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Zusammenfassung

We investigate a nonstandard phase field model of Cahn-Hilliard type. The model,
which was introduced in [16], describes two-species phase segregation and consists of
a system of two highly nonlinearly coupled PDEs. It has been studied recently in [5], [6] for
the case of homogeneous Neumann boundary conditions. In this paper, we investigate the
case that the boundary condition for one of the unknowns of the system is of third kind and
nonhomogeneous. For the resulting system, we show well-posedness, and we study opti-
mal boundary control problems. Existence of optimal controls is shown, and the first-order
necessary optimality conditions are derived. Owing to the strong nonlinear couplings in the
PDE system, standard arguments of optimal control theory do not apply directly, although
the control constraints and the cost functional will be of standard type.

1 Introduction

Let Ω ⊂ IR3 denote an open and bounded domain whose smooth boundary Γ has outward
unit normal n , let T > 0 be a given final time, and let Q := Ω × (0, T ) , Σ := Γ × (0, T ) .
In this paper, we study the following initial-boundary value problem:

(ε+ 2 ρ)µt + µρt −∆µ = 0 a. e. in Q, (1.1)

δρt −∆ρ+ f ′(ρ) = µ a. e. in Q, (1.2)
∂ρ

∂n
= 0 ,

∂µ

∂n
= α(u− µ) a. e. on Σ, (1.3)

ρ(x, 0) = ρ0(x) , µ(x, 0) = µ0(x) , for a. e. x ∈ Ω. (1.4)

The PDE system (1.1)–(1.2) constitutes a phase field model of Cahn-Hilliard type that describes
phase segregation of two species (atoms and vacancies, say) on a lattice in the presence of
diffusion. It has been introduced recently in [16] and [5]; for the general physical background,
we refer the reader to [16]. The unknown variables are the order parameter ρ , interpreted
as a volumetric density, and the chemical potential µ . For physical reasons, we must have
0 ≤ ρ ≤ 1 and µ > 0 almost everywhere in Q . The boundary (control) function u on the
right-hand side of (1.3) 2 plays the role of a microenergy source. Moreover, ε and δ are positive
constants, and the nonlinearity f is a double-well potential defined in (0, 1) , whose derivative
f ′ is singular at the endpoints ρ = 0 and ρ = 1 ; a typical example is f = f1 + f2 , with f2

smooth and f1(ρ) = c (ρ log(ρ) + (1− ρ) log(1− ρ)) , where c is a positive constant.
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The PDE system (1.1)–(1.4) is singular, with highly nonlinear and nonstandard coupling. In
particular, unpleasant nonlinear couplings involving time derivatives occur in (1.1), and the ex-
pression f ′(ρ) in (1.2) may become singular. In the recent papers [5], [6], well-posedness and
asymptotic behavior for t→∞ and ε↘ 0 of the system (1.1)–(1.4) were established for the
case when the second boundary condition in (1.3) is replaced by the homogeneous Neumann
boundary condition ∂µ/∂n = 0 ; a distributed optimal control problem for this situation was
analyzed in [7]. We also refer to the papers [3] and [4], where the corresponding Allen-Cahn
model was discussed.

The paper is organized as follows: in Section 2, we state the general assumptions and prove
the existence of a strong solution to the problem. Section 3 is concerned with the issues of
uniqueness and stability. Section 4 then brings the study of a boundary control problem for the
system (1.1)–(1.4). We show existence of a solution to the optimal control problem and derive
the first-order necessary optimality conditions, as usual given in terms of the adjoint system and
a variational inequality.

Throughout the paper, we make repeated use of Hölder’s inequality, of the elementary Young
inequality

a b ≤ γa2 +
1

4 γ
b2, for every a, b ≥ 0 and γ > 0, (1.5)

of the interpolation inequality

‖v‖Lr(Ω) ≤ ‖v‖θLp(Ω) ‖v‖1−θ
Lq(Ω) ∀ v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞], θ ∈ [0, 1], and
1

r
=
θ

p
+

1− θ
q

, (1.6)

and, since dim Ω ≤ 3 , of the continuity of the embeddings H1(Ω) ⊂ Lq(Ω) for 1 ≤ q ≤ 6 ,
where, with constants Ĉq > 0 depending only on Ω ,

‖v‖Lq(Ω) ≤ Ĉq ‖v‖H1(Ω) ∀ v ∈ H1(Ω) , 1 ≤ q ≤ 6, (1.7)

and where the embeddings are compact for 1 ≤ q < 6 . We also use the Sobolev spaces
Hs(Ω) of real order s > 0 and recall the compact embeddings Hs(Ω) ⊂ H1(Ω) and
Hs(Ω) ⊂ C(Ω) for s > 1 and s > 3/2 , respectively, and, e. g., the estimate, with a constant
Ĉ∞ > 0 depending only on Ω ,

‖v‖C(Ω) ≤ Ĉ∞ ‖v‖H2(Ω) ∀ v ∈ H2(Ω) . (1.8)

2 Problem statement and existence

Consider the initial-boundary value problem (1.1)–(1.4). For convenience, we introduce the ab-
breviated notation

H = L2(Ω), V = H1(Ω), W =
{
w ∈ H2(Ω) : ∂w/∂n = 0 on Γ

}
.

We endow these spaces with their standard norms, for which we use self-explaining notation
like ‖ · ‖V ; for simplicity, we also write ‖ · ‖H for the norm in the space H ×H ×H . Recall
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that the embeddings W ⊂ V ⊂ H are compact. Moreover, since V is dense in H , we can
identify H with a subspace of V ∗ in the usual way, i. e., by setting 〈u, v〉V ∗,V = (u, v)H for
all u ∈ H and v ∈ V , where 〈· , ·〉V ∗,V denotes the duality pairing between V ∗ and V .
Then also the embedding H ⊂ V ∗ is compact.

We make the following assumptions on the data:

(A1) f = f1 + f2 , where f1 ∈ C2(0, 1) is convex, f2 ∈ C2[0, 1] , and

lim
r↘0

f ′1(r) = −∞, lim
r↗1

f ′1(r) = +∞. (2.1)

(A2) ρ0 ∈ W , f ′(ρ0) ∈ H , µ0 ∈ V , and

0 < ρ0(x) < 1 ∀x ∈ Ω, µ0 ≥ 0 a. e. in Ω. (2.2)

(A3) u ∈ H1(0, T ;L2(Γ)) , and u ≥ 0 a. e. on Σ .

(A4) α ∈ L∞(Γ) , and α(x) ≥ α0 > 0 for almost every x ∈ Γ .

Notice that (A2) implies that ρ0 ∈ C(Ω) and, thanks to the convexity of f1 , also that f(ρ0) ∈
H .

The following existence result resembles that of Theorem 2.1 in [5].

Theorem 2.1 Suppose that the hypotheses (A1)–(A4) are satisfied. Then the system (1.1)–
(1.4) has a solution (ρ, µ) such that

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.3)

µ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)), (2.4)

f ′(ρ) ∈ L∞(0, T ;H), (2.5)

0 < ρ < 1 a. e. in Q, µ ≥ 0 a. e. in Q. (2.6)

Remark 2.2 The H3/2 space regularity for µ is optimal due to the L2 space regularity of u
given by (A3). Nevertheless, both equation (1.1) and the boundary condition for µ contained
in (1.3) can be understood a.e. in Q and a.e. on Σ , respectively, and the standard integration
by parts is correct, as we briefly explain (so that we can both refer to that formulation and use
integration by parts). In principle, one can replace the equation and the boundary condition by
the usual variational formulation, namely∫

Ω

[(ε+ 2 ρ)µt + µρt] v dx+

∫
Ω

∇µ · ∇v dx+

∫
Γ

α(µ− u)v dσ = 0

(where dσ stands for the surface measure) for every v ∈ V , a.e. in (0, T ) , or an integrated-
in-time version of it. This implies that (1.1) is satisfied in the sense of distributions, whence ∆µ
belongs to L2(Q) by comparison, and the equation can be understood a.e. in Q , a posteriori.
The last regularity (2.4) of µ and the condition ∆µ ∈ L2(0, T ;L2(Ω)) just observed also
ensure that the trace ∂µ

∂n
|Σ has a meaning in the space L2(0, T ;L2(Γ)) due to the trace
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theorem [15, Thm. 7.3] (we just observe that the space Ξ−1/2(Ω) that enters such a result is
larger than L2(Ω) ), so that the boundary condition can be read a.e. on Σ .

Proof of Theorem 2.1. The proof follows closely the lines of the proof of Theorem 2.1 in [5],
where a homogeneous Neumann boundary condition for µ was investigated.

Step 1: Approximation. We employ an approximation scheme based on a time delay in the
right-hand side of (1.2). To this end, we introduce for τ > 0 the translation operator Tτ :
L1(0, T ;H) → L1(0, T ;H) , which for v ∈ L1(0, T ;H) and almost every t ∈ (0, T ) is
defined by

(Tτ )(t) := v(t− τ) if t > τ, and (Tτ )(t) := µ0 if t ≤ τ . (2.7)

Now, let N ∈ IN be arbitrary, and τ := T/N . We seek functions (ρτ , µτ ) satisfying (2.3)–
(2.6) (with (ρ, µ) replaced by (ρτ , µτ ) ), which solve the system

(ε+ 2 ρτ )µτt + µτρτt −∆µτ = 0 a. e. in Q, (2.8)

δρτt −∆ρτ + f ′(ρτ ) = Tτµτ a. e. in Q, (2.9)

∂ρτ

∂n
= 0 ,

∂µτ

∂n
= α(u− µτ ) a. e. on Σ, (2.10)

ρτ (x, 0) = ρ0(x) , µτ (x, 0) = µ0(x) , for a. e. x ∈ Ω. (2.11)

We note that Remark 2.2 also applies to the approximating problem. To prove the existence of
a solution, we put tn := n τ , In := [0, tn] , 1 ≤ n ≤ N , and consider for 1 ≤ n ≤ N the
problem

(ε+ 2 ρn)µnt + µnρnt −∆µn = 0 a. e. in Ω× In, (2.12)

µn(0) = µ0 a. e. in Ω ,
∂µn

∂n
= α(u− µn) a. e. on Γ× In, (2.13)

δρnt −∆ρn + f ′(ρn) = Tτµn−1 a. e. in Ω× In, (2.14)

ρn(0) = ρ0 a. e. in Ω ,
∂ρn

∂n
= 0 , a. e. on Γ× In . (2.15)

Notice that the operator Tτ acts on functions that are not defined on the entire interval (0, T ) .
However, its meaning is still given by (2.7) if n > 1 , and for n = 1 we simply put Tτµn−1 =
µ0 .

Clearly, we have (ρτ , µτ ) = (ρN , µN) if (ρN , µN) exists. We claim that the systems (2.12)–
(2.15) can be uniquely solved by induction for n = 1, ..., N , where, for 1 ≤ n ≤ N ,

ρn ∈ W 1,∞(In;H) ∩H1(In;V ) ∩ L∞(In;W ), (2.16)

µn ∈ H1(In;H) ∩ C0(In;V ) ∩ L2(In;H3/2(Ω)), (2.17)

0 < ρn < 1 a. e. in Ω× In, µn ≥ 0 a. e. in Ω× In. (2.18)

To prove the claim, suppose that for some n ∈ {1, . . . , N} the problem (2.12)–(2.15) has a
unique solution satisfying (2.16)–(2.18), where the index n is replaced by n−1 . Then it follows
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with exactly the same argument as in the proof of Theorem 2.1 in [5] that the initial-boundary
value problem (2.14), (2.15) has a unique solution ρn that satisfies (2.16) and the first inequality
in (2.18). Substituting ρn in (2.12), we infer that the linear initial-boundary value problem (2.12),
(2.13) has a unique solution µn satisfying (2.17). Notice here that the regularity of µn follows
from the fact that u ∈ H1(0, T ;L2(Γ)) .

It remains to show that µn is nonnegative almost everywhere. To this end, we test (2.12) by
−(µn)− , where (µn)− denotes the negative part of µn . Using integration by parts and the
boundary condition in (2.13), we obtain the identity

1

2

∫ t

0

∫
Ω

d

dt

(
(ε+ 2ρn)

∣∣(µn)−
∣∣2) dx ds+

∫ t

0

∫
Ω

∣∣∇(µn)−
∣∣2 dx ds

+

∫ t

0

∫
Γ

α
∣∣(µn)−

∣∣2 dσ ds +

∫ t

0

∫
Γ

αu (µn)− dσ ds = 0 .

From the fact that ρn , ρ0 , µ0 , α , u are all nonnegative, we infer that

ε

∫
Ω

∣∣(µn)−(t)
∣∣2 dx ≤ ∫

Ω

(ε+ 2ρn(t))
∣∣(µn)−(t)

∣∣2 dx
≤
∫

Ω

(ε+ 2ρ0)
∣∣µ−0 ∣∣2 dx = 0 .

Hence, (µn)− = 0 , i. e., µn ≥ 0 a. e. in Ω× In , and the claim is proved.

Step 2: A priori estimates. Now that the well-posedness of the problem (2.8)–(2.11) is esta-
blished, we perform a number of a priori estimates for its solution. For the sake of a better
readability, we will omit the index τ in the calculations. In what follows, we denote by C > 0
positive constants that may depend on the data of the system but not on τ . The meaning of C
may change from line to line and even in the same chain of inequalities.

First estimate. Since ∂t
(
(ε/2)µ2 + ρµ2

)
=
(
(ε + 2ρ)µt + µρt

)
µ , testing of (2.8) by µ

yields, for every t ∈ [0, T ] ,∫
Ω

(ε
2
µ2 + ρµ2

)
(t) dx +

∫ t

0

∫
Ω

|∇µ|2 dx ds +

∫ t

0

∫
Γ

αµ2 dσ ds

=

∫
Ω

(ε
2
µ2

0 + ρ0µ
2
0

)
(t) dx +

∫ t

0

∫
Γ

αuµ dσ ds,

whence, using Young’s inequality and (A2)–(A4), we can conclude that

‖µ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C . (2.19)

Second estimate. Next, we test (2.9) by ρt . Applying (2.19), recalling the fact that f(ρ0) ∈ H ,
and invoking Young’s inequality, we easily see that

‖ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f(ρ)‖L∞(0,T ;L1(Ω)) ≤ C . (2.20)
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Third estimate. We rewrite Eq. (2.9) in the form

−∆ρ + f ′1(ρ) = − δ ρt − f ′2(ρ) + Tτµ

and observe that the right-hand side is bounded in L2(Q) . Hence, applying a standard proce-
dure (e. g., testing by f ′1(ρ) ), and invoking elliptic regularity, we find that

‖ρ‖L2(0,T ;W ) + ‖f ′1(ρ)‖L2(Q) ≤ C . (2.21)

Fourth estimate. We differentiate Eq. (2.9) formally with respect to t and test the resulting
equation with ρt (this argument can be made rigorous, see [5]). Since, owing to the convexity
of f1 , f ′′1 (ρ) is nonnegative almost everywhere, we find the estimate

δ

2
‖ρt(t)‖2 +

∫ t

0

∫
Ω

|∇ρt|2 dx ds ≤
δ

2
‖∆ρ0 − f ′1(ρ0) + µ0‖2

H

+ max
0≤ρ≤1

|f ′′2 (ρ)|
∫ t

0

∫
Ω

|ρt|2 dx ds +

∫ t

0

∫
Ω

(∂tTτµ) ρt dx ds

≤ C +

∫ t−τ

0

∫
Ω

µt(s) ρt(s+ τ) dx ds . (2.22)

In order to estimate the last integral, we substitute for µt , using Eq. (2.8). It follows, using
integration by parts:

∫ t−τ

0

∫
Ω

µt ρt(·+ τ) dx ds =

∫ t−τ

0

∫
Ω

1

ε+ 2ρ
(∆µ− µ ρt) ρt(·+ τ) dx ds

=

∫ t−τ

0

∫
Ω

[
− ∇µ
ε+ 2ρ

· ∇ρt(·+ τ) +
2ρt(·+ τ)

(ε+ 2ρ)2
∇µ · ∇ρ

− 1

ε+ 2ρ
ρt µ ρt(·+ τ)

]
dx ds

−
∫ t−τ

0

∫
Γ

α

ε+ 2ρ
(u− µ) ρt(·+ τ) dσ ds . (2.23)

Exactly as in the proof of Theorem 2.1 in [5], the domain integral in the second and third lines
of (2.23) can be estimated from above by an expression of the form

1

2

∫ t

0

∫
Ω

|∇ρt|2 dx ds + C
(

1 +

∫ t

0

‖µ(s)‖2
V ‖ρt(s)‖2

H dx ds
)
. (2.24)

Observe that, owing to the inequality (2.19), the mapping s 7→ ‖µ(s)‖2
V belongs to L1(0, T ) .

Finally, we estimate the boundary term in the last line of Eq. (2.23). To this end, recall that by the
trace theorem there is a constant cΩ > 0 , independent of τ , such that ‖v‖L2(Γ) ≤ cΩ ‖v‖V
for all v ∈ V . Moreover, we have ρ ≥ 0 and α ∈ L∞(Γ) . Therefore, we obtain that
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∣∣∣∫ t−τ

0

∫
Γ

α

ε+ 2ρ
(u− µ) ρt(·+ τ) dσ ds

∣∣∣
≤ C

∫ t−τ

0

‖ρt(s+ τ)‖L2(Γ)

(
‖u(s)‖L2(Γ) + ‖µ(s)‖L2(Γ)

)
ds

≤ C

∫ t−τ

0

‖ρt(s+ τ)‖V
(
‖u(s)‖L2(Γ) + ‖µ(s)‖V

)
ds

≤ 1

4

∫ t

0

‖ρt(s)‖2
V ds + C . (2.25)

Now we may combine the estimates (2.22)–(2.25) and employ Gronwall’s inequality to conclude
that

‖ρt‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C . (2.26)

The same argument as in the derivation of (2.22) then shows that also

‖ρt‖L∞(0,T ;W ) + ‖f ′1(ρ)‖L∞(0,T ;H) ≤ C . (2.27)

Fifth estimate. We test equation (2.8) by µt . Formal integration by parts (this can be made
rigorous), using (A3), the trace theorem and Young’s inequality, yields:

ε

∫ t

0

∫
Ω

|µt|2 dx ds +
1

2
‖∇µ(t)‖2

H +

∫
Γ

α

2
|µ(t)|2 dσ

≤ C +

∫ t

0

∫
Γ

αuµt dσ +

∫ t

0

∫
Ω

|µ ρt µt| dx ds

≤ C +

∫
Γ

αu(t)µ(t) dσ −
∫ t

0

∫
Γ

αut µ dσ ds +

∫ t

0

∫
Ω

|µ ρt µt| dx ds

≤ C

γ
+ γ ‖µ(t)‖2

V +

∫ t

0

‖µ(s)‖2
V ds +

∫ t

0

∫
Ω

|µ| |ρt| |µt| dx ds

≤ C

γ
+ γ‖µ(t)‖2

V +

∫ t

0

‖µ(s)‖2
V ds +

ε

2

∫ t

0

‖µt(s)‖2
H ds

+ C

∫ t

0

‖ρt(s)‖2
L4(Ω) ‖µ(s)‖2

L4(Ω) ds

≤ C

γ
+ γ‖µ(t)‖2

V +
ε

2

∫ t

0

‖µt(s)‖2
H ds

+ C

∫ t

0

(
1 + ‖ρt(s)‖2

V

)
‖µ(s)‖2

V ds. (2.28)
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Hence, using (2.26), choosing γ > 0 sufficiently small, and invoking Gronwall’s lemma, we can
conclude that

‖µ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C . (2.29)

Sixth estimate. Since 0 < ρ < 1 a. e. in Q , and using (2.26), (2.29) and the continuity of the
embedding V ⊂ L4(Ω) , we can estimate as follows:

‖(ε+ 2ρ)µt + µρt‖L2(Q) ≤ C ‖µt‖L2(Q) + ‖µ‖L∞(0,T ;L4(Ω)) ‖ρt‖L2(0,T ;L4(Ω))

≤ C
(
‖µt‖L2(Q) + ‖µ‖L∞(0,T ;V ) ‖ρt‖L2(0,T ;V )

)
≤ C . (2.30)

Comparison in (2.8) then shows the boundedness of ∆µ in L2(Q) , and it follows from (2.8),
(A3) and standard elliptic estimates that also

‖µ‖L2(0,T ;H3/2(Ω)) ≤ C . (2.31)

Step 3: Conclusion of the proof. Collecting all the above estimates, it turns out that there is
some sequence τk ↘ 0 such that

µτk → µ weakly star in

H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3/2(Ω)) ,

ρτk → ρ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ,

f ′1(ρτk)→ ξ weakly star in L∞(0, T ;H) .

Thanks to the Aubin-Lions lemma (cf., [14, Thm. 5.1, p. 58]) and similar results to be found in
[17, Sect. 8, Cor. 4], we also deduce (recall that even H3/2(Ω) is compactly embedded into V )
the strong convergences

µτk → µ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) ,

ρτk → ρ strongly in C0([0, T ];V )

and the Cauchy conditions (1.4) as a consequence. In particular, employing a standard monoto-
nicity argument (cf., e. g., [1, Lemma 1.3, p. 42]), we conclude that 0 < ρ < 1 and ξ = f ′1(ρ)
a. e. in Q . The strong convergence shown above also entails that f ′2(ρτk) → f ′2(ρ) stron-
gly in C0([0, T ];H) (because f ′2 is Lipschitz continuous), and that Tτkµτk → µ strongly
in L2(Q) .

Now notice that the above convergences imply, in particular, that

ρτk → ρ strongly in C0([0, T ];L6(Ω)) ,

ρτkt → ρt weakly in L2(0, T ;L4(Ω)),

µτk → µ strongly in L2(0, T ;L4(Ω)) ,

µτkt → µt weakly in L2(Q) .
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From this, it is easily verified that

µτk ρτkt → µ ρt weakly in L1(0, T ;H),

ρτk µτkt → ρ µt weakly in L2(0, T ;L3/2(Ω)).

Now, we are ready to take the limit as k → ∞ in (2.8)–(2.10) (written for τ = τk ). Precisely,
we can do that as far as ρ is concerned, while it is easier to take the limit in the variational formu-
lation of (2.8) that accounts for the boundary condition (the same as mentioned in Remark 2.2),
or in the following integrated-in-time version of it∫ T

0

∫
Ω

[(ε+ 2 ρτ )µτt + µτρτt ] v dx dt+

∫ T

0

∫
Ω

∇µτ · ∇v dx dt

+

∫ T

0

∫
Γ

α(µτ − u)v dσ dt = 0 for every v ∈ L∞(0, T ;V ).

Then, we obtain the analogue for µ , which implies (1.1) and (1.3) 2 .

3 Boundedness, uniqueness, and stability

In this section, we derive results concerning boundedness, uniqueness and stability of the so-
lutions to system (1.1)–(1.4). With respect to boundedness, we have the following result, which
resembles Theorem 2.3 in [5].

Theorem 3.1 Suppose that (A1)–(A4) are fulfilled, and suppose that the following conditions
are satisfied:

(A5) µ0 ∈ L∞(Ω), inf
x∈Ω

ρ0(x) > 0, sup
x∈Ω

ρ0(x) < 1.

(A6) u ∈ L∞(Σ) .

Then any solution (ρ, µ) of (1.1)–(1.4) fulfilling (2.3)–(2.6) also satisfies

µ ≤ µ∗, ρ ≥ ρ∗ , and ρ ≤ ρ∗ a.e. in Q (3.1)

for some constants µ∗ > 0 and ρ∗ , ρ
∗ ∈ (0, 1) that depend on the structure of the system

and T , on the initial data, and on an upper bound for the L∞ norm of u , only.

Proof. Let us just show the boundedness of µ and the first estimate (3.1); the results for ρ
then follow in exactly the same manner as in the proof of Theorem 2.3 in [5]. Also the result for
µ follows – up to some changes that are necessary due to the different boundary condition for
µ – by the same chain of arguments as in the proof of Theorem 2.3 in [5]; but since this proof
does not seem to be standard, we provide it for the reader’s convenience. So let (ρ, µ) be any
solution to the system (1.1)–(1.4), (2.3)–(2.6). We set

Φ0 := max {1, ‖µ0‖L∞(Ω) , ‖u‖L∞(Σ)} ,
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choose any k ∈ IR such that k ≥ Φ0 , and introduce the auxiliary function χk ∈ L∞(Q)
by putting, for almost every (x, t) ∈ Q ,

χk(x, t) = 1 if µ(x, t) > k, and χk(x, t) = 0 otherwise.

Then, we test (1.1) by (µ− k)+ . We obtain, for any t ∈ [0, T ] ,∫
Ω

(ε
2

+ ρ(t)
)
|(µ(t)− k)+|2 +

∫ t

0

∫
Ω

|∇(µ− k)+|2 dx ds

+

∫ t

0

∫
Γ

α (µ− u) (µ− k)+ dσ ds

=

∫ t

0

∫
Ω

ρt |(µ− k)+|2 dx ds −
∫ t

0

∫
Ω

ρt µ (µ− k)+ dx ds

= − k
∫ t

0

∫
Ω

ρt (µ− k)+ dx ds .

Now observe that α and ρ are nonnegative and that, by definition of k ,

α (µ− u) (µ− k)+ = α
(
|(µ− k)+|2 + (k − u) (µ− k)+

)
≥ 0 a. e. in Q .

Hence, using Hölder’s inequality, we obtain from the above equality the estimate

ε

2
‖(µ(t)− k)+‖2

H +

∫ t

0

∫
Ω

|∇(µ− k)+|2 dx ds

≤ k

∫ t

0

‖χk(s)‖L7/2(Ω) ‖ρt(s)‖L14/3(Ω) ‖(µ− k)+(s)‖L2(Ω) ds ,

whence, using the Gronwall-Bellman lemma as in [2, Lemma A.4, p. 156],(
ε ‖(µ− k)+‖2

C0([0,T ];H) +

∫ T

0

∫
Ω

|∇(µ− k)+|2 dx dt
)1/2

≤ k√
ε

∫ T

0

‖χk(t)‖L7/2(Ω) ‖ρt(t)‖L14/3(Ω) dt

≤ k√
ε
‖ρt‖L7/3(0,T ;L14/3(Ω)) ‖χk‖L7/4(0,T ;L7/2(Ω)) . (3.2)

Next, we apply the continuity of the embedding V ⊂ L6(Ω) and the interpolation inequality
(1.6) with p = 2 , q = 6 , r = 14/3 , and θ = 1/7 . It follows that

‖ρt‖L7/3(0,T ;L14/3(Ω)) ≤
(∫ T

0

‖ρt(t)‖1/3

L2(Ω) ‖ρt(t)‖
2
L6(Ω) dt

)3/7

≤ ‖ρt‖1/7
L∞(0,T ;H)

(∫ T

0

‖ρt(t)‖2
L6(Ω) dt

)3/7

≤ C ‖ρt‖6/7

L2(0,T ;V ) ≤ D0 ,
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where D0 is a positive constant depending only on the data of the problem. Moreover, we have

‖χk‖L7/4(0,T ;L7/2(Ω)) =
[∫ T

0

(∫
Ω

|χk(x, t)|7/2 dx
)1/2

dt
]4/7

=
[∫ T

0

(∫
Ω

|χk(x, t)|4 dx
)1/2

dt
] 1

2
· 8
7

= ‖χk‖8/7

L2(0,T ;L4(Ω)) .

Hence, we can infer from (3.2) that for every k ≥ Φ0 it holds the inequality

|||(µ− k)+||| ≤ k D1 ‖χk‖8/7

L2(0,T ;L4(Ω)) , (3.3)

where D1 = D0/Min {ε, 1} , and where the norm ||| · ||| is defined by

|||v|||2 := max
t∈[0,T ]

‖v(t)‖2
H +

∫ T

0

∫
Ω

|∇v|2 dx dt ∀ v ∈ C0([0, T ];H) ∩ L2(0, T ;V ) .

Moreover, owing to the continuity of the embedding V ⊂ L4(Ω) , there is some constant
D2 > 0 , which only depends on Ω and on T , such that

‖v‖L2(0,T ;L4(Ω)) ≤ D2 |||v||| ∀ v ∈ C0([0, T ];H) ∩ L2(0, T ;V ) . (3.4)

At this point, we select a strictly increasing sequence {kj} depending on a real parameter
m > 1 as follows:

kj := M
(
2− 2−j

)
for j = 0, 1, . . . , with M := mΦ0 . (3.5)

Note that k0 = M > Φ0 and limj→∞ kj = 2M . Then, owing to (3.3) and (3.4), it is not
difficult to check that(

kj+1 − kj
)
‖χkj+1

‖L2(0,T ;L4(Ω)) ≤ ‖(µ− kj)+‖L2(0,T ;L4(Ω))

≤ D2|||(µ− kj)+||| ≤ kj D1D2 ‖χkj
‖8/7

L2(0,T ;L4(Ω)). (3.6)

Therefore, if we set
Sj := ‖χkj

‖L2(0,T ;L4(Ω)) for j = 0, 1, . . . ,

then we have

Sj+1 ≤
kj

kj+1 − kj
D1D2 S

8/7
j ≤ 4D1D2 2j S

8/7
j for j = 0, 1, . . . .

Using [12, Lemma 5.6, p. 95], we can conclude that Sj → 0 as j →∞ , provided that

S0 = ‖χk0‖L2(0,T ;L4(Ω)) ≤ (4D1D2)−7 2−49. (3.7)

Now recall that χk0 = χM and, owing to (3.5), M > Φ0 and m = M/Φ0 . Also,

χM = 1 <
µ− Φ0

M − Φ0

if µ > M, and χM = 0 otherwise.
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Therefore, using (3.3) and (3.4) with k = k0 = M , we find that

S0 ≤
1

M − Φ0

‖(µ− Φ0)+‖L2(0,T ;L4(Ω)) ≤
D2

M − Φ0

|||(µ− Φ0)+|||

≤ D1D2

m− 1
‖χΦ0‖

8/7

L2(0,T ;L4(Ω)) ≤
D1D2

m− 1
|Ω|

1
4
· 8
7 T

1
2
· 8
7 .

We are now in a position to choose m := 1+D1D2|Ω|2/7T 4/7(4D1D2)7 249 . Then, m > 1
and (3.7) is satisfied. Consequently,

‖χ2M‖L2(0,T ;L4(Ω)) = lim
j→∞

Sj = 0,

due to Beppo Levi’s Monotone Convergence Theorem. This implies that µ ≤ 2M a.e. in Q ,
and the boundedness of µ is proved.

Now that the boundedness condition (3.1) is shown, we can prove the following uniqueness and
stability result, which corresponds to Theorem 2.2 in [5].

Theorem 3.2

(i) Suppose that (A1)–(A6) are fulfilled. Then the system (1.1)–(1.4) has a unique solution
(ρ, µ) satisfying (2.3)–(2.6).

(ii) Suppose that (A1), (A2), (A4) and (A5) are fulfilled and that the functions u1 , u2 satisfy the
conditions (A3) and (A6). Moreover, let (ρi, µi) be the solutions to (1.1)–(1.4) corresponding to
ui , i = 1, 2 , and u := u1 − u2 , ρ := ρ1 − ρ2 and µ := µ1 − µ2 . Then we have, for every
t ∈ [0, T ] ,

max
0≤s≤t

(
‖µ(s)‖2

H + ‖ρ(s)‖2
V

)
+

∫ t

0

∫
Ω

(
‖µ(s)‖2

V + ‖ρt(s)‖2
H + ‖ρ(s)‖2

W

)
ds

≤ K∗1

∫ t

0

‖u(s)‖2
L2(Γ) ds , (3.8)

with a constant K∗1 > 0 that only depends on the data of the system.

Proof. Obviously, the assertion (i) follows directly from (ii). So we only need to show (ii). To
this end, observe that by Theorem 3.1 there are constants M > 0 and 0 < r∗ < r∗ < 1
such that 0 ≤ µi ≤ M and r∗ ≤ ρi ≤ r∗ a. e. in Q , for i = 1, 2 . Moreover, the function
r 7→ r− f ′(r), r∗ ≤ r ≤ r∗ , has a Lipschitz constant L > 0 . Next, we observe that the pair
(ρ, µ) is a solution to the system

(ε+ 2ρ1)µt + 2 ρ µ2,t + µ ρ1,t + µ2 ρt −∆µ = 0 a. e. in Q, (3.9)

δ ρt −∆ρ = µ − (f ′(ρ1)− f ′(ρ2)) a. e. in Q, (3.10)

∂ρ

∂n
= 0 ,

∂µ

∂n
= α(u− µ) a. e. on Σ, (3.11)

ρ(x, 0) = µ(x, 0) = 0 , for a. e. x ∈ Ω. (3.12)
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Now observe that 2 ρ1 µµt =
(
ρ1 µ

2
)
t
− µ2 ρ1,t . Hence, if we test (3.9) by µ then we obtain,

using Young’s inequality, that for every t ∈ [0, T ] it holds∫
Ω

(ε
2

+ ρ1(t)
)
µ2(t) dx +

∫ t

0

∫
Ω

|∇µ|2 dx ds +

∫ t

0

∫
Γ

α |µ|2 dσ ds

≤ C

∫ t

0

∫
Γ

|u|2 dσ ds +

∫ t

0

∫
Γ

α

2
|µ|2 dσ ds

+

∫ t

0

∫
Ω

|µ|
(
2 |ρ| |µ2,t| + |µ2| |ρt|

)
dx ds . (3.13)

We have, owing to the continuity of the embedding H1(Ω) ⊂ L4(Ω) and to Young’s inequality,∫ t

0

∫
Ω

2 |µ| |ρ| |µ2,t| dx ds ≤ C

∫ t

0

‖µ2,t(s)‖2
H ‖µ(s)‖L4(Ω)‖ρ(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖µ(s)‖2
V ds +

C

γ

∫ t

0

‖µ2,t(s)‖2
H ‖ρ(s)‖2

V ds , (3.14)

where, owing to (2.4), the mapping s 7→ ‖µ2,t(s)‖2
H belongs to L1(0, T ) . Moreover, we also

have µ2 ∈ L∞(Q) , and thus∫ t

0

∫
Ω

|µ| |µ2| |ρt| dx ds ≤ C

∫ t

0

‖ρt(s)‖H ‖µ(s)‖H ds

≤ γ

∫ t

0

‖ρt(s)‖2
H ds +

C

γ

∫ t

0

‖µ(s)‖2
H ds . (3.15)

Next, we add ρ on both sides of Eq. (3.10) and test the resulting equation by ρt . Invoking
Young’s inequality, it is easily seen that, for every t ∈ [0, T ] ,

δ

∫ t

0

‖ρt(s)‖2
H ds + ‖ρ(t)‖2

V

≤ γ

∫ t

0

‖ρt(s)‖2
H ds +

C

γ

∫ t

0

(
‖µ(s)‖2

H + L2 ‖ρ(s)‖2
H

)
ds . (3.16)

Now we can combine (3.13)–(3.16). Choosing γ > 0 sufficiently small, and applying Gronwall’s
lemma, we see that (3.8) is satisfied.

The stability estimate (3.8) can be improved if further regularity is assumed for f . The follo-
wing result is a counterpart of Lemma 3.1 in [7]. We remark at this place that (2.3) implies, in
particular, that ρ is weakly continuous as a mapping from [0, T ] into W , which justifies the
formulation of the estimate (3.17) below.

Theorem 3.3 Suppose that the assumptions of Theorem 3.2,(ii) are satisfied, and assume
that

(A7) f ∈ C3(0, 1) .
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Then we have, for every t ∈ [0, T ] ,

max
0≤s≤t

(
‖µ(s)‖2

V + ‖ρt(s)‖2
V + ‖ρ(s)‖2

W

)
+

∫ t

0

(
‖µt(s)‖2

H + ‖ρt(s)‖2
W

)
ds

≤ K∗2

{
‖u(0)‖2

L2(Γ) +

∫ t

0

(
‖u(s)‖2

L2(Γ) + ‖ut(s)‖2
L2(Γ)

)
ds

}
(3.17)

with a constant K∗2 > 0 that only depends on the data of the system.

Remark 3.4 We note that ‖u(0)‖2
L2(Γ) ≤ I(t)/max{1, t} where I(t) denotes the last

integral of (3.17). It follows that ‖u(0)‖2
L2(Γ) can be dropped if one pretends (3.17) just for

t = T .

Proof of Theorem 3.3. We closely follow the lines of the proof of Lemma 3.1 in [7]. Since the
proof given there carries over to our situation with minor changes, we can afford to be brief.
First, observe that by Theorem 3.1 there are constants M > 0 and 0 < r∗ < r∗ < 1 such
that 0 ≤ µi ≤ M and r∗ ≤ ρi ≤ r∗ a. e. in Q , for i = 1, 2 . Next, we recall that the pair
(ρ, µ) is a solution to the system (3.9)–(3.12). We test Eq. (3.9) formally by µt . It then follows,
with the use of Young’s inequality, that

ε

∫ t

0

‖µt(s)‖2
H ds +

1

2
‖∇µ(t)‖2

H +
1

2

∫
Γ

α |µ(t)|2 dσ

≤
∫ t

0

∫
Γ

αuµt dσ ds

+

∫ t

0

∫
Ω

(2|ρ| |µ2,t| + |µ| |ρ1,t| + |µ2| |ρt|) |µt| dx ds . (3.18)

Now, by virtue of integration by parts with respect to t , and invoking (3.8), Young’s inequality
and the trace theorem,∣∣∣∫ t

0

∫
Γ

αuµt dσ ds
∣∣∣

≤ γ

∫
Γ

α|µ(t)|2 dσ +
C

γ

∫
Γ

|u(t)|2 dσ +
C

γ

∫ t

0

∫
Γ

|ut| |µ| dσ ds

≤ C γ ‖µ(t)‖2
V +

C

γ

∫
Γ

|u(0)|2 dσ +
C

γ

∫ t

0

∫
Γ

(|u|2 + |ut|2) dσ ds . (3.19)

Employing almost exactly the same arguments as in the proof of Lemma 3.1 in [7] (the minor
necessary changes are left as an easy exercise to the reader), and taking advantage of (3.8),
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we conclude the estimate (where γ > 0 is arbitrary)∫ t

0

∫
Ω

(2|ρ| |µ2,t| + |µ| |ρ1,t| + |µ2| |ρt|) |µt| dx ds

≤ 3 γ

∫ t

0

‖µt(s)‖2
H ds +

C

γ

∫ t

0

‖ρ1,t(s)‖2
V ‖µ(s)‖2

V ds

+
C

γ

∫ t

0

‖µ2,t(s)‖2
H ‖∆ρ(s)‖2

H ds +
C

γ

∫ t

0

∫
Γ

|u|2 dσ ds . (3.20)

Next, we test (3.10) formally by −∆ρt . By the same token as in the proof of Lemma 3.1 in [7],
we deduce for arbitrary γ > 0 the estimate

δ

∫ t

0

‖∇ρt(s)‖2
H ds +

1

4
‖∆ρ(t)‖2

H ≤ γ

∫ t

0

‖µt(s)‖2
H ds

+
C

γ

∫ t

0

(
1 + ‖ρ2,t(s)‖2

V

)
‖∆ρ(s)‖2

H ds + C

∫ t

0

∫
Γ

|u|2 dσ ds . (3.21)

Now observe that, owing to Theorem 2.1, the mappings s 7→ ‖ρi,t(s)‖2
V , i = 1, 2 , and s 7→

‖µ2,t(s)‖2
H all belong to L1(0, T ) . Hence, combining the estimates (3.18)–(3.21), adjusting

γ > 0 sufficiently small, and invoking Gronwall’s lemma, we can conclude that for every t ∈
[0, T ] it holds∫ t

0

(
‖∇ρt(s)‖2

H + ‖µt(s)‖2
H

)
ds + max

0≤s≤t

(
‖µ(s)‖2

V + ‖ρ(s)‖2
W

)
≤ C

{
‖u(0)‖2

L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
. (3.22)

Next, we formally differentiate (3.10) with respect to t , and obtain

δρtt −∆ρt = µt − f ′′(ρ1) ρt − (f ′′(ρ1)− f ′′(ρ2)) ρ2,t , (3.23)

with zero initial and Neumann boundary conditions for ρt . Hence, testing (3.23) by ρt , invoking
Young’s inequality, and recalling (3.8) and (3.22), we find that

δ

2
‖ρt(t)‖2

H +

∫ t

0

‖∇ρt(s)‖2
H ds

≤ C

{
‖u(0)‖2

L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
+

∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds . (3.24)
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Moreover, using Hölder’s and Young’s inequalities, (A7) and (3.8), we see that∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds

≤ C

∫ t

0

‖ρ2,t(s)‖L4(Ω) ‖ρ(s)‖L4(Ω)‖ρt(s)‖H ds

≤ C
(∫ t

0

‖ρt(s)‖2
H ds + max

0≤s≤t
‖ρ(s)‖2

V

∫ t

0

‖ρ2,t(s)‖2
V ds

)
≤ C

∫ t

0

∫
Γ

(|u|2 + |ut|2) dσ ds . (3.25)

Finally, we test (3.23) by −∆ρt . Using Young’s inequality and (3.22), we find that

δ

2
‖∇ρt(t)‖2

H +

∫ t

0

‖∆ρt(s)‖2
H ds

≤ γ

∫ t

0

‖∆ρt(s)‖2
H ds +

C

γ

{
‖u(0)‖2

L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
+

∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |∆ρt| dx ds

≤ 2γ

∫ t

0

‖∆ρt(s)‖2
H ds +

C

γ

{
‖u(0)‖2

L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
+
C

γ
max
0≤s≤t

‖ρ(s)‖2
V

∫ t

0

‖ρ2,t(s)‖2
V ds

≤ 2γ

∫ t

0

‖∆ρt(s)‖2
H ds

+
C

γ

{
‖u(0)‖2

L2(Γ) +

∫ t

0

∫
Γ

(
|u|2 + |ut|2

)
dσ ds

}
. (3.26)

Choosing γ > 0 appropriately small, we can infer that the estimate (3.17) is in fact true. This
concludes the proof.

4 An optimal boundary control problem

In this section, we consider the following optimal boundary control problem:

(CP) Minimize the cost functional

J(u, ρ, µ) =
1

2

∫
Ω

|ρ(x, T )− ρT (x)|2 dx +
β1

2

∫ T

0

∫
Γ

|u(x, t)|2 dσ dt

+
β2

2

∫ T

0

∫
Ω

|µ(x, t)− µT (x, t)|2 dx dt (4.1)
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subject to the state system (1.1)–(1.4) and to the control constraints

u ∈ Uad :=
{
v ∈ H1(0, T ;L2(Γ)) ∩ L∞(Σ) : U1 ≤ v ≤ U2 a. e. on Σ,

‖vt‖L2(0,T ;L2(Γ)) ≤ R
}
. (4.2)

In this connection, we require that the hypotheses (A1)–(A7) be satisfied. In addition, we postu-
late:

(A8) R > 0 , βi ≥ 0 , i = 1, 2 , ρT ∈ L2(Ω) , µT ∈ L2(Q) , U1, U2 ∈
L∞(Σ) , and there are constants 0 < u∗ < u∗ < +∞ such that

u∗ ≤ U1 ≤ U2 ≤ u∗ a. e. on Σ . (4.3)

In what follows, we denote

X := H1(0, T ;L2(Γ)) ∩ L∞(Σ) , ‖u‖X := ‖u‖H1(0,T ;L2(Γ)) + ‖u‖L∞(Σ) ,

where ‖ · ‖H1(0,T ;L2(Γ)) denotes the standard norm in H1(0, T ;L2(Γ)) . Obviously, Uad is
a nonempty, bounded, closed and convex subset of X , and Uad is contained in the open set
U ⊂ X given by

U :=

{
v ∈ X :

1

2
u∗ < ess inf v , ess sup v <

3

2
u∗ , ‖vt‖L2(0,T ;L2(Γ)) < R+1

}
.

By Theorem 3.3, the control-to-state mapping u 7→ S(u) := (ρ, µ) is Lipschitz continuous as
a mapping from the set U ⊂ X into the space(

H1(0, T ;W ) ∩ C1([0, T ];V )
)
×
(
H1(0, T ;H) ∩ C0([0, T ];V )

)
.

We may without loss of generality assume (by possibly taking a larger K∗2 ) that (3.17) is valid
on the whole set U with the same constant K∗2 > 0 . It also follows from Theorem 3.1 that
there exist constants µ∗ > 0 and 0 < r∗ < r∗ < 1 such that for every u ∈ U it holds

0 ≤ µ ≤ µ∗ and 0 < r∗ ≤ ρ ≤ r∗ < 1 a. e. in Q, (4.4)

where (ρ, µ) = S(u) . Moreover, a closer inspection of the proof of Theorem 2.1 reveals that
there is a constant K∗3 > 0 such that we have, for any u ∈ U ,

‖ρ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W )

+ ‖µ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω))∩L∞(Q) ≤ K∗3 . (4.5)

Remark 4.1 Thanks to (4.4) and to f ∈ C3(0, 1) , it holds f ′(ρ) ∈ L∞(Q) . Also, by the
embedding V ⊂ L6(Ω) , we have µ ∈ C0([0, T ];L6(Ω)) . Notice also that (2.3) implies, in
particular, that ρ is continuous from [0, T ] to Hs(Ω) for all s < 2 ; thus, since Hs(Ω) ⊂
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C(Ω) for s > 3/2 , we also have ρ ∈ C(Q) . Therefore, possibly choosing a larger constant
K∗3 , we may without loss of generality assume that

‖ρ‖C(Q) + ‖µ‖C0([0,T ];L6(Ω)) + ‖ρt‖L2(0,T ;L6(Ω)) ≤ K∗3 ∀u ∈ U . (4.6)

Remark 4.2 The mathematical literature on control problems for phase field systems is scarce
and usually restricted to the so-called Caginalp model of phase transitions (see, e. g., [11], [9],
[10], [18], and the references given there). More general, thermodynamically consistent phase
field models were the subject of [13]. In [7], the present authors investigated a control problem
for the system (1.1)–(1.4) with distributed controls. Since many of the arguments employed in
[7] carry over to the boundary control considered here, we can afford to be sketchy in some of
the proofs in the following exposition.

4.1 Existence

We begin our discussion of the control problem (CP) with the following existence result:

Theorem 4.3 Suppose that the conditions (A1)–(A8) are satisfied. Then the optimal control
problem (CP) has a solution u ∈ Uad .

Proof. Let {un} ⊂ Uad be a minimizing sequence for (CP), and let {(ρn, µn)} be the se-
quence of the associated solutions to (1.1)–(1.4). We then can infer from (4.5) the existence of
a triple (ū, ρ̄, µ̄) such that, for a suitable subsequence again indexed by n , we have

un → ū weakly star in H1(0, T ;L2(Γ)) ∩ L∞(Σ),

ρn → ρ̄ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

µn → µ̄ weakly star in H1(0, T ;H) ∩ L∞([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)).

Clearly, we have that ū ∈ Uad . Moreover, by virtue of the Aubin-Lions lemma (cf. [14, Thm.
5.1, p. 58]) and similar compactness results (cf. [17, Sect. 8, Cor. 4]), we also have the strong
convergences

ρn → ρ̄ strongly in C0([0, T ];Hs(Ω)) for all s < 2,

µn → µ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

From this we infer, possibly selecting another subsequence again indexed by n , that ρn → ρ̄
pointwise a. e. (actually, uniformly) in Q . In particular, r∗ ≤ ρ̄ ≤ r∗ a. e. in Q and, since f ∈
C2(0, 1) , also f ′(ρn) → f ′(ρ̄) strongly in L2(Q) . Now notice that the above convergences
imply, in particular, that

ρn → ρ̄ strongly inC0([0, T ];L6(Ω)),

∂tρn → ∂tρ̄ weakly in L2(0, T ;L4(Ω)),

µn → µ̄ strongly in L2(0, T ;L4(Ω)),

∂tµn → ∂tµ̄ weakly in L2(Q).
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From this, it is easily verified that

µn ∂tρn → µ̄ ∂tρ̄ weakly in L1(0, T ;H),

ρn ∂tµn → ρ̄ ∂tµ̄ weakly in L2(0, T ;L3/2(Ω)).

In summary, if we pass to the limit as n→∞ in the state equations (1.1)–(1.4) written for the
triple (un, ρn, µn) , we find that (ρ̄, µ̄) = S(ū) , that is, the triple (ū, ρ̄, µ̄) is admissible for the
control problem (CP). From the weak sequential lower semicontinuity of the cost functional J
it finally follows that ū , together with (ρ̄, µ̄) = S(ū) , is a solution to (CP). This concludes the
proof.

Remark 4.4 It can be shown that this existence result holds for much more general cost func-
tionals. All we need is that J enjoy appropriate weak sequential lower semicontinuity properties
that match the above weak convergences.

Remark 4.5 Since the state component ρ is continuous on Q , the existence result remains
valid if suitable pointwise state constraints for ρ are added (provided the admissible set is not
empty).

4.2 Necessary optimality conditions

In this section, we derive the first-order necessary conditions of optimality for problem (CP). To
this end, we first show that the control-to-state operator S : u 7→ (ρ, µ) is Fréchet differentiable
as a mapping from U ⊂ X into the Banach space (Y , ‖ · ‖Y) , where

Y :=
(
H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )

)
×
(
C0([0, T ];H) ∩ L2(0, T ;V )

)
.

4.2.1 The linearized system

Let ū ∈ U and h ∈ X be given and (ρ̄, µ̄) = S(ū) . As a preparatory step, we consider the
following system, which is obtained by linearizing the system (1.1)–(1.4) at (ρ̄, µ̄) :

(ε+ 2ρ̄) ηt −∆η + 2 µ̄t ξ + µ̄ ξt + ρ̄t η = 0 a. e. in Q, (4.7)

δ ξt −∆ξ = −f ′′(ρ̄) ξ + η a. e. in Q, (4.8)

∂ξ

∂n
= 0 ,

∂η

∂n
= α(h− η) a. e. on Σ, (4.9)

ξ(x, 0) = η(x, 0) = 0 for a. e. x ∈ Ω. (4.10)

We expect for the Fréchet derivative DS(ū) at ū (if it exists) that (ξ, η) = DS(ū)h , provided
that (4.7)–(4.10) admits a unique solution (ξ, η) . In view of (2.3), (2.4), and (3.1), we can guess
the regularity of ξ and η :

ξ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ L∞(Q), (4.11)

η ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)). (4.12)
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Notice that also in this case we cannot expect that η(t) ∈ H2(Ω) a.e. in (0, T ) due to the
low space regularity of h , and we could repeat Remark 2.2 here. Nevertheless, if (4.11) and
(4.12) hold, then the collection of source terms in (4.7), i. e., the part −2 µ̄t ξ − µ̄ ξt − ρ̄t η ,
belongs to L2(Q) , whereas the regularity (4.12) for η allows us to conclude from (4.8) that
also ξ ∈ C(Q) (by applying maximal parabolic regularity theory, see, e. g., [8, Thm. 6.8] or [18,
Lemma 7.12]).

In fact, ξ is even more regular: indeed, we may differentiate (4.8) with respect to t to find that

δξtt −∆ξt = −f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt + ηt , (4.13)

with zero initial and Neumann boundary conditions for ξt . Since the right-hand side of (4.13)
belongs to L2(Q) , we may test by any of the functions ξt , ξtt , and −∆ξt , to obtain that even

ξ ∈ H2(0, T ;H) ∩ C1([0, T ];V ) ∩H1(0, T ;W ) . (4.14)

Notice, however, that this fact has no bearing on the regularity of η , since the coefficient µ̄t in
(4.7) only belongs to L2(Q) .

The following well-posedness result resembles Proposition 3.2 in [7].

Proposition 4.6 Suppose that (A1)–(A8) are fulfilled. Then the system (4.7)–(4.10) has a
unique solution (ξ, η) satisfying (4.12), (4.14), and

‖ξ‖H2(0,T ;H)∩C1([0,T ];V )∩H1(0,T ;W ) + ‖η‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω))

≤ K∗4 ‖h‖H1(0,T ;L2(Γ)) , (4.15)

with a constant K∗4 > 0 that is independent of the choice of ū ∈ U and h ∈ X .

Remark 4.7 It follows from Proposition 4.6, in particular, that the linear mapping h 7→ (ξ, η)
is continuous from X into Y .

Proof. We follow the lines of the proof of our previous existence results and proceed in a series
of steps.

Step 1: Approximation. As in the proof of Theorem 2.1, we use an approximation technique
based on a delay in the right-hand side of (4.8). To this end, for τ > 0 we resume the de-
finition of the translation operator Tτ : L1(0, T ;H) → L1(0, T ;H) by putting, for every
v ∈ L1(0, T ;H) and almost every t ∈ (0, T ) ,

(Tτv)(t) = v(t− τ) if t ≥ τ, and (Tτv)(t) = 0 if t < τ. (4.16)

Notice that, for any v ∈ L2(Q) and any τ > 0 , we obviously have ‖Tτv‖L2(Q) ≤ ‖v‖L2(Q) .

Then, for any fixed τ > 0 , we look for functions (ξτ , ητ ) , which satisfy (4.11) and (4.12) and
the system:

(ε+ 2ρ̄) ητt −∆ητ + 2 µ̄t ξ
τ + µ̄ ξτt + ρ̄t η

τ = 0 a. e. in Q, (4.17)

δ ξτt −∆ξτ + f ′′(ρ̄) ξτ = Tτητ a. e. in Q, (4.18)

∂ξτ

∂n
= 0 ,

∂ητ

∂n
= α(h− ητ ) a. e. on Σ, (4.19)

ξτ (x, 0) = ητ (x, 0) = 0 for a. e. x ∈ Ω. (4.20)
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Precisely, we choose for τ > 0 the discrete values τ = T/N , where N ∈ IN is arbitrary, and
put tn = n τ , 0 ≤ n ≤ N , and In = (0, tn) . For 1 ≤ n ≤ N , we solve the problem

(ε+ 2ρ̄) ηn,t −∆ηn + 2 µ̄t ξn + µ̄ ξn,t + ρ̄t ηn = 0 a. e. in Ω× In, (4.21)

∂ηn
∂n

= α(h− ηn) a. e. on Γ× In, ηn(x, 0) = 0 for a. e. x ∈ Ω, (4.22)

δ ξn,t −∆ξn + f ′′(ρ̄) ξn = Tτηn a. e. in Ω× In, (4.23)

∂ξn
∂n

= 0 a. e. on Γ× In, ξn(x, 0) = 0 for a. e. x ∈ Ω, (4.24)

where the variables ηn and ξn , defined on In , have obvious meaning. Here, Tτ acts on
functions that are not defined on the entire interval (0, T ) ; however, for n > 1 it is still defined
by (4.16), while for n = 1 we simply put Tτηn = 0 . Notice that whenever the pairs (ξk, ηk)
with

ξk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;W ) ∩ C(Ω× Ik), (4.25)

ηk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;H
3/2(Ω)), (4.26)

have been constructed for 1 ≤ k ≤ n < N , then we look for the pair (ξn+1, ηn+1) that
coincides with (ξn, ηn) in In , and note that the linear parabolic problem (4.23), (4.24) has a
unique solution ξn+1 on Ω × In+1 that satisfies (4.25) for k = n + 1 . Inserting ξn+1 in
(4.21) (where n is replaced by n + 1 ), we then find that the linear parabolic problem (4.21),
(4.22) admits a unique solution ηn+1 that fulfills (4.26) for k = n+ 1 . Hence, we conclude that
(ξτ , ητ ) = (ξN , ηN) satisfies (4.17)–(4.20), and (4.11), (4.12).

Step 2: A priori estimates. We now prove a series of a priori estimates for the functions
(ξτ , ητ ) . In the following, we denote by Ci ( i ∈ IN ) some generic positive constants, which
may depend on ε, δ, ρ∗, ρ

∗, µ∗, T,K∗1 , K
∗
2 , K

∗
3 , but not on τ (i. e., not on N ). For the sake

of simplicity, we omit the superscript τ and simply write (ξ, η) .

First a priori estimate. Observe that 2 ρ̄ η ηt = (ρ̄ η2)t − ρ̄t η2 . Hence, testing (4.17) by η ,
and invoking (4.19) and Young’s inequality, we have, for 0 ≤ t ≤ T ,∫

Ω

(ε
2

+ ρ̄(t)
)
η(t)2 dx +

∫ t

0

‖∇η(s)‖2
H ds +

∫ t

0

∫
Γ

α η2 dσ ds

≤
∫ t

0

∫
Γ

α

2
η2 dσ ds + C1

∫ t

0

∫
Γ

h2 dσ ds

+ 2

∫ t

0

∫
Ω

|µ̄t| |ξ| |η| dx ds +

∫ t

0

∫
Ω

|µ̄| |ξt| |η| dx ds . (4.27)

For any γ > 0 , we have, by Young’s inequality and (4.4), that∫ t

0

∫
Ω

|µ̄| |ξt| |η| dx ds ≤ ‖µ̄‖L∞(Q)

∫ t

0

‖η(s)‖H ‖ξt(s)‖H ds

≤ γ

∫ t

0

‖ξt(s)‖2
H ds +

C2

γ

∫ t

0

‖η(s)‖2
H ds . (4.28)
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Moreover, ∫ t

0

∫
Ω

|µ̄t| |ξ| |η| dx ds ≤
∫ t

0

‖µ̄t(s)‖H ‖ξ(s)‖L4(Ω) ‖η(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖η(s)‖2
V ds +

C3

γ

∫ t

0

‖µ̄t(s)‖2
H ‖ξ(s)‖2

V ds . (4.29)

Notice that, by virtue of (4.5), the mapping s 7→ ‖µ̄t(s)‖2
H is bounded by a function in

L1(0, T ) .

Next, we add ξ on both sides of Eq. (4.18) and test the resulting equation by ξt . On using
Young’s inequality again, we obtain:

δ

4

∫ t

0

‖ξt(s)‖2
H ds +

1

2

(
‖ξ(t)‖2

H + ‖∇ξ(t)‖2
H

)
≤ C4

(∫ t

0

‖η(s)‖2
H ds +

∫ t

0

‖ξ(s)‖2
H ds

)
. (4.30)

Combining the inequalities (4.27)–(4.30), and choosing γ > 0 sufficiently small, we conclude
from Gronwall’s lemma that∫ T

0

(
‖ξt(t)‖2

H + ‖η(t)‖2
V

)
dt + max

0≤t≤T

(
‖ξ(t)‖2

V + ‖η(t)‖2
H

)
≤ C5

∫ T

0

∫
Γ

|h|2 dσ dt. (4.31)

Thanks to (4.19), we may also infer (possibly by choosing a larger C5 ) that

‖ξ(t)‖2
W ≤ C5

(
‖∆ξ(t)‖2

H +

∫ T

0

∫
Γ

|h|2 dσ dt
)

for all t ∈ [0, T ] . (4.32)

Second a priori estimate. We test (4.17) by ηt and apply Young’s inequality in order to obtain

ε

∫ t

0

‖ηt(s)‖2
H ds +

1

2
‖∇η(t)‖2

H +

∫
Γ

α

2
|η(t)|2 dσ ≤

∫ t

0

∫
Γ

αh ηt dσ ds

+

∫ t

0

∫
Ω

(2 |µ̄t| |ξ|+ |µ̄| |ξt|+ |ρ̄t| |η| ) |ηt| dx ds. (4.33)

By (4.4), we can infer from Young’s inequality that∫ t

0

∫
Ω

|µ̄| |ξt| |ηt| dx ds ≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C6

γ

∫ t

0

‖ξt(s)‖2
H ds . (4.34)

Moreover, by virtue of Hölder’s and Young’s inequalities,∫ t

0

∫
Ω

|ρ̄t| |η| |ηt| dx ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds+

C7

γ

∫ t

0

‖ρ̄t(s)‖2
L4(Ω)‖η(s)‖2

L4(Ω) ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C8

γ

∫ t

0

‖ρ̄t(s)‖2
V ‖η(s)‖2

V ds . (4.35)
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Observe that by (4.5) the mapping s 7→ ‖ρ̄t(s)‖2
V is bounded by a function in L1(0, T ) .

Also, we have, owing to the continuity of the embedding W ⊂ L∞(Ω) and (4.32),∫ t

0

∫
Ω

2 |µ̄t| |ξ| |ηt| dx ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C9

γ

∫ t

0

‖µ̄t(s)‖2
H ‖ξ(s)‖2

L∞(Ω)ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C10

γ

(∫ T

0

∫
Γ

|h|2 dσ dt

+

∫ t

0

‖µ̄t(s)‖2
H ‖∆ξ(s)‖2

H ds
)
, (4.36)

where, owing to (4.5), the mapping s 7→ ‖µ̄t(s)‖2
H is bounded by a function in L1(0, T ) .

Finally, we employ integration by parts, Young’s inequality, (4.31), and the trace theorem to
obtain ∣∣∣∫ t

0

∫
Γ

αh ηt dσ ds
∣∣∣ ≤ ∫

Γ

α |h(t)| |η(t)| dσ +

∫ t

0

∫
Γ

α |ht| |η| dσ ds

≤
∫

Γ

α

4
|η(t)|2 dσ + C11 ‖h‖2

H1(0,T ;L2(Γ)) . (4.37)

Next, we formally test (4.18) by −∆ξt to obtain, for every t ∈ [0, T ] ,

δ

∫ t

0

‖∇ξt(s)‖2
H ds+

1

2
‖∆ξ(t)‖2

H =

∫ t

0

∫
Ω

(− (Tτη)− f ′′(ρ̄) ξ) ∆ξt dx ds. (4.38)

Now, by virtue of (4.31) and invoking Young’s inequality, we have∣∣∣∫ t

0

∫
Ω

(Tτη) ∆ξt dx ds
∣∣∣

≤
∫

Ω

|(Tτη) (t)| |∆ξ(t)| dx +

∫ t

0

∫
Ω

|∂t (Tτη)| |∆ξ| dx ds

≤ 1

8
‖∆ξ(t)‖2

H + C12

∫ T

0

∫
Γ

|h|2 dσ dt

+ γ

∫ t

0

‖ηt(s)‖2
H ds +

1

4γ

∫ t

0

‖∆ξ(s)‖2
H ds . (4.39)

Moreover, it turns out that∣∣∣∫ t

0

∫
Ω

f ′′(ρ̄) ξ∆ξt dx ds
∣∣∣ ≤ ∫

Ω

|f ′′(ρ̄(t))| |ξ(t)| |∆ξ(t)| dx

+

∫ t

0

∫
Ω

|f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt| |∆ξ| dx ds. (4.40)
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We have, owing to (4.4) and (4.31),∫
Ω

|f ′′(ρ̄(t))| |ξ(t)| |∆ξ(t)| dx ≤ 1

8
‖∆ξ(t)‖2

H + C13

∫ T

0

∫
Γ

|h|2 dσ dt . (4.41)

Also the second integral on the right-hand side of (4.40) is bounded, since (4.4), (4.5), and
(4.31) imply that∫ t

0

∫
Ω

|f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt| |∆ξ| dx ds

≤ C14

∫ t

0

(
‖ρ̄t(s)‖2

L4(Ω) ‖ξ(s)‖2
L4(Ω) + ‖ξt(s)‖2

H

)
ds+

∫ t

0

‖∆ξ(s)‖2
H ds

≤ C15

(
max

0≤t≤T
‖ξ(t)‖2

V

∫ t

0

‖ρ̄t(s)‖2
V ds+

∫ t

0

‖ξt(s)‖2
H ds

)
+

∫ t

0

‖∆ξ(s)‖2
H ds

≤ C16

∫ T

0

∫
Γ

|h|2 dσ dt+

∫ t

0

‖∆ξ(s)‖2
H ds , (4.42)

thanks to the continuity of the embedding V ⊂ L4(Ω) . Thus, combining the estimates (4.33)–
(4.42), choosing γ > 0 sufficiently small, and invoking Gronwall’s inequality, we can infer that∫ T

0

(
‖ηt(t)‖2

H + ‖ξt(t)‖2
V

)
dt + max

0≤t≤T

(
‖η(t)‖2

V + ‖ξ(t)‖2
W

)
≤ C17 ‖h‖2

H1(0,T ;L2(Γ)) . (4.43)

Next, we compare terms in (4.17) and, arguing as in the derivation of (4.33)–(4.37), we readily
find that ∫ T

0

‖∆η(t)‖2
H dt ≤ C18 ‖h‖2

H1(0,T ;L2(Γ)) .

Thus, by owing to elliptic regularity (cf. (4.19) and Remark 2.2), we conclude that∫ T

0

‖η(t)‖2
H3/2(Ω) dt ≤ C19 ‖h‖2

H1(0,T ;L2(Γ)) . (4.44)

Finally, we differentiate Eq. (4.18) with respect to t . We obtain:

δ ξtt −∆ξt = ∂t(Tτη)− f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt a. e. in Q. (4.45)

From (4.4)–(4.6), (4.43) and (4.44), we can infer that we may test (4.45) by any of the functions
ξt , −∆ξt , and ξtt , in order to find that∫ T

0

(
‖ξtt(t)‖2

H + ‖∆ξt(t)‖2
H

)
dt + max

0≤t≤T
‖ξt(t)‖2

V ≤ C20 ‖h‖2
H1(0,T ;L2(Γ)) . (4.46)

Step 3: Passage to the limit. Let (ξτ , ητ ) denote the solution to the system (4.17)–(4.20)
associated with τ = T/N , for N ∈ IN . In Step 2, we have shown that there is some C > 0 ,
which does not depend on τ , such that

‖ξτ‖H2(0,T ;H)∩C1([0,T ];V )∩H1(0,T ;W )∩C(Q)

+ ‖ητ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H3/2(Ω)) ≤ C ‖h‖H1(0,T ;L2(Γ)) . (4.47)
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Hence, there is a subsequence τk ↘ 0 such that

ξτk → ξ weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ),

ητk → η weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3/2(Ω)).

(4.48)

From the trace theorem we can infer that ξ satisfies the boundary condition given in (4.9), while
the boundary condition for η will be satisfied (either in the variational sense or in the sense of
the appropriate trace theorem, see Remark 2.2) once we prove that we can pass to the limit in
the products of (4.7), as shown below. Moreover, it is easily seen that also (4.10) is fulfilled. By
compact embedding, we also have, in particular,

ξτk → ξ strongly in C(Q), ητk → η strongly in L2(Q), (4.49)

so that ρ̄ ητkt → ρ̄ ηt and µ̄ ξτkt → µ̄ ξt , both weakly in L2(Q) , f ′′(ρ̄) ξτk → f ′′(ρ̄) ξ
strongly in L2(Q) , as well as µ̄t ξ

τk
t → µ̄t ξt and ρ̄t η

τk → ρ̄t η , both strongly in L1(Q) .
Finally, it is easily verified that {Tτkητk} converges strongly in L2(Q) to η . In conclusion, we
may pass to the limit as k →∞ in the system (4.17)–(4.20) (written for τk ) to find that the pair
(ξ, η) is in fact a solution to the linearized system (4.7)–(4.10).

We now show the uniqueness. If (ξ1, η1) , (ξ2, η2) are two solutions having the above proper-
ties, then the pair (ξ, η) , where ξ = ξ1 − ξ2 and η = η1 − η2 , satisfies (4.7)–(4.10) with
h = 0 . We thus may repeat the first a priori estimate in Step 2 to conclude that ξ = η = 0 .

Finally, taking the limit as τ ↘ 0 in (4.47) and invoking the lower semicontinuity of norms, we
obtain the inequality (4.15). This concludes the proof.

4.2.2 Fréchet differentiability of the control-to-state mapping

In this section, we prove the following result.

Proposition 4.8 Suppose that the assumptions (A1)–(A8) are satisfied. Then the solution
operator S , viewed as a mapping from X to Y , is Fréchet differentiable on U . For any ū ∈ U
the Fréchet derivative DS(ū) is for h ∈ X given by DS(ū)h = (ξ, η) , where (ξ, η) is the
unique solution to the linearized system (4.7)–(4.10).

Proof. Let ū ∈ U be given and (ρ̄, µ̄) = S(ū) . Since U is an open subset of X , there is
some λ > 0 such that ū + h ∈ U whenever h ∈ X satisfies ‖h‖X ≤ λ . In the following,
we consider such perturbations h ∈ X , and we define (ρh, µh) := S(ū+ h) and put

zh := µh − µ̄− ηh , yh := ρh − ρ̄− ξh, (4.50)

where (ξh, ηh) denotes the unique solution to the linearized system (4.7)–(4.10) associated
with h . Since the linear mapping h 7→ (ξh, ηh) is by Proposition 4.6 continuous from X into
Y , it obviously suffices to show that there is an increasing function g : [0, λ] → [0,+∞)
which satisfies lim r↘0 g(r)/r2 = 0 and

‖yh‖2
H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖zh‖2

C0([0,T ];H)∩L2(0,T ;V )

≤ g
(
‖h‖H1(0,T ;L2(Γ))

)
. (4.51)
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Using the state system (1.2)–(1.4) and the linearized system (4.7)–(4.10), we easily verify that
for h ∈ X with ‖h‖X ≤ λ the pair (yh, zh) is a strong solution to the system

(ε+ 2ρ̄) zht + ρ̄t z
h + µ̄ yht + 2µ̄t y

h −∆zh

= −2
(
µht − µ̄t

) (
ρh − ρ̄

)
−
(
ρht − ρ̄t

) (
µh − µ̄

)
a. e. in Q, (4.52)

δyht −∆yh + f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh = zh, a. e. in Q, (4.53)

∂yh

∂n
= 0,

∂zh

∂n
= −α zh, a. e. on Σ, (4.54)

yh(x, 0) = zh(x, 0) = 0 for a. e. x ∈ Ω. (4.55)

Notice that

yh ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ C(Q̄),

zh ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H3/2(Ω)).

For the sake of a better readability, in the following estimates we omit the superscript h of
yh and zh . Also, we denote by Ci ( i ∈ IN ) certain positive constants that only depend on
ε, δ, ρ∗, ρ

∗, µ∗, T,K∗1 , K
∗
2 , K

∗
3 , K

∗
4 , but not on h .

We now add y on both sides of Eq. (4.53) and test the resulting equation by yt . Using Young’s
inequality, we find that for all t ∈ [0, T ] it holds

δ

2

∫ t

0

‖yt(s)‖2
H ds+

1

2

(
‖∇y(t)‖2

H + ‖y(t)‖2
H

)
≤ 2

δ

∫ t

0

‖z(s)‖2
H ds

+C1

∫ t

0

‖y(s)‖2
H ds + C2

∫ t

0

‖(f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh)(s)‖2
H ds . (4.56)

In order to handle the third term on the right-hand side of (4.56), we note that the stability
estimate (3.17) implies, in particular, that

‖ρh − ρ̄‖2
L∞(Q) ≤ K∗2 ‖h‖2

H1(0,T ;L2(Γ)) , (4.57)

that is, ρh → ρ̄ uniformly on Q as ‖h‖H1(0,T ;L2(Γ)) → 0 . Since f ∈ C3(0, 1) , we can infer
from Taylor’s theorem and (4.4) that∣∣f ′(ρh)− f ′(ρ̄)− f ′′(ρ̄) ξh

∣∣ ≤ max
r∗≤σ≤r∗

|f ′′′(σ)|
2

∣∣ρh − ρ̄∣∣2 + |f ′′(ρ̄)| |y| on Q. (4.58)

It then follows from the estimates (3.17) and (4.56)–(4.57) that

δ

2

∫ t

0

‖yt(s)‖2
H ds+

1

2
‖y(t)‖2

V ≤
2

δ

∫ t

0

‖z(s)‖2
H ds + C3

∫ t

0

‖y(s)‖2
H ds

+C4 ‖h‖4
H1(0,T ;L2(Γ)) . (4.59)
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Next, observe that 2 ρ̄ z zt = (ρ̄ z2)t − ρ̄t z2 . Therefore, testing (4.52) by z yields for every
t ∈ [0, T ] that∫

Ω

(ε
2

+ ρ̄(t)
)
z2(t) dx +

∫ t

0

‖∇z(s)‖2
H ds +

∫ t

0

∫
Γ

α |z|2 dσ dt

= −
∫ t

0

∫
Ω

(µ̄ yt + 2 µ̄t y) z dx ds− 2

∫ t

0

∫
Ω

(
µht − µ̄t

) (
ρh − ρ̄

)
z dx ds

−
∫ t

0

∫
Ω

(
ρht − ρ̄t

) (
µh − µ̄

)
z dx ds. (4.60)

We estimate the terms on the right-hand side of (4.60) individually. At first, using (4.4) and
Young’s inequality, we find that∫ t

0

∫
Ω

|µ̄| |yt| |z| dx ds ≤ γ

∫ t

0

‖yt(s)‖2
H ds +

C5

γ

∫ t

0

‖z(s)‖2
H ds. (4.61)

Moreover, using the continuity of the embedding H1(Ω) ⊂ L4(Ω) , as well as Hölder’s and
Young’s inequalities, we have

2

∫ t

0

∫
Ω

|µ̄t| |y| |z| dx ds ≤ 2

∫ t

0

‖µ̄t(s)‖H ‖z(s)‖L4(Ω) ‖y(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖z(s)‖2
V ds +

C6

γ

∫ t

0

‖µ̄t(s)‖2
H ‖y(s)‖2

V ds . (4.62)

Observe that by (2.4) the mapping s 7→ ‖µ̄t(s)‖2
H belongs to L1(0, T ) .

At this point, we can conclude from (3.17) and (4.57), invoking Young’s inequality, that∫ t

0

∫
Ω

2
∣∣µht − µ̄t∣∣ ∣∣ρh − ρ̄∣∣ |z| dx ds

≤ 2

∫ t

0

∥∥(µht − µ̄t)(s)
∥∥
H

∥∥(ρh − ρ̄)(s)
∥∥
L∞(Ω)

‖z(s)‖H ds

≤ C7

∥∥ρh − ρ̄∥∥2

L∞(Q)

∫ t

0

∥∥(µht − µ̄t)(s)
∥∥2

H
ds +

∫ t

0

‖z(s)‖2
H ds

≤
∫ t

0

‖z(s)‖2
H ds + C8 ‖h‖4

H1(0,T ;L2(Γ)) . (4.63)

Finally, we invoke (3.17) and Hölder’s and Young’s inequalities, as well as the continuity of the
embedding H1(Ω) ⊂ L4(Ω) , to obtain that∫ t

0

∫
Ω

∣∣ρht − ρ̄t∣∣ ∣∣µh − µ̄∣∣ |z| dx ds
≤ max

0≤s≤t
‖z(s)‖H

∫ t

0

∥∥(ρht − ρ̄t)(s)
∥∥
L4(Ω)

∥∥(µh − µ̄)(s)
∥∥
L4(Ω)

ds

≤ γ max
0≤s≤t

‖z(s)‖2
H +

C9

γ

∫ t

0

∥∥(ρht − ρ̄t)(s)
∥∥2

V
ds

∫ t

0

∥∥(µh − µ̄)(s)
∥∥2

V
ds

≤ γ max
0≤s≤t

‖z(s)‖2
H + C10 ‖h‖4

H1(0,T ;L2(Γ)) . (4.64)
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Combining the estimates (4.59)–(4.64), taking the maximum with respect to t ∈ [0, T ] , adjus-
ting γ > 0 appropriately small, and invoking Gronwall’s lemma, we arrive at the conclusion that
(yh, zh) = (y, z) satisfies the inequality

‖yh‖2
H1(0,T ;H)∩C0([0,T ];V ) + ‖zh‖2

C0([0,T ];H)∩L2([0,T ];V )

≤ C11 ‖h‖4
H1(0,T ;L2(Γ)) . (4.65)

Finally, testing (4.53) by −∆yh , and using (4.58), we find that also

‖yh‖2
L2(0,T ;W ) ≤ C12 ‖h‖4

H1(0,T ;L2(Γ)) . (4.66)

Therefore, the function g(r) := (C11 + C12) r4 has the requested properties. This concludes
the proof of the assertion.

Corollary 4.9 Let the assumptions (A1)–(A8) be fulfilled, and let ū ∈ Uad be an optimal
control for the problem (CP) with associated state (ρ̄, µ̄) = S(ū) . Then, for every v ∈ Uad ,∫ T

0

∫
Γ

β1 ū(v−ū) dσ dt+

∫
Ω

(ρ̄(T )−ρT ) ξ(T ) dx+

∫ T

0

∫
Ω

β2 (µ̄−µT ) η dx dt ≥ 0, (4.67)

where (ξ, η) is the unique solution to the linearized system (4.7)–(4.10) associated with h =
v − ū .

Proof. Let v ∈ Uad be arbitrary and h = v − ū . Then ū + λh ∈ Uad for 0 < λ ≤ 1 . For
any such λ , we have

0 ≤ J(ū+ λh, S(ū+ λh))− J(ū, S(ū))

λ

≤ J(ū+ λh, S(ū+ λh))− J(ū, S(ū+ λh))

λ

+
J(ū, S(ū+ λh))− J(ū, S(ū))

λ
.

It follows immediately from the definition of the cost functional J that the first summand on the
right-hand side of this inequality converges to

∫ T
0

∫
Γ
β1 ū (v − ū) dσ dt as λ ↘ 0 . For the

second summand, we obtain from Proposition 4.8 that

lim
λ↘0

J(ū, S(ū+ λh))− J(ū, S(ū))

λ

=

∫
Ω

(ρ̄(x, T )− ρT (x)) ξ(x, T ) dx +

∫ T

0

∫
Ω

β2 (µ̄− µT ) η dx dt ,

whence the assertion follows.
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4.2.3 The optimality system

Let ū ∈ Uad be an optimal control for (CP) with associated state (ρ̄, µ̄) = S(ū) . Then, for
every v ∈ Uad , (4.67) holds. We now aim to eliminate (ξ, η) by introducing the adjoint state
variables. To this end, we consider the adjoint system :

−(ε+ 2ρ̄) qt − ρ̄t q −∆q = p+ β2 (µ̄− µT ) a. e. in Q, (4.68)

∂q

∂n
= −α q a. e. in Σ, q(x, T ) = 0 for a. e. x ∈ Ω, (4.69)

−δpt −∆p+ f ′′(ρ̄) p = µ̄ qt − µ̄t q in Q, (4.70)

∂p

∂n
= 0 on Σ, δ p(T ) = ρ̄(T )− ρT in Ω , (4.71)

which is a linear backward-in-time parabolic system for the adjoint state variables p and q .

It must be expected that the adjoint state variables (p, q) be less regular than the state variables
(ρ̄, µ̄) . Indeed, we only have p(T ) ∈ L2(Ω) , and thus (4.70) and (4.71) should be interpreted
in the ususal weak sense. That is, we look for a vector-valued function p ∈ H1(0, T ;V ∗) ∩
C0([0, T ];H) ∩ L2(0, T ;V ) that, in addition to the final time condition (4.71), satisfies

〈−δ pt(t), v〉V ∗,V +

∫
Ω

∇p(t) · ∇v dx +

∫
Ω

f ′′(ρ̄(t)) p(t) v dx

=

∫
Ω

(µ̄(t) qt(t)− µ̄t(t) q(t)) v dx , (4.72)

for every v ∈ V and almost every t ∈ (0, T ) . Notice that if q ∈ H1(0, T ;H)∩C0([0, T ];V ) ,
then it is easily seen that µ̄ qt − µ̄t q ∈ L3/2(Q) , so that the integral on the right-hand side
of (4.72) makes sense. On the other hand, if p has the expected regularity then the solution to
(4.68), (4.69) should belong to H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)) .

The following result is an analogue of Theorem 3.7 in [7].

Theorem 4.10 Suppose that ū ∈ Uad is an optimal control for (CP) with associated state
(ρ̄, µ̄) = S(ū) . Then the adjoint system (4.68)–(4.71) has a unique weak solution (p, q) with
p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) , q ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩
L2(0, T ;H2(Ω)) ; moreover, for any v ∈ Uad , we have the inequality∫ T

0

∫
Γ

β1 ū (v − ū) dσ dt +

∫ T

0

∫
Γ

α q (v − ū) dσ dt ≥ 0 . (4.73)

Proof. The existence and uniqueness result for the adjoint state variables p and q follows
using the same line of arguments as in the proof of Proposition 3.6 in [7], with only minor and
straightforward changes that are due to the different boundary condition for q . Now let v ∈ Uad

be given. A standard calculation (which can be left as an easy exercise to the reader), using
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the linearized system (4.7)–(4.10) with h = v − ū , repeated integration by parts, and the
well-known integration by parts formula∫ T

0

(
〈vt(t), w(t)〉V ∗,V + 〈wt(t), v(t)〉V ∗,V

)
dt =

∫
Ω

(
v(T )w(T )− v(0)w(0)

)
dx

(which holds for all functions v, w ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) ), yields the identity∫
Ω

(ρ̄(x, T )− ρT (x)) ξ(x, T ) dx +

∫ T

0

∫
Ω

β2(µ̄− µT )η dx dt

=

∫ T

0

∫
Γ

α q (v − ū) dσ dt . (4.74)

The variational inequality (4.73) is thus a direct consequence of Corollary 4.9.
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