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Abstract

This work is concerned with transparent boundary conditions (TBCs) for systems of Schrö-

dinger type equations, namely the time-dependent kp-Schrödinger equations. These TBCs

have to be constructed for the discrete scheme, in order to maintain stability and to avoid

numerical reflections. The discrete transparent boundary conditions (DTBCs) are constructed

using the solution of the exterior problem with Laplace and Z-transformation respectively.

Hence we will analyse the numerical error caused by the inverse Z-transformation. Since

these DTBCs are non-local in time and thus very costly, we present approximate DTBCs,

that allow a fast calculation of the boundary terms.

1 Introduction

The operating principle of quantum-electronic semiconductor devices such as resonant tunnel-

ing diodes (RTD) [Sin93, Chap. 14] or opto-electronic devices such as quantum-cascade lasers

[SKB+98] and multi-quantum-well electro-absorption modulators [DF93] relies on the tunneling

process of carriers through barrier structures. Such barrier structures are typically layered semi-

conductor heterostructures [Sin93], [SKB+98], [DF93] with a barrier thickness of a few nanometer.

The transient simulation of wave packets tunneling through such nano-scale semiconductor het-

erostructures is the key for the understanding of such transport processes [ZG91], [SH91], [SS91].

In particular transient simulations can be used to estimate tunneling times [SS91], charging and
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escape times [ZG91], [SH91], or lifetimes of the carriers [DF93], [WM93]. For the simulation

of the tunneling process usually a scalar Schrödinger equation defined by BenDaniel-Duke-type

Hamiltonians [Bas88, Chap. 3] is used [ZG91], [SS91], [WM93]. The underlying approximation of

the electronic band structure of this type of models is that of a single parabolic band. Parabolic

single-band approximations are in good agreement with the real band structure in the vicinity

of the minima of the conduction bands, that part of the band structure which is usually oc-

cupied by the electrons. For the treatment of the holes, occupying the maxima of the valence

bands, the accuracy of parabolic single-band models is often not sufficient. This is mainly due to

the fact, that the valence bands possess a much more complex band structure [Car96], [Bas88],

[CC92], [Chu95], [BAM98], [SS91], [DF93]. However, the electronic states of the holes can be

approximated well by multi-band states which satisfy a so-called kp-Schrödinger equation. The

time-dependent kp-Schrödinger equation describes the time evolution of the multi-band electronic

state and can be regarded as a linear coupled system of scalar Schrödinger equations. The evolu-

tion is governed by the kp-Schrödinger operator which as an extension to the single-band models

describes a system of bands of the band structure, e.g. the four topmost valence bands [Bas88],

[CC92], [Chu95], [BAM98]. There exists a whole bunch of such multi-band kp-models [MGO94]

including also combined models for conduction and valence bands. The later also allow for a non-

parabolic approximation of the conduction bands. For devices where the parabolic conduction

band approximation is not sufficient such kp-models can be used. For unipolar devices where

by crossing a barrier a conduction-band to valence-band transition is possible such as resonant

interband tunneling diodes (RITD) or for bipolar devices where additionally the hole tunneling

processes are important such as multi-quantum well electro-absorption modulators multi-band

modeling is necessary. In this cases the numerical solution of the time-dependent kp-Schrödinger

equation can be used to understand and to determine the tunneling properties of corresponding

semiconductor heterostructures by studying the time evolution of the multi-band electronic state.

In this paper we construct and approximate so called discrete transparent boundary conditions

(DTBCs) for a time dependent system of the kp-Schrödinger-type. Such type of linear systems

of Schrödinger-type equations also arise in so-called ”parabolic systems” in electromagnetic wave

propagation [Lev00]. Artificial BCs have to be imposed to restrict the unbounded domain, on

which the differential equation operates, to a finite computational domain. These BCs are called

transparent, if the solution on the whole space restricted to the computational domain is equal to

the solution with the artificial BCs. The artificial boundary splits the problem into three parts:

the interesting interior problem and a left and right exterior problem. For constant coefficients

the exterior problems can be solved explicitly by Laplace transformation in the continuous and

Z-transformation in the discrete case. Claiming C1-continuity of the solution at the artificial

boundaries yields the TBC. The inverse Laplace/Z-transformation involves a convolution in time

and yields a non-local in time BC, which is highly precise but very costly. To reduce the numerical

effort, we introduce approximate TBCs. Since the inverse Z-transformation must be accomplished

numerically, a small error is induced. We scrutinise this critical point in the numerical computation

and consider the numerical error.

The paper is organised as follows: Sec. 2 describes the system of Schrödinger equations in
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general and presents a quantum well structure with a double barrier as an example, that will be

considered throughout this work. We derive the analytic TBC in Sec. 3 and a discrete version

in Sec. 4. The DTBC is a discrete convolution. We scrutinise its coefficients, introduce summed

coefficients and verify a stability estimate numerically. In Sec. 5 we then explain our strategy

to compute the coefficients by a numerical inverse Z-transformation and consider its numerical

error. In Sec. 6 we approximate the coefficients by a sum of exponentials ansatz and present a

fast evaluation of the approximated DTBC. Finally in Sec. 7 we present our numerical results.

2 The system of kp-Schrödinger equations

The equation we consider is a system of Schrödinger-type equations in one space dimension, namely

the kp-Schrödinger equation for one-dimensional semiconductor nanostructures. One-dimensional

semiconductor nanostructures are layered heterostructures consisting of layers of different semicon-

ductor materials with abrupt, planar heterojunction interfaces between the layers [Sin93]. Typical

examples are semiconductor quantum wells and double barrier structures [Sin93], [Bas88], [Chu95].

A widely used approach for the modeling of the near-band-edge electronic states in semiconductor

nanostructure is the kp-method [Kan82] in combination with the envelope function approximation

[Bas88], [Bur92],[Bur94],[Bur98]. Within this approach the electronic state Ψ(r) is approximated

in terms of d bands

Ψk‖
= exp(ik‖ · r‖)

d∑

ν=1

ϕν(x;k‖)uν,k=0(r).

The index ‖ indicates in-plane vectors and x denotes the growth direction of the semiconductor

layers. k‖ = (k1, k2) is the reduced wave vector and uν,k=0(r) are lattice periodic, zone-center

Bloch functions varying on the atomic scale and ϕν(x;k‖) are the corresponding envelope functions

describing the variation of the wave function on the nanoscale. The vector of the envelope functions

ϕ = (ϕ1, · · · , ϕd) fulfils the kp-Schrödinger equation

i
∂

∂t
ϕ = H

(
k‖,−i

∂

∂x

)
ϕ.

There is a hierarchy of kp-models [MGO94] describing on the simplest stage the band-mixing be-

tween the heavy holes and the light holes by use of a 4 × 4 Luttinger-Kohn-Hamiltonian [Bas88],

[Chu91], [CC92], [Chu95]. Depending on the model Hamiltonian effects such as quantum confine-

ment, band-mixing, spin-orbit interaction and mechanical strain can be treated consistently.

In notation we follow Bandelow, Kaiser, Koprucki and Rehberg, who performed in [BKKR00] a

rigorous analysis of spectral properties for the spatially one-dimensional kp-Schrödinger operators.

The system then reads as follows

i
∂

∂t
ϕ = − ∂

∂x
(m(x)

∂

∂x
ϕ) + M0(x)

∂

∂x
ϕ − ∂

∂x
(MH

0 (x)ϕ)

+k1

(
M1(x)

∂

∂x
ϕ − ∂

∂x
(MH

1 (x)ϕ)

)
+ k2

(
M2(x)

∂

∂x
ϕ − ∂

∂x
(MH

2 (x)ϕ)

)
(2.1)

+k1U1(x)ϕ + k2U2(x)ϕ + k2
1U11(x)ϕ + k2

2U22(x)ϕ + k1k2(U12(x) + U21(x))ϕ

+v(x)ϕ + e(x)ϕ, x ∈ �
, t > 0, k1, k2 ∈ �

,
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where ϕ(x, t) ∈ � d, the mass matrix m(x) and e(x) are real diagonal d × d-matrices. Ui(x),

Uij(x) and v(x) are Hermitian d × d-matrices. The d × d-matrices M0(x), M1(x) and M2(x)

are skew-Hermitian. e(x) describes the variation of the band-edges. The band-mixing due to the

kp-interaction of the first and second order are described by the terms containing the matrices

Mα,Uα, α = 0, 1, 2, and Uαβ, α, β = 1, 2, respectively. The potential v can cover couplings

induced by the spin-orbit interaction or by mechanical strain. Neglecting all non-diagonal coupling

terms the system reduces to an uncoupled system of scalar Schrödinger equations corresponding to

the case of uncoupled parabolic bands. In this sense the couplings can be interpreted as correction

terms to the parabolic band structure approximation.

Since the formulation (2.1) is rather lengthy and we abbreviate the coefficient functions

MS (x) := M0(x) + k1M1(x) + k2M2(x), (2.2a)

V(x) := k1U1(x)+k2U2(x)+k2
1U11(x)+k2

2U22(x)+k1k2(U12(x)+U21(x))+v(x)+e(x). (2.2b)

Then MS (x) is skew-Hermitian, V(x) is Hermitian and (2.1) reads

i
∂

∂t
ϕ = − ∂

∂x
(m(x)

∂

∂x
ϕ) + MS(x)

∂

∂x
ϕ − ∂

∂x
(MH

S (x)ϕ) + V(x)ϕ, x ∈ �
, t > 0. (2.3)

An important property of the system (2.3) is the constancy in time of ||ϕ||2L2 (conservation of

mass). To verify this we multiply (2.3) with ϕH from the left:

∂

∂t
||ϕ||2L2 = 2 Im



∫

� ϕH
x mϕx dx +

∫
� ϕHVϕ dx +

∫
� ϕHMSϕx + ϕH

x MH
S ϕ︸ ︷︷ ︸

∈
�

dx


 = 0.

This follows by integration by parts and remembering that V and m are Hermitian and thus the

imaginary part of the quadratic forms vanishes. The last term is of the form y + yH which is real.

2.1 The double-barrier stepped quantum-well structure

At this early stage we introduce an example that we will use throughout this work to illustrate in

the sequel intermediate results. We consider the GaAs/AlGaAs double-barrier stepped quantum-

well structure (DBSQW) introduced in [ZG91]. The variation of the band-edges e(x) is depicted in

Fig. 1. For this structure an analysis of the time evolution of wave packets tunneling through the

structure has been performed using a scalar Schrödinger equation [ZG91]. We consider the four-

band Luttinger-Kohn-Hamiltonian [Bas88], [Chu91], [CC92], [Chu95] modeling the band-mixing

heavy holes and the light holes. In atomic units the coefficient matrices for the corresponding 4×4

system of Schrödinger equations are given by:

m =




γ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 γ




M1 = −1

2

γ3

γ1 + 2γ2

√
3i




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0




, M2 = −iM1
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U11 =
1

2

1

γ1 + 2γ2




γ1 + γ2 0 −
√

3γ2 0

0 γ1 − γ2 0 −
√

3γ2

−
√

3γ2 0 γ1 − γ2 0

0 −
√

3γ2 0 γ1 + γ2




U22 =
1

2

1

γ1 + 2γ2




γ1 + γ2 0
√

3γ2 0

0 γ1 − γ2 0
√

3γ2√
3γ2 0 γ1 − γ2 0

0
√

3γ2 0 γ1 + γ2




U12 + U21 =
1

γ1 + 2γ2

√
3γ2i




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




with γ = γ1−2γ2

γ1+2γ2
. For the values of the band structure parameters γ1, γ2, γ3 we take the values of

GaAs given by γ1 = 4 · 6.85, γ2 = 4 · 2.1, γ3 = 4 · 2.9. For the in-plane wave-vector k‖ we choose

k1 = 2.3, k2 = 0. As initial condition we use a Gaussian wave packet of spin-up light holes

ϕ(x, 0) = (2πσ2)
1
4 exp

(
ikrx − (x − x0)

2

σ2

)



0

1

0

0




, (2.4)

with σ = 3, x0 = −2σ and kr =
√

6.99. The band-edge profile of the double-barrier stepped

quantum-well is taken from [ZG91] and defined by

e(x) =





0, x ≤ 22

25
2 , 22 < x ≤ 22.5

5
2
, 22.5 < x ≤ 23

0, 23 < x ≤ 23.5

25
2 , 23.5 < x ≤ 24

0, 24 < x

. (2.5)

The computational domain is now defined such that it contains the initial data and the important

part of the changing potential (cf. Fig. 1). Therefore, we introduce TBCs at the left and right

boundary.

3 Transparent boundary conditions

We will now start to derive the analytic transparent boundary conditions for the kp-Schrödinger

equation (2.3) at the left x = xL and right x = xR boundary. In the scalar case (classical

Schrödinger equation of quantum mechanics), the Laplace-transformed equation in the exterior

domain can be solved explicitly. Afterwards the solution is inverse transformed, thus yielding
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xxL R

left

exterior

domain

right

exterior

domain

0

computational domain

Figure 1: Variation of the band-edge for the GaAs/AlGaAs double-barrier stepped quantum-well

structure.

the analytic TBC (cf. [Arn98]). For systems of equations the inverse Laplace transform in gen-

eral cannot be calculated explicitly. Nevertheless, we will present the derivation of the Laplace

transformed TBC and show when it exists.

For the derivation we consider the Schrödinger equation in the left/right exterior domain. A

Laplace transformation yields a system of ordinary differential equations, that can be reduced

to first order. Then the solution of this system can be given in terms of its eigenvalues and

eigenvectors. We will prove, that half of the eigenvalues have positive real parts and thus yield

solutions increasing for x → ∞; the other half has negative real parts, yielding decreasing solutions.

Demanding that the part of the increasing solutions in the right (and the decreasing solutions in

the left) exterior domain vanishes, leads to the transparent boundary conditions.

We consider equation (2.3) in the bounded domain [xL, xR] together with TBCs at x = xL and

x = xR. We will denote the constant parameter matrices in the left and right exterior problem

by a superscript L and R respectively, when we need to distinguish between the boundaries. But

since the derivation for the left and right TBC is equivalent, we focus on the right boundary and

omit the superscript R until needed. The TBC at x = xR is constructed by considering (2.3) with

constant coefficients for x > xR, the so called right exterior problem

iϕt = −mϕxx + iMϕx + Vϕ, x > xR, t > 0, (3.1)

where all coefficient matrices are constant and M = MH , V = VH and m is diagonal. The

parameters are

M = −i
(
M0 −MH

0 + k1(M1 − MH
1 ) + k2(M2 − MH

2 )
)

(3.2a)

= −i(MS − MH
S ), (3.2b)

V = k1U1 + k2U2 + k2
1U11 + k2

2U22 + k1k2(U12 + U21) + v + e. (3.2c)

Since MS is skew-Hermitian, also MS − MH
S = 2MS is skew-Hermitian, thus M = −2iMS is

Hermitian.
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We now use the Laplace-transformation given by

ϕ̂(x, s) =

∫ ∞

0

e−stϕ(x, t) dt, s = α + iξ, α > 0, ξ ∈ �
, (3.3)

and obtain from (3.1) the transformed right exterior problem

mϕ̂xx − iMϕ̂x = (V − isI)ϕ̂, x > xR. (3.4)

We will address the question of existence and uniqueness at the end of this section in Lem. 3.3.

To derive the transparent boundary condition we define ν = ϕ̂ and η = ϕ̂x and thus reduce

the order of the differential equation to obtain a system of first order differential equations
(

M im

−im 0

)

︸ ︷︷ ︸
A

(
νx

ηx

)
=

(
iV + sI 0

0 −im

)

︸ ︷︷ ︸
B

(
ν

η

)
, x > xR. (3.5)

We will show that the matrix A−1B is regular, because A−1 and B are regular. To this end we

calculate the determinant of A:

det

(
M im

−im 0

)
= (−1)ndet

(
im M

0 −im

)
= (−1)ndet(m)2 6= 0, (3.6)

since the determinant of a block-tridiagonal matrix is the product of the determinants of the block

matrices on the diagonal. Here the determinant is obviously nonzero, since m is regular. Therefore

the matrix A is regular with the inverse

A−1 = m−1

(
0 iI

−iI −Mm−1

)
and A−1B =

(
0 I

m−1(V − isI) im−1M

)
. (3.7)

The matrix B is a block diagonal matrix and thus its eigenvalues are the eigenvalues of the matrices

on the diagonal. V is Hermitian, and thus it is diagonalisable and its eigenvalues υ1, . . . , υd are real.

Then iV+ sI is similar to diag(α+(υ1 + ξ)i, . . . , α+(υn + ξ)i) which is regular for Re(s) = α > 0,

s = α + iξ, ξ ∈ �
. Therefore, A−1B as a product of regular matrices is regular for Re(s) > 0.

We now transform A−1B into Jordan form with A−1B = PJP−1, where P−1 contains the left

eigenvectors in rows. We sort the Jordan blocks in J with respect to an increasing real part of the

corresponding eigenvalue. Thus J can be written as J =
(

J1 0

0 J2

)
, where J1 holds all Jordan blocks

to eigenvalues with negative real parts and J2 those with positive real parts. Due to Thm. 3.1 J1

and J2 are d × d-matrices. With P−1 =
(

P1 P2

P3 P4

)
equation (3.5) can be written as

P−1

(
νx

ηx

)
=

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ν

η

)
=

(
J1 0

0 J2

)(
P1ν + P2η

P3ν + P4η

)
, x > xR. (3.8)

Obviously, the upper equation yields parts of the solution, which decrease for x → ∞ and increase

for x → −∞. The opposite is true for the lower equation. We define the left exterior problem for

x < xL analogous to the right exterior problem. Then, an equation analogous to (3.8) holds: the

transformed transparent boundary conditions for the left (a) and right (b) boundary is obtained

by extinguishing the respectively increasing parts of the exterior solutions:

PL
2 ϕ̂x(xL, s) = −PL

1 ϕ̂(xL, s), (3.9a)
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PR
4 ϕ̂x(xR, s) = −PR

3 ϕ̂(xR, s). (3.9b)

If the matrices PL
2 and PR

4 are regular, then the Laplace-transformed TBC can be written in

Dirichlet-to-Neumann form. It is not clear, if these matrices are regular in general, but for our

example this applies for all tested s.

In order to examine if solutions of (3.4) increase or decay, we state the following theorem:

Theorem 3.1 (Splitting Theorem). For Re(s) > 0 the regular matrix A−1B has d eigenvalues

with positive real part and d with negative real part.

The proof of this theorem will be obtained as a conclusion of Lem. 3.1 and Lem. 3.2. We first

recall the definition of the inertia of a matrix M :

Definition 3.1 ([HJ99b]). The inertia of a complex matrix M is the ordered triple

i(M) = (i+ (M) , i− (M) , i0 (M)) . (3.10)

Here i+(M), i−(M) and i0(M) are the numbers of eigenvalues of M with resp. positive, negative

and zero real part, all counting multiplicity.

Lemma 3.1 (Lemma 2 in [CS63]). Let F,G be d× d-matrices with G Hermitian and regular,

suppose H := GF + FHG is positive semi-definite and i0(F) = 0. Then i(F) = i(G).

In order to apply this lemma to G := A and F := A−1B we check the assumptions: Since M

is Hermitian, A = AH as well. We already showed, that A is regular. Then H satisfies:

H = GF + FHG = A(A−1B) + BH (A−1)HAH (3.11)

= B + BH =

(
2Re(s)I 0

0 0

)
≥ 0.

It remains to show, that i0(A
−1B) = 0. To this end we prove the following lemma:

Lemma 3.2. For Re(s) > 0 the matrix A−1B has no purely imaginary eigenvalues.

Proof. We assume that iλ with λ ∈ �
is eigenvalue of A−1B. In that case ϕ̂(x) = ϕ̌eiλx is a

solution of (3.4) and yields for s = a + iξ

isϕ̌ = (iα − ξ)ϕ̌ = (mλ2 −Mλ + V )ϕ̌. (3.12)

This means, that iα − ξ is an eigenvalue of mλ2 − Mλ + V . But since mλ2 − Mλ + V is - as a

sum of Hermitian matrices - again Hermitian, all its eigenvalues must be real, and therefore α = 0

which is a contradiction.

Conclusion 3.2. For any eigenvalue λ of A−1B, Re(λ) = 0 implies λ = 0. Thus, since A−1B

is regular, we have i0(A
−1B) = 0.

Hence, Lem. 3.1 applies and yields i(A−1B) = i(A). To prove Thm. 3.1, it finally remains to

verify that d eigenvalues of A have positive and d have negative real parts. Therefore we will use

a continuity argument: we consider the matrix

A(ε) :=

(
εM im

−im 0

)
, ε ∈ [0, 1]. (3.13)
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A(0) has d positive and d negative eigenvalues, which are given by

λ0
2k−1 = mk,k and λ0

2k = −mk,k, k = 1, . . . , d. (3.14)

Furthermore for all ε ∈ [0, 1] the matrix A(ε) has no zero eigenvalue (cf. 3.6). Then for ε from zero

to one d eigenvalues of A(ε) are positive and d are negative, since the eigenvalues are continuous

in ε.

Thus, i(A) = (d, d, 0) holds and with Lem. 3.1 follows i(A−1B) = (d, d, 0), if Re(s) > 0, which

finishes the proof of Thm. 3.1.

In this section we derived a transparent boundary condition using the solution of the exterior

problem. It finally remains to discuss the existence and uniqueness of this solution:

Lemma 3.3. (Existence and uniqueness of the solution to the Laplace-transformed exterior prob-

lem).

a) If the solution of the boundary value problem (3.4) with the boundary data

ϕ̂(x = xR) = ϕ̂R, ϕ̂(x = ∞) = 0 (3.15)

exists, it is unique for Re(s) sufficiently large.

b) If the block submatrix PPP1 of P =
(

PPP1 PPP2

PPP3 PPP4

)
is regular, then the solution exists.

Proof. a) To prove uniqueness we assume, that there exist two such solutions of (3.4),(3.15) ϕ̂1

and ϕ̂2. Then the difference ϕ̂ = ϕ̂1 − ϕ̂2 is a solution of (3.4) with homogeneous boundary data.

Multiplying (3.4) with ϕ̂
H from the left and integrating from xR to ∞ yields after integrating by

parts

−
∫ ∞

xR

ϕ̂H
x mϕ̂xdx− i

∫ ∞

xR

ϕ̂HMϕ̂xdx +

∫ ∞

xR

is|ϕ̂|2dx−
∫ ∞

xR

ϕ̂HVϕ̂dx = 0. (3.16)

Taking imaginary parts simplifies this, because the quadratic forms of the Hermitian matrices are

purely real. Furthermore, we denote M = (µk,l)
d
k,l=1 and get

0 = −
∞∫

xR

Re(ϕ̂HMϕ̂x)dx +

∞∫

xR

Re(s)|ϕ̂|2dx

= −
∞∫

xR

d∑

k=1

Re( ¯̂ϕkµk,kϕ̂kx)dx −
∞∫

xR

d∑

k=1

d∑

l=1
l6=k

Re( ¯̂ϕkµk,lϕ̂lx)dx +

∞∫

xR

Re(s)|ϕ̂|2dx

= −1

2

∞∫

xR

d∑

k=1

µk,k∂x|ϕ̂k|2dx −
∞∫

xR

d∑

k=1

d∑

l=k+1

Re( ¯̂ϕkµk,lϕ̂lx + ¯̂ϕlµ̄l,kϕ̂kx)dx +

∞∫

xR

Re(s)|ϕ̂|2dx

=

∞∫

xR

Re(s)|ϕ̂|2dx ≥ 0 for Re(s) > 0,
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because ∂x|ϕ̂k|2 = ¯̂ϕkxϕ̂k + ¯̂ϕkϕ̂kx = 2Re( ¯̂ϕkϕ̂kx) and with partial integration
∫

µk,l
¯̂ϕkϕ̂lx +

∫
µ̄l,k

¯̂ϕlϕ̂kx = 2
∫

Im(µk,l
¯̂ϕkϕ̂lx), since M is Hermitian. From this we conclude ϕ̂ ≡ 0, which is a

contradiction to our assumption.

b) A general solution of (3.5) is given by

(
ν

η

)
(x) = eA

−1
Bxc̃ = PeJxP−1c̃ = PeJxc =

(
PPP1 PPP2

PPP3 PPP4

)(
eJ1x 0

0 eJ2x

)(
c1

c2

)
, x > xR.

(3.17)

To fulfil the decaying condition ϕ̂(x) → 0 (x → ∞) the constant c2 is chosen as zero. Thus the

general solution to (3.4) is given by ϕ̂(x) = PPP1e
J1xc1. The constant c1 can be determined by the

boundary condition ϕ̂(xR) = ϕ̂R, if the matrix PPP1 is regular . Thus, for regular PPP1 the existence

of a solution to the exterior problem is guaranteed.

We confirmed the regularity of PPP1 for the quantum well for s = α + iξ, where α runs from 0.1

to 100 and ξ from −1000 to 1000 each with steps of 1/10.

4 Discrete transparent boundary conditions

We do not discretise equation (3.9) (by a numerical inverse Laplace transformation), but derive

discrete TBCs for a discretisation of (2.3). For the discretisation we choose a uniform grid with the

step sizes ∆x in space and ∆t in time: xj = XL + j∆x, tn = n∆t with j = 0, . . . , J , n = 0, . . . , N .

We discretise (2.3) using the Crank-Nicolson scheme in time and the central differences for the

first and second spatial derivatives. The discrete kp-Schrödinger equation then reads

i
∆x2

∆t
(ϕn+1

j − ϕn
j ) = −∆0

∆x
2

(mj∆
0
∆x
2

ϕ
n+ 1

2

j ) + MSj∆
0ϕ

n+ 1
2

j − ∆0(MH
Sjϕ

n+ 1
2

j ) + Vjϕ
n+ 1

2

j (4.1)

for j = 1, . . . , J − 1 and n = 0, . . . , N with the difference operators

∆0
∆x
2

ϕn
j = ϕn

j+ 1
2

− ϕn
j− 1

2

, (4.2a)

∆0ϕn
j = (∆+ + ∆−)ϕn

j = ϕn
j+1 − ϕn

j−1 (4.2b)

and ϕ
n+ 1

2

j =
ϕ

n+1

j
+ϕ

n
j

2 . With 4+
t we will denote the forward difference in time.

An appropriate discretisation scheme should carry over properties of the continuous equation

to the difference equation. This is the case for the Crank-Nicolson scheme: it conserves the whole-

space l2-norm and thus it is unconditionally stable for the whole-space problem. To see this, we

use (4.1) with summation by parts

∆x2

∆t
4+

t ||ϕn||2l2 = = 2
∆x2

∆t
Im




∞∑

j=−∞

i
(
ϕ

n+ 1
2

j

)H

4+
t ϕn

j




= 2Im




∞∑

j=−∞

(
40

∆x
2

ϕ
n+ 1

2

j

)H

mj40
∆x
2

ϕ
n+ 1

2

j +

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

Vjϕ
n+ 1

2

j (4.3)

+

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

MSj40ϕ
n+ 1

2

j +

∞∑

j=−∞

((
ϕ

n+ 1
2

j

)H

MSj40ϕ
n+ 1

2

j

)H

 = 0,
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because the matrices mj and Vj are Hermitian. Thus, for the whole-space problem the discrete

l2-norm is constant in time.

For the case of a scalar Schrödinger equation Arnold [Arn98] derived a discrete transparent

boundary condition. This DTBC is reflection-free compared to the discrete whole-space solution

and conserves the stability properties of the whole-space Crank-Nicolson scheme. The DTBC

has the form of a discrete convolution. The convolution coefficients are a function of Legendre

polynomials but can be obtained more easily by a three-term recurrence formula. Ehrhardt and

Arnold showed in [EA01], that the imaginary parts of the convolution coefficients are not decaying

and therefore introduced summed coefficients. We will here use an assimilated method: To derive

the DTBC for (4.1) we solve the Z-transformed system of ordinary difference equations in the

exterior domain. Then all its solutions are determined by eigenvalues and eigenvectors, which

can be distinguished into decaying and increasing solutions by the absolute value of the involved

eigenvalue. We obtain the DTBC by claiming, that no influence of increasing solutions exists.

In the exterior space j ≥ J (xJ = xR) the parameter matrices are constant and the Crank-

Nicolson scheme (4.1) simplifies to

i
∆x2

∆t
(ϕn+1

j − ϕn
j ) = −m∆+∆−ϕ

n+1/2
j + i∆xM

1

2
(∆+ + ∆−)ϕ

n+1/2
j + ∆x2Vϕ

n+1/2
j (4.4)

for j ≥ J and n ≥ 0. The Z-transformation given by

Z{ϕn
j } = ϕ̂j(z) :=

∞∑

n=0

z−nϕn
j , z ∈ � , |z| > 1, (4.5)

transforms (4.4) to

2i
∆x2

∆t

z − 1

z + 1
ϕ̂j = −m∆+∆−ϕ̂j + i∆xM

1

2
(∆+ + ∆−)ϕ̂j + ∆x2Vϕ̂j, j ≥ J. (4.6)

Lemma 4.1. If the solution of the Z-transformed exterior problem (4.6) with the boundary data

ϕ̂j=J = ϕ̂J , ϕ̂∞ = 0 (4.7)

exists, it is unique.

Proof. We assume, that there exist two solutions of (4.6), (4.7) ϕ̂1 and ϕ̂2. The difference ϕ̂ =

ϕ̂1 − ϕ̂2 is then a solution of (4.6) with homogeneous boundary data. For this solution ϕ̂ we

consider (4.6) multiplied by ϕ̂H
j from the left and take imaginary parts:

0 = Im


2i

∆x2

∆t

z − 1

z + 1

∞∑

j=J

|ϕ̂j |2 +
∞∑

j=J

ϕ̂H
j m4+4−ϕ̂j (4.8)

−1

2
i∆x

∞∑

j=J

ϕ̂
H
j M

(
4+ + 4−

)
ϕ̂j −∆x2

∞∑

j=J

ϕ̂
H
j Vϕ̂j




= 2
∆x2

∆t
Re

(
z − 1

z + 1

) ∞∑

j=J

|ϕ̂j |2 + Im


−

∞∑

j=J

4−ϕ̂
H
j m4−ϕ̂j

−1

2
i∆x

∞∑

j=J

ϕ̂
H
j M4−ϕ̂j +

1

2
i∆x

∞∑

j=J

(
ϕ̂

H
j M4−ϕ̂j

)H


 ≥ 0,

11



if |z| > 1, (because Re
(

z−1
z+1

)
= |z|2−1

|z+1|2
) and even strictly larger than zero, if

∑∞
j=J |ϕ̂j|2 6= 0. But

this is a contradiction.

Remark 4.1. Analogously to the continuous problem the existence of a solution is guaranteed by

the regularity of the S × S principal submatrix of the matrix of right eigenvectors (cf. Lem. 3.3),

which holds for our example.

We proceed to solve the Z-transformed exterior problem and define ξ̂j = ∆−ϕ̂j to reduce the

order of the difference equation (4.6)

(
i∆x

2 M −m

−I I

)(
∆+ϕ̂j

∆+ξ̂j

)
=

(
∆x22 z−1

z+1
1
∆t iI− ∆x2V −i∆x

2 M

0 −I

)(
ϕ̂j

ξ̂j

)
, (4.9)

i.e.
(

∆+ϕ̂j

∆+ξ̂j

)
= A−1B

(
ϕ̂j

ξ̂j

)
or

(
ϕ̂j+1

ξ̂j+1

)
= (A−1B + I)

(
ϕ̂j

ξ̂j

)
. (4.10)

The regularity of A will follow from Thm. 4.2.

Solutions of (4.6), that are constructed with an eigenvalue λ

of A−1B, are decaying for x → ∞ if |λ+1| < 1 and increasing

if |λ + 1| > 1.
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
����������� Im

Re−1

λ (     )A B λ (     )A B+−
−1

−1

Analogously to Thm. 3.1 we prove a splitting property of A−1B + I:

Theorem 4.2 (Discrete Splitting Theorem). d of the 2d eigenvalues of A−1B + I have an

absolute value larger than unity and d have a smaller absolute value, if |z| 6= 1.

A proof of Thm. 4.2 will be given succeeding to the DTBC at the end of this section.

If the eigenvalues λ1, . . . , λ2d of A−1B split into two commensurate groups, then the solutions

involving those with |λk + 1| < 1 for k = 1, . . . , d decay for j → ∞ and those with |λk + 1| > 1

for k = d, . . . , 2d decay for j → −∞. Thus, we may again split the Jordan form J =
(

J1 0

0 J2

)
of

A−1B + I , J1 containing the Jordan blocks corresponding to solutions decaying for j → ∞ and

J2 those which increase. With the matrix of left eigenvectors P−1 =
(

P1 P2

P3 P4

)
the equation

P−1

(
ϕ̂j+1

ξ̂j+1

)
= P−1(A−1B + I)

(
ϕ̂j

ξ̂j

)
= P−1P

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ϕ̂j

ξ̂j

)

(4.11)

=

(
J1 0

0 J2

)(
P1ϕ̂j + P2ξ̂j

P3ϕ̂j + P4ξ̂j

)

holds and the transformed discrete transparent boundary conditions read

PL
1 ϕ̂1 + PL

2 ξ̂1 = 0, (4.12a)

PR
3 ϕ̂J + PR

4 ξ̂J = 0 (4.12b)

for the left (a) and right (a) boundary respectively.
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Remark 4.3. In the considered example the matrices PR
1 , . . . ,PR

4 and PL
1 , . . . ,PL

4 were regular,

but this is not clear in general.

For regular matrices PR
4 and PL

2 the Z-transformed DTBC can be given in Dirichlet-to-

Neumann form

∆−ϕ̂1 = D̂Lϕ̂1, (4.13a)

∆−ϕ̂J = D̂Rϕ̂J , (4.13b)

where D̂R = −(PR
4 )−1PR

3 and D̂L = −(PL
2 )−1PL

1 . After an inverse Z-transformation the discrete

transparent boundary conditions read

ϕn+1
1 − ϕn+1

0 − D0
Lϕn+1

1 =

n∑

k=1

Dn+1−k
L ϕk

1, (4.14a)

ϕn+1
J − ϕn+1

J−1 −D0
Rϕn+1

J =

n∑

k=1

Dn+1−k
R ϕk

J . (4.14b)

Remark 4.4. Note, that in equation (4.13a) and (4.14a) the left boundary condition is given at

j = 1. Of course, the boundary condition can also be formulated at j = 0 using ξ̂j = ∆+ϕ̂j.

For a scalar Schrödinger equation Ehrhardt and Arnold showed in [EA01] that the imaginary

parts of the coefficients were not decaying but oscillating. Therefore they introduced summed coef-

ficients. These decay rapidly like O(n−3/2). We can give no asymptotic behaviour of the systems’

coefficients. Therefore, we investigate the coefficients for our example further and compute them

numerically (for details see Sec. 5): Their real and imaginary parts are given in Fig. 2 and Fig. 3
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0.6

0 10 20 30 40 50 60 70 80 90 100
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−0.05

0
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0.1

0 50 100 150 200 250 300 350 400 450 500
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15

20
x 10

−3

Figure 2: Typical elements of the coefficient matrix DR: real part of diagonal (left) and off-diagonal

elements (type OD1 centre and OD2 right).

respectively. We observe, that the overall behaviour of the diagonal elements is equivalent to that

in the scalar case: the real parts decay rapidly, but the imaginary parts alternate without visible

decay. This behaviour cannot be found for any off-diagonal element: four off-diagonal elements

show an opposite behaviour: for dn
1,2,d

n
2,1,d

n
3,4 and dn

4,3 - these we will call the OD1-type, the re-

maining off-diagonal elements the OD2-type - the real parts alternate, whereas the imaginary parts

decay rapidly. For the OD2-type elements none of the previous behaviour can be observed. They

have a much smaller absolute value and decay comparatively slowly. The asymptotic behaviour

of the diagonal and four OD1-type elements with alternating imaginary or real parts, suggest the

13



0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

8

10
x 10

−3

Figure 3: Typical elements of the coefficient matrix DR: imaginary part of diagonal (left) and

off-diagonal elements (type OD1 centre and OD2 right).

use of summed convolution coefficients to avoid subtractive cancellation. With ŜL = z+1
z D̂L and

ŜR = z+1
z

D̂R the DTBCs with summed coefficients read

ϕn+1
1 − ϕn+1

0 − S0
Lϕn+1

1 =

n∑

k=1

Sn+1−k
L ϕk

1 − ϕn
1 + ϕn

0 , (4.15a)

ϕn+1
J − ϕn+1

J−1 − S0
Rϕn+1

J =

n∑

k=1

Sn+1−k
R ϕk

J − ϕn
J + ϕn

J−1. (4.15b)
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−0.6

−0.4

−0.2

0

0.2
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0.6

0.8

1

1.2

Figure 4: Elements of the summed coefficient matrix SR: real part of the off-diagonal elements

type OD1 (left) and imaginary part of the diagonal element (right).

That this strategy is successful can be seen in the summed convolution coefficients Sn. The

real and imaginary parts of the formerly oscillating coefficients are given in Fig. 4: for the diagonal

elements and the four OD1-type elements the real parts as well as imaginary parts decay rapidly.

The eight slowly decaying OD2-type elements remain unchanged in their qualitative behaviour.

It remains to prove Thm. 4.2. Therefore, we will first show in Lem. 4.2, that no eigenvalue of

A−1B+I has an absolute value of one. Then we will show the asserted splitting of the eigenvalues

for M = 0 and argue, that due to the continuity of the eigenvalues the border |λ| = 1 cannot be

crossed.

Lemma 4.2. For |z| 6= 1 the matrix A−1B + I has no eigenvalue λ with |λ| = 1.

Proof. Assume that λ = a+bi with |λ| = 1 were an eigenvalue of the discrete problem (4.6). Then

ϕ̂j = λjϕ̂0 is a solution of (4.6). Inserting ϕ̂j = λjϕ̂0 in equation (4.6) yields with g(z) = z−1
z+1 :

i
2∆x2

∆t
g(z)λϕ̂0 = λ

(
−m(a − 1) + M∆xb + ∆x2V

)
ϕ̂0. (4.16)
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Thus, either λ = 0 or equation (4.16) is an eigenvalue equation for the matrix

−m(a − 1) + M∆xb + ∆x2V, which is as a sum of Hermitian matrices again Hermitian, and

has therefore only real eigenvalues. Thus i 2∆x2

∆t g(z) must be real. We examine this expression

further:

g(z) =
z − 1

z + 1
=

|z|2 − 1 + 2i Im(z)

|z + 1|2 . (4.17)

It is obvious, that g(z) ∈ i
�

if and only if |z| = 1.

To understand the eigenvalue-splitting for the general case, i.e. equation (4.6), we shall now

use a perturbation argument and consider the special case M = 0. Then equation (4.6) reads

2i
∆x2

∆t

z − 1

z + 1
ϕ̂j = −m∆+∆−ϕ̂j + ∆x2Vϕ̂j . (4.18)

Exchanging the space index j → −j yields the identical equation. Thus, both problems have

the same solutions and the eigenvalues of A−1B + I are in both cases the same. Since decaying

solutions are increasing for j → −j and vice versa, the eigenvalues must split in d yielding decaying

and d yielding increasing solutions for |z| 6= 1 and j → ∞.

To (4.18) we add the term iε∆x
2 M(∆+ + ∆−)ϕ for 0 ≤ ε ≤ 1. Then Lem. 4.2 shows that

no eigenvalue λ can have an absolute value one. Since these eigenvalues are continuous in ε(cf.

[HJ99a]), d eigenvalues must remain inside the unit circle when ε varies from 0 to 1 and d eigen-

values stay outside.

This finishes the proof of Thm. 4.2.

4.1 Stability

At the beginning of this section we showed that the l2-norm of the whole-space problem is constant

in time. For the interior scheme with the DTBCs the l2-norm is bounded by the l2-norm of the

whole-space problem, because the DTBCs cut off the exterior parts of the solution:

||ϕn||2l2(0,J) ≤ ||ϕn||2l2(−∞,∞) = ||ϕ0||2l2(−∞,∞). (4.19)

Thus the interior scheme with DTBCs constructed from exact convolution coefficients is stable.

Since we have to compute the convolution coefficients numerically, this does not work and we

consider (4.1) for j = 0, . . . , J , then in the computation of (4.3) there remain some boundary

terms due to the summation by parts rule:

∆x2

∆t
4+

t ||ϕn||2l2 = Im
(
(ϕ

n+ 1
2

0 )HmL4+ϕ
n+ 1

2

0 + (ϕ
n+ 1

2

0 )HMH
SLϕ

n+ 1
2

0

+(ϕ
n+ 1

2

J )HmR4−ϕ
n+ 1

2

J + (ϕ
n+ 1

2

J )HMH
SRϕ

n+ 1
2

J

)
. (4.20)

As differences we rather consider 4+ and 4− than 40
∆x
2

. This is possible, since at the boundaries

the coefficient matrix m is already constant. Thus, if (4.20) is non-positive the Crank-Nicolson

scheme with DTBCs is stable. Unfortunately, inserting the DTBCs for the differential terms does

not help to show this, because we know too little of the properties of the convolution matrices.

Instead, we will perform a numerical evaluation of the boundary terms and thus numerically test
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Figure 5: Time dependent behaviour of the stability terms of (4.20) at the left and right boundary

the stability for our example: In Fig. 5 we give the terms in (4.20) for the left and right boundary.

We observe, that they keep the correct sign strictly. If we change the initial condition in that way,

that the wave packages travel to the left, i.e. choosing a negative kr, exchanges the behaviour of

the left and right boundary terms.

5 The computation of the convolution coefficients with the

numerical inverse Z-transformation

The Z-transformation (or in the analytical part the Laplace-transformation) is the mighty instru-

ment, which enables us to solve occurring equations and to formulate this kind of transparent

boundary conditions. In the implementation the numerical inverse Z-transformation proved to be

a more subtle problem than every other point including e.g. the calculation of eigenvectors. For

that reason, we will investigate it further.

5.1 Performing Z-transformation with Fourier-transformation

Many mathematical toolboxes contain ordinary transformations, including a (fast) Fourier-trans-

formation as a standard routine. The less common Z-transformation is rarely found. Here, we

will present the easy coherence between both. The Z-transform will be denoted by Z, F is the

discrete Fourier-transform. On the unit circle holds for the finite Z-transform ZN for z = eiϕ

Z(fj) ≈ ZN (fj) =
N∑

j=0

fjz
−j =

N∑

j=0

fje
−ijϕ = F (eiϕ). (5.1)

On a circle with radius r holds

F (reiϕ) =

N∑

j=0

fjr
−je−ijϕ =

N∑

j=0

fjr
−jz−j = ZN (fjr

−j) ≈ Z(fjr
−j). (5.2)

We observe, that applying the inverse Z-transformation not on the unit circle necessitates a

rescaling of the n-th convolution coefficient with rn. For big circles this causes numerical problems.
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5.2 The error of the numerical inverse Z-transformation

In this section we will examine the numerical error caused by the inverse Z-transformation, since

it is the crucial point in the numerical implementation. For the transformation we have to choose a

radius r and a number N of points zk to define the circle on which the transformation is performed.

An intelligent choice of these parameters is essential to achieve good results.

The numerical error can be separated in εapprox the error in the approximation on a finite

number of sampling points and the roundoff error εround. We will inverse Z-transform the function

ˆ̀ (representing either a coefficient d̂s,l or a summed coefficient ŝs,l), yielding the series `n. `N
n

denotes the approximation on a circle with N sampling points. A tilde on top of it indicates that

the roundoff error is considered.

The Z-transformation of {`m} at the sampling points zk reads

ˆ̀
k := ˆ̀(zk) =

∞∑

m=0

`mz−m
k , with zk = re−ik 2π

N . (5.3)

If we assume, that ˆ̀(z) is an analytic function for |z| > R , then the `n are just identical with the

Laurent coefficients of ˆ̀(z) given by

`n =
1

2πi

∮

Sρ

ˆ̀(z)zn−1dz, (5.4)

where Sρ denotes the sphere with radius ρ > R. If we substitute z = ρeiϕ , we obtain

`n =
ρn

2π

∫ 2π

0

ˆ̀
(
ρeiϕ

)
einϕdϕ. (5.5)

Defining Qρ
ˆ̀ = max

0≤ϕ≤2π

∣∣∣ˆ̀
(
ρeiϕ

)∣∣∣ gives the estimate

|`n| ≤ ρnQρ
ˆ̀. (5.6)

The inverse Z-transformation of ˆ̀ can be approximated on N discrete sampling points as follows

`N
n =

1

N
rn

N−1∑

k=0

ˆ̀
k eink 2π

N , n = 0, . . .N − 1. (5.7)

We insert (5.3) in (5.7), change the order of summation and use the orthogonality property

`N
n =

1

N
rn

∞∑

m=0

`mr−m
N−1∑

k=0

e−imk 2π
N eink 2π

N

=
1

N
rn

∞∑

m=0

`mr−m





N , if m = n + jN , j ∈ �

0 , else

= rn
∞∑

k=0

`n+kN r−(n+kN).

This gives

`N
n − `n =

∞∑

k=1

`n+kN r−kN . (5.8)
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Figure 6: Error in one element of the matrix D

Now, we insert inequality (5.6) in (5.8) and sum the geometric series, which yields

|`N
n − `n| ≤ ρnQρ

ˆ̀

∞∑

k=1

(ρ

r

)kN

= ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N (5.9)

for r > ρ > R.

Similar estimates have been derived in the application of quadrature rules to numerical inte-

gration by Lubich, which involve Fourier transformation (cf. [Lub88], [Hen79]).

The other influential error is the roundoff error, that depends on the machine accuracy εm and

the accuracy ε in the numerical computation of ˆ̀
k. For instance, we will use ã = a(1 + εm) as the

computer representation of an exact value a. The roundoff error of the inverse Z-transformation

is calculated from equation (5.7). The main part results from the N fold summation of ˆ̀
k and the

exponential function. ∣∣∣˜̀Nn − `N
n

∣∣∣ ≤ rn (CNεm + ε) Qr
ˆ̀
k

(5.10)

Together with (5.9) the error is bounded by

|˜̀Nn − `n| ≤ ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N + rn ((N + 1)εm + ε) Qr
ˆ̀
k

+ O(ε2
m + εεm). (5.11)

It is possible to show this behaviour of the error roughly in numerical examples. We calculated

the series Dn for the quantum well problem with different accuracy (20, 30 and 40 digits precision)

and considered the solution obtained with 50 digits precision as a reference solution. We used

N = 256 sampling points on the circle. The Euclidean norm of the error is shown in Fig. 6 for

one of the 16 entries in the matrix D. For all entries the error figure has the same behaviour: the

error decreases with growing radius, up to a ropt, after which the roundoff error grows rapidly.

Observe, that the y-axis of the plot is in logarithmic scale. The curves for 20, 30 and 40 digits

coincide for small values of r up to the radius r20
opt, r30

opt respectively.

Since the calculation for a system is rather expensive, it is desirable to predict a radius close

to ropt. For the different entries in D the optimal radius varies but slightly - up to a difference of

0.001.
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Figure 7: Error in one element of the matrix D calculated with 20 digits precision depending on

the number N of sampling points for the inverse Z-transformation

The preceeding figure showed the influence of the mantissa length on the accuracy of the

calculation. Now, we want to show the dependence of the error on the number N of sampling

points. Fig. 7 shows five error curves with 20 digits precision; one for N= 64, 128, 256, 512 and

1024 respectively. The Euclidean norm of the error is summed up to 64. A higher number of

sampling points yields a faster decreasing error, ropt becomes smaller and of course the error at

ropt becomes less. An influence of N on the round off error is hardly discernable. Comparing the

errors at the different N -depending ropt, we notice, that the gain of taking the double number of

points gets less with increasing N . Of course the error cannot become less than the precision in

the calculation of ˆ̀
n.

In Fig. 8 we compare the error in the Euclidean norm with the error bound (5.11), i.e. with

the separate bounds for the approximation error and roundoff error. We assumed ε = 10 · εm and

calculated the maximum of ˆ̀ on all r for simplicity reasons.
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Figure 8: Error and error bounds

We compute the matrices D̂ and Ŝ with MATLAB with an accuracy of ε = 10−16. Thus, with

a radius r = 1.018 and N = 212 sampling points, we achieve an accuracy of 10−8.
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6 The sum of exponentials ansatz and the fast evaluation

of the convolution

In order to reduce the numerical effort due to the boundary condition below that of the overall

scheme, it is necessary to make some kind of approximation. We focus on the convolution coeffi-

cients: But the simple approach to cut off the convolution after a constant number of summands

yields bad results. In this section we will use the approach of Arnold, Ehrhardt and Sofronov

[AES03] to approximate the coefficients s̃n
s,l by the sum of exponentials ansatz. Afterwards we

explain how these approximated convolution coefficients ãn
s,l enable us to fast evaluate the discrete

convolution.

6.1 The sum of exponentials ansatz

The approximation has to be done for each element in S separately. We use for each s, τ = 1, . . . , S

the following ansatz, which uses a sum of exponentials

s̃n
s,τ ≈ ãn

s,τ :=





s̃n
s,τ , n = 0, . . . , ν − 1

L(s,τ)∑
l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . ,

(6.1)

where L(s, τ ) ∈ � and ν ≥ 0 are fixed numbers. The approximation quality of this ansatz depends

on L(s, τ ), ν and the sets {gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , S.

In the following we present a method to calculate these sets for given L(s, τ ) and ν. We

consider the formal power series

fs,τ (x) := s̃ν
s,τ + s̃ν+1

s,τ x + s̃ν+2
s,τ x2 + . . . , for |x| ≤ 1. (6.2)

If the Padé approximation of (6.2)

f̃s,τ (x) :=
n

(L(s,τ)−1)
s,τ (x)

d
(L(s,τ))
s,τ (x)

(6.3)

exists (where the numerator and the denominator are polynomials of degree L(s, τ )−1 and L(s, τ )

respectively), then its Taylor series

f̃s,τ (x) = ãν
s,τ + ãν+1

s,τ x + ãν+2
s,τ x2 + . . . (6.4)

satisfies the conditions

ãn
s,τ = s̃n

s,τ , for n = ν, ν + 1, . . . , 2L(s, τ ) + ν − 1 (6.5)

according to the definition of the Padé approximation rule.

We now consider, how to compute the coefficient sets {gs,τ,l} and {hs,τ,l}.

Theorem 6.1 ([AES03], Theorem 3.1.). Let d
L(s,τ)
s,τ have L(s, τ ) simple roots hs,τ,l with

|hs,τ,l| > 1, l = 1, . . . , L(s, τ ). Then

ãn
s,τ =

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . , (6.6)
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where

gs,τ,l := − n
(L(s,τ)−1)
s,τ (hs,τ,l)(
d
(L(s,τ))
s,τ

)′
(hs,τ,l)

hν−1
s,τ,l 6= 0, l = 1, . . . , L(s, τ ). (6.7)

Remark 6.2. The asymptotic decay of the ãn
s,τ is exponential. This is due to the sum of expo-

nentials ansatz (6.1) and the assumption |hs,τ,l| > 1, l = 1, . . . , L(s, τ ).

The above analysis permits us to give the following description of the approximation to the

convolution coefficients by the representation (6.1) if we use a [L(s, τ )−1|L(s, τ )] Padé approximant

to (6.2): the first 2L(s, τ ) + ν − 1 coefficients are reproduced exactly, see (6.5); however, the

asymptotic behaviour of s̃n
s,τ and ãn

s,τ (as n → ∞) differs strongly (algebraic versus exponential

decay).

We note that the Padé approximation must be performed with high precision (2L(s, τ )−1 digits

mantissa length) to avoid a ‘nearly breakdown’ by ill conditioned steps in the Lanczos algorithm

(cf. [BB97]). If such problems still occur or if one root of the denominator is smaller than 1 in

absolute value, the orders of the numerator and denominator polynomials are successively reduced.

In our numerical test case we started with L(s, τ ) ≡ 30 and except from two outlier values the

finally reached values of L(s, τ ) were between 25 and 30. Fig. 9 shows the error |s̃n
s,τ − ãn

s,τ | versus

n for the outlier with L(1, 2) = 15 for the imaginary part of s̃n
1,2 (left) and with L(2, 2) = 30 for

the real part of s̃n
2,2 (right). Observe, that both plots are in logarithmic scale. Clearly, the error

increases significantly for n > 2L(s, τ ) + 1.
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Figure 9: Error |s̃n
s,τ − ãn

s,τ | versus n: imaginary part for s = 1, τ = 2 (left) and real part for

s = τ = 2 (right)

6.2 The fast evaluation of the approximate convolution

Now we describe the fast evaluation of the discrete approximate convolution. The convolution

C(n+1)
s,τ (u) :=

n+1−ν∑

k=1

ãn+1−k
s,τ uk

τ,J , (6.8)

with

ãn
s,τ :=

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . (6.9)
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can be calculated efficiently by a simple recurrence formula:

Theorem 6.3 ([AES03], Theorem 4.1.).

C(n+1)
s,τ (u) =

L(s,τ)∑

l=1

C
(n+1)
s,τ,l (u) (6.10)

with

C
(n+1)
s,τ,l (u) = h−1

s,τ,lC
(n)
s,τ,l + gs,τ,lh

−ν
s,τ,lu

n+1−ν
τ,J , n = ν, ν + 1, . . . (6.11)

C
(ν)
s,τ,l(u) ≡ 0

Finally, we summarise the above method to evaluate approximate DTBCs:

Step 1: For each s, τ choose L(s, τ ) and ν and calculate the exact convolution coefficients s̃n
s,τ for

n = 0, . . . , 2L(s, τ ) + ν − 1.

Step 2: For each s, τ use the Padé approximation (6.3) for the series (6.4) with ãn
s,τ = s̃n

s,τ , for

n = ν, ν+1, . . ., 2L(s, τ )+ν−1 to calculate the sets {gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , S

according to Theorem 6.1.

Step 3: Implement the recurrence formulas (6.10), (6.11) to calculate the approximate convolutions.

7 Numerical results

In this section we present the numerical results for simulating the transient behaviour of the

quantum well with the data of Sec. 2.1. Fig. 10 shows the time dependent behaviour of the first

two components ϕ1,j (solid) and ϕ2,j (dashed). We concentrate on the first two components,

since there is less mass in component three and four. The initial Gaussian wave packet (2.4) (in

the second component) moves to the right and fragments in two. When the faster wave packet

reaches the first barrier, it is partly reflected and partly transmitted. With advancing time some

part of the density accumulates between the barriers and is slowly transmitted through the second

barrier, then leaving the domain of computation. The part of the density, which is reflected at the

first barrier moves on to the left and after a time, where the wave packages superpose each other,

it moves again in form of a Gaussian wave package to the left boundary of the computational

domain. The slower wave package seems not to recompose smoothly.

In Fig. 11 we present the relative `2–error eL(t) = ‖ϕ − ϕa‖2/‖ϕ(., 0)‖2, where ϕa denotes

the approximate solution obtained with the approximated DTBCs. ϕ is the solution calculated

with exact DTBCs. In our example we used L(s, τ ) = 30 initially. One observes that the error is

increasing (due to the interaction with the potential) but still remains after 1000 time steps below

6 · 10−3. The zoomed region shows the l2-error of the solution for the first 60 time steps, where

the upper bound is 10−5.
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Figure 10: Time dependent behaviour of ϕ1,j (solid) and ϕ2,j (dashed).
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Figure 11: l2-error of the solution with approximated coefficients

8 Conclusions and perspectives

In this paper we showed the mathematical background for a discrete transparent boundary con-

dition for one-dimensional kp-Schrödinger equations in detail and approximated the DTBC by

a sum of exponentials ansatz. We illustrated by a simple example the quality of these DTBCs.

In a succeeding paper, we will concentrate on the analysis of the tunneling properties of a real

quantum-well structure using this tool and calculating physical parameters as charging and escape

times. Additionally we will be concerned with the stationary case.
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