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Abstract We continue the study of the regularity of electronic wave functions in
Hilbert spaces of mixed derivatives. It is shown that the eigenfunctions of electronic
Schrödinger operators and their exponentially weighted counterparts possess, roughly
speaking, square integrable mixed weak derivatives of fractional order ϑ for ϑ < 3/4.
The bound 3/4 is best possible and can neither be reached nor surpassed. Such re-
sults are important for the study of sparse grid-like expansions of the wave functions
and show that their asymptotic convergence rate measured in terms of the number of
ansatz functions involved does not deteriorate with the number of electrons.

Mathematics Subject Classification (2000) 35J10 · 35B65 · 41A25 · 41A63

1 Introduction

Quantum mechanics is the key to any deeper understanding of atomic and molecular
systems. The basic problem is to find the solutions of the Schrödinger equation for a
system of electrons and nuclei that interact by electrostatic attraction and repulsion
forces. Due to the high-dimensionality of the problem, approximating these solutions
is inordinately challenging and not possible with the standard methods of numerical
mathematics. A further problem is the oscillatory character of the solutions and the
many different time scales on which they vary and which can range over many orders
of magnitude. Following Born and Oppenheimer the problem is therefore usually
split into the electronic Schrödinger equation describing the motion of the electrons
in the field of given clamped nuclei, and an equation for the motion of the nuclei
in a potential field that is determined by solutions of the electronic equation. The
present article is concerned with the mixed regularity of the solutions of the electronic
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Schrödinger equation, the eigenfunctions of the Hamilton operator
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i6= j

1
|xi− x j|

. (1.1)

It extends the earlier work [14–17] of the second author. The mixed regularity of these
solutions, the electronic wave functions, and of their correspondingly exponentially
weighted counterparts can be used to expand them in sparse grid-like manner into
tensor products for example of three-dimensional eigenfunctions of Schrödinger-like
operators [16], orthogonal wavelets [18], or Gaussian frames [8,9]. Based on such
regularity and decay properties and taking into account the partial antisymmetry of
the wave functions enforced by the Pauli principle it has been shown that the conver-
gence rates of such expansions measured in terms of the number of basis functions
involved do not fall below that for systems of only two electrons [16]. The present
results can be used to improve these estimates for the convergence rates further.

The solution space of the electronic Schrödinger equation is the Hilbert space H1

that consists of the one times weakly differentiable, square integrable functions

u : (R3)N → R : (x1, . . . ,xN)→ u(x1, . . . ,xN) (1.2)

with square integrable first-order weak derivatives; the dimension of their domain in-
creases with the number N of electrons. The norm ‖ · ‖1 on H1 is composed of the
L2-norm ‖ · ‖0 induced by the L2-inner product (·, ·) and the L2-norm of the gradient.
The space H1 is the space of the wave functions for which the total position prob-
ability remains finite and the expectation value of the kinetic energy can be given a
meaning. To describe our results, we need to introduce a scale of norms that is defined
in terms of Fourier transforms. We first introduce the polynomials

Piso(ω) = 1+
N

∑
i=1

|ω i|2, Pmix(ω) =
N

∏
i=1

(
1+ |ω i|2

)
. (1.3)

The ω i ∈ R3 forming together the variable ω ∈ (R3)N can be associated with the
momentums of the electrons. The expressions |ω i| are their euclidean norms given by

|ω i|2 =
3

∑
ν=1

ω
2
i,ν . (1.4)

The norms describing the smoothness properties of the solutions are now given by

|||u|||2ϑ,m =
∫

Piso(ω)mPmix(ω)ϑ |û(ω)|2 dω. (1.5)

They are defined on the Hilbert spaces Hϑ,m
mix that consist of the square integrable func-

tions (1.2) for which these expressions remain finite. For nonnegative integer values m
and ϑ , the norms measure the L2-norm of weak partial derivatives. The spaces L2 and
H1 are special cases of such spaces. The rapidly decreasing functions (the functions
in the Schwartz space) and even the infinitely differentiable functions with compact
support form dense subsets of all these spaces. This can be seen first approximating
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the functions in these spaces by band-limited functions and these then, multiplying
them by appropriately chosen cut-off functions, by infinitely differentiable functions
with compact support. Our main result is that the eigenfunctions u of the electronic
Schrödinger operator (1.1) are contained in the intersection of such spaces, in

H1,0
mix ∩

⋂
ϑ<3/4

Hϑ ,1
mix . (1.6)

In the general case, the bound 3/4 can neither be completely reached nor improved
further. An exception are systems of electrons of the same spin, for which the wave
functions are completely antisymmetric under the exchange of the positions of the
electrons and vanish therefore at the singular points of the electron-electron interac-
tion potential. It has been shown in [14–16] that these wave functions are at least
contained in the space H1,1

mix. An alternative proof based on techniques as developed
in the present paper is given in [12].

It is instructive to compare these regularity properties of multi-particle wave func-
tions to those in the single-particle case, like to those of the solutions of the equation

− 1
2

∆u − 1
|x|

u = λu (1.7)

for the hydrogen atom. In the one-particle case, the spaces Hϑ ,1
mix coincide with the

isotropic Sobolev spaces Hs, s = 1 + ϑ . The regularity of the solutions of the equa-
tion (1.7) in this scale of spaces can be calculated directly [15] and increases with
increasing angular momentum of the electron. The ground state eigenfunction

u(x) =
1√
π

e−|x|, û(ω) =
√

2
π

2
(1+ |ω|2)2 (1.8)

is that of minimum regularity. It is contained in the spaces Hs, s = 1+ϑ , for all values
ϑ < 3/2, but not for the value ϑ = 3/2 itself. This transfers to Born-Oppenheimer
atoms in which the electron-electron interaction is neglected. The eigenfunctions are
then linear combinations of tensor products of such hydrogen-like eigenfunctions.
They are contained in Hϑ ,1

mix for ϑ < 3/2 and even in Hs,0
mix for s < 5/2. The presence

of the electron-electron interaction terms thus halves the order of mixed regularity.
Our proofs are based on a representation of the eigenfunctions u of the electronic

Schrödinger operator (1.1) that has been derived in [17] and for the two-electron case
in [1]. It has been shown in [17] that the eigenfunctions can be written as products

u(x) = exp
(

∑
i< j

φ(xi− x j)
)

v(x) (1.9)

of more regular functions v ∈ H1,1
mix and a universal factor that covers their singular-

ities. The same kind of splitting has been used in [6] and [10] to study the Hölder
regularity of the eigenfunctions. Quantum chemists call regularizing factors as in
(1.9) Jastrow factors. There is a lot of freedom in the choice of the function φ ; only
its behavior near the origin is fixed. It needs to be of the form

φ(x) = φ̃(|x|), φ̃
′(0) =

1
2
, (1.10)



4 Kreusler, Yserentant

where φ̃ : [0,∞)→R is an infinitely differentiable function behaving sufficiently well
at infinity. For the present purpose we can assume that this function vanishes for all r
greater some bound. In fact, we will generally consider functions of the form (1.9),
with v a function in H1,1

mix, not only eigenfunctions of the operator (1.1). We will
show that such functions are contained in the space (1.6) and will additionally prove
optimal estimates for certain mixed weak derivatives of these functions in weighted
L2-spaces. The regularity of the functions (1.9) is therefore determined and limited
by that of the explicitly known factor in front of their part v.

We are interested in eigenfunctions u of the Hamilton operator (1.1) for eigen-
values below the bottom of the essential spectrum, a value less than or equal to zero.
Such eigenfunctions decay exponentially in the L2-sense, as has first been shown
in [13]. That means there is a constant γ > 0 such that the functions

x → exp
(

γ

N

∑
i=1

|xi|
)

u(x), (1.11)

are square integrable. This constant γ depends on the distance of the eigenvalue under
consideration to the bottom of the essential spectrum. More details and references to
the literature can be found in [16]. It has been shown in [17] that these exponentially
weighted eigenfunctions admit the same kind of representation (1.9) as the eigen-
functions themselves. Thus they share with them the described regularity properties.
This observation is very important for the convergence analysis of sparse grid-like
expansions [16,18]. We will come back to this point at the end of the paper.

2 Characterizations of the norms and function spaces

We begin our study with a closer inspection of the norms (1.5) and of the corre-
sponding function spaces. The functions (1.2) that we examine depend on variables
x1, . . . ,xN in R3 that are associated with the positions of the electrons under con-
sideration. The components of these vectors are the real numbers xi,1, xi,2, and xi,3.
Accordingly, we label partial derivatives doubly, that is, by multi-indices

α = (α1, . . . ,αN) ∈ (Z3
≥0)

N , αi = (αi,1,αi,2,αi,3) ∈ Z3
≥0. (2.1)

The differential operator Dα of order |α|= ∑i,k αi,k is in this notation

Dα =
N

∏
i=1

3

∏
k=1

(
∂

∂xi,k

)αi,k
. (2.2)

Multivariate polynomials xα are defined correspondingly. We are particularly con-
cerned with differential operators Dα with multi-indices α in the set

A =
{
(α1, . . . ,αN)

∣∣αi ∈ Z3
≥0, αi,1 +αi,2 +αi,3 ≤ 1

}
, (2.3)

that is, that are of most first-order in each of the variables xi ∈ R3 and of total order
at most N. Introducing the differential operator

L = ∑
α∈A

(−1)|α|D2α =
N

∏
i=1

( I−∆i), ∆i =
∂ 2

∂x2
i,1

+
∂ 2

∂x2
i,2

+
∂ 2

∂x2
i,3

, (2.4)
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and remembering that (iω)α û(ω) is the Fourier transform of Dα u, one obtains

|||u|||21,0 = (u,L u), |||u|||21,1 = (u,( I−∆)L u) (2.5)

for rapidly decreasing functions u. Integration by parts, possible at least for infinitely
differentiable functions with compact support, yields

|||u|||21,0 = ∑
α∈A

‖Dα u‖2
0, |||u|||21,1 = ∑

α∈A

‖Dα u‖2
1. (2.6)

The representation (2.6) transfers to all functions in the spaces

X0 = H1,0
mix, X1 = H1,1

mix, (2.7)

since the infinitely differentiable functions with compact support are dense in these
spaces. This shows that these spaces consist of square integrable functions with cor-
responding square integrable weak derivatives.

For values 0 < ϑ < 1, the spaces Hϑ ,1
mix can be characterized as interpolation spaces

between H1 and X1. To show this, we need to recall the notion of the K-functional.
The K-functional of a function u ∈ H1 in a version adapted to the given setting is

K(t,u) = inf
v∈X1

{‖u− v‖2
1 + t2 |||v|||21,1}1/2. (2.8)

The faster K(t,u) tends to zero for t → 0+ the smoother u is. The K-functional is
needed to define the interpolation spaces

(H1, X1)ϑ ,2, 0 < ϑ < 1, (2.9)

the spaces for which the interpolation norm defined by

‖u‖2 =
∫

∞

0
[ t−ϑ K(t,u) ]2

dt
t

(2.10)

remains finite. This is a very general, far-reaching construction. More information on
interpolation spaces can be found in [2] and [3]. In the present case, the interpola-
tion norm given by (2.10) coincides, up to a known factor, with the norm (1.5). The
interpolation spaces (2.9) are therefore the spaces Hϑ ,1

mix .

Lemma 2.1 The interpolation norm given by (2.10) of a function u ∈ H1 remains
finite if and only if u is contained in the space Hϑ ,1

mix . In this case,∫
∞

0
[ t−ϑ K(t,u) ]2

dt
t

=
∫

∞

0

t1−2ϑ

1+ t2 dt |||u|||2ϑ ,1. (2.11)

Proof For functions u ∈ H1 and v ∈ X1,

‖u− v‖2
1 + t2 |||v|||21,1 =

∫
Piso(ω)

{
|û(ω)− v̂(ω)|2 + t2Pmix(ω) |v̂(ω)|2

}
dω.

The integrand is, for û(ω) a given value, minimized by the value

v̂(ω) =
û(ω)

1+ t2Pmix(ω)
.
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This expression defines, for u ∈ H1 given, a function v ∈ X1 at which the infimum in
the definition of the K-functional is attained. Inserting this function above, we have
found a closed representation of K(t,u) in terms of the Fourier transform of u:

K(t,u)2 =
∫

Piso(ω)
t2Pmix(ω)

1+ t2Pmix(ω)
|û(ω)|2 dω.

The proposition follows from this representation with Fubini’s theorem. ut

The factor relating the two norms can be estimated as

1
4ϑ(1−ϑ)

≤
∫

∞

0

t1−2ϑ

1+ t2 dt ≤ 1
2ϑ(1−ϑ)

(2.12)

as can be seen replacing the denominator 1 + t2 of the integrand on the right hand
side of (2.11) by 1 for t ≤ 1 and t2 for t > 1. It tends to infinity when ϑ approaches
the values 0 or 1 but remains uniformly bounded and uniformly bounded away from
zero on every closed subinterval of the open interval 0 < ϑ < 1.

The mapping u → K(t,u) has, for t > 0 given, all properties of a norm. It defines
a norm on H1 that is equivalent to the original H1-norm and satisfies the estimate

t√
1+ t2

‖u‖1 ≤ K(t,u) ≤ ‖u‖1. (2.13)

This follows from the representation of the K-functional from the proof of the lemma
and from Pmix(ω) ≥ 1. The mapping is thus in particular continuous with respect
to the H1-norm. The mixed regularity of a function u ∈ H1 is conversely almost
characterized by the behavior of its K-functional K(t,u) in the limit t → 0+:

Lemma 2.2 If u is contained in the space Hϑ ,1
mix for a ϑ between 0 and 1,

K(t,u) ≤ tϑ |||u|||ϑ ,1. (2.14)

If conversely K(t,u) = O(tδ ) in the limit t → 0+ for a given positive δ ≤ 1, the
function u ∈ H1 is contained in the spaces Hϑ ,1

mix for ϑ < δ .

Proof The first part immediately follows from the representation of the K-functional
from the proof of Lemma 2.1 and the observation that for 0 ≤ ϑ ≤ 1(

t2Pmix(ω)
1+ t2Pmix(ω)

)1−ϑ (
t2Pmix(ω)

1+ t2Pmix(ω)

)ϑ

≤ t2ϑ Pmix(ω)ϑ .

The other direction follows from K(t,u)≤ ‖u‖1, the finiteness of the integrals

∫ 1

0

t2δ

t2ϑ+1 dt,
∫

∞

1

1
t2ϑ+1 dt

for the values 0 < ϑ < δ , and the representation (2.11) of the norm on Hϑ ,1
mix . ut
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3 Hardy inequalities in three space dimensions

Hardy inequalities play a very important role in our argumentation. Our starting point
is the classical Hardy inequality in three space dimensions that links a weighted L2-
norm of a function in H1 to the L2-norm of its gradient.

Lemma 3.1 For all infinitely differentiable functions v in the variable x ∈ R3 that
have a compact support, ∫ 1

|x|2
v2 dx ≤ 4

∫
|∇v|2 dx. (3.1)

A proof of this inequality can be found in [16]. The inequality (3.1) has to be supple-
mented by a further inequality that allows us to estimate more singular terms.

Lemma 3.2 For all exponents s in the interval 1 < s < 3/2 and all infinitely differ-
entiable functions v : R3 → R that have a compact support,∫ 1

|x|2s v2 dx ≤ 5
3−2s ∑

|α|≤2

∫
|Dα v|2 dx, (3.2)

where the sum runs over all partial derivatives of order less than or equal two.

Proof Let d(x) = |x| for convenience. To avoid any difficulty, we assume at first that
the function v vanishes on a neighborhood of the origin. For the given exponents s,

1
d 2s = − 1

2s−1
∇

( 1
d 2s−1

)
·∇d.

Integration by parts therefore yields∫ 1
d 2s v2 dx =

1
2s−1

∫ 1
d 2s−1 ∇ · (v2

∇d)dx

or, using ∆d = 2/d and resolving for the left-hand side, the representation∫ 1
d 2s v2 dx = − 2

3−2s

∫ 1
d 2s−1 v∇d ·∇v dx

of the integral to be estimated. It transfers to arbitrary infinitely differentiable func-
tions v with compact support as we show next. Let χ : R3 → [0,1] be an infinitely
differentiable function with χ(x) = 0 for |x| ≤ 1/2 and χ(x) = 1 for |x| ≥ 1 and set

vk(x) = χ(kx)v(x).

The representation then holds for the functions vk as just proved. Using

|χ(kx)| ≤ 1, |k (∇χ)(kx)| ≤ c
|x|

with a constant c independent of k and the local integrability of

x → 1
|x|2s , s < 3/2,
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the representation follows from the dominated convergence theorem letting k go to
infinity. Since 1/d 2s−1≤ 1+1/d2 for the given exponents s, it leads to the estimate∫ 1

d 2s v2 dx ≤ 1
3−2s

∫ (
1 +

1
d2

)(
v2 +(∇d ·∇v)2

)
dx

of the integral on the left hand side of (3.2). The proposition follows using again that
|∇d| ≤ 1 and then applying the Hardy inequality (3.1) to the right hand side. ut

An estimate of this kind cannot hold for exponents s≥ 3/2 as the singular part of the
integrand on the left hand side of the inequality is not locally integrable for these s.
If v does not vanish at the origin the integral on the left hand side of (3.2) grows like
1/(3−2s) when s approaches 3/2, so that the estimate is in this sense optimal.

A similar estimate holds for the exponents 0 ≤ s ≤ 1. It follows directly from the
observation that 1/|x|2s ≤ 1+1/|x|2 for these s and the Hardy inequality (3.1).

Lemma 3.3 For all exponents s in the interval 0 ≤ s ≤ 1 and all infinitely differen-
tiable functions v : R3 → R that have a compact support,∫ 1

|x|2s v2 dx ≤
∫

v2 dx + 4
∫
|∇v|2 dx. (3.3)

4 Estimates of mixed derivatives

We are now in the position to prove that a good deal of the smoothness of the regular
part v of the wave functions (1.9) transfers to the wave functions themselves. The
arguments are rather general and do not utilize that the functions under consideration
solve the Schrödinger equation. We only assume that they are of the form

u(x) =
{

∏
i< j

F(xi− x j)
}

v(x), (4.1)

where v : (R3)N → R is a function in one of the spaces (2.7), i.e., possessing square
integrable weak derivatives Dα v, α ∈A , in L2 respectively H1. The product in front
of v takes the role of the singular part of the wave function (1.9). We assume that

F : R3 → R : x → f (r), r = |x|, (4.2)

is rotationally symmetric and takes the value F(x) = 1 for all x outside some ball
around the origin and f : [0,∞)→ R is infinitely differentiable.

Denoting by x1, x2, and x3 for a moment the components of x ∈ R3, the first and
second order partial derivatives of the function F are, for x 6= 0,

∂

∂xk
F(x) =

xk

r
f ′(r),

∂ 2

∂xk∂x`
F(x) =

xk

r
x`

r
f ′′(r) +

(
δk`−

xk

r
x`

r

)1
r

f ′(r) (4.3)

and its third order partial derivatives can outside the origin be written as

∂ 3

∂xk∂x`∂xm
F(x) =

xk

r
x`

r
xm

r
f ′′′(r) + ak`m(x)

(1
r

f ′′(r)− 1
r2 f ′(r)

)
, (4.4)
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where we have utilized the abbreviation

ak`m(x) = δ`m
xk

r
+δkm

x`

r
+δk`

xm

r
− 3

xk

r
x`

r
xm

r
. (4.5)

Since the derivatives of r → f (r) are bounded for r ≥ 0 and vanish for all r greater
than some r0 > 0, we can deduce from that that their derivatives can be bounded via∣∣∣ ∂

∂xk
F(x)

∣∣∣ . 1,
∣∣∣ ∂ 2

∂xk∂x`
F(x)

∣∣∣ .
1
r
,

∣∣∣ ∂ 3

∂xk∂x`∂xm
F(x)

∣∣∣ .
1
r2 (4.6)

and vanish outside the given ball. Here we have used the notation “a . b”, which
means that a can be estimated by b up to a positive constant that is independent of
the parameters under consideration.

We will also need a regularized, smooth counterpart of the product function in
front of v in (4.1). For this purpose, let x → B(r), B(r)≥ r, be an infinitely differen-
tiable, radially symmetric function. Assume that B(r) = r for r > 1 and set, for ε > 0,

Fε(x) = f (Bε(r)), Bε(r) = ε B
( r

ε

)
. (4.7)

The infinitely differentiable function Fε coincides outside the ball of radius ε around
the origin with the function F . Inside this ball, its derivatives can be estimated as∣∣∣ ∂

∂xk
Fε(x)

∣∣∣ . 1,
∣∣∣ ∂ 2

∂xk∂x`
Fε(x)

∣∣∣ .
1
ε
,

∣∣∣ ∂ 3

∂xk∂x`∂xm
Fε(x)

∣∣∣ .
1
ε2 , (4.8)

with constants that are independent of the smoothing parameter ε > 0. These esti-
mates follow from (4.3) and (4.4) replacing the function f by its smoothed counter-
parts r → f (Bε(r)) and using that B ′(0) = 0. As follows from (4.6) and (4.8),

∣∣∣ ∂ 3

∂xk∂x`∂xm
Fε(x)

∣∣∣ . ε
s−2 1

r s (4.9)

for all values 0 < s < 2 and all x 6= 0, with a constant independent of ε . This estimate
will later play a decisive role. Finally for all x ∈ R3,

|F(x)−Fε(x)| . ε (4.10)

so that the functions Fε tend uniformly to F as ε goes to zero.

Theorem 4.1 Let v : (R3)N → R be a function that possesses weak derivatives Dα v
in L2 for all multi-indices α in the set A from (2.3). The function (4.1) then possesses
weak derivatives Dα u, α ∈A , in L2 as well, which can be estimated as

|||u|||1,0 . |||v|||1,0 (4.11)

by the corresponding derivatives of the function v.
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Proof We first assume that v is an infinitely differentiable function with compact
support and consider the regularized, themselves infinitely differentiable functions

uε(x) =
{

∏
i< j

Fε(xi− x j)
}

v(x). (4.12)

Their partial derivatives Dα uε , α ∈A , consist of sums of products of partial deriva-
tives of the factors Fε(xi − x j) with respect to the components of xi and x j of orders
up to two and of partial derivatives of v. We consider the single products in the fol-
lowing separately. According to (4.6) and (4.8), the partial derivatives of the factors
Fε(xi−x j) of orders up to one are uniformly bounded in ε > 0 and thus do not require
special attention. Their second order derivatives can be bounded via∣∣∣ ∂ 2

∂xi,k∂x j,`
Fε(xi− x j)

∣∣∣ .
1

|xi− x j|
(4.13)

uniformly in the smoothing parameter ε . If such a second order derivative appears in
the product under consideration neither the variable xi nor the variable x j can appear
in another such singular factor. Letting ε tend to zero, one therefore recognizes, with
the help of the dominated convergence theorem and the definition of weak derivatives,
that the weak derivatives Dα u, α ∈ A , exist and can formally be obtained by the
product rule. The derivatives of the factors F(xi − x j) have here to be interpreted
pointwise outside the singular set and the derivatives of v still classically.

The estimate (4.11) follows from Fubini’s theorem and the Hardy inequality (3.1),
where one has to take into account that with the appearance of a second order deriva-
tive as in (4.13) the function v is not differentiated with respect to the components
of xi and x j, and again that neither xi nor x j can appear in another such singular fac-
tor. With that we have proven the proposition for infinitely differentiable functions v
with compact support. The rest follows from the density of these functions in X0. Let
v1,v2,v3, . . . be such functions tending to v in X0. The assigned uk form then a Cauchy
sequence in X0 and tend with that to a limit function u both in X0 and L2. This limit
function then necessarily coincides with the corresponding function (4.1) which is
therefore itself contained in X0 and satisfies the estimate (4.11). ut

The theorem implies that, for every function v with the given properties, the assigned
function u = Fv, with F the prefactor from (4.1), is contained in H1. We keep in mind
that its weak gradient and with that its first order weak derivatives are given by

∇u = F∇v+ v∇F, (4.14)

where the gradient of v is understood in the weak sense and that of F pointwise.
If the weak derivatives Dα v, α ∈A , of the regular part of the function (4.1) are

in H1, the corresponding derivatives of the function (4.1) itself, however, do not need
to be located in H1 as the singularities arising in front of the derivatives of v are
too strong. To cover the behavior of these derivatives of the wave functions near the
singular set where two or more electrons meet, we introduce the weight function

Ω(x) = min
{

min
i< j

|xi− x j|, 1
}
. (4.15)
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Theorem 4.2 Let v : (R3)N →R be a square integrable function that possesses weak
derivatives Dα v in H1 for all multi-indices α in the set A from (2.3). The weak
derivatives Dα u, α ∈A , of the function (4.1) are then themselves one times weakly
differentiable outside the singular set Γ where two or more components xi coincide.
Their first order weak derivatives defined outside this singular set satisfy an estimate

‖Ω
µ

∇Dα u‖0 .
1√

2µ −1
|||v|||1,1 (4.16)

for all exponents 1/2 < µ < 1, with a constant that is independent of µ .

Proof The arguments are similar to those in the proof of the previous theorem and
are based on the estimates (4.6) for the derivatives of the function F . We start again
with an infinitely differentiable function v with compact support. The corresponding
derivatives of u on the complement of the singular set Γ split into sums of products
of partial derivatives of the factors F(xi−x j) and derivatives of v. These products are
again estimated separately. In addition to the products considered in the proof of the
previous theorem also their first order partial derivatives have to be estimated here.

The first order derivatives of the factors F(xi−x j) are bounded and do not require
special attention. The situation is different with the second and the now arising third-
order derivatives of these factors that are bounded, according to (4.6), by

.
1

|xi− x j|
, .

1
|xi− x j|2

.

In addition to the situation in the proof of the previous theorem, a pair of singular
terms of the first kind with associated index pairs (i, j) and (i,k) can now appear. In
this case, v is not differentiated with respect to a component of xi, x j, or xk. A factor
involving a third-order derivative of F can appear at most once in each of the products
under consideration. The function v is in this case not differentiated with respect to the
components of the corresponding parts xi and x j of x. As, with 1 < s = 2−µ < 3/2,

Ω(x)2µ 1
|xi− x j|4

≤ 1
|xi− x j|2s ,

the estimate (4.16) thus follows with the help of Fubini’s theorem from the classical
Hardy inequality (3.1) and the inequality from Lemma 3.2.

A limit process as in the proof of the previous theorem shows that the estimate
transfers from the infinitely differentiable functions v with compact support to arbi-
trary functions v in X1. Let vk, k = 1,2, . . . , be a sequence of infinitely differentiable
functions with compact support that tends in X1 to a given function v in X1. The
assigned functions uk tend then in L2 to u and the functions

Ω
µ ∂

∂xi,ν
Dα uk, k = 1,2, . . . ,

with α a multi-index in the set A , on the complement of Γ in the L2-sense to limit
functions wiν . Let ϕ now be an infinitely differentiable function with support in the
complement of Γ . Since Ω−µ is bounded on the support of ϕ , the equation∫

∂

∂xi,ν
Dα uk ϕ dx = (−1)|α|+1

∫
uk

∂

∂xi,ν
Dα

ϕ dx
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becomes in the limit of k tending to infinity∫
Ω
−µ wiν ϕ dx = (−1)|α|+1

∫
u

∂

∂xi,ν
Dα

ϕ dx.

This proves that Ω−µ wiν is the corresponding weak derivative of u on the comple-
ment of Γ and that this weak derivative can be estimated as stated above. ut

An estimate like (4.16) cannot hold for exponents µ ≤ 1/2. This follows from the
fact that the function x → 1/r4−2µ is locally integrable in three space dimensions if
and only if µ > 1/2. The lower bound µ > 1/2 can therefore not be improved further.

The results of this section can be summarized in the estimate

∑
α∈A

{
‖Dα u‖2

0 + ‖Ω
µ

∇Dα u‖2
0

}
.

1
2µ −1 ∑

α∈A

‖Dα v‖2
1 (4.17)

that holds for 1/2 < µ < 1 with a constant independent of µ and reflects the behavior
of the mixed derivatives of the function (4.1) in the neighborhood of the singular
set. The eigenfunctions u of the electronic Schrödinger operator (1.1) for eigenvalues
below the bottom of the essential spectrum possess therefore square integrable weak
derivatives Dα u for all multi-indices α ∈ A , that is, are contained in H1,0

mix. Their
weighted weak derivatives Ω µ ∇Dα u, α ∈ A , exist outside the singular set where
two ore more electrons meet and are square integrable for all exponents µ > 1/2.

5 The K-functional and estimates in fractional order spaces

The next theorem shows, in combination with the results from [17], that the solutions
of the electronic Schrödinger equation are contained in the spaces Hϑ ,1

mix for all ϑ

below 3/4. It is based on an estimate of the K-functional (2.8) of the function under
consideration, from the perspective of approximation theory the decisive quantity.

Theorem 5.1 Let v : (R3)N →R be a square integrable function that possesses weak
derivatives Dα v in H1 for all multi-indices α in the set A from (2.3). The function
(4.1) is then contained in the spaces Hϑ ,1

mix for all values ϑ < 3/4. Moreover,

K(t,u) . | ln(t)|1/2 t3/4 |||v|||1,1, t → 0+, (5.1)

which means that K(t,u) tends to zero faster than any power tϑ , ϑ < 3/4.

Proof We assume first that the given function v is an infinitely differentiable function
with compact support. The idea is to estimate the K-functional by the expression

K(t,u) ≤ {‖u−uε‖2
1 + t2 |||uε |||21,1}1/2,

where ε > 0 will later be coupled to t and uε = Fε v is the smoothed variant (4.12)
in the space X1 of the function u = Fv from (4.1) in the space H1. We recall that the
weak gradient of u can be formally calculated by means of the product rule (4.14).
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The function u−uε vanishes outside the union of the sets Γi j that consist of those x
for which |xi− x j| ≤ ε . The H1-distance of u and uε over Γi j can be estimated as

‖u−uε‖1,Γi j ≤ ‖(F−Fε)∇v‖0,Γi j + ‖(∇F−∇Fε)v‖0,Γi j + ‖(F−Fε)v‖0,Γi j .

As |(F−Fε)(x)| . ε and |(∇F−∇Fε)(x)| . 1, the squares of the first two terms on
the right hand side can, for arbitrary s in the interval 1 < s < 3/2, be estimated by

ε
2s

∫
Γi j

1
|xi− x j|2s−2 |∇v|2 dx, ε

2s
∫

Γi j

1
|xi− x j|2s v2 dx,

and the square of the last term correspondingly by the expression

ε
2s

∫
Γi j

1
|xi− x j|2s−2 v2 dx.

These expressions can be further estimated by means of (3.2) and (3.3). This yields

‖u−uε‖2
1 .

1
3−2s

ε
2s |||v|||21,1,

with a constant that depends neither on ε nor on the choice of s.
Estimating the norm |||uε |||1,1 means estimating partial derivatives of uε . These

partial derivatives split again into sums of products of partial derivatives of the factors
Fε(xi − x j) with respect to the components of xi and x j of orders up to three and of
partial derivatives of v. One proceeds as in the proof of Theorem 4.2, where the
estimate (4.9) for the third order derivatives of Fε enters into the estimates of the
terms involving a third order derivative of one of the factors Fε(xi−x j). One obtains,
with the help of Fubini’s theorem and the estimates from Sect. 3, the estimate

|||uε |||21,1 .
1

3−2s
ε

2s−4 |||v|||21,1,

where the constant depends as before neither on 1 < s < 3/2 nor on ε .
The estimates for the two single parts can now be combined to an estimate for the

K-functional. Choosing for both the same s and setting ε =
√

t, one obtains

K(t,u) .
1√

3−2s
t s/2 |||v|||1,1,

with a constant independent of 1 < s < 3/2. The estimate (5.1) now follows choosing

s =
3
2

+
1

ln t
;

for t < e−2 this s is located in the admissible interval and minimizes the right hand
side of the inequality above. That the estimate (5.1) holds for all functions v∈ X1, not
only for the infinitely differentiable functions v with compact support as just proved,
follows from the density of these functions in X1, the continuity of the mapping v→ u
as a mapping from X1 to H1, and the continuity of the mapping u→ K(t,u) from H1

to the real numbers. The rest of the proposition follows from Lemma 2.2. ut
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The estimate (5.1) for the K-functional implies the norm estimate

|||u|||ϑ ,1 .
1

3−4ϑ
|||v|||1,1 (5.2)

for the function (4.1) that holds for 0 ≤ ϑ < 3/4, with a constant independent of ϑ .
It suffices to prove the estimate for ϑ ≥ 1/2 as the norm on the left hand side of the
equation increases with ϑ . This can be done using the representation (2.11) of this
norm in terms of the K-functional and an argument as in the proof of Lemma 2.2.

6 A counterexample

The upper bound ϑ < 3/4 from Theorem 5.1 is optimal and can neither be reached
nor surpassed. This shows the example of the function

u(x) =
(

1 +
1
2
|x1− x2|

)
exp

(
− 1

4
|x1|2−

1
4
|x2|2

)
(6.1)

that falls into the considered category as can be seen splitting up the first factor into
a product of a factor as in (4.1) and a smooth function. It often serves as a model
for electronic wave functions. Its singular behavior at the diagonal x1 = x2 is the
same as that of the solutions of the electronic Schrödinger equation at the positions
where two electrons of distinct spin meet [7]. The function represents at the same
time the ground state of the so-called hookium or harmonium atom [11], an artificial
two-electron system with the Hamiltonian

− 1
2

∆ +
1
8
|x |2 +

1
|x1− x2|

(6.2)

in which the potential of the nucleus is replaced by that of a harmonic oscillator.
To show that the function (6.1) cannot be contained in Hϑ ,1

mix for ϑ ≥ 3/4, we first
rotate the coordinate system by the matrix

Q =
1√
2

(
I −I
I I

)
(6.3)

built up from the (3×3)-identity matrix and write u in the form u(x) = w(Qx), where

w(x) =
(

1 +
1√
2
|x1|

)
exp

(
− 1

4
|x1|2−

1
4
|x2|2

)
. (6.4)

As Q is orthogonal the Fourier transform of u is then û(ω) = ŵ(Qω). Therefore∫
P(ω)|û(ω)|2 dω =

∫
P(QT

ω)|ŵ(ω)|2 dω (6.5)

for every polynomial P(ω). Since |QT ω|= |ω| thus we have to show that the function

ω → (1+ |ω|2)Pmix(QT
ω)ϑ |ŵ(ω)|2 (6.6)



The mixed regularity of electronic wave functions 15

cannot be integrable for exponents ϑ ≥ 3/4, where

Pmix(QT
ω) =

(
1+

1
2
|ω1−ω2|2

)(
1+

1
2
|ω1 +ω2|2

)
. (6.7)

To proceed, we need to know the asymptotic behavior of the Fourier transform of
the function w. We rewrite w first in the form

w(x) = φ(x1)e−|x2|2/4 = φ̃(|x1|)e−|x2|2/4 (6.8)

with the univariate function

φ̃(r) =
(

1+
1√
2

r
)

e−r2/4. (6.9)

The Fourier transform of w is in this notation

ŵ(ω) = φ̂(ω1)(
√

2)3 e−|ω2|2 . (6.10)

The asymptotic behavior of the Fourier transform of φ is given by the following
lemma that is of general nature and into which only the decay properties of φ̃ enter.

Lemma 6.1 The Fourier transform of φ behaves for |ω| tending to infinity like

φ̂(ω) = −2

√
2
π

φ̃ ′(0)
|ω|4

+ O
( 1
|ω|6

)
. (6.11)

Proof As φ is a rotationally symmetric function, φ̂(ω) = φ̂(Qω) for all orthogonal
(3×3)-matrices Q. Particularly φ̂(ω) = φ̂(|ω|e3). Therefore

φ̂(ω) =
( 1√

2π

)3∫
φ̃(|x|)e−i |ω|x3 dx.

Transforming the integral to polar coordinates, the representation

φ̂(ω) =

√
2
π

1
|ω|

∫
∞

0
r φ̃(r)sin(|ω|r)dr

of the Fourier transform of a rotationally symmetric function φ(x) = φ̃(|x|) in three
space dimensions follows. If r → a(r) is an infinitely differentiable function with
integrable derivatives tending to zero as r goes to infinity, integration by parts yields∫

∞

0
a(r)sin(|ω|r)dr =

1
|ω|

a(0) − 1
|ω|2

∫
∞

0
a ′′(r)sin(|ω|r)dr.

Applying this relation a second and third time, one obtains∫
∞

0
a(r)sin(|ω|r)dr =

1
|ω|

a(0) − 1
|ω|3

a ′′(0) + O
( 1
|ω|5

)
as |ω| goes to infinity and therefore, inserting a(r) = r φ̃(r), the statement. ut
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We can now complete the proof and are ready to to show that the function (6.6)
cannot be integrable for ϑ ≥ 3/4. For that it suffices to show that it cannot be inte-
grable over the cylinder |ω2| ≤ 1 for these values of ϑ . For |ω2| ≤ 1,(

1+
1
2
|ω1−ω2|2

)(
1+

1
2
|ω1 +ω2|2

)
≥ 1+

1
4
|ω1|4. (6.12)

In our case φ̃ ′(0) 6= 0. With the help of Lemma 6.1 one gets therefore, for ω in the
given cylinder and sufficiently large |ω1|, the desired lower bound

(1+ |ω|2)Pmix(QT
ω)ϑ |ŵ(ω)|2 & |ω1|4ϑ−6 (6.13)

for the function (6.6). If ϑ ≥ 3/4, the function (6.6) thus cannot be integrable over the
cylinder |ω2| ≤ 1 and even less over the full space. This proves that the function (6.1)
is indeed contained in none of the spaces Hϑ ,1

mix for ϑ ≥ 3/4. Moreover, for this u,

K(t,u) & t3/4, (6.14)

as can be shown in the same way, by means of the representation of the K-functional
from the proof of Lemma 2.1 and the asymptotic behavior of the Fourier transform
of the function w on the cylinder |ω2| ≤ 1. This shows that the estimate (5.1) from
Theorem 5.1 is almost optimal and that at most the logarithmic factor got lost there.

7 Exponential decay, approximability, and approximation order

We mentioned in the introduction that the eigenfunctions u of the operator (1.1) decay
exponentially in the L2-sense, which means that the functions (1.11) here denoted as

x → eψ(x)u(x), ψ(x) = γ

N

∑
i=1

|xi|, (7.1)

are square integrable for values γ > 0 below some bound that depends on the distance
of the eigenvalue under consideration to the bottom of the essential spectrum. It has
been shown in [17] that these exponentially weighted eigenfunctions admit the same
kind of representation (1.9) as the eigenfunctions themselves. They are therefore like
these contained in the spaces Hϑ ,1

mix for ϑ < 3/4. We outline in this section how this
can be used to study the convergence behavior of approximation processes.

Lemma 7.1 For all functions v for which eψ v is located in H1,1
mix, that is, in X1,

|||eψ v|||21,1 . ∑
α∈A

‖eψ Dα v‖2
1 . |||eψ v|||21,1, (7.2)

with constants that depend on the decay rate γ .
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Proof This follows from the observation that for all multi-indices α ∈A

Dα(eψ v) = ∑
β≤α

γ
|β |aβ eψ Dα−β v,

where the bounded coefficient functions aβ are given by

aβ (x) =
N

∏
i=1

( xi

|xi|

)βi

and the relation β ≤ α has to be understood componentwise. The reason is that the
function eψ v is differentiated only once with respect to the components of every sin-
gle xi. Formally, the relation is obtained from the product rule, which can be justified
in the sense of globally defined weak derivatives with an approximation argument as
in the proof of Theorem 4.1. Differentiating the relation above once more, the propo-
sition follows with the help of the Hardy inequality (3.1), taking into account that
aβ = 1 for β = 0, ∇iaβ = 0 if βi = 0, and |∇iaβ | ≤ 1/|xi| otherwise. ut

The norm |||eψ v|||1,1 measures therefore the exponentially weighted L2-norms of the
involved derivatives of the function v. It is therefore reasonable to start from a se-
quence Tn : H1 → H1, n = 1,2, . . . , of linear approximation operators that are uni-
formly H1-bounded and to require that

‖v−Tnv‖1 . n−q |||eψ v|||1,1 (7.3)

for all functions v ∈ H1 for which eψ v ∈ H1,1
mix. The constant q > 0 is an unspecified

convergence rate also depending on what n means. These assumptions form a proper
framework for sparse grid-like approximation methods, for example for the wavelet
approximations studied in [18] or expansions into tensor products of Gaussians or
other eigenfunctions of three-dimensional Schrödinger-like operators [16]. Another
example is the expansion into tensor products of three-dimensional functions with
given angular parts [16]. The range of the Tn is in this case infinite dimensional. The
exponential factor is the tribute paid to the infinite extension of the domain.

Our assumptions imply the following error estimate for functions of reduced
smoothness and in particular for the eigenfunctions of the operator (1.1).

Theorem 7.1 For all functions u ∈ H1 for which eψ u ∈ Hϑ ,1
mix for some 0 < ϑ < 1,

‖u−Tnu‖1 . n−ϑq |||eψ u|||ϑ ,1. (7.4)

Proof We use that ‖u‖1 . ‖eψ u‖1 for functions u for which eψ u ∈ H1. The linearity
of the Tn, their uniform boundedness, and (7.3) imply therefore the estimate

‖u−Tnu‖1 . ‖u− e−ψ v‖1 +‖e−ψ v−Tn(e−ψ v)‖1 . ‖eψ u− v‖1 + n−q |||v|||1,1

for arbitrary such u and all v ∈ X1. With that we can bound the approximation error

‖u−Tnu‖1 . K(n−q,eψ u)

in terms of the K-functional of eψ u. The estimate thus follows from (2.14). ut
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The scheme thus exploits the smoothness of the functions even if the convergence rate
decreases unsurprisingly with decreasing smoothness. In the case of the solutions u of
the electronic Schrödinger equation studied in this paper, we can apply the estimate
for the K-functional of eψ u from Theorem 5.1 directly. It leads to an estimate

‖u−Tnu‖1 .
√

ln(n) n−3/4q (7.5)

for the approximation error: the convergence rate comes arbitrarily close to 3/4q.
Essentially only the factor 3/4 gets lost compared to the case of full mixed regularity.

8 From approximation order back to regularity

Under some additional assumptions one can show that this convergence order cannot
be improved further. We start from an orthogonal or biorthogonal expansion

v = ∑λ
(v,φ ′

λ
)φλ (8.1)

of the square integrable functions into a series of functions φλ ∈ H1, where λ runs
over a countable set of indices. The example that we have in mind is the expansion
into wavelets from [18]. We introduce a new scale of discrete norms given by

‖[v ]‖2
ϑ ,m = ∑λ

κ0(λ )m
κ(λ )ϑ (v,φ ′

λ
)2, (8.2)

where κ0(λ ) and κ(λ ) are weight factors. The first one basically serves to measure
the first order derivatives. The second one splits in Zeiser’s construction into a part
that is associated with the mixed derivatives and another one that is position depen-
dent and associated with the decay of the functions under consideration. We assume
in the sequel that, for the functions v for which eψ v is contained in the space H1,1

mix,

|||v|||1,1 . ‖[v ]‖1,1 . |||eψ v|||1,1, (8.3)

and that for ϑ = 0 and m = 1 the new norm is equivalent to the H1-norm, that is, that

‖v‖1 . ‖[v ]‖0,1 . ‖v‖1 (8.4)

holds for all functions v∈H1. The wavelet expansions from [18] fulfill these assump-
tions. Our approximation operators Tn are now defined by

Tnv = ∑
′
λ
(v,φ ′

λ
)φλ , (8.5)

where the dash indicates that the sum runs here only over the indices λ for which
κ(λ ) is less than a bound that is monotonically increasing with n and tending to
infinity as n goes to infinity, say less than n2q to adapt the notation to that in the
previous section. The Tn are then bounded as operators from H1 to H1. Furthermore,

‖v−Tnv‖1 . n−q |||eψ v|||1,1 (8.6)

for the functions v for which eψ v is contained in H1,1
mix. The operators thus fit into the

framework considered before; in particular the error estimates (7.4) and (7.5) hold.
The rest follows by means of a standard argument [3] from approximation theory:
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Lemma 8.1 Let u be a function in H1 for which the error behaves like

‖u−Tnu‖1 = O(n−δq) (8.7)

for n tending to infinity, where 0 < δ < 1. Then u ∈ Hϑ ,1
mix for ϑ < δ .

Proof Let T̃` = T2` for abbreviation. Then

‖[ T̃nu ]‖ϑ ,1 ≤ ‖[ T̃1u ]‖ϑ ,1 +
n−1

∑
`=1

(2`+1)ϑq ‖[ T̃`+1u− T̃`u ]‖0,1,

as follows from the triangle inequality and the inverse inequality

‖[v ]‖ϑ ,1 ≤ (2`+1)ϑq‖[v ]‖0,1

for the functions v in the range of T̃`+1. By the given assumptions,

‖[ T̃`+1u− T̃`u ]‖0,1 . ‖T̃`+1−u‖1 + ‖u− T̃`u‖1 . (2`+1)−δq.

That means that the discrete norm

‖[u ]‖ϑ ,1 = lim
n→∞

‖[ T̃nu ]‖ϑ ,1

of u remains finite for 0 < ϑ < δ . This implies u ∈ Hϑ ,1
mix since

|||v|||ϑ ,1 . ‖[v ]‖ϑ ,1,

which follows by means of interpolation from (8.3) and (8.4), expressing both norms
as in Lemma 2.1 in terms of the corresponding K-functionals. ut

We conclude that for the functions considered in the previous sections, and in par-
ticular for electronic wave functions, a convergence rate ϑq, ϑ > 3/4, is in general
not possible. The estimate (7.5) is thus optimal, at least up to the logarithmic factor.
Nonlinear, adaptive methods might shift this bound but also encounter hard limits due
to the location of the singularities on the diagonals [4,5].
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