequality (1.8) reads ∫
Ω′

(∂χf0χt +B[χ]t) dx ≤ Ψ(Ω′) . (1.11)

The nonlocal interaction takes place only inside the domain Ω , hence Ψ(Ω) = 0 . A canonical
way to satisfy these conditions independently of the evolution of χ consists in choosing the
order parameter dynamics in the form

µ(θ)χt ∈ −DχF [θ, χ] (1.12)

with a factor µ(θ) > 0 , where we denote

F [θ, χ] =

∫
Ω

F [θ, χ] dx

and DχF stands for the Clarke subdifferential of F with respect to the variable χ ∈ L2(Ω; Rd) .
The inclusion sign in (1.12) accounts for the fact that f0(θ, χ) includes terms that are possibly
not Fréchet differentiable. Condition (1.12) is based on the assumption that the system tends to
move towards local minima of the free energy with a speed proportional to 1/µ(θ) . Denoting

b[χ](x, t) := 2

∫
Ω

κ(x, y)G′ (χ(x, t)− χ(y, t)) dy , (1.13)

where again, with an abuse of notation, G′ stands for the d -component vector ∇G , we see
that the inequality (1.11) holds without prescribing any relationship between µ(θ) and B[χ] ,
provided that we choose Ψ(Ω′) in (1.6) as

Ψ(Ω′) =

∫
Ω′

(−b[χ]χt +B[χ]t) dx . (1.14)

The differential form of the energy balance (1.6) then reads

Et + divq = −b[χ]χt +B[χ]t . (1.15)

The specific heat cV (θ, χ) is the only thermodynamic state function, which can be identified
from the measurements, while the local internal energy and entropy densities are computed
from the formulas

e0(θ, χ) = e0(0, χ) + e(θ, χ), e(θ, χ) =

∫ θ

0

cV (τ, χ) dτ , (1.16)

s0(θ, χ) = s0(0, χ) + s(θ, χ), s(θ, χ) =

∫ θ

0

cV (τ, χ)

τ
dτ , (1.17)
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where e0(0, χ), s0(0, χ) are in fact “integration constants”, which we choose as

e0(0, χ) = λ(χ) + βϕ(χ), (1.18)

s0(0, χ) = −σ(χ)− ϕ(χ) , (1.19)

where ϕ : Rd → R ∪ {+∞} is proper, convex, and lower semicontinuous, the functions λ
and σ are sufficiently regular on D(ϕ) , and the parameter β is a positive constant.

Then, the free energy functional F has the form

F [θ, χ] = f(θ, χ) + λ(χ) +B[χ] + (β + θ)ϕ(χ) + θσ(χ) , (1.20)

where f(θ, χ) = e(θ, χ)− θs(θ, χ) .

Using (1.20), we rewrite the phase dynamics (1.12) as

µ(θ)χt + λ′(χ) + b[χ] + (β + θ)∂ϕ(χ) + θσ′(χ) + eχ(θ, χ)− θsχ(θ, χ) 3 0 , (1.21)

while the internal energy balance (1.15) can be reformulated as

(e(θ, χ))t + (λ(χ) + βϕ(χ))t + b[χ]χt − div (k(θ, χ)∇θ) = 0. (1.22)

We now show that in the energy conserved case (that is, if we assume no-flux boundary condi-
tions (γ = 0 in (1.3))), the model is compatible with the Öttinger-Grmela GENERIC formalism
[17]. Set

E [θ, χ](t) =

∫
Ω

E(θ, χ)(x, t) dx , (1.23)

S[θ, χ](t) =

∫
Ω

S(θ, χ)(x, t) dx , (1.24)

B[χ](t) =

∫
Ω

B[χ](x, t) dx . (1.25)

We show that there exists a symmetric positive semidefinite matrix M[θ, χ] such that

M[θ, χ]

(
DθE [θ, χ]
DχE [θ, χ]

)
=

(
0
0

)
, (1.26)

and such that the system (1.21–1.22) has the form

∂

∂t

(
θ
χ

)
= M[θ, χ]

(
DθS[θ, χ]
DχS[θ, χ]

)
. (1.27)

It suffices to choose (we omit the arguments of the state functions for simplicity)

M[θ, χ] =

(
M0 0
0 0

)
+

(
m11 m12

m12 m22

)
, (1.28)
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where M0 is the differential operator

M0[y] = − 1

cV
div

(
θ2k(θ, χ)∇ y

cV

)
, (1.29)

with homogeneous Neumann boundary condition, and mij are scalars given by the formulas

m11 =
θ

µ(θ) c2
V

(DχE)2 , (1.30)

m12 = − θ

µ(θ) cV
DχE , (1.31)

m22 =
θ

µ(θ)
. (1.32)

Note that m2
12 = m11m22 and m11 ≥ 0,m22 ≥ 0 ; hence, M[θ, χ] is positive semidefinite.

Furthermore, we have(
DθE
DχE

)
=

(
cV
DχE

)
=

(
cV

∂
∂χ
e0 +DχB

)
,

(
DθS
DχS

)
=

(
cV /θ
∂S
∂χ

)
. (1.33)

We easily check that (1.26) holds, and (1.27) has the form(
θt
χt

)
=

(
div (k(θ, χ)∇θ)/cV

0

)
+

(
m11 m12

m12 m22

)(
cV /θ
∂S
∂χ

)
. (1.34)

In component form, we have

θt =
1

cV

(
div (k(θ, χ)∇θ) +

1

µ(θ)
DχE DχF

)
, (1.35)

χt = − 1

µ(θ)
DχF . (1.36)

To see that (1.35)–(1.36) coincides with (1.21–1.22), it suffices to take into account the formula

∂

∂t
e0 = cV θt+

∂

∂χ
e0 χt = div (k(θ, χ)∇θ)+ 1

µ(θ)
DχBDχF = div (k(θ, χ)∇θ)−χtDχB .

This proves that the model is compatible both with the standard principles of thermodynamics
and the generalized thermodynamic formalism introduced in [17].

We prove an existence result for a suitable variational formulation of system (1.1–1.4). Using a
Moser technique, we also show that the temperature variable θ is globally bounded from above.
The uniqueness result holds true for particular classes of potentials ϕ provided that the heat
conductivity k in (1.1) does not depend on χ and cV and µ satisfy a suitable growth condition
around 0.

The paper is organized as follows. In Section 2, we state our assumptions on the data and our
main results; in particular, global existence for a suitable variational formulation of (1.1–1.4). In
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Section 3, we prove some auxiliary results related to the Lipschitz continuity of solution operators
to differential inclusions. The proof will be developed as follows: the problem is approximated
by partial time discretization, regularization and cut-off procedure (cf. Subsection 4.1). Suitable
a priori estimates (cf. Subsection 4.2) allow us to pass to the limit with respect to the time step
and regularization parameters, while the cut-off is removed by proving an upper bound on the
absolute temperature (which is independent of the truncation parameter) by means of Moser
techniques (cf. Subsection 4.3). The uniqueness result is proved in Section 5.

2 Main results

In this section, we state our main results on solvability conditions for the system (1.1–1.4). We
start by introducing a suitable variational formulation; to this end, we consider a bounded domain
Ω ⊂ RN , N ≥ 1 , and for t ∈ (0,∞] we denote by Qt = Ω × (0, t) the open space-time
cylinder and by Σt its lateral boundary ∂Ω × (0, t) . We use, for the sake of simplicity, the
same symbol H for both L2(Ω) and L2(Ω ; RN) , while for arbitrary integer d , H denotes
the space L2(Ω; Rd) . H and H are both endowed with the standard scalar product which we
denote by (·, ·) . The symbol V stands for the space H1(Ω) , and V ′ for its dual space, while
the symbol V denotes the space H1(Ω; Rd) , 〈·, ·〉 being the duality V ′ − V and V′ −V .
Then, the following dense and continuous embeddings, where we identify H (and H ) with its
dual space H ′ (and H′ ), hold true: V ↪→ H ≡ H ′ ↪→ V ′ , and V ↪→ H ≡ H′ ↪→ V′ .
Finally, we rewrite the system (1.1–1.4) in the following variational formulation:

〈∂t(e(θ, χ)), z〉+

∫
Ω

k(θ, χ)∇θ · ∇z dx+

∫
∂Ω

γ(θ − θΓ) z dA (2.1)

= −
∫

Ω

(λ′(χ)∂tχ+ β (ϕ(χ))t + b[χ]χt) z dx ∀z ∈ V, a.e. in (0,∞) ,

µ(θ)χt + λ′(χ) + θσ′(χ) + (β + θ)∂ϕ(χ) + b[χ] (2.2)

+ eχ(θ, χ)− θsχ(θ, χ) 3 0 a.e. in Q∞ ,

where (2.2) has to be understood as an inclusion in Rd with b[χ] defined by (1.13), and e
and s are defined in (1.16–1.17). Letting (cf. (1.4)) u0 := e(θ0, χ0) , we prescribe the initial
conditions

e(θ, χ)(0) = u0, χ(0) = χ0 a. e. in Ω , (2.3)

and suppose that the data fulfil the following assumptions.

Hypothesis 2.1. (Existence) Let us fix positive constants Cσ , Cλ , k0 , k1 , c , c̄ , c1 , β , C0 ,
and assume that

(i) ϕ : Rd → R ∪ {+∞} is a proper, convex, and lower semicontinuous function, D(ϕ)
is its domain;

(ii) σ, λ ∈ W 2,∞(D(ϕ)) , |σ′(r)| ≤ Cσ , |λ′(r)| ≤ Cλ for all r ∈ D(ϕ) ;
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(iii) κ ∈ W 1,∞(Ω × Ω) , κ(x, y) = κ(y, x) a. e. in Ω × Ω , G ∈ W 2,∞(D(ϕ) − D(ϕ)) ,
G(z) = G(−z) for all z ∈ (D(ϕ)−D(ϕ)) ;

(iv) k : R × D(ϕ) → (0 +∞) is a locally Lipschitz continuous function such that 0 <
k0 ≤ k(v, w) ≤ k1 for all v ∈ R and w ∈ D(ϕ) ;

(v) The function µ maps [0,∞) in (0,∞) and the function θ 7→ 1+θ
µ(θ)

is bounded and

Lipschitz continuous on [0,∞) with Lipschitz constant Lµ ;

(vi) cV : [0,+∞)×D(ϕ)→ [0,+∞) is a continuous function satisfying

cV (0, χ) = 0, 0 < cV (θ, χ) ≤ c̄ ∀θ ∈ (0,+∞), ∀χ ∈ D(ϕ); (2.4)

c ≤ cV (θ, χ) ∀(θ, χ) ∈ [1,+∞)×D(ϕ); (2.5)

the function θ 7→ cV (θ, χ)

θ
is integrable in (0, 1) for all χ ∈ D(ϕ). (2.6)

Moreover, for all (θ, χ) ∈ [0,+∞) × D(ϕ) there exists the gradient (cV )χ(θ, χ) , and
it holds

|(cV )χ(θ, χ)| ≤ c1cV (θ, χ), |(cV )χ(θ, χ1)− (cV )χ(θ, χ2)| ≤ c1|χ1 − χ2| (2.7)

for all θ ∈ [0,+∞), χ, χ1, χ2 ∈ D(ϕ).

Let e and s be defined by formulas (1.16–1.17) and suppose that

0 < s(1, χ) ≤ c1 ∀χ ∈ D(ϕ); (2.8)

|sχ(θ1, χ1)− sχ(θ2, χ2)| ≤ c1 (|θ1 − θ2|+ |χ1 − χ2|)
for all θ1, θ2 ∈ [0,+∞), χ1, χ2 ∈ D(ϕ). (2.9)

(vii) χ0 ∈ V ∩ L∞(Ω)d . Moreover, for any C > 0 set

DC(ϕ) = {χ ∈ D(ϕ) : ∃ ξ ∈ ∂ϕ(χ) : |ξ| ≤ C},

and assume that χ0(x) ∈ DC0(ϕ) a. e. in Ω ;

(viii) θ0, u0 ∈ L∞(Ω) fulfil u0 = e(θ0, χ0) and θ0(x) > 0 a. e. in Ω ;

(ix) γ ∈ L∞(∂Ω) is a nonnegative function;

(x) θΓ ∈ L∞(Σ∞) is such that θΓ(x, t) > 0 a.e. and log(θΓ) ∈ L1(Σ∞) ;

(xi) Let ζ ∈ (W 1,1
loc (0,∞))d be the solution to the differential inclusion

α(t)ζt + ∂ϕ(ζ) 3 g(t) a.e., (2.10)

with the initial condition ζ(0) = ζ0 , ζ0 ∈ Rd , and given data g ∈ (L∞(0,∞))d and
α ∈ L∞loc(0,∞) such that 0 < α0 ≤ α(t) a.e. We assume that there exists a positive
constant D > 0 such that for all C > 0 such that |g(t)| ≤ C , and ζ0 ∈ DC(ϕ) , we
have

|(g − αζt)(t)| ≤ DC a.e. . (2.11)
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We are now in position to state the existence theorem.

Theorem 2.2. (Existence) Let Hypothesis 2.1 hold. Then there exists at least one pair (θ, χ)
that solves system (2.1–2.3) and such that

θ ∈ L∞(Q∞) ∩ L2(0,∞;V ), (e(θ, χ))t ∈ L2
loc(0,∞;V ′) , (2.12)

θ(x, t) > 0 a. e. in Q∞ , (2.13)

χ ∈ L∞loc(Q∞)d∩L∞loc(0,∞; V), χt ∈ L∞(Q∞)d;

∃C > 0 : χ(x, t) ∈ DC(ϕ) a. e. in Q∞ . (2.14)

Moreover, there exists a positive constant θ independent of t such that the following uniform
upper bound hold:

θ(x, t) < θ for a. e. (x, t) ∈ Q∞. (2.15)

Hypothesis 2.3. (Uniqueness) Assume that Hyp. 2.1 is satisfied and suppose moreover that

(i) k(θ, χ) = k̄(θ) for all θ ∈ R and χ ∈ Rd ;

(ii) Fix T ∈ (0,∞) and suppose that there exists a positive constant R , depending only on
C , α0 , and T such that the solutions ζ1, ζ2 ∈ W 1,∞(0, T ) to (2.10) associated with data
ζ01, ζ02 ∈ DC(ϕ) , α1, α2 ∈ L∞(0, T ) , and with g1, g2 ∈ L∞(0, T ) complying with the
constraint

|gi(t)| ≤ C, i = 1, 2, a. e. in (0, T ), (2.16)

satisfy for all t ∈ (0, T ) the inequality∫ t

0

|ζ̇1−ζ̇2|(τ) dτ+|ζ1−ζ2|(t) ≤ R
(
|ζ01−ζ02|+

∫ t

0

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣ (τ) + |g1 − g2|(τ)

)
dτ
)

;

(2.17)

(iii) Define c̃(θ) := min{cV (v, χ) : χ ∈ D(ϕ), v ≥ θ} and assume that

∫ 1

0

c̃(v)µ(v)

v2
dv =

+∞ ;

(iv) The function v 7→ v2/µ(v) is nondecreasing in (0,+∞) ;

(v) There exists θ∗ > 0 such that θ0(x) ≥ θ∗, θΓ(x, t) ≥ θ∗ a.e.;

(vi) Assume that c̃(θ) > 0 for every θ ∈ (0,∞) .

Remark 2.4. Hyp. 2.1 allows for physically meaningful choices of cV . We can choose, for ex-
ample, a (d+ 1) -component model with K = {χi ≥ 0,

∑d
i=1 χi ≤ 1} , χ0 = 1−

∑d
i=1 χi ,

ϕ = IK (indicator function of the set K ), and cV (θ, χ) =
∑d

i=1 ci(θ)χi , where ci(θ) beha-

ve asymptotically at 0 and ∞ like
θα

1 + θα
. Further examples of potentials ϕ complying with

Hyp. 2.1 (xi) and Hyp. 2.3 (ii) will be given in the following Section 3.

We state then our last result regarding uniqueness and continuous data dependence for (2.1–
2.3).
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Theorem 2.5. (Uniqueness) Suppose that Hypothesis 2.3 is satisfied. Let T ∈ (0,∞) be
fixed. Then, there exists a positive constant θ(T ) such that

θ(x, t) ≥ θ(T ) for a.e. (x, t) ∈ QT . (2.18)

Moreover, if (θ1, χ1) , (θ2, χ2) are two solutions to (2.1–2.3) in the sense of Theorem 2.2
associated with initial data θ01, χ01 and θ02, χ02 , and boundary data θΓ1, θΓ2 , respectively,
and θ̂ = θ1 − θ2 , χ̂ = χ1 − χ2 , χ̂0 = χ01 − χ02 , θ̂0 = θ01 − θ02 , θ̂Γ = θΓ1 − θΓ2 , then,
there exists a constant CT > 0 such that∫ T

0

∫
Ω

|θ̂(x, t)|2 dx dt+ max
t∈[0,T ]

∫
Ω

|χ̂(x, t)|2 dx (2.19)

≤ CT

(
|θ̂0|2H + |χ̂0|2H +

∫ T

0

∫
∂Ω

γ|θ̂Γ(s, t)|2 dA dt

)
.

Finally, beside Hypothesis 2.3, assume that

(θΓ)t ∈ L2(0, T ;L2(∂Ω)) . (2.20)

Then, the θ -component of the solution (θ, χ) to (2.1–2.3) has the further regularity

θ ∈ L∞(0, T ;V ), θt ∈ L2(0, T ;H) . (2.21)

3 A differential inclusion

This section is devoted to the description of some properties of solutions to general differential
inclusions of the form (2.10), which are used in the proof of Theorems 2.2, 2.5.

First we provide some examples of functions ϕ satisfying Hypothesis 2.1 (xi), and we prove
some further properties for space and time dependent differential inclusions that follow exactly
from this assumption. Finally, we give examples of functions ϕ satisfying Hypothesis 2.3 (ii).

Examples of functions complying with Hypothesis 2.1 (xi).

Proposition 3.1. The function ϕ introduced in Hypothesis 2.1 (i) satisfies Hypothesis 2.1 (xi)
in each of the following cases:

(a) if d = 1 ;

(b) if ϕ is the indicator function IK associated with a closed, and convex set K ⊂ Rd . In
this case one has D = 1 ;

(c) if ϕ(x) = f(MK(x)) , where f : [0, f0) → [0,+∞) is an increasing and convex C1

function such that f(0) = f ′(0) = 0 , f0 > 0 , and MK is the Minkowski functional of
K , a closed, convex set in Rd such that Br(0) ⊂ K ⊂ BR(0) , defined by the formula
MK(x) = inf

{
s > 0 ; 1

s
x ∈ K

}
, for x ∈ Rd . Then D = R/r .
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The proof of point (a) follows directly from [19, Prop. 3.4], (b) is obvious. Let us prove the point
(c). In order to do that, we first need to prove the following auxiliary result.

Proposition 3.2. Let ϕ(x) be as in Prop. 3.1 (c). Then for every C > 0 there exists C1 > 0
such that for every x ∈ D(ϕ) we have the following implications

ϕ(x) ≤ C1 ⇒ sup{|η| : η ∈ ∂ϕ(x)} ≤ (R/r)C, (3.1)

ϕ(x) ≥ C1 ⇒ inf{|η| : η ∈ ∂ϕ(x)} ≥ C. (3.2)

Beweis. We first prove the following equivalence

η ∈ ∂ϕ(x) ⇔ (η = cw, w ∈ ∂MK(x), c = f ′(MK(x))) .

We clearly have ∂ϕ(0) = {0} . For x 6= 0 , take γ ∈ (0, 1) . Then, for η ∈ ∂ϕ(x) and for all
y ∈ D(ϕ) , we have

〈η, x− (x− γ(x− y))〉 ≥ ϕ(x)− ϕ(x− γ(x− y)) ,

hence

〈η, x− y〉 ≥ 1

γ
(f(MK(y))− f(MK(x))− γ(MK(x)−MK(y))) .

Letting γ tend to 0 , we obtain that
η

f ′(MK(x))
∈ ∂MK(x) . Conversely, for w ∈ ∂MK(x) ,

we have

〈f ′(MK(x))w, x− y〉 ≥ f ′(MK(x))(MK(x)−MK(y)) ≥ f(MK(x))− f(MK(y)),

which we wanted to prove.

Let now C be a given positive constant. For all w ∈ ∂MK(x) and x 6= 0 we have (1/R) ≤
|w| ≤ (1/r) . From this we deduce that if f ′(MK(x))|w| < C , then f ′(MK(x)) < CR ,
and so MK(x) < (f ′)−1(CR) and ϕ(x) < f((f ′)−1(CR)) . We can choose C1 =
f((f ′)−1(CR)) , and (3.2) is proved. Suppose now that f(MK(x)) ≤ C1 . Then we have
MK(x) ≤ (f ′)−1(CR) , hence f ′(MK(x)) ≤ CR and f ′(MK(x))|w| ≤ (R/r)C , and
(3.1) is proved. �

We conclude the proof of Prop. 3.1 (c) by proving the following Proposition 3.3.

Proposition 3.3. Let ϕ be as in Prop. 3.1 (c). Then Hypothesis 2.1 (xi) is satisfied with D =
R/r .

Beweis. Consider some ζ satisfying inclusion (2.10) with initial datum ζ0 . Then, the following
equality holds true for all t ∈ (0,∞) :

|α(t)ζt|2 + |g(t)− α(t)ζt|2 + 2α(t)ϕ(ζ)t = |g(t)|2;

hence, we immediately deduce that, for all t ∈ (0,∞) ,

ϕ(ζ)t =
1

2α(t)

(
|g(t)|2 − |g(t)− α(t)ζt|2 − |α(t)ζt|2

)
. (3.3)
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By assumption, we have |g(t)| ≤ C and g(t) − α(t)ζt ∈ ∂ϕ(ζ) . In view of (3.2), there is a
constant C1 such that

ϕ(ζ)t ≤
1

2α(t)
(C2 − C2 − |α(t)ζt|2) ≤ 0 ∀t ∈ (0,∞) if ϕ(ζ) ≥ C1 .

Hence,
ϕ(ζ)t(ϕ(ζ)− C1)+ ≤ 0 ∀t ∈ (0,∞). (3.4)

Integrating from 0 to t and using the assumption ζ0 ∈ DC(ϕ) , it follows that ϕ(ζ)(t) ≤ C1

for all t ∈ (0,∞) . Then, using (3.1), together with the fact that |g(t)| ≤ C for all t ∈ (0,∞) ,
we finally obtain that

|g(t)− α(t)ζt| ≤
R

r
C and |α(t)ζt| ≤

(
R

r
+ 1

)
C, (3.5)

which concludes the proof. �

Properties of the solution mapping under Hypothesis 2.1 (xi).

Proposition 3.4. Let us consider the solutions ζ1, ζ2 ∈ W 1,∞(0,∞) to (2.10) associated with
data ζ01, ζ02 ∈ DC(ϕ) , α1, α2 ∈ L∞loc(0,∞) , and with g1, g2 ∈ L∞(0,∞) complying with
the constraint

|gi(t)| ≤ C, i = 1, 2, a. e.,

and let Hypothesis 2.1 (xi) hold. Then there exists a constant L such that for every t ∈ (0,∞)
we have

|ζ1 − ζ2|(t) ≤ |ζ01 − ζ02|+ L

∫ t

0

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |g1 − g2|
)

dτ . (3.6)

Beweis. Test the difference of the two inclusions (2.10) by ζ1 − ζ2 and divide the resulting
inequality by α1 . Then we get for a.e. t ∈ (0,∞) :

〈ζ̇1 − ζ̇2, ζ1 − ζ2〉 ≤
∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣ |〈α2ζ̇2, ζ1 − ζ2〉|+ |〈g1 − g2, ζ1 − ζ2〉| .

Using the bound for |α2ζ̇2| (cf. Hypothesis 2.1 (xi), (2.11)), we get

d

dt
|ζ1 − ζ2| ≤ L

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |g1 − g2|
)

from which (3.6) immediately follows by integrating over (0, t) .

Proposition 3.5. Let Hypothesis 2.1 (xi) hold, and let ζn and ζ be the solutions of (2.10)
corresponding to the data (gn , αn , ζ0n ) and (g , α , ζ0 ), respectively, with |gn(t)| ≤ C ,
ζ0n ∈ DC(ϕ) . If {ζ0n} converges to ζ0 in Rd , {gn} converges to g and {αn} converges to
α in L2(0, T ) for some T > 0 , then {ζ̇n} converges strongly to ζ̇ in L2(0, T ) .
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Beweis. Test (2.10), written for ζn , by ζ̇n in order to obtain(
gn − αnζ̇n

)
ζ̇n =

d

dt
ϕ(ζn) .

Now set ηn =
gn√
αn
− 2
√
αnζ̇n . Then, by straightforward computations, we obtain that

∣∣∣∣ gn√αn
∣∣∣∣2 − |ηn|2 = 4

d

dt
ϕ(ζn) .

We know, by Prop. 3.4, that {ζn} converges uniformly to ζ and that ϕ is Lipschitz continuous
on DC(ϕ) . Hence, integrating over (0, t) , we get that |ηn|L2(0,T ) → |η|L2(0,T ) . Since we know

that ηn → η weakly in L2(0, T ) (since ζ̇n → ζ̇ weakly in L2(0, T ) ), we get ηn → η strongly
in L2(0, T ) , which is sufficient in order to conclude the desired convergence. �

Examples of functions complying with Hypothesis 2.3 (ii).

Proposition 3.6. The function ϕ , introduced in Hypothesis 2.1 (i) satisfies Hypothesis 2.3 (ii),
in each of the following cases:

(a) if d = 1 ;

(b) if, for any C > 0 , ϕ is a C1 -function with Lipschitz continuous derivative on DC(ϕ) ;

(c) if ϕ = IK , where K is either a polyhedron or a smooth convex set with nonempty
interior.

Beweis. The proofs of (a) and (c) follow respectively from [19, Prop. 3.4] and [8, Thm. 7.1, p. 88].
We briefly show here how to proceed to prove case (b). Let us consider solutions ζ1, ζ2 ∈
W 1,∞(0, T ) to (2.10) associated with the data ζ01, ζ02 ∈ DC(ϕ) , α1, α2 ∈ L∞(0, T ) , and
with g1, g2 ∈ L∞(0, T ) complying with the constraint

|gi(t)| ≤ C, i = 1, 2, a. e. in (0, T ).

By Hypothesis 2.1 (xi), ζ1, ζ2 remain in DDC(ϕ) . Using the Lipschitz continuity of ϕ′ on
DDC(ϕ) , we obtain that there exists a positive constant Q such that the following inequali-
ty holds true a.e.:

α1|ζ̇1 − ζ̇2| ≤ |α1 − α2||ζ̇2|+Q|ζ1 − ζ2|+ |g1 − g2|.

Dividing by α1 , and using the bound for |α2ζ̇2| , from Hypothesis 2.1 (xi) (cf. (2.11)), we get

|ζ̇1 − ζ̇2| ≤ (C +DC)

∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+Q|ζ1 − ζ2|+ |g1 − g2|

≤M

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |ζ1 − ζ2|+ |g1 − g2|
)

(3.7)
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for some positive constant M (depending on C,D,Q ). We can rewrite this inequality in the
following convenient form, for t ∈ (0, T ) ,

d

dt

(
e−Mt|ζ1 − ζ2|

)
≤ e−Mt

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |g1 − g2|
)
.

Integrating over (0, t) , and using the previous inequality (3.7), we get

|ζ̇1−ζ̇2|(t) ≤ L

(
|ζ01 − ζ02|+

∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |g1 − g2|+
∫ t

0

(∣∣∣∣ 1

α1

− 1

α2

∣∣∣∣+ |g1 − g2|
)

dτ

)
for some positive constant L (depending on C,D,Q ). Integrating once more in time we arrive
at the desired inequality (2.17). �

Proposition 3.7. Let f : [0, f0) → [0,+∞) be an increasing, convex function with locally
Lipschitz continuous derivative, f(0) = f ′(0) = 0 , and let K be a closed, convex set of class
C1,1 such that Br(0) ⊂ K ⊂ BR(0) . Then, ϕ(x) = f(MK(x)) has a Lipschitz continuous
derivative on DC(ϕ) for any C > 0 , i.e., Property (b) in Proposition 3.6 is satisfied.

Beweis. Let C > 0 be given. We denote DCf = {s∈ (0, f0) : f ′(s) ≤ RC} , and let
LC be the Lipschitz constant of f ′ on DCf . For x ∈ DC(ϕ) we have |ϕ′(x)| ≤ C , hence
f ′(MK(x)) ≤ RC , that is, MK(x) ∈ DCf . We now estimate the difference |ϕ′(x)−ϕ′(y)|
on DC(ϕ) . Assume first that x 6= 0 , y = 0 . Then

|ϕ′(x)− ϕ′(y)| = |ϕ′(x)| = f ′(MK(x))|M ′
K(x)| ≤ 1

r
f ′(MK(x))

≤ 1

r
LCMK(x) ≤ 1

r2
LC |x| =

LC
r2
|x− y| .

Consider now the case x 6= 0 , y 6= 0 and set JK(x) = MK(x)M ′
K(x) , JK(y) =

MK(y)M ′
K(y) . The mapping JK is Lipschitz continuous on Rd (with Lipschitz constant LJ )

(see [8, Section 5.2]), and we have

|ϕ′(x)− ϕ′(y)| = |f ′(MK(x))M ′
K(x)− f ′(MK(y))M ′

K(y)| ≤ f ′(MK(x))

MK(x)
|JK(x)

− JK(y)|+ |M ′
K(y)|f

′(MK(x))

MK(x)
|MK(x)−MK(y)|

+ |M ′
K(y)||f ′(MK(x))− f ′(MK(y))|

≤ LC

(
LJ +

2

r2

)
|x− y| ,

from which the assertion follows. �

A relevant case for applications is, for example, ϕ(x) = − log(1−M2
K(x)) , see [12].
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4 Existence of solutions

This section is devoted to the proof of the existence result stated in Section 2. We use a techni-
que based on approximations, a priori estimates, and passage to the limit.

Let us first write down our equations (2.1) and (2.2) as

〈(e(θ, χ))t, z〉+

∫
Ω

k(θ, χ)∇θ · ∇z dx+

∫
∂Ω

γ(θ − θΓ) z dA

= −
∫

Ω

(λ′(χ)χt + β (ϕ(χ))t + b[χ]χt) z dx ∀z ∈ V, a.e. in (0,∞), (4.1)

µ(θ)χt + (β + θ)∂ϕ(χ) 3 −λ′(χ)− θσ′(χ)− b[χ]− eχ(θ, χ) + θsχ(θ, χ)

a.e. in Q∞. (4.2)

4.1 Approximation

Assuming Hypothesis 2.1 to hold, we proceed as follows: first we extend the domain of definition
of cV (θ, χ) by putting c̃V (θ, χ) = cV (|θ|, χ) for (θ, χ) ∈ R×D(ϕ) , and set

ẽ(θ, χ) =

∫ θ

0

c̃V (ξ, χ) dξ for (θ, χ) ∈ R×D(ϕ) .

µ̃%(θ) =

{
µ(|θ|) if |θ| ≤ %

µ(%)(|θ| − %) if |θ| ≥ %
,

We now fix a truncation parameter % ≥ 1 , which will be determined below, and define

s%χ(θ, χ) =


∫ θ

0

(c̃V )χ(ξ, χ)

ξ
dξ if |θ| ≤ %∫ %

0

(c̃V )χ(ξ, χ)

ξ
dξ if |θ| ≥ %

.

We fix an arbitrary T > 0 , and split the interval [0, T ] into an equidistant partition 0 =
t0, t1, . . . , tn , tj = jT/n for j = 0, 1, . . . , n , n ∈ N , with the intention to let n tend to
∞ . We choose sequences {θ0,n}n ∈ V and {θΓ,n}n ∈ W 1,2(0, T ;L2(∂Ω)) of approximate
data such that θ0,n(x) ≥ 1/n a.e., θΓ,n(x, t) ≥ 1/n a.e., θ0,n → θ0 strongly in H , and
θΓ,n → θΓ strongly in L2(0, T ;L2(∂Ω)) .

An approximate solution (θn, χn) will be constructed successively in intervals [tj−1, tj] for
j = 1, . . . , n . Assuming that it is already known on [0, tj−1] , we define

χ̄n(x, t) = χn(x, tj−1) x ∈ Ω, t ∈ (tj−1, tj), j = 1, . . . , n , (4.3)

θ̄n(x, t) =


θ0,n for t ∈ [0, t1)

n

T

∫ tj−1

tj−2

θn(x, τ) dτ for t ∈ [tj−1, tj), j ≥ 2 .

15



With these notations, we then state the following approximating problem. We use only the index
n for the variables here (omitting the % dependence), for simplicity.

PROBLEM (P) (n,%) . Find two functions θn ∈ H1(0, T ;H)∩L∞(0, T ;V ) and χn ∈ L∞(Ω×
(0, T ))d , ∂tχn ∈ L∞(Ω × (0, T ))d , such that θn ≥ εn a.e. in QT for some εn > 0 ,
χn ∈ DC(ϕ) , and for all t ∈ (0, T ) and z ∈ V , we have∫

Ω

∂t

(
1

n
θn(t) + ẽ(θn(t), χn(t))

)
z dx+

∫
Ω

k(θ̄n(t), χ̄n(t))∇θn(t) · ∇z dx

+

∫
∂Ω

γ(θn(t)− θΓ,n(t))z dA

= −
∫

Ω

((λ′(χn)(t) + b[χn](t))∂tχn(t) + β∂t (ϕ(χn(t)))) z dx , (4.4)

µ̃%(θn(t))∂tχn(t) + (β + |θn(t)|)∂ϕ(χn)(t)

3 −λ′(χn)(t)− |θn(t)|σ′(χn)(t)− b[χn](t)

−ẽχ(θn(t), χn(t)) + |θn(t)|s%χ(θn(t), χn(t)) a.e. in Ω , (4.5)

with initial conditions
θn(0) = θ0,n, χn(0) = χ0 . (4.6)

Lemma 4.1. Under Hypothesis 2.1, for each % > 0 and n ∈ N the PROBLEM (P) (n,%) has a
unique solution (θn, χn) with the required properties.

Beweis. On each interval (tj−1, tj) , we can proceed as in the proof of [20, Thm. 2.2, p. 290].
We test a Galerkin approximation of (4.4) by the approximation of ∂tθn . The estimates are
sufficient to pass to the limit in the Galerkin scheme and to obtain a solution on each interval
(tj−1, tj) . We only have to check that the initial conditions at t1, t2, . . . are well defined. In-
deed, since on each interval (tj−1, tj) we have θn ∈ H1(tj−1, tj;H) ∩ L∞(tj−1, tj;V ) , we
also obtain that t 7→ θn(t, ·) is weakly continuous in (tj−1, tj) for every j with values in V .
Moreover, χn is strongly continuous with values in L∞(Ω)d , and there exists a positive con-
stant C (independent of n ) such that χn(t, ·) ∈ DC(ϕ) on (tj−1, tj) for every j = 1, . . . , n .
Hence, we can define the initial conditions at t = tj by θn(tj) = θn(tj−) . �

4.2 A priori estimates

In this subsection, we perform suitable a priori estimates (independent of n ) for the solution.
In the following, we will denote by C any positive constant that depends only on the data of
the problem but may vary from line to line. In particular, it will not depend on the truncation
parameter % and discretization parameter n . If such a dependence takes place, we use the
symbol C% for a constant that depends on % , but not on n . Again, the same symbols will
denote constants that may differ from line to line.

16



Let us, for simplicity, in this subsection occasionally omit the indices n and write simply θ, χ
instead of θn, χn if no confusion may arise. We denote (note that θn > 0 and so ẽ = e )

un(t) :=
1

n
θn(t) + e(θn(t), χn(t))) for t ∈ (0, T ) . (4.7)

Estimate for χt . Equation (4.5) is of the form (2.10) with

α(t) = α̃(θ) :=
µ̃%(θ)

β + θ
≥ µ0(1 + θ)

β + θ
≥ µ0 min

{
1,

1

β

}
, (4.8)

g(t) = `[θ, χ] := − 1

β + θ

(
θσ′(χ) + λ′(χ) + b[χ] + eχ(θ, χ)− θs%χ(θ, χ)

)
. (4.9)

First, let us note that, using (2.4), (2.7), and (2.8), we get

s%χ(θ, χ) ≤
∫ min{θ,%}

0

|(cV )χ(ξ, χ)|
ξ

dξ ≤ c1

∫ 1

0

cV (ξ, χ)

ξ
dξ + c1

∫ %

1

c̄

ξ
dξ (4.10)

≤ c1s(1, χ) + c1c̄ log % ≤ c2
1 + c1c̄ log % .

Hence, owing to Hypothesis 2.1, we have

|`[θ, χ]| ≤ Cσ +
1

β
(Cλ + Cb) +

θ

β + θ
sup

0≤ξ≤θ
|(cV )χ(ξ, χ)|+ θ

β + θ
|s%χ(θ, χ)|

≤ Cσ +
1

β
(Cλ + Cb) + c1 sup

0≤ξ≤θ
|cV (ξ, χ)|+ c2

1 + c1c̄ log %

≤ Cσ +
1

β
(Cλ + Cb) + c1c̄+ c2

1 + c1c̄ log % ,

where Cb denotes here the upper bound for the operator b defined in (1.13). Let us set

C`,% := Cσ +
1

β
(Cλ + Cb) + c1c̄+ c2

1 + c1c̄ log % . (4.11)

Then the conditions of Hypothesis 2.1 (xi) are satisfied with the choice C = max{C`,%, C0} ,
where C0 is defined in Hyp. 2.1 (vii) and C`,% is defined in (4.11). Hence, we get the following
estimates on χ :

|χn|L∞(QT ) + |∂tχn|L∞(QT ) + |∂t(ϕ(χn))|L∞(QT ) ≤ C(1 + log %)2 , (4.12)

where now C is a constant independent of % .

Estimate for θ . Taking z = θn in (4.4), we get∫
Ω

∂t

(
1

n
θ(t) + e(θ(t), χ(t))

)
θ(t) dx+

∫
Ω

k(θ̄n(t), χ̄n(t))∇θ(t) · ∇θ(t) dx

+

∫
∂Ω

γ(θ(t)− θΓ,n(t))θ(t) dA

= −
∫

Ω

(λ′(χ)(t)∂tχ(t) + β∂t (ϕ(χ(t))) + b[χ](t)∂tχ(t)) θ(t) dx . (4.13)
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Define

U(θ, χ) =

∫ θ

0

cV (v, χ)v dv for (θ, χ) ∈ (0,∞)×D(ϕ) .

We have ∂tU(θ, χ) = θ∂te(θ, χ) + (∂χU − θ∂χe)χt . We integrate (4.13) from 0 to t and
rewrite the first term as follows:∫ t

0

∫
Ω

∂t

(
1

n
θ(τ) + e(θ(τ), χ(τ))

)
θ(τ) dτ dx

=

∫
Ω

(
1

2n
θ2(t) + U(θ(t), χ(t)

)
dx−

∫
Ω

(
1

2n
θ2(0) + U(θ(0), χ(0)

)
dx

−
∫ t

0

∫
Ω

(∂χU(θ(τ), χ(τ))− θ(τ)∂χe(θ(τ), χ(τ)))χt(τ) dτ dx .

There exist two constants C1, C2 such that U(θ, χ) ≥ C1θ
2 − C2 . Hence, by (4.12) and the

Gronwall’s lemma, we obtain

‖θn‖L2(0,T ;V )∩L∞(0,T ;H) ≤ C(1 + log %)2 . (4.14)

By comparison, we also deduce that

‖∂tun‖L2(0,T ;V ′) ≤ C(1 + log %)2. (4.15)

Estimate for ∇χ . The function

θ 7→ β + θ

µ̃%(θ)

is Lipschitz continuous in R due to Hyp. 2.1 (v) and, with the help of the mean value theorem,
it is straightforward to deduce that

|`[θ1, χ1]− `[θ2, χ2]| ≤ |σ′(χ1)− σ′(χ2)|+ Cσ
β
|θ1 − θ2|+

1

β
|λ′(χ1)− λ′(χ2)|

+
Cλ
β2
|θ1 − θ2|+

1

β
|b[χ1]− b[χ2]|+ Cb

β2
|θ1 − θ2|+

1

β + θ1

∫ θ1

0

c1|χ1 − χ2| dξ

+

∣∣∣∣ 1

β + θ1

∫ θ1

0

(cV )χ(ξ, χ2) dξ − 1

β + θ2

∫ θ2

0

(cV )χ(ξ, χ2) dξ

∣∣∣∣
+

1

β

∣∣s%χ(θ1, χ1)− s%χ(θ2, χ2)
∣∣+
|s%χ(θ2, χ2)|

β2
|θ1 − θ2|

≤ |σ′(χ1)− σ′(χ2)|+ 1

β
(|λ′(χ1)− λ′(χ2)|+ |b[χ1]− b[χ2]|)

+
1

β2
(Cσβ + Cλ + Cb) |θ1 − θ2|+

c1

β
|χ1 − χ2|+

1

β
(c1c̄+ c1c̄) |θ1 − θ2|

+
c1

β
(|θ1 − θ2|+ |χ1 − χ2|) +

1

β2

(
c2

1 + c1 log %
)
|θ1 − θ2| . (4.16)
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Hence, we can apply estimate (3.6) in Proposition 3.4 to (4.5) with (for x, y ∈ Ω )

α1(t) =

(
µ̃%(θ)

β + θ

)
(x, t),

α2(t) =

(
µ̃%(θ)

β + θ

)
(y, t),

g1(t) = `[θ(x, t), χ(x, t)] = − 1

β + θ

(
θσ′(χ) + λ′(χ) + b[χ] + eχ(θ, χ)

− θs%χ(θ, χ)
)

(x, t),

g2(t) = `[θ(y, t), χ(y, t)] = − 1

β + θ

(
θσ′(χ) + λ′(χ) + b[χ] + eχ(θ, χ)

− θs%χ(θ, χ)
)

(y, t),

and
ζ1 = χ(x, t), ζ2 = χ(y, t), x, y ∈ Ω.

Hence, we get

|χ(x, t)− χ(y, t)| ≤ |χ0(x)− χ0(y)|+ L̂
(∫ t

0

|θ(x, s)− θ(y, s)| ds

+

∫ t

0

(|b[χ](x, s)− b[χ](y, s)|+ |χ(x, s)− χ(y, s)|) ds
)
, (4.17)

where L̂ depends on L , Lµ , and the constants on the right hand side of (4.16). Now, recalling
(1.13), we have, by (4.16), that

|χ(x, t)− χ(y, t)| ≤ |χ0(x)− χ0(y)|+ L̂

∫ t

0

|θ(x, s)− θ(y, s)| ds

+ 2L̂%

∫ t

0

∫
Ω

|κ(x, z) (G′(χ(x, s)− χ(z, s))−G′(χ(y, s)− χ(z, s)))| dz ds

+ 2L̂

∫ t

0

∫
Ω

|G′(χ(y, s)− χ(z, s)) (κ(x, z)− κ(y, z))| dz ds

+ L̂

∫ t

0

|χ(x, s)− χ(y, s)| ds . (4.18)

Thus, in view of Hyp. 2.1 (iii), we obtain that

|χ(x, t)− χ(y, t)| ≤ |χ0(x)− χ0(y)|+ L̂

∫ t

0

|θ(x, s)− θ(y, s)| ds

+ L̂(2Lb + 1)

∫ t

0

|χ(x, s)− χ(y, s)| ds+ 2L̂Lb

∫
Ω

|κ(x, z)− κ(y, z)| dz ,

(4.19)
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where Lb is a constant depending on the Lipschitz constants of G and G′ , ‖κ‖L∞(Ω×Ω) , |Ω| ,
and T . From (4.19), using the assumptions χ0 ∈ V and κ ∈ W 1,∞(Ω × Ω) (cf. Hyp. 2.1
(iii)), we immediately deduce that

|∇χ| ≤ C%

(
1 +

∫ t

0

(|∇θ(·, s)|+ |∇χ(·, s)|) ds

)
a.e. in Ω .

Now, with the help of Gronwall’s lemma, we infer that

|∇χ| ≤ C%

(
1 +

∫ t

0

|∇θ(·, s)| ds

)
a.e. in Ω . (4.20)

Using finally (4.20) with (4.14), we get the desired estimate

‖χn‖L∞(0,T ;V) ≤ C% , (4.21)

where C% denotes a positive constant depending increasingly on % . From the definition (4.7) of
u , it also follows that

‖un‖L2(0,T ;V ) ≤ C% . (4.22)

4.3 Lower and upper bounds on θ

In this subsection, we first prove a bound for log θ entailing the strict positivity of the absolute
temperature (in the limit when n → ∞ ). Then, we prove a (time dependent) upper bound
holding true for the solution component θn for n fixed, which enable us to proceed with the
Moser iteration procedure in order to prove a uniform (independent of time, of n , and of % )
upper bound on θ . This permits us to remove the truncation parameter and to conclude the
existence proof. Finally, we will prove a lower bound (independent of n ) on θ holding true
under the additional Hyp. 2.3 that we will use for the proof of uniqueness of solutions.

Estimate on log θ . Let us rewrite equation (4.4), by using (4.5), in the following form, for all
z ∈ V ,∫

Ω

∂t

(
1

n
θ + e(θ, χ)

)
z dx+

∫
Ω

k(θ̄n, χ̄n)∇θ · ∇z dx+

∫
∂Ω

γ(θ − θΓ,n) z dA

=

∫
Ω

µ̃%(θ)χ
2
t + θχtR(θ, χ)z dx , (4.23)

where
R(θ, χ) := σ′(χ)− s%χ(θ, χ) + ξ, ξ ∈ ∂ϕ(χ), |ξ(x, t)| ≤ C a.e. ,

where C is defined in Hypothesis 2.1 (xi). We prove now an estimate for log θ in L2(0, T ;V )
by taking in (4.4) z = T (θ) , where

T (θ) := −
(

1− 1

θ

)−
=

1− 1

θ
for θ ≤ 1

0 for θ ≥ 1
. (4.24)
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Notice that we are allowed to perform this estimate, with fixed n , because θ ≥ εn > 0 a.e. for
all n (cf. Lemma 4.1). We get, using equation (4.5) and Hyp. 2.1 (iv),

d

dt
E(θ, χ)−

∫
Ω

χt

∫ θ

1

(cV )χ(ξ, χ)T (ξ) dξ dx+ k0‖∇(log θ)−‖2
H

+

∫
∂Ω

(θ − θΓ,n)T (θ) dA ≤
∫

Ω

µ̃%(θ)|χt|2T (θ) dx+

∫
Ω

θT (θ)χtR(θ, χ) dx , (4.25)

where

E(θ, χ) = −
∫

Ω

∫ θ

1

cV (ξ, χ)

(
1− 1

ξ

)−
dξ ≥ 0 .

Note that the first term on the right-hand side of (4.25) is nonpositive, while the other term can
be estimated using estimates (4.10), (4.12), and (4.14) on our solution (θ, χ) . Regarding the
second term on the left-hand side in (4.25), using (2.7) in Hyp. 2.1 (vi), we obtain that∣∣∣∣−∫

Ω

χt

∫ θ

1

(cV )χ(ξ, χ)T (ξ) dξ dx

∣∣∣∣ ≤ c1E(θ, χ)‖∂tχ‖L∞(Ω)d .

Moreover, we treat the boundary integral in the following way:∫
∂Ω

(θ − θΓ,n)T (θ) dA ≥
∫
∂Ω

Ψ(θ)−Ψ(θΓ,n) dA, (4.26)

where Ψ is defined as

Ψ(θ) :=

{
θ − log θ for θ ≤ 1

1 for θ ≥ 1
,

and is a convex function on [0,+∞) such that Ψ′(θ) = T (θ) for all θ ∈ [0,+∞) . Using
estimates (4.12) and (4.14), and Hyp. 2.1 (x), we deduce that

E(θ(x, t), χ(x, t)) + k0

∫ t

0

‖∇(log θ)−‖2
H dξ +

∫ t

0

∫
∂Ω

Ψ(θ) dA dξ

≤ C%

(
1 +

∫ t

0

E(θ, χ)

)
+ E(θ0,n, χ0) +

∫ t

0

∫
∂Ω

Ψ(θΓ,n) dA dξ (4.27)

for a.e. (x, t) ∈ QT . Now, in view of (2.8), we have that

E(θ0,n, χ0) = −
∫

Ω

∫ θ0,n

1

cV (ξ, χ0)

(
1− 1

ξ

)−
dξ dx

≤
∫

Ω

∫ 1

0

cV (ξ, χ0)

(
1

ξ
− 1

)
dξ dx ≤

∫
Ω

s(1, χ0) ≤ c1|Ω| . (4.28)

Moreover, we can estimate the term
∫ t

0

∫
∂Ω

Ψ(θΓ,n) dA dτ using Hyp. 2.1 (x) as follows:∫ t

0

∫
∂Ω

Ψ(θΓ,n) dA dξ ≤ C
(
‖θΓ,n‖L∞(Σt) + ‖ (log(θΓ,n))− ‖L1(Σt)

)
≤ C . (4.29)

Using a standard Gronwall’s lemma in (4.27), together with the estimates (4.29) and (4.28), we
obtain the desired bound

‖(log θn)−‖L2(0,T ;V ) ≤ C%,

which, together with estimate (4.14) for θ in L2(0, T ;V ) , gives

‖ log θn‖L2(0,T ;V ) ≤ C%. (4.30)
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Lower bound for θ under Hypothesis 2.3 (iii)–(vi). Let us consider relation (4.23). Notice
that, by the previous estimates, it follows that there exists a positive constant R% such that
|R(θ, χ)| ≤ R% a.e. in QT . Hence, for every z ∈ V such that z ≥ 0 a.e., we get the
following inequality (notice that by virtue of Lemma 4.1, we have here θt ∈ L2(0, T ;H) ):∫

Ω

(
1

n
θt + cV (θ, χ)θt

)
z dx+

∫
Ω

k(θ̄n, χ̄n)∇θ · ∇z dx+

∫
∂Ω

γ(θ − θΓ,n) z dA

=

∫
Ω

µ̃%(θ)

(
χt +

R(θ, χ)θ

2µ̃%(θ)

)2

− R2(θ, χ)θ2

4µ̃%(θ)
z dx

≥ −
∫

Ω

R2
%θ

2

4µ̃%(θ)
z dx . (4.31)

We now compare this inequality with the following ODE:

c̃(w)wt = −
R2
%w

2

4µ̃%(w)
, w(0) = w0 , (4.32)

where c̃ is defined in Hyp. (2.3) (iii) and w0 = minx∈Ω θ0(x) ≥ θ∗ (cf. Hyp. 2.3 (v)).

Notice that the solution w is decreasing and does not vanish in finite time, due to Hyp. 2.3 (iii).
The function w does not depend on x , hence we may add to the ODE in (4.32) the 0 term
−div (k(θ̄n, χ̄n)∇w) . Using the fact that wt < 0 and c̃(w) ≤ 1

n
+ cV (w, χ) , we obtain,

subtracting (4.31) from (4.32), the inequality∫
Ω

((
1

n
+ cV (w, χ)

)
wt −

(
1

n
+ cV (θ, χ)

)
θt

)
z dx+

∫
Ω

k(θ̄n, χ̄n)∇(w − θ) · ∇z dx

+

∫
∂Ω

γ(θ − θΓ,n) z dA ≤
R2
%

4

∫
Ω

(
θ2

µ̃%(θ)
− w2

µ̃%(w)

)
z dx .

We now take as test function z = Hε(w− θ) , where Hε is the regularization of the Heaviside
function H ,

Hε(v) =


0 if v ≤ 0

v/ε if v ∈ (0, ε)

1 if v ≥ ε

. (4.33)

By virtue of Hyp. 2.3 (iv), (v), we get∫
Ω

((
1

n
+ cV (w, χ)

)
wt −

(
1

n
+ cV (θ, χ)

)
θt

)
Hε(w − θ) dx ≤ 0,

and we can pass to the limit in this inequality for ε↘ 0 , getting∫
Ω

((
1

n
+ cV (w, χ)

)
wt −

(
1

n
+ cV (θ, χ)

)
θt

)
H(w − θ) dx ≤ 0 ,

that is,

∂

∂t

∫
Ω

((
1

n
w + e(w, χ)

)
−
(

1

n
θ + e(θ, χ)

))+

dx

≤
∫

Ω

(eχ(w, χ)− eχ(θ, χ))χtH(w − θ) dx . (4.34)
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Notice now that, by Hyp. 2.1 (vi) (cf. (2.4) and (2.7)), we have

|eχ(w, χ)− eχ(θ, χ)| ≤ max
τ≤w0

(cV (τ, χ))|w − θ| ≤ c̄|w − θ| .

Integrating (4.34) over (0, t) , and using the boundedness of χt in L∞(QT ) , we get, by the
choice of the initial data θ0 and w0 , that∫

Ω

((
1

n
w + e(w, χ)

)
−
(

1

n
θ + e(θ, χ)

))+

(t) dx ≤ c̄

∫
Ω

(w − θ)+ dx . (4.35)

For w > θ , we have

e(w, χ)− e(θ, χ)

w − θ
=

∫ w
θ
cV (τ, χ) dτ

w − θ
≥
∫ w
θ
c̃(τ) dτ

w − θ
≥ 1

w

∫ w

0

c̃(τ) dτ =: C̃(w) .

The function C̃ is nondecreasing, C̃(w) > 0 for w > 0 . Hence,(
1

n
w + e(w, χ)

)
−
(

1

n
θ + e(θ, χ)

)
≥ C̃(w)(w − θ) for w ≥ θ . (4.36)

Inequality (4.35) then yields

C̃(w(t))

∫
Ω

(w − θ)+(t) dx ≤ C

∫ t

0

∫
Ω

(w − θ)+ dx ds

for every t ∈ (0, T ) . From Gronwall’s lemma we conclude that

θn(x, t) ≥ w(t) a.e. in QT . (4.37)

Upper bound for θ . Let us denote the right-hand side in (4.4) by

M(θ, χ) := ((λ′(χ)(t) + b[χ](t))∂tχ(t) + β∂t (ϕ(χ(t))))

which, due to the previous estimates is bounded by a positive constant, say, M̃% . Then, we
compare the inequality, for all z ∈ V , z ≥ 0 a.e.,∫

Ω

∂t

(
1

n
θ(t) + e(θ(t), χ(t))

)
z dx+

∫
Ω

k(θ̄n(t), χ̄n(t))∇θ(t) · ∇z dx

+

∫
∂Ω

γ(θ(t)− θΓ,n(t))z dA ≤
∫

Ω

M̃% z dx, (4.38)

with the following ODE:

1

n
v̇n = M̃%, v(0) = v0 , (4.39)

where v0 = max{sup θ0, sup θΓ} (cf. Hyp. 2.1 (viii), (x)).

Then we have that
vn(t) = v0 + M̃%nt .
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We proceed as above, adding to the ODE the 0 term −div (k(θ̄n, χ̄n)∇v) , and subtracting
(4.39) from (4.38). We test the resulting inequality by Hε(θ− v) (cf. (4.33)). Using the fact that
(1/n+ cV (w, χ)) v̇n ≥ 0 and that θ ∈ H1(0, T ;H) , we can let ε tend to 0 , getting∫

Ω

∂

∂t

((
1

n
θ + e(θ, χ)

)
−
(

1

n
v + e(v, χ)

))+

dx

−
∫

Ω

(eχ(θ, χ)− eχ(v, χ))χtH(θ − v) dx ≤ 0 .

Using now the Lipschitz continuity of eχ (cf. Hyp. 2.1 (vi)) and the boundedness of χt , we obtain
that ∫

Ω

∂

∂t

((
1

n
θ + e(θ, χ)

)
−
(

1

n
v + e(v, χ)

))+

dx ≤ C%

∫
Ω

(θ − v)+ dx .

Integrating over (0, t) and using the choice of the initial condition v0 , we get∫
Ω

(θ − v)+(t) dx ≤ C%

∫ t

0

∫
Ω

(θ − v)+ dx dτ,

and, applying Gronwall’s lemma, we get the desired upper bound

θn(x, t) ≤ vn(t) a.e. in QT . (4.40)

Moser estimate. In order to conclude the proof of existence of solutions to (2.1–2.3), it re-
mains only to prove that the θ component of the solution (θ, χ) is bounded from above inde-
pendently of T , % and n .

This will enable us to choose % sufficiently large in such a way that in this range of values of θ
we have sχ = s%χ . To this end, we perform the following Moser estimate.

We will make repeated use of the well-known interpolation inequality (cf. [3])

‖v‖H ≤ A
(
η‖∇v‖H + η−N/2‖v‖L1(Ω)

)
, (4.41)

which holds for every v ∈ V and every η ∈ (0, 1) , with a positive constant A independent of
v and η .

Following the ideas already exploited in [20, Prop. 3.10, p. 296], for j ∈ N , we choose in (4.4)
z = ((θn − θR)+)2j−1 ∈ L2(0, T ;H1(Ω)) , with θR = max{ΘΓ − 1,Θ, 1} , where

|θΓ,n(x, t)| ≤ ΘΓ a.e. in ΣT , |θ0,n(x)| ≤ Θ a.e. in Ω.

We know that z ∈ L2(0, T ;H1(Ω)) , due to the upper bound on θn proved in (4.40).

Here below, we denote by Ci, i = 1, 2, . . . some positive constants that may depend on the
data of the problem, but not on j , T , % , and n . We omit again the indices n in θn , χn , for
simplicity.
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Now set u = (θ − θR) and take z = (u+)2j−1 in (4.4) to obtain that〈
1

n
θt(t) + (e(θ(t), χ(t)))t, (u

+)2j−1

〉
+

∫
Ω

k(θ̄n(t), χ̄n(t))∇θ(t) · ∇(u+)2j−1 dx

+

∫
∂Ω

γ(θ(t)− θΓ,n) (u+)2j−1 dA

= −
∫

Ω

(λ′(χ)(t)χt(t) + β (ϕ(χ(t))t)− b[χ](t)χt(t)) (u+)2j−1 dx. (4.42)

Our aim is to prove that there exists a positive constant C∗ (independent of T , % , and n ) such
that

‖θ(t)‖L∞(Ω) ≤ C∗ (1 + log %)4+2N for a.e. t ∈ (0, T ). (4.43)

The first term on the left-hand side can be rewritten as〈
1

n
θt(t) + (e(θ(t), χ(t)))t, (u

+)2j−1

〉
=

1

n
〈θt, (u+)2j−1〉+ 〈θt, cV (θ, χ)(u+)2j−1〉

+ 〈eχ(θ, χ)χt, (u
+)2j−1〉. (4.44)

Let us deal with the second term on the right-hand side in (4.44), using Hyp. 2.1 (vi) (notice that
by (2.5), we have cV ≥ c in the set where θ ≥ θR ≥ 1 ) as follows:

〈θt, cV (θ, χ)(u+)2j−1〉 =
d

dt
Ej(u, χ)−

∫
Ω

(∫ u

0

(cV )χ(ξ + θR, χ)(ξ+)2j−1 dξ

)
χt dx,

(4.45)
where

c 2−j
∫

Ω

(u+)2j

dx ≤ Ej(u, χ) :=

∫
Ω

∫ u

0

cV (ξ+θR, χ)(ξ+)2j−1 dξ dx ≤ c̄ 2−j
∫

Ω

(u+)2j

dx.

(4.46)
Then, using (4.12) and Hyp. 2.1 (vi), we infer that∫

Ω

(∫ u

0

(cV )χ(ξ + θR, χ)(ξ+)2j−1 dξ

)
χt dx ≤ C1(1 + log %)2Ej(u, χ). (4.47)

Moreover, by Hyp. 2.1, we get the inequality∫
Ω

k(θ̄n, χ̄n)∇u∇
(

(u+)2j−1
)

dx+

∫
∂Ω

γ (u− θΓ,n + θR) (u+)2j−1 dA

≥ k0
2j − 1

22j−2

∫
Ω

∣∣∣∇((u+)2j−1
)∣∣∣2 dx+

∫
∂Ω

γ
(

(u+)2j − (u+)2j−1
)

dA .

Now, set Φj = (u+)2j−1
. Regarding the terms on the right-hand side in (4.42) and the last

term in (4.44), using (4.12) and Hyp. 2.1 (vi), we realize that

−
∫

Ω

(λ′(χ)(t)χt(t) + β (ϕ(χ(t)))t − b[χ](t)χt(t)− eχ(θ, χ)χt) (u+)2j−1 dx

≤ C2(1 + log %)2

(∫
Ω

|Φj|2 dx+ 1

)
.
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Let us now set En
j = Ej +

2−j

n

∫
Ω

|Φj|2 dx . Then, with the help of Hölder’s and Young’s

inequalities, we deduce that

d

dt
En
j (u, χ) +

k0(2j − 1)

22j−2

∫
Ω

|∇Φj|2 dx+

∫
∂Ω

γ |Φj|2 dA

≤
(
1− 2−j

) ∫
∂Ω

γ |Φj|2 dA+ 2−j
∫
∂Ω

γ dA+ C1(1 + log %)2Ej(u, χ)

+ C2(1 + log %)2

∫
Ω

(
|Φj|2 + 1

)
dx .

Multiplying the above inequality by 2j , in view of the upper bound for Ej(u, χ) in (4.46), we
find out that

2j
d

dt
En
j (u, χ) + 2k0

∫
Ω

|∇Φj|2 dx+

∫
∂Ω

γ|Φj|2 dA

≤ 2jC3(1 + log %)2

(
1 +

∫
Ω

|Φj|2 dx

)
. (4.48)

We now use the interpolation inequality (4.41) and note that, thanks to estimate (4.14), we have

‖Φ1‖2
L1(Ω) =

(∫
Ω

u+ dx

)2

≤ C4(1 + log %)4, ‖Φj‖2
L1(Ω) = ‖Φj−1‖4

H .

Thus, we derive the inequalities∫
Ω

|Φ1|2 dx ≤ 2A2
(
η2‖∇Φ1‖2

H + η−NC4(1 + log %)4
)
, (4.49)∫

Ω

|Φj|2 dx ≤ 2A2
(
η2‖∇Φj‖2

H + η−N‖Φj−1‖4
H

)
for j > 1 . (4.50)

For j = 1 , we infer from (4.48) and (4.49) that

2
d

dt
En

1 (u, χ) + 2k0

∫
Ω

|∇Φ1|2 dx+

∫
∂Ω

γ|Φ1|2 dA

≤ C5(1 + log %)2

(
1 + η2

∫
Ω

|∇Φ1|2 dx+ η−N(1 + log %)4

)
.

Choosing η =
√
k0/(

√
C5(1 + log %)2) , we find that

2
d

dt
En

1 (u, χ) + k0

∫
Ω

|∇Φ1|2 dx+

∫
∂Ω

γ|Φ1|2 dA ≤ C6 (1 + log %)6+N . (4.51)

For j > 1 , we get

2j
d

dt
En
j (u, χ) + 2k0

∫
Ω

|∇Φj|2 dx+

∫
∂Ω

γ|Φj|2 dA

≤ 2jC7(1 + log %)2

(
1 + η2

∫
Ω

|∇Φj|2 dx+ η−N‖Φj−1‖4
H

)
.
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Choosing η =
√
k0/(

√
2j(C7(1 + log %)2)) , we conclude from (4.48) and (4.50) that

2j
d

dt
En
j (u, χ) + k0‖∇Φj‖2

H +

∫
∂Ω

γ|Φj|2 dA

≤ 2j(
N
2

+1)C8(1 + log %)2
(
1 + (1 + log %)N‖Φj−1‖4

H

)
. (4.52)

By assumption, we have ‖Φj(0)‖2
H = 0 . Hence, integrating (4.51) and (4.52) with respect to

time and using the lower bound in (4.46), we obtain that

‖Φ1(t)‖2
H ≤ C9(1 + log %)6+N ,

‖Φj(t)‖2
H ≤ C102j(

N
2

+1)(1 + log %)2

(
1 + (1 + log %)N max

0≤τ≤t
‖Φj−1(τ)‖4

H

)
.

Define now
zj(t) = max

0≤τ≤t

√
‖u(τ)‖L2j

(Ω) = max
0≤τ≤t

‖Φj(τ)‖2−j

H .

Then we have

z1(t) ≤ C11 (1 + log %)(6+N)/4 ,

zj(t) ≤ C2−j−1

10 2j(
N
2

+1)2−j−1

(1 + log %)(N+2)2−j−1

max{1, zj−1(t)} .

In particular, putting yj(t) = max{1, zj(t)} , we get

y1(t) ≤ C11(1 + log %)(6+N)/4, (4.53)

yj(t) ≤
(
C12(1 + log %)( N

2
+1)
)2−j

2
j
2 (N

2
+1) 2−j

yj−1(t) , for j ≥ 2. (4.54)

Hence, passing to the logarithm in the inequality (4.54) and summing up the result from 2 to j ,
we obtain

log yj(t) ≤
j∑
i=2

2−i
(

log
(
C12(1 + log %)

N
2

+1
)

+
i

2

(
N

2
+ 1

)
log 2

)
+ log(y1(t))

= log
(
C12(1 + log %)

N
2

+1
) j∑
i=2

2−i +

(
N

2
+ 1

)
log 2

j∑
i=2

i2−i

+ log
(
C11 (1 + log %)

(6+N)
4

)
≤ log

(
2(N

2
+1)C13

)
+ log

(
C14 (1 + log %)N+2

)
,

independently of j and t > 0 . Hence, we get

yj(t) ≤ 2(N
2

+1)C13

(
C14 (1 + log %)N+2

)
,

independently of j and t > 0 . Choosing a proper C̃ , which is independent of % , we can
conclude that

sup
t≥0, j∈N

√
‖u(t)‖L2j

(Ω) ≤ C̃(1 + log %)2+N .

Formula (4.43) now immediately follows.
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4.4 Passage to the limit as n→∞

Our aim now is to pass to the limit in (4.4–4.6) as n→∞.

From (4.12), (4.14), (4.15), (4.21), (4.22), it follows that, up to the extraction of some subse-
quence of n as n → ∞, there exist three functions u, θ : (0, T ) → H , χ : (0, T ) → H ,
such that we have (as a consequence of the generalized Ascoli theorem, see, e.g., [24, Cor. 8,
p. 90])

un → u weakly star in H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ L2(0, T ;V )

and strongly in C0([0, T ];V ′) ∩ L2(0, T ;H), (4.55)

θn → θ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (4.56)

χn → χ weakly star in L∞(0, T ; V), (4.57)

∂tχn → ∂tχ weakly star in L∞(Ω× (0, T ))d, (4.58)

χn → χ strongly in C0([0, T ]; H) . (4.59)

Moreover, as χn are uniformly bounded, it is easy to see that

χ̄n → χ weakly star in L∞(0, T ; V) and strongly in Lq(QT )d, (4.60)

for every q ∈ (1,∞) , as n→∞. Note that (cf. (4.7)) u ≥ 0 and θ ≥ 0 a.e. Then it turns out
that, at least for a subsequence, un → u a.e. Now, we denote by ψ( · , χ) the inverse function
of e with respect to the first variable, that is, e(ψ(w, χ)) = w for all (w, χ) ∈ [0,∞)×D(ϕ) .
Since e is continuous, increasing in θ , and such that e(θ, χ) ≥ e1θ − e2 for some constants
e1, e2 > 0 , we infer that ψ is continuous with linear growth in [0,∞)×D(ϕ) and ψ(0, χ) = 0 .
The Nemytskii operator is therefore continuous in L2(QT ) , and so this function is continuous
and increasing with linear growth. Hence, we have that

θn = ψ (un − θn/n, χn)→ ψ(u, χ) strongly in L2(0, T ;H) .

Hence, θ = ψ(u, χ) , or, equivalently, u = e(θ, χ) . Finally, we check that also θ̄n converge
strongly to θ in L2(0, T ;H) , at least for a subsequence of n→∞ . Indeed, from the definition
of θ̄n , we get∫ T

0

∫
Ω

|θ̄n(x, t)− θn(x, t)|2 dx dt =

∫
Ω

n∑
j=1

∫ tj

tj−1

|θ̄n(x, t)− θn(x, t)|2 dt dx (4.61)

=

∫ T/n

0

‖θn(t)− θ0,n‖2
H dt+

(n
T

)2
n∑
j=2

∫
Ω

∫ tj

tj−1

∣∣∣∣∣
∫ tj−1

tj−2

(θn(x, t)− θn(x, τ)) dτ

∣∣∣∣∣
2

dt dx.

By (4.56), the first integral on the right hand side of (4.61) can be estimated as follows:∫ T/n

0

‖θn(t)− θ0,n‖2
H dt ≤ C

n
.
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Regarding the second term in (4.61), we proceed as follows:

(n
T

)2
n∑
j=2

∫
Ω

∫ tj

tj−1

∣∣∣∣∣
∫ tj−1

tj−2

(θn(x, t)− θn(x, τ)) dτ

∣∣∣∣∣
2

dt dx

≤ n

T

n∑
j=2

∫ tj

tj−1

∫ tj−1

tj−2

‖θn(t)− θn(τ)‖2
H dτ dt

≤ n

T

n∑
j=2

∫ tj

tj−1

∫ t−tj−2

t−tj−1

‖θn(t)− θn(t− h)‖2
H dh dt

≤ n

T

∫ 2T/n

0

(∫ T

h

‖θn(t)− θn(t− h)‖2
H dt

)
dh ,

where we have used the new variable h = t − τ . The last integral tends to 0 , because θn
converge strongly to θ , which is mean continuous in L2(QT ) . This implies that

θ̄n → θ strongly in L2(0, T ;H),

and this allows us to pass to the limit in (4.4–4.6) as n → ∞ . Notice moreover that from
estimate (4.30) we also deduce that there exists a function ζ : (0, T )→ V such that

log θn → ζ weakly in L2(0, T ;V ).

Using the strong convergence of θn and the maximal monotonicity of the extended log graph,
we also deduce that ζ = log θ ∈ L2(0, T ;V ) , hence θ > 0 a.e.

4.5 Conclusion of the existence proof

Let us now introduce the limit problem obtained by passing to the limit as n→∞ in (4.4–4.6)
in the previous subsection.

PROBLEM (P) % . For fixed T > 0 , and % > 0 , find two functions θ ∈ L2(0, T ;V ) and
χ ∈ L∞(Ω× (0, T ))d , χt ∈ L∞(Ω× (0, T ))d such that, for t ∈ (0, T ) , we have

〈(e(θ(t), χ(t)))t, z〉+

∫
Ω

k(θ(t), χ(t))∇θ(t) · ∇z dx+

∫
∂Ω

γ(θ(t)− θΓ) z dA

= −
∫

Ω

(λ′(χ)(t)χt(t) + β (ϕ(χ(t)))t − b[χ](t)χt(t)) z dx ∀z ∈ V, (4.62)

µ̃%(θ(t))χt(t) + (β + θ(t))∂ϕ(χ)(t) 3 −λ′(χ)(t)− θ(t)σ′(χ)(t)

− b[χ](t)− eχ(θ(t), χ(t)) + θ(t)s%χ(θ(t), χ(t)) a.e. in Ω , (4.63)

and for t = 0 the functions e(θ, χ) and χ satisfy the initial conditions

e(θ, χ)(0) = u0, χ(0) = χ0 . (4.64)

We thus have proved the following result.
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Proposition 4.2. Let Hyp. 2.1 hold true and let % > 0 , µ̃% and s%χ be defined as at the
beginning of Section 4.1. Then PROBLEM (P) % has a solution in (0, T ) .

In order to conclude the proof of Theorem 2.2, we only need to remove the truncation % . This
can be done using the Moser estimate (4.43).

This bound for θ , indeed, allows us, for a suitable % ≥ 1 satisfying

C∗(1 + log %)4+2N ≤ %/2,

with, e.g., C∗ = C̃2 , to remove the truncation % and to conclude that the solution to PROBLEM

(P % ) is in fact a solution to PROBLEM (P).

Finally, let us note that we have now found a solution on (0, T ) and we get that χ is weakly
continuous with values in V , e(θ, χ) ∈ C0([0, T ];H) , and θ is bounded uniformly in time in
L∞(Ω) due to the Moser estimate. Hence, we can continue the solution starting from time T
and extend it on the whole time interval (0,∞) .

This concludes the proof of Theorem 2.2. �

5 Uniqueness

In this Section, we prove Theorem 2.5. Hence, we assume Hypothesis 2.3. First let us note that
the lower bound for θ (2.18) directly follows by passing to the limit as n tends to ∞ in (4.37).
Now we are ready to proceed in the proof of uniqueness and finally we will prove the regularity
result (2.21) under the further assumption (2.20).

Uniqueness. In what follows, we denote by R0, R1, R2, . . . suitable constants that possibly
depend on T , but not on the solutions. We start with the proof of uniqueness of solutions.
Equation (2.2) is for (almost) all x ∈ Ω of the form (2.10), with

α(θ) =
µ(θ)

β + θ
,

g = `[θ, χ] = − 1

β + θ
(λ′(χ) + θσ′(χ) + b[χ] + eχ(θ, χ)− θsχ(θ, χ)) .

Within the range 0 < θ < θ and χ ∈ DC(ϕ) , |χt| ≤ C , of admissible values for the
solutions, and, thanks to Hyp. 2.1 (ii) (iii) (v) (vi), all nonlinearities in (2.1–2.2) are Lipschitz
continuous. Using the notation from Theorem 2.5, we obtain, as a consequence of (2.17), for
a. e. (x, t) ∈ Q∞ the estimate∫ t

0

|χ̂t(x, τ)| dτ + |χ̂(x, t)|

≤ R0(T )

(
|χ̂0(x)|+

∫ t

0

(
|θ̂(x, τ)|+ |χ̂(x, τ)|+

∫
Ω

|χ̂(y, τ)| dy

)
dτ

)
, (5.1)
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with some constant R0(T ) . Integrating over Ω , and by Gronwall’s argument, we obtain that∫
Ω

|χ̂(y, t)| dy ≤ R1

(∫
Ω

|χ̂0(y)| dy +

∫ t

0

∫
Ω

|θ̂(y, τ)| dy dτ

)
, (5.2)

and hence, we get∫ t

0

|χ̂t(x, τ)| dτ + |χ̂(x, t)| ≤ R2

(
|χ̂0(x)|+

∫ t

0

|θ̂(x, τ)| dτ +

∫ t

0

∫
Ω

|θ̂(y, τ)| dy dτ

)
(5.3)

for a. e. x ∈ Ω and every t ∈ [0, T ] . In particular,∫ t

0

∫
Ω

|χ̂t(x, τ)| dx dτ ≤ R3

(∫
Ω

|χ̂0(x)| dx+

∫ t

0

∫
Ω

|θ̂(x, τ)| dx dτ

)
. (5.4)

We now multiply (5.3) by |χ̂(x, t)| and integrate over Ω to get for all t ∈ [0, T ] that∫
Ω

|χ̂(x, t)|2 dx ≤ R4

(
‖χ̂0‖2

H +

∫ t

0

∫
Ω

|θ̂(x, τ)|2 dx dτ

)
. (5.5)

The crucial point is to exploit Eq. (2.1) properly. Notice first that we have

b[χ]χt(x, t) = 2B[χ]t(x, t) + 2

∫
Ω

κ(x, y)G′(χ(x, t)− χ(y, t))χt(y, t) dy . (5.6)

We integrate the difference of the two equations (2.1), written for (θ1, χ1) and (θ2, χ2) , from 0
to t , rewriting the terms b[χi](χi)t according to (5.6). Take z = K(θ1)−K(θ2) in the resulting
equation, where K(u) =

∫ u
0
k̄(s) ds , u ∈ R , and integrate it again over (0, t) . Using the

lower bound for θ , the Lipschitz continuity of all nonlinearities (ϕ is Lipschitz continuous on
DC(ϕ) with constant C ), the properties of K (cf. Hyp. 2.1 (iv)), and denoting

Θ̂(x, t) =

∫ t

0

θ̂(x, τ) dτ, Θ̂Γ(x, t) =

∫ t

0

θ̂Γ(x, τ) dτ ,

using (4.37), we obtain for each t ∈ (0, T ) that

k0cV (w)

∫ t

0

∫
Ω

|θ̂(x, τ)|2 dx dτ +
k0

2

∫
Ω

|∇Θ̂(x, t)|2 dx+
k0

2

∫
∂Ω

γΘ̂2
Γ(s, t) dA

≤ R5

(∫ t

0

∫
∂Ω

γθ̂2
Γ(s, τ) dA dτ + ‖θ̂0‖2

H + ‖χ̂0‖2
H +

∫ t

0

∫
Ω

|χ̂(x, τ)|2 dx dτ

+

∫ t

0

∫ ξ

0

∫
Ω

∫
Ω

κ(x, y)|χ̂t(y, τ)||θ̂(x, t)| dx dy dτ dξ
)
. (5.7)

The last term on the right-hand side of the above inequality can be estimated, using (5.4), by∫ t

0

∫
Ω

∫
Ω

κ(x, y)|χ̂t(y, τ)||θ̂(x, t)| dx dy dτ ≤ R6

∫
Ω

|θ̂(x, t)| dx
∫ t

0

∫
Ω

|χ̂t(y, τ)| dy dτ

≤ R7

(∫
Ω

|θ̂(x, t)|2 dx

)1/2(∫
Ω

|χ̂0(x)|2 dx+

∫ t

0

∫
Ω

|θ̂(x, τ)|2 dx dτ

)1/2

.
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Combining the last two inequalities again with the Gronwall’s lemma, we obtain for each t ∈
[0, T ] the estimate∫ t

0

∫
Ω

|θ̂(x, τ)|2 dx dτ +

∫
Ω

|∇Θ̂(x, t)|2 dx+

∫
∂Ω

γΘ̂2(s, t) dA (5.8)

≤ R8

(
‖θ̂0‖2

H + ‖χ̂0‖2
H +

∫ t

0

∫
∂Ω

γθ̂2
Γ(s, τ) dA dτ +

∫ t

0

∫
Ω

|χ̂(x, τ)|2 dx dτ

)
.

We now multiply (5.8) by 2R4 , add the result to (5.5), and see that Gronwall’s argument can be
applied again to arrive at the final estimate∫

Ω

|χ̂(x, t)|2 dx+

∫ t

0

∫
Ω

|θ̂(x, τ)|2 dx dτ

≤ R8

(
‖θ̂0‖2

H + ‖χ̂0‖2
H +

∫ t

0

∫
∂Ω

γθ̂2
Γ(s, τ) dA dτ

)
. (5.9)

Regularity. We prove now the regularity (2.21) for θ under the further assumption (2.20). In
order to do that, let us consider, instead of (4.4), the following approximated equation∫

Ω

∂t

(
1

n
θn(t) + e(θn(t), χn(t))

)
z dx+

∫
Ω

k̄(θn(t))∇θn(t) · ∇z dx

+

∫
∂Ω

γ(θn(t)− θΓ,n(t))z dA

= −
∫

Ω

((λ′(χn)(t) + b[χn](t))∂tχn(t) + β∂t (ϕ(χn(t)))) z dx . (5.10)

Since (cf. Hypothesis 2.3 (i)) the heat conductivity k̄ is independent of χ , we can now test
(5.10) by K(θn)t , where K(θn) =

∫ θn

0
k̄(s) ds and, integrating over (0, t) , we obtain, using

(4.37), the estimate(
1

n
+ k0cV (w)

)∫ t

0

∫
Ω

(θn)t dx dτ +
1

2
‖∇(K(θn))(t)‖2

H + k0k1

∫
∂Ω

γK(θn)2(t) dA

≤ 1

2
‖∇(K(θ0n))‖2

H +

∫ t

0

∫
∂Ω

|γ||(θΓ,n)t|K(θn) dA dτ + Ck1

∫ t

0

∫
Ω

|(θn)t| dx dτ.

Here C is a bound in L∞(QT ) for the term (λ′(χn) + b[χn])∂tχn + β∂t (ϕ(χn)) that we
already obtained in Theorem 2.2, and k0 , k1 are the positive constants introduced in Hypothe-
sis 2.1 (iv). Using now assumption (2.20) and Hypothesis 2.1 (viii), (ix), together with a standard
Gronwall lemma, we obtain the (independent of n ) bound

‖(θn)t‖L2(0,T ;H) + ‖K(θn)‖L∞(0,T ;V ) ≤ C ,

which leads immediately (due to Hypothesis 2.1 (iv)) to the desired estimate (2.21).

With this, Theorem 2.5 is proved. �
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[21] P. Krejčí and J. Sprekels, Nonlocal phase-field models for non-isothermal phase transitions
and hysteresis, Adv. Math. Sci. Appl., 14 (2004), 593–612.
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