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Abstract. When simulating isolated resonators, the application of transparent boundary con-
ditions causes the approximated spectrum to be polluted with spurious solutions. Distinguishing
these artificial solutions from solutions with a physical meaning is often difficult and requires a pri-
ori knowledge of the spectrum or the expected field distribution of resonant states. We present
an implementation of the pole condition that distinguishes between incoming and outgoing waves
by the location of the poles of their Laplace transform as transparent boundary condition. This
implementation depends on one tuning parameter. We will use the sensitivity of the computed solu-
tions to perturbations of this parameter as a means to identify spurious solutions. To obtain global
statements, we will combine this technique with a convergence monitor for the boundary condition.
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1. Introduction. The problem of spurious solutions, that is unwanted solutions
that have no physical meaning, has always accompanied the numerical approximation
of resonance problems [16, 2, 3]. For closed resonators, it was overcome by Nédélecs
introduction of edge elements [13], however though these special elements solved the
problem from a practical point of view, the formal reason for their success was only
given much later [4]. When turning from closed resonators with a perfectly conduct-
ing boundary towards open resonators, a new type of spurious solutions is introduced.
These spurious solutions are caused by the application of transparent boundary con-
ditions. Typically their detection requires a priori knowledge of the mode structure or
of the field distribution of resonant states, which for complex resonator structures can
not be taken for granted. We will introduce a method for the detection of the spurious
solutions caused by transparent boundary conditions. We will use the Hardy space
infinite element implementation [14, 12, 8] of the pole condition [18, 19] as transpar-
ent boundary condition and then use the sensitivity towards the perturbation of a
parameter of the pole condition to identify spurious solutions of Helmholtz resonance
problems.

This paper is structured as follows: first we will introduce the pole condition
and discuss our implementation. The second section is devoted to deriving a way of
identifying the spurious solutions within a computed eigenvalue spectrum. Finally we
will give some examples.

2. The Pole Condition. The pole condition defines outward radiating solu-
tions by the location of the poles of their transform with respect to a generalized
distance variable in the complex plane and was developed by F. Schmidt [18, 19]. It
is equivalent to the PML [10] and its correspondence with the Sommerfeld radiation
condition for homogeneous exterior domains was shown by Hohage et al. [9]. In their
review paper [1] Antoine et al. discuss its relation with other concepts for transpar-
ent boundary conditions for the Schrödinger equation. Our approach implements the
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Hardy Space Infinite Element approach [14, 12, 8]. It is based on a Galerkin method in
the Hardy space H+(D) of the complex unit disk. As we will see later in this section,
the approach chosen here does not change the structure of the underlying eigenvalue
problem since it is linear in the resonance frequency ω2. Therefore the eigenvalue
problems that will occur in our implementation can be solved with standard sparse
eigenvalue solvers.

2.1. The Pole Condition in 1D . We will now derive the condition that refer
to as the pole condition. We will start off with a variational formulation of the one-
dimensional Helmholtz equation on an unbounded domain. By dividing the domain
into a bounded interior and an unbounded exterior and restricting the test functions
to a suitable set, we will obtain a formulation that contains the Laplace transforms
of the solutions in the exterior parts. We will then give a derivation of the condition
on the poles of the Laplace transform in terms of Cauchy’s integral formula and a
representation of the resulting path integral by Riemann sums.

Our starting point is the resonance mode setting of the one-dimensional Helmholtz
equation on a possibly unbounded domain Ω ⊆ R:

∂xxu(x) + n(x)2ω2u(x) = 0 for x ∈ Ω. (2.1)

Multiplying with a test function v ∈ H1
loc(Ω), the space of functions that restricted

to a compact subset ΩF ⊂ Ω are in H1(ΩF ), we obtain a weak formulation

∫

Ω

∂xxu(x)v(x) + n(x)2ω2u(x)v(x)dx = 0 (2.2)

for all v ∈ H1
loc(Ω). Splitting Ω into a bounded interior Ωint and an unbounded

exterior Ωext = R\Ωint yields a splitting of the integral and after integrating the
exterior integral by parts we obtain

∫

Ωint

∂xxu(x)v(x) + n(x)2ω2u(x)v(x)dx+ (2.3)

∫

Ωext

−∂xu(x)∂xv(x) + n2
l,rω

2u(x)v(x)dx + u′(x)v(x)|x∈∂Ωext
.

Next we insert the special forms Ωint = [xl, xr] and Ωext = (−∞, xl] ∪ [xr,∞) in the
one-dimensional case into Equation (2.3) and have

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx+ (2.4)

∫

x<xl

−∂xu(x)∂xv(x) + n2
l ω

2u(x)v(x)dx + u′(xl)v(xl)+

∫

x>xr

−∂xu(x)∂xv(x) + n2
rω

2u(x)v(x)dx − u′(xr)v(xr) = 0 ∀v ∈ H1
loc(Ω).

Since it is sufficient to test against all functions v in a dense subset of H1
loc(Ω),

we will restrict the set of test functions for the exterior part to:

vl(x) = ce−s(xl−x) for x < xl,ℜ(s) > 0, c ∈ C and (2.5)

vr(x) = ce−s(x−xr) for x > xr ,ℜ(s) > 0, c ∈ C. (2.6)
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After a further restriction to those functions with c = 1 and a coordinate trans-
form, Equation (2.4) reads:

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx (2.7)

+

∫

x>0

∂xu(−x+ xl)se
−sx + n2

l ω
2u(−x+ xl)e

−sxdx + u′(xl)

+

∫

x>0

∂xu(x+ xr)se
−sx + n2

rω
2u(x+ xr)e

−sxdx+ u′(xr).

The last two integrals are the Laplace transform of the Helmholtz equation in the
left and right exterior domains:

Definition 2.1. The Laplace transform L{f(t)}(s) of a function f : R+ → C is

L{f(t)}(s) :=
∫ ∞

0

e−stf(t)dt.

So renaming the solution in the left and right hand side exterior domain uext,l(x)
and uext,r(x) respectively, we can rewrite Equation (2.7) in terms of L{∂xuext,l},
L{∂xuext,r}, L{uext,l} and L{uext,r}:

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx (2.8)

+ sL{∂xuext,l}(s) + n2
l ω

2L{uext,l}(s) + u′(xl)

+ sL{∂xuext,r}(s) + n2
rω

2L{uext,r}(s) + u′(xr).

A central result of the Laplace transform is the Laplace transform of ∂xu(x). It
can be obtained by integration by parts and states that

L{∂xu}(s) = sL{u}(s)− u(0). (2.9)

We can now rewrite Equation (2.8) using Equation (2.9):

0 =

∫ xr

xl

−∂xu(x)∂xv(x) + n(x)2ω2u(x)v(x)dx (2.10a)

+ s2L{uext,l}(s)− suext,l(xl) + n2
l ω

2L{uext,l}(s) + u′(xl) (2.10b)

+ s2L{uext,r}(s)− suext,r(xr) + n2
rω

2L{uext,r}(s) + u′(xr). (2.10c)

While equation (2.10a) is the variational formulation for the solution in Ωint, Equa-
tions (2.10b) and (2.10c) are the Laplace transforms of the original Helmholtz equation
in the two sub-domains of Ωext.

We will now construct transparent boundary conditions by imposing conditions
on these Laplace transforms L{uext,l,r}(s). For an arbitrary function u(x), its Laplace
transform L{u}(s) as a function of s has some singularities in the complex plane. By
Cauchy’s integral formula

L{u}(s) = 1

2πi

∮

γ

L{u}(τ)
τ − s

dτ, (2.11)
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where γ is a path enclosing the singularities of L{u}. Now we insert the Riemann
sum for the path integral in (2.11) with an arbitrary parametrization of γ:

L{u}(s) = lim
N→∞

N∑

j=1

αj(N,L{u}(τj))
1

τj − s
. (2.12)

In Equation (2.12), αj(N,L{u}(τj)) can be seen as weights and the entire sum may
thus be reinterpreted as superposition of (τ − s)−1. Transforming these summands
back into the space domain, we get the correspondence (τ − s)−1 ↔ − exp(τx).
Depending on the location of τ in the complex plane C, − exp(τx) is moving to the
left/exponentially increasing or moving to the right/exponentially decreasing. So for
each disjoint subset of Ωext, the complex plane can be divided into the two regions

Cin := {τ ∈ C : − exp(τx) is incoming or not oscillating} and

Cout := {τ ∈ C : − exp(τx) is outward radiating}.

This enables us to split the path γ from (2.11) into two paths γin ⊂ Cin and
γout ⊂ Cout that each enclose all the singularities of L{u}(s) in the respective re-
gion. Equation (2.11) then decomposes as follows:

L{u}(s) =
∮

γin

L{u}(τ)
τ − s

dτ +

∮

γout

L{u}(τ)
τ − s

dτ. (2.13)

Requiring that u is outward radiating is equivalent to requiring that∮
γin

L{u}(τ)
τ−s dτ is zero. This corresponds to the condition that L{u}(s) is analytic

in Cin. The splitting into Cin and Cout is possible whenever it is possible to dis-
tinguish between incoming and outgoing solutions, that is when the problem is not
degenerated. We are now in the position to summarize the method in the following
definition:

Definition 2.2. A function u ∈ H1(Ω) is said to obey the pole condition if the

complex continuation of its Laplace transform L{u}(s) is analytic in Cin.

Now we will apply this to the one-dimensional Helmholtz resonance problem.
Suppose that uint is given inside Ωint = [xl, xr]. Since the following considerations
are the same for the left and right exterior domains, we will take into account only
the right hand component of the exterior domain. Then the equation for L{uext,r}(s)
derived from Equation (2.10c) is

0 = s2L{uext,r}(s)− suext,r(xr) + n2
rω

2L{uext,r}(s) + u′(xr)

⇔L{uext,r} = (s2 + n2
rω

2)−1(suext,r + u′(xr)).

For fixed ω, (s2 + n2
rω

2) has two roots s+/− = ±i
√
n2
rω

2, so we can obtain a partial
fraction decomposition of L{uext,r}:

L{uext,r}(s) =(s+ s+)
−1 1

2
(uext,r(xr) + u′(xr))+

(s+ s−)
−1 1

2
(uext,r(xr) + u′(xr)) . (2.14)

Transforming the summands in Equation (2.14) back to the space domain, they cor-
respond to

e−s+x((uext,r(xr) + u′(xr))/2) and e
−s

−
x((uext,r(xr) + u′(xr))/2).
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Depending on the location of s+/− in the complex plane, they are incoming, expo-
nentially increasing, outgoing or exponentially decreasing. For the left boundary we
can obtain a similar splitting by the same arguments.

2.2. Implementation. We will now derive an implementation of the pole con-
dition that fits into the finite element context. The outline of what follows next is:

1. Define a mapping Ps0 := Cin → D, obtain a mapping H−(Ps0) → H+(D).
2. Reformulate the pole condition in terms of these function spaces.
3. Approximate a function in H+(D) with a power series to obtain a discrete

formulation.
4. Choose a test-function for the exterior domain such that the previous formu-

lation can be embedded within a finite element context.
5. Derive the local element matrices this yields for each component of the exte-

rior domain.

For connecting the half space Ps0 := {z ∈ C : ℜ(z/s0) ≤ 0} below the line connecting
0 and is0 with the unit disc, we use the Möbius transform and its inverse, see Fig. 2.1:

Ms0(s) = s̃ :=
s+ s0
s− s0

and M−1
s0 : s̃→ s = s0

s̃+ 1

s̃− 1
. (2.15)

The complex parameter s0 determines the position of the half-space and acts as a
tuning parameter. It will be used to identify the spurious modes of the resonance
problem at a later point. Since we require L{u}(s) to be analytic in Cin, we can
use the property that an analytic function can be expanded into a power series that
converges inside some ball to obtain a formulation of the pole condition that can be
implemented. Ms0 maps the infinite point to 1 and s0 to zero, thus an approximation
of L{uext} ◦Ms0 by an power series expansion will be best near s0. So choosing s0
in the region where one expects the resonances of interest to be located is typically a
good choice.

s0

is0

inω

−inω

ℜ(s)

ℑ(s)

Ps0

ℜ(s̃)

ℑ(s̃)

1

D

Ms0(s0) = 0

0

Ms0(s) =
s+s0
s−s0

M−1
s0 (s̃) = s0

s̃+1
s̃−1

Fig. 2.1. The Möbius transform Ms0 and its inverse.

In order to be able to give a formal definition of the pole condition in the setting
that is fit for implementation, we will have to give some definitions of the function
spaces on Ps0 and D.

Definition 2.3. As before let Ps0 := {z ∈ C : ℜ(z/s0) ≤ 0} be the half space

below the line connecting 0 and is0. The Hardy Space H−(Ps0) is the space of all
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functions u that are holomorphic in Ps0 such that

∫

R

|u(s0x− s0iǫ)|dx

is uniformly bounded for ǫ > 0.
Let D = {z ∈ C : |z| < 1} be the open unit disc in C. The Hardy Space H+(D) is the

space of all functions u that are holomorphic in D such that

∫ 2π

0

|u(reit)|2dt

is uniformly bounded for r ∈ [0, 1].
Since u in both parts of Definition 2.3 are uniformly bounded, there exist L2

functions on the boundary of the domains that are uniquely defined by u and in turn
uniquely define u. This allows us to identify functions in the Hardy Spaces H−(Ps0 )
and H+(D) with their boundary functions in L2(Ps0) or L

2(S1) respectively.
The Möbius transform does not only connect Ps0 andD, it also forms a connection

between the function spaces H−(Ps0 ) and H
+(D):

f ∈ H−(Ps0) → H+(D) ∋ (Ms0f)(s̃) := f
(
M−1

s0 (s̃)
) 1

s̃− 1
. (2.16)

We can now reformulate the pole condition from Definition 2.2 in terms of the function
spaces from Definition 2.3:

Definition 2.4. Let s0 ∈ C with ℜ(s0) > 0. Then a solution to Equation (2.1)
is said to obey the pole condition and is called outgoing if Ms0L{uext}(s̃), the Möbius

transform Ms0 of the holomorphic extension of the Laplace transform of the exterior

part, lies in H+(D).
We can use Equation (2.16) to define LD, the Laplace transform on the unit disc

D. Since this can be done in the same way for both uext,l and uext,r we will give the
formulation only for the right exterior domain.

LD{uext,r}(s̃) := L{uext,r}
(
M−1

s0 (s̃)
) 1

s̃− 1
. (2.17)

Since we require the Laplace transform to be analytic in the unit disc, it can be
expanded into a power series, LD{uext}(s̃) =

∑∞
k=0 aks̃

k. Hence

L{uext,r}
(
M−1

s0 (s̃)
)
= (s̃− 1)

∞∑

k=0

aks̃
k. (2.18)

We will now describe the implementation of a transparent boundary condition based
on the pole condition within a finite element context for the one-dimensional problem
in some detail. The discretization for higher space dimensions is typically done via
Cartesian products and will be detailed in the next section.

As before we will use ansatz functions that directly yield the Laplace transform in
the exterior domain Ωext. These ansatz functions are called “boundary exp-elements”
and consist of the standard interior element coupled with a complex exponential
function that will result in a formulation of the Laplace transform in the exterior.
Such an element is sketched in Fig. 2.2 for a linear discretization in the interior.
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xr − h xr
x

Fig. 2.2. Exp-element for the right hand side boundary with first order discretization in the
interior.

The boundary exp-element test function for polynomial degree p = 1 in the
interior at the right artificial boundary xr is given by

ψ(r)
s (x) =

{
e−s(x−xr) : x ≥ xr,
x−(xr−h)

h : xr − h ≤ x ≤ xr.
(2.19)

The exp-element ψ
(r)
s (x) is not one function but a family of functions parametrized

by s ∈ C+. They are globally continuous by definition and their support is infinite:

supp
(
ψ
(r)
x

)
= [xr − h,∞). By using ψs(x) as test function in the variational formu-

lation (2.2), we obtain

0 =

∫

R

−∂xxuint(x)ψs(x) + ω2n(x)2uint(x)ψs(x)dx

Due to the definition of ψs(x) and assuming that n(x) ≡ ni for x ∈ [xr − h, xr] and
n(x) ≡ nr for x > xr, after integration by parts we obtain:

0 =−
∫ xr

xr−h

∂xuint(x)
1

h
dx+ ω2n2

i

∫ xr

xr−h

uint(x)
x− (xr − h)

h
dx

+ s (sL{uext,r}(s)− uext,r(xr)) + ω2n2
rL{uext,r}(s). (2.20)

The boundary Neumann terms occurring due to the integration by parts are here
given in weak form in the first integrals. We have now obtained L{uext,r} but this
does not yield a discrete formulation since we lack a convenient orthonormal basis for
H−(Ps0). To remedy this deficit, we will transform Equation (2.20) to H+(D) by
applying (2.17) and inserting s̃ as defined in Equation (2.15):

0 =−
∫ xr

xr−h

∂xuint(x)
1

h
dx+ ω2n2

i

∫ xr

xr−h

uint(x)
x− (xr − h)

h
dx

+s0
s̃+ 1

s̃− 1

(
s0
s̃+ 1

s̃− 1
(s̃− 1)LD{uext,r}(s̃)− uext,r(xr)

)

+ω2n2
r(s̃− 1)LD{uext,r}(s̃). (2.21)

The next step is to insert a series expansion for LD{uext,r}(s̃). However, for ease
of implementation we will not use the direct power series approximation from Equa-
tion (2.18) but reformulate it. To obtain an easy formulation for the coupling of the
transformed exterior to the interior problem, we use Equation (2.14) to reformulate:

L{uext,l,r}(s) =
uint(xl,r)

s− inl,rω

Ms0−−−→ LD{uext,l,r}(s̃) =
uint(xl,r)

s0(s̃+ 1)− inl,rω(s̃− 1)
.

(2.22)
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If we would attempt to do a power series approximation of Equation (2.22), the
boundary degree of freedom uint(xl,r) would couple with each degree of freedom in
the exterior. In order to obtain a local coupling, we note that LD{uext,l,r}(1) =
uint(xl,r)/2s0. To take advantage of this fact, we now decompose

LD{uext,l,r}(s̃) =
1

2s0

(
uint(xl,r) + (s̃− 1)

2s0LD{uext}(s̃)− uint(xl,r)

s̃− 1

)
. (2.23)

Inserting the series representation (2.18) and rescaling its coefficients we have

LD{uext,l,r}(s̃) =
uint(xl,r)

2s0
+ (s̃− 1)

1

2s0

∞∑

k=0

ãks̃
k. (2.24)

Inserting (2.24) into Equation (2.21), we get for the right hand side boundary

0 =−
∫ xr

xr−h

∂xuint(x)
1

h
dx+

∫ xr

xr−h

uint(x)
x − (xr − h)

h
dx (2.25a)

+ uint(xr)
s0
2
(s̃+ 1) +

s0
2
(s̃+ 1)2

∞∑

k=0

ãks̃
k (2.25b)

+ ω2n2
r

(
uint(xr)

1

2s0
(s̃− 1) +

1

2s0
(s̃− 1)2

∞∑

k=0

ãks̃
k

)
. (2.25c)

In order to obtain the local element matrix for the exp-element, we sort (2.25a)-
(2.25c) by powers of s̃, compare coefficients and truncate by setting ak = 0 for k ≥ L:

s̃0 : 0 = −
∫ xr

xr−h

∂xuint(x)dx + ω2n2
i

∫ xr

xr−h

uint(x)
x − (xr − h)

h
dx

+
s0
2
(uint(xr) + ã0)− ω2n2

r

1

2s0
(uint(xr)− ã0) (2.26a)

s̃1 : 0 =
s0
2
(uint(xr) + 2ã0 + ã1)− ω2n2

r

1

2s0
(−uint(xr) + 2ã0 − ã1) (2.26b)

s̃k : 0 =
s0
2
(ãk−2 + 2ãk−1 + ãk)− ω2n2

r

1

2s0
(−ãk−2 + 2ãk−1 − ãk)

2 ≤ k ≤ L. (2.26c)

Collecting these degrees of freedom, we get the following local element L×L-matrices
for the exterior part of the infinite exp-element:

Aloc
ext = s0

1

2




1 1 0 · · ·
1 2 1 0 · · ·
0 1 2 1 0 · · ·

. . .
. . .

. . .


 (2.27)

and

Bloc
ext = n2

l,r

1

2s0




1 −1 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·

. . .
. . .

. . .


 . (2.28)
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The first degree of freedom in these local element matrices is uint(xl,r) that is common
to the interior and the exterior solution and thus provides the coupling. The integral
terms occurring for s̃0 are the weak formulation of the Neumann data and can be
assembled together with the interior degrees of freedom. Discretization of Ωint with
normal finite elements yields a sparse eigenvalue problem with mass matrix Aint,
system matrix Bint and vector of unknowns uint:

(
Aint − ω2Bint

)
uint = 0. (2.29)

Combining the degrees of freedom ãk in the exterior with the degrees of freedom
uint in the interior and collecting them into one vector of unknowns u, we arrive at a
generalized sparse eigenvalue problem (A−ω2B)u = 0. Using linear finite elements in
the interior and first order exp-elements in the exterior, A and B have the structure
as sketched in Fig. 2.3.

A =

Aint

Aloc
ext,l

Aloc
ext,r

Fig. 2.3. Structure for sparse matrix A for a one-dimensional Helmholtz resonance problem.
B has the same structure with coupling in only one interior degree of freedom.

In order to insert the exterior degrees of freedom into the global matrices A and
B, we need a mapping P that maps the local degrees of freedom of a component of
the exterior domain to the global degrees of freedom. If we call the mapping for the
left hand exterior domain degrees of freedom Pl and the mapping for the right hand
exterior domain degrees of freedom Pr, the N ×N matrices P⊤

l A
loc
ext,lPl, P

⊤
r A

loc
ext,rPr,

P⊤
l B

loc
ext,lPl and P

⊤
r B

loc
ext,rPr are the contributions of the left and right exterior domain

to the global system matrices A and B, together they give the exterior parts Aext and
Bext of A and B:

Aext = (P⊤
l A

loc
ext,lPl + P⊤

r A
loc
ext,rPr) and (2.30)

Bext = (n2
l P

⊤
l B

loc
ext,lPl + n2

rP
⊤
r A

loc
ext,rPr) (2.31)

2.3. Alternative Approach: Variational Formulation.

T(−)

(
f0
F

)
:=

1

2
(f0 + (s̃− 1)F (s̃)) (2.32)

for (f0, F )
⊤ ∈ C×H+(D) where f0 is the boundary degree of freedom. Next we will

make use of the identity
∫ ∞

0

f(τ)g(τ)dτ =
−s0
π

∫

S1

LD{f}(z)LD{g}(z)dz. (2.33)

A full formal proof of this equality uses properties of the Fourier transform and
can be found at [12, Lemma 5.3] and [8, Lemma A.1]. Substituting A(F,G) :=
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1
2π

∫
S1 F (z)G(z)d|z| for F,G ∈ H+(D) for brevity, Equation (2.33) reads

∫ ∞

0

f(τ)g(τ)dτ = −2s0A(LD{f},LD{g}). (2.34)

This holds for uext and suitable test functions vext as well as for the derivatives u′ext
and v′ext. In order to obtain simple formulas for the derivatives u′ext and v

′
ext, we again

use the basic property of the Laplace transform

L{f ′}(s) = sL{f}(s)− f0. (2.35)

By applying the Möbius transform to Equation (2.35), we have

Ms0L{f ′}(s̃) = s0
s̃+ 1

s̃− 1
LD{f}(s̃)− f0

s̃− 1

=
1

2
(f0 + (s̃+ 1)F (s̃))

(
with F (s̃) =

2s0LD{f}(s̃)− f0
s̃− 1

)

=: T(+)

(
f0
F

)
(2.36)

Now we are able to deduce from the variational formulation (2.2) and the iden-
tity (2.34) a variational formulation in H1(Ωint)×H+(D):

B

((
uint
U

)
,

(
vint
V

))
= 0 (2.37)

with

B

((
uint
U

)
,

(
vint
V

))
:=

∫

Ωint

u′int(x)v
′
int(x)− n(x)2ω2uint(x)vint(x)dx

−2s0A

(
T(+)

(
u0
U

)
,T(+)

(
v0
V

))
− 2n2ω2

s0
A

(
T(−)

(
u0
U

)
,T(−)

(
v0
V

))
.

Equation (2.37) is a variational formulation for (uint, U)⊤ ∈ H1(Ωint) × H+(D)
where H1(Ωint) is the Sobolev space of weakly differentiable functions in Ωint. For
the trigonometric monomials tk(z) := exp(ikz), A(tj , tk) = δj,k. Thus, the implemen-
tation of the exterior part of B is reduced to the implementation of the two operators
T+ and T(−) : C×H+(D) → H+(D).

If the ansatz space {t0, t1, ..., tL} is used for H+(D), these operators can be dis-
cretized by two matrices:

T ±
L :=

1

2




1 ±1
1 ±1

. . .
. . .

1 ±1
1



. (2.38)

The implementation of
∫∞

xr
∂xuext(x)∂xvext(x)dx is then done by the simple matrix

matrix multiplication 2s0T (+)⊤
L T (+)

L and the implementation of
∫∞

xr
uext(x)vext(x)dx

can be rephrased as 2
s0
T (−)⊤
L T (−)

L . These matrices are easily verified to correspond
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to Aloc
ext and B

loc
ext that were derived in the previous section. However it will be useful

in the next section to have the discrete correspondence of T (−)
L to LD{uext}(s̃) and

of T (+)
L to LD{∂xf}(s̃).
In terms of T ±

L , we can rewrite the equations for the exterior degrees of freedom,
Equation (2.30) and Equation (2.31) as

Aext = 2s0P
⊤
l (T (+)⊤

L T (+)
L )Pl + 2s0P

⊤
r (T (+)⊤

L T (+)
L )Pr and (2.39)

Bext =
2n2

l

s0
P⊤
l (T (−)⊤

L T (−)
L )Pl +

2n2
r

s0
P⊤
r (T (−)⊤

L T (−)
L )Pr. (2.40)

As before Pl and Pr are L×N matrices mapping the local degrees of freedom for the
exterior domain to the global degrees of freedom.

2.4. Generalization to Higher Space Dimensions. The steps towards an
extension of the method to two-dimensional space:

1. Subdivide the exterior domain Ωext into trapezoids that have one edge on Γ,
the boundary of Ωint and one edge infinitely far from it,

2. Map these trapezoids onto a reference strip, to obtain a coordinate transform,

3. Transform the variational formulation into the new coordinates,
4. Decouple the equations on the reference strip to obtain bounded integrals in

the coordinate alongside the boundary of Ωint and infinite integrals in the
normal direction,

5. Treat bounded integrals with standard quadrature formulas,
6. Transform infinite integrals to H+(D) and use same discretization as in the

one-dimensional case.
The mapping onto the reference rectangle in step 2 will give us coordinates (ξ, η),
where ξ acts as a distance variable that measures the distance in the outward nor-
mal direction of Ωint. Using this mapping we can transform the integrals in the
variational formulation of our equation on a trapezoid onto a semi-infinite reference
rectangle [0, 1]× [0,∞). Using Fubini’s theorem, we can decouple the integrals on the
reference strip in step 4. However, after decoupling the infinite integrals will contain
multiplication with the integration variable ξ alongside the test and ansatz functions
and their gradients in the integrand. This is a situation that was not covered before
and makes step 6 more involved than the one-dimensional equivalent. It necessitates
the definition of a new operator D which we will derive at the end of this section.
Together with the operators T(+) and T(−) from the previous section, we will then
be able to express all the integral expressions that appear in our formulation. We will
also give the discrete form DL of D when using the trigonometric monomials as basis

for H+(D). Together with T (+)
L and T (−)

L defined in the previous section, this will en-
able us to discretize all the integrals occurring in the two-dimensional implementation
of the pole condition.

As described by Ruprecht et al. [17] and Nannen and Schädle [14], the basic idea
for an implementation in higher space dimensions is to use tensor product elements.
Equation (2.1) for higher space dimensions takes the form

∆u(x) + n(x)2ω2u(x) = 0 for x ∈ Ω (2.41)

where Ω ⊆ Rn, n ∈ {2, 3}. Again, Ω is assumed to be unbounded and we divide the
domain of interest into a bounded interior Ωint and an unbounded exterior part Ωext.
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Our approach is to assume a standard boundary condition at ∂Ω and the pole condi-
tion as radiation condition for the generalized radial part of u. An arbitrary convex
polygon P is used to split the domain into Ωint := Ω ∩ P and Ωext := Ω\P . Ωint and
Ωext share the common boundary Γ := ∂P . While in the interior, H1(Ωint) is treated
with standard finite elements, we apply a segmentation of Ωext into infinite trapezoids
in the two-dimensional case and infinite prismatiods in the three-dimensional case, see
Fig. 2.4. In order for such a segmentation to be valid, we require n(x) to be constant
within each trapezoid or prismatoid. See [11, 19] for details on obtaining such a
segmentation. We will stick to the two-dimensional case in the following paragraphs.

For the implementation we first need an affine bilinear mapping between a refer-
ence strip and each trapezoid, see Fig. 2.4. This mapping is a composition of three
mappings, a transformation T : (ξ, η) → (x, y) that takes the reference strip to the
right coordinate system, stretches and distorts it appropriately. T is followed by a
rotation R around (0, 0) and a shift S : (x, y) → (x, y) + P1.

x

x

yy

ξ

η

hξ

hη

ab

TS ◦R

P1

P2

P3

P4

P 1 P 2

P 3P 4

(0, 0) (1, 0)

(1, 1)(0, 1)

Fig. 2.4. Mapping of the reference strip to an trapezoid. We have T (0, 0) = P 1, T (0, 1) = P 2,
T (1, 0) = P 4 and T (1, 1) = P 3 and R(P i) = Pi for i = 1, ..., 4.

This mapping is given by

(x, y)= (S ◦R ◦ T )(ξ, η) (2.42)

=
1

‖P2 − P1‖

(
x2 − x1 y1 − y2
y2 − y1 x2 − x1

)(
hηη − bξ + (a+ b)ξη

hξξ

)
+

(
x1
y1

)
.

The Jacobi matrix J of (2.42) and its determinant are

J =

(
hη + (a+ b)ξ −b+ (a+ b)η

0 hξ

)
, |J | = hξ(hη + (a+ b)ξ). (2.43)

Its inverse is

J−1 =

(
1

hη+(a+b)ξ
b−(a+b)η

hξ(hη+ξ(a+b))

0 1
hξ

)
(2.44)

We are now in a position to derive a suitable variational formulation of the exterior
part of our problem. First we will transform the integrals over T onto the reference
rectangle. On T the integrals read:

∫

T

(∇u(x, y)) · (∇v(x, y)) d(x, y) + ω2

∫

T

n(x, y)2u(x, y)v(x, y)d(x, y) = 0

Transforming to the reference rectangle, the test and ansatz function and refractive
index transform as follows: v(x, y) → v̂(ξ, η), u(x, y) → û(ξ, η) and n(x, y) → n̂(ξ, η).
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We can factorize û(ξ, η) = ûξ(ξ)ûη(η) and v̂(ξ, η) = v̂ξ(ξ)v̂η(η). Using this factoriza-
tion, the transformed integrals decouple to independent integrals over ξ and η. Since
the determinant |J | is independent of η, by Fubini’s theorem, we have

n2
i

∫

T

u(x, y)v(x, y)d(x, y) = n2
i

(∫ 1

0

ûη(η)v̂η(η)dη

)(∫ ∞

0

ûξ(ξ)v̂ξ(ξ)|J |dξ
)
. (2.45)

Due to the presence of J−⊤, the situation for the stiffness matrix is more involved.
Inserting the definitions of J and the factorization of u and v yields

∫

T

(∇u(x, y)) · (∇v(x, y)) d(x, y) (2.46)

=

(∫ 1

0

û′η(η)(h
2
ξ + (b − (a+ b)η)2)v̂′η(η)dη

)(∫ ∞

0

ûξ(ξ)v̂ξ(ξ)

hξ(hη + (a+ b)ξ)
dξ

)

+

(∫ 1

0

û′η(η)
b − (a+ b)η

hξ
v̂η(η)dη

)(∫ ∞

0

ûξ(ξ)v̂
′
ξ(ξ)dξ

)

+

(∫ 1

0

ûη(η)
b − (a+ b)η

hξ
v̂′η(η)dη

)(∫ ∞

0

û′ξ(ξ)v̂ξ(ξ)dξ

)

+

(∫ 1

0

ûη(η)v̂η(η)dη

)(∫ ∞

0

û′ξ(ξ)
hη + (a+ b)ξ

hξ
v̂′ξ(ξ)dξ

)
.

Suppose, that the interior Ωint is already discretized with standard finite elements.
Then the integrals alongside Γ, that is the bounded η-integrals, are discretized us-
ing the traces of the finite element basis functions in Ωint on Γ as basis functions in
η-direction, yielding matrices T ext

loc,i,1 to T ext
loc,i,5 in order of their appearance in Equa-

tions (2.45) and (2.46). We will now transform the infinite ξ-integrals to the Hardy
space H+(D) using the techniques presented in the previous section. However, two of
these integrals contain factors (ξ + c) and (ξ + c)−1 for constant c > 0 that appear in
the integrands. These factors are new in the higher-dimensional implementation and
have to be dealt with separately. The next section will sketch a way to discretize the
integrals containing these factors.

Including the argument s of f(s) for clarity, we know from the basic properties

of the Laplace transform that L{sf(s)}(s̃) = −(L{f(s)})′(s̃) and L
{

f(s)
s

}
(s̃) =

∫∞

0 L{f}(σ)dσ. Using these properties, we can derive an operator D : H+(D) →
H+(D) for the factor ξ in Equation (2.46). Taking the equations to H+(D), we can
implicitly define the operator D by

D (Ms0L{f}) (s̃) = Ms0(−(L{f})′)(s̃) = Ms0L{sf}(s̃). (2.47)

For F ∈ H+(D), we can compute

(DF )(s̃) =
(s̃− 1)2

2s0
F ′(s̃) +

s̃− 1

2s0
F (s̃). (2.48)

As in the one-dimensional case, we use the trigonometric monomials tk(z) := exp(ikz)
up to order L as basis of H+(D) then DL, the discrete form of D reads 1

2s0
DL with

the matrix

DL :=




−1 1
1 −3 2

. . .
. . .

. . .

L −2L− 1


 . (2.49)
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A factor (ξ + c)f̂(ξ) in the integrand thus corresponds to the discrete ( 1
2s0

DL +

c id)(LD{f}). For the factors (ξ + c)−1, we use the fact, that they are the inverse of

(ξ + c), hence they can be discretized as
(

1
2s0

DL + c id
)−1

(LD{f}).
We are now in a position to give the matrices that are the discrete implementations

of the infinite ξ-integrals in (2.45) and (2.46):

∫ ∞

0

ûξ(ξ)v̂ξ(ξ)|J |dξ =
∫ ∞

0

ûξ(ξ)v̂ξ(ξ)hξ(hη + (a+ b)ξ)dξ

≈ −2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (−)
L ,

∫ ∞

0

ûξ(ξ)v̂ξ(ξ)

hξ(hη + (a+ b)ξ)
dξ ≈ − 2

s0hξ
T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)−1

T (−)
L ,

∫ ∞

0

ûξ(ξ)v̂
′
ξ(ξ)dξ ≈ −2T (−)⊤

L T (+)
L ,

∫ ∞

0

û′ξ(ξ)v̂ξ(ξ)dξ ≈ −2T (+)⊤
L T (−)

L and

∫ ∞

0

û′ξ(ξ)
hη + (a+ b)ξ

hξ
v̂′ξ(ξ)dξ ≈ −2s0

hξ
T (+)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (+)
L .

Thus, using T ext
loci for the tangetial η-integrals, on the ith prismatoid Ti we have

the following local stiffness matrix Aext
loc,i and mass matrix Bext

loc,i:

Aext
loc,i := T ext

loc,i,2 ⊗
[
−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

2s0
DL

)−1

T (−)
L

]
(2.50)

+T ext
loc,i,3 ⊗

[
(−2)T (−)⊤

L T (−)
L

]
+ T ext

loc,i,4 ⊗
[
(−2)T (+)⊤

L T (+)
L

]

+T ext
loc,i,5 ⊗

[−2s0
hξ

T (+)⊤
L

(
hη id+

a+ b

2s0
DL

)
T (+)
L

]
and

Bext
loc,i := n2

iT
ext
loc,i,1 ⊗

[−2hξ
s0

T (−)⊤
L

(
hη id+

a+ b

s0
DL

)
T (−)
L

]
. (2.51)

If as in the previous sections, Pi denotes the L by N matrix mapping the local
degrees of freedom to global degrees of freedom, we obtain the exterior part Aext and
Bext of the matrices A and B by summing over all trapezoids:

Aext =
∑

Ti

P⊤
i A

ext
loc,iPi and Bext =

∑

Ti

P⊤
i B

ext
loc,iPi. (2.52)

Since each segment in Ωext is treated separately, it is possible to account for unbounded
inhomogeneities such as waveguides. This does not require any further implementation
but can be dealt with by the methods presented here. The exact statement of the
tensor product spaces and the right test functions are quite technical and can be found
in great detail in [8] and [12].

3. Detecting Spurious Solutions. Since our assumption is that spurious so-
lutions are caused by badly converged solutions in the exterior domain, it is likely
that they will respond more strongly to perturbations of this exterior domain than
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the physical solutions. We will make use of these findings by presenting a method for
detecting the spurious solutions within the computed eigenvalue spectrum. Our idea
is to investigate the dependence of the eigenvalues with respect to the pole condition
parameter s0.

Since the reaction of quantities of interest to perturbations is typically determined
by condition numbers, we will first attempt to detect spurious solutions using the
condition numbers of the eigenvalues of the generalized eigenvalue problem. This
does not make use of the fact that we need not deal with an arbitrary perturbation
but with a perturbation that is well-defined. This will allow us to directly compute the
reaction of the eigenvalues to variations of the pole condition parameter s0. Finally
we will investigate the domains of convergence for our method that will allow us to
implement a convergence monitor that gives us regions where the statements derived
in this chapter produce reliable results.

The discretization of a resonance problem with finite elements in the interior and
the pole condition in the exterior leads to a generalized eigenvalue problem (A −
ωB)u = 0 or equivalently (βA − αB)u = 0. The matrix pairs (A,B) that we will
have to deal with are regular, that is there exists a pair 〈α, β〉 that we refer to as
eigenvalue of the problem, such that det(βA − αB) 6= 0. As a consequence, there is
an established perturbation theory which is applicable to our problem [20, 22, 21].
The perturbation theory of our problem would drastically simplify, if we could rewrite
Au = ωBu in the form B−1Au = ωu. Then we would have reduced the generalized
Eigenvalue problem to an ordinary eigenvalue problem, however, since B is singular
or ill-conditioned in our application, this reduction is not possible.

3.1. Condition Numbers and Direct Perturbations. Let (A,B) be a com-

plex matrix pair of order n and (Ã, B̃) := (A +∆A,B +∆B) be the perturbed pair
with perturbations ∆A and ∆B. Then a first order expansion for the eigenvalues of
the perturbed system is given by the literature as follows:

Theorem 3.1. Let u and v be the right and left eigenvectors for the simple

eigenvalue 〈α, β〉 = 〈vHAu,vHBu〉 of the regular matrix pair (A,B). Let (Ã, B̃) =

(A + ∆A,B + ∆B) be the perturbed pair, ε =
√
‖∆A‖22 + ‖∆B‖22 and 〈α̃, β̃〉 be the

perturbed eigenvalue corresponding to 〈α, β〉. Then

〈α̃, β̃〉 = 〈α+ vH∆Au, β + vH∆Bu〉+O(ε2). (3.1)

Proof. A proof can be found e.g. at [21, Theorem 4.12].
This result allows us to compute the relative condition number of an eigenvalue.

First using α = vHAu, β = vHBu, α̃ = α+ vH∆Au and β̃ = β + vH∆Bu, we may
compute the chordal distance X (〈α, β〉, 〈α̃, β̃〉) between 〈α, β〉 and 〈α̃, β̃〉:

X (〈α, β〉, 〈α̃, β̃〉) = |αβ̃ − βα̃|√
|α|2 + |β|2

√
|α̃|2 + |β̃|2

≈ |αvH∆Bu− βvH∆Ax|
|α|2 + |β|2 (3.2)

The numerator in equation (3.2) can be rewritten as

|αvH∆Bu− βvH∆Au| =
∣∣∣∣(α, β)

(
vH∆Bu

−vH∆Au

)∣∣∣∣ ≤ ε‖u‖2‖v‖2
√
|α|2 + |β|2. (3.3)

Inserting equation (3.3) into (3.2), we have

X (〈α, β〉, 〈α̃, β̃〉) . ‖u‖2‖v‖2√
|α|2 + |β|2

ε. (3.4)
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This number acts as relative condition number of the eigenvalue κrel(〈α, β〉). In or-
der to obtain an implementation of this method, we solve the generalized eigenvalue
problem (A − ωB)u = 0 with the standard generalized sparse eigenvalue solver in
Matlab, which is an implementation of the Arnoldi method with spectral deforma-
tion. This produces the spectrum σ(A,B) together with the right eigenvectors. Since
a left eigenvector v satisfies vH(A−ωB) = 0, we can obtain v by solving the hermitian
conjugate of the problem (AH − λBH)v = 0.

Since κrel is a relative condition number, we can expect higher eigenvalues to
have lower condition numbers. This may seem unintuitive from a physical point of
view since the approximation of higher eigenvalues is typically worse for a fixed grid.
However from a purely algebraic viewpoint, this is in good agreement with the notion
relative condition number. This means that lower physical modes may have higher
condition numbers than higher order spurious solutions. In order to obtain a global
criterion for the detection of spurious solutions, we have to compare condition numbers
of eigenvalues that have a similar distance from the origin. We achieve that by re-
scaling our condition numbers with a factor |ω|. However, numerical investigations
showed that the use of condition numbers works for some examples but is generally
unreliable. This is due to the fact, that the condition number is a purely algebraic
feature that disregards all knowledge about the physics of the problem and about the
nature of the perturbation. We will now aim at deriving a condition that is void of
the generality of the condition number but includes the special knowledge about the
kind of perturbation we cause when changing the pole condition parameter s0. A way
to obtain such a direct approximation stems from the backwards error analysis for the
generalized eigenvalue problem [7]: Given the generalized eigenvalue problem, if we
perturb the matrices A and B by ∆A and ∆B, this results in perturbed eigenvalue
∆ω, right eigenvector ∆u and left eigenvector ∆v. Since ∆A and ∆B arise from
a variation of the pole condition parameter s0, we know them explicitly, which will
allow us to compute ∆ω directly.

Lemma 3.2. Let u and v be the left and right eigenvectors for the eigenvalue ω of

the generalized eigenvalue problem (A− ωB)u = 0. Let ∆A and ∆B be perturbations

of A and B. This leads to perturbed eigenvalue ω+∆ω and eigenvectors u+∆u and

v +∆v. Then in first order we can approximate ∆ω by

∆ω =
vH∆Au− ωvH∆Bu

vHBu
+O(ε2). (3.5)

Proof. Using the perturbed left and right eigenvectors arising from a perturbation
of A and B and the perturbed eigenvalue, we rewrite the entire perturbed problem as

(A+∆A)(u +∆u) = (ω +∆ω)(B +∆B)(u+∆u). (3.6)

Next, we expand equation (3.6) and premultiply with vH , the left eigenvector for ω.
Since vHA = ωvHB, we can cancel some of the resulting terms and get

vH∆Au+ vH∆A∆u = ωvH∆Bu+ ωvH∆B∆u (3.7)

+∆ωvHBu+∆ωvHB∆u+∆ωvH∆Bu+∆ωvH∆B∆u.

Isolating ∆ω in (3.7) and neglecting the higher order terms we arrive at the first order
approximation of ∆ω:

∆ω =
v∗∆Au− ωv∗∆Bu

v∗Bu
+O(ε2). (3.8)
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Using the formula for ∆ω, we can directly compute the effect of a perturbation
of the pole condition parameter on an eigenvalue ω ∈ σ(A,B). We know that the
matrices A and B are dependent on s0, the pole condition parameter. Our task is
to find out the perturbed eigenvalue ∆ω for a perturbation ∆s0 of s0. That means,
we need to compute the change in the matrices A and B, ∆A and ∆B. Since only
the entries of the exterior, Aext and Bext, depend on s0, all other entries cancel, if we
compute ∆A and ∆B. We recall that for the one-dimensional case

Aext = 2s0P
⊤
l (T (+)⊤

L T (+)
L )Pl + 2s0P

⊤
r (T (+)⊤

L T (+)
L )Pr and

Bext =
2n2

l

s0
P⊤
l (T (−)⊤

L T (−)
L )Pl +

2n2
r

s0
P⊤
r (T (−)⊤

L T (−)
L )Pr.

(cf. Equations (2.39) and (2.40)) and for the two-dimensional case

Aext =
∑

Ti

P⊤
i A

ext
loc,iPi and

Bext =
∑

Ti

P⊤
i B

ext
loc,iPi.

So for the one-dimensional case, we can directly compute

∆A = 2∆s0

(
P⊤
l (T (+)⊤

L T (+)
L )Pl + P⊤

r (T (+)⊤
L T (+)

L )Pr

)
and

∆B = − ∆s0
s0(s0 +∆s0)

(
n2
l P

⊤
l (T (−)⊤

L T (−)
L )Pl + n2

rP
⊤
r (T (−)⊤

L T (−)
L )Pr

)
.

For the two-dimensional case, we have by the same calculation

∆A = ∆s0
∑

Ti

P⊤
i A

ext,(1)
loc,i Pi −

∆s0
s0(s0 +∆s0)

∑

Ti

P⊤
i A

ext,(2)
loc,i Pi and

∆B = − ∆s0
s0(s0 +∆s0)

n2
i

∑

Ti

P⊤
i B

ext,(−1)
loc,i Pi −

∆s0 (2s0 +∆s0)

(s0 +∆s0)
2
s02

n2
i

∑

Ti

P⊤
i B

ext,(−2)
loc,i Pi.

Again, we will have to introduce a scaling of ∆λ, the quantity we will use to
identify the spurious solutions. However, the scaling we will use differs from the
scaling for the relative condition number. We established in Section 2.2, that the
approximation of the Laplace transform of the exterior solution L{uext} ◦ Ms0 by
an power series expansion will be best near s0. Thus, it is reasonable to expect the
resonances to be more sensitive to perturbations of s0 with increasing distance to the
parameter and the detection to be valid only for a certain region around s0.

3.2. A Convergence Monitor for Resonances. The methods we derived in
the previous sections for the detection of spurious solutions all suffer from the major
drawback that it is not possible to distinguish between solutions that react strongly to
perturbations (i.e. are ill-conditioned) because they are spurious solutions and modes
that correspond to physical solutions but react strongly to perturbations because
their approximation is not good enough in the exterior domain Ωext. In order to
overcome this problem, we will complement the methods from the previous sections
with a convergence monitor. This will give us a region in the complex plane in which
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the eigenvalues are well-converged for our choice of s0 and the number of degrees of
freedom L used in the computation.

First we will analyze the situation in the one-dimensional case. We discard all
other information and just look at one part of the exterior domain. There it holds
that

2s0T (+)⊤
L T (+)

L uext − ω2 2n
2
ext

s0
T (−)⊤
L T (−)

L uext = 0, (3.9)

where uext are the degrees of freedom for the respective part of the exterior domain

and next is the refractive index therein. Inserting the definitions of T (+)
L and T (−)

L

from Equation (2.38), and naming the entries of uext = (z0, z1, . . . zL)
⊤, the matrix

form of Equation (3.9) reads:

s0




1
2

1
2
1
2 1 1

2
. . .






z0
z1
...


− ω2n

2
ext

s0




1
2 − 1

2
− 1

2 1 − 1
2

. . .






z0
z1
...


 = 0.

For l ≥ 3, the matrix equation corresponds to a linear second order recurrence with
coefficients depending on ω2. Its characteristic polynomial is

χω2(z) =

(
s0
2

+ ω2n
2
ext

2s0

)
z2 +

(
s0 − ω2n

2
ext

s0

)
z +

(
s0
2

+ ω2n
2
ext

2s0

)
. (3.10)

The roots of Equation (3.10) solve the recurrence relation and determine the stability
of the solutions. They are z1 = (nextω + is0)(nextω − is0)

−1 and z2 = (nextω −
is0)(nextω+ is0)

−1. The convergence rate of the solution corresponding to zki is given

by |zk+1
i | = κ|zki |, hence κ =

|zk+1

i |

|zk
i |

= |zi|. Clearly it holds that z1z2 = 1, hence, if the

solution corresponding to z1 is asymptotically stable, the solution corresponding to
z2 diverges and vice versa. We can restrict ourselves to investigating the convergence
behavior of the solution connected with z2 which is the outward radiating solution.
In order that the solution converges with a convergence rate 0 < κ < 1, we require
that |z2| = κ, hence |nextω − is0| = κ|nextω + is0|. This can be reformulated

(
nextω

is0
− 1

)(
nextω

is0
− 1

)
= κ2

(
nextω

is0
+ 1

)(
nextω

is0
+ 1

)

By splitting real and imaginary part of nextω/is0, expanding the quadratic terms, di-
viding by 1− κ2 and completing the square, we obtain

[
ℜ
(
nextω

is0

)
− 1 + κ2

1− κ2

]2
+ ℑ

(
nextω

is0

)2

=

(
1 + κ2

1− κ2

)2

− 1. (3.11)

Since (ℜ(a)−b)2+ℑ(a)2 = (ℜ(a)−b)2−(iℑ(a))2 = (ℜ(a)+iℑ(a)−b)(ℜ(a)−iℑ(a)−b),
we can isolate ω in Equation (3.11) and derive the domain C where the series converges
with a convergence rate of κ to be

C =




ω ∈ C :

∣∣∣∣ωnext − is0
1 + κ2

1− κ2

∣∣∣∣ ≤ |is0|

√(
1 + κ2

1− κ2

)2

− 1




 . (3.12)
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We will now generalize to higher space dimensions. In order to obtain a formulation
that we are able to deal with, we will investigate the simpler case where the infinite
edges of the prismatoid are parallel and perpendicular to the boundary of Ωint, that is
a = b = 0 in Equations (2.50) and (2.51). This will give us the simpler local stiffness
and mass matrices

Aext
loc,i = T ext

loc,i,2 ⊗
[−2hξ
hηs0

T (−)⊤
L T (−)

L

]
+ T ext

loc,i,3 ⊗
[
(−2)T (−)⊤

L T (+)
L

]

+T ext
loc,i,4 ⊗

[
(−2)T (+)⊤

L T (−)
L

]
+ T ext

loc,i,5 ⊗
[−2hηs0

hξ
T (+)⊤
L T (+)

L

]
and

Bext
loc,i = n2

iT
ext
loc,i,1 ⊗

[−2hξhη
s0

T (−)⊤
L T (−)

L

]
. (3.13)

Due to the absence of DL, both matrices now have a tridiagonal structure. Moreover,
for our simplified setting the finite integrals T ext

loc,i,3 and T ext
loc,i,4 are zero. Also in order

for our discretization with prismatiods to be valid for the case of parallel infinite
sides, we set hξ = 1, leaving hη, which on the ith prismatoid we will index as hη,i,
to determine the coupling of the two infinite sides of each prismatoid. Putting it all
together, we can give discrete ξ-directional part of the local infinite element stiffness
matrix Aext

loc,i as

Aext
loc,i = T ext

loc,i,2 ⊗
[
(−2)

hη,is0
T (−)⊤
L T (−)

L

]
+ T ext

loc,i,5 ⊗
[
(−2)hη,is0T (+)⊤

L T (+)
L

]
.

and the local infinite element mass matrix Bext
loc,i as

Bext
loc,i = n2

iT
ext
loc,i,1 ⊗

[
(−2)hη,i

s0
T (−)⊤
L T (−)

L

]
.

If we choose finite edge elements to discretize the interior Ωint, then the traces of these
elements on the boundary Γ between Ωint and Ωext are standard one-dimensional
finite elements and T ext

loc,i,1, T
ext
loc,i.2 and T ext

loc,i,5 are the standard one-dimensional finite
element matrices. Using linear finite edge elements in the interior and inserting the
well-known one-dimensional matrices for the boundary integrals, the local infinite
element stiffness matrix Aext

loc,i is

Aext
loc,i =

1

hη,is0



(−2)
[
T (−)⊤
L T (−)

L

]
2
[
T (−)⊤
L T (−)

L

]

2
[
T (−)⊤
L T (−)

L

]
(−2)

[
T (−)⊤
L T (−)

L

]



+

hη,is0
6



(−4)
[
T (+)⊤
L T (+)

]
(−2)

[
T (+)⊤
L T (+)

L

]

(−2)
[
T (+)⊤
L T (+)

L

]
(−4)

[
T (+)⊤
L T (+)

L

]



 . (3.14)

The local infinite element mass matrix Bext
loc,i is

Bext
loc,i =

n2
ihη,i
6s0



(−4)
[
T (−)⊤
L T (−)

]
(−2)

[
T (−)⊤
L T (−)

L

]

(−2)
[
T (−)⊤
L T (−)

L

]
(−4)

[
T (−)⊤
L T (−)

L

]



 . (3.15)

In order to carry out a convergence analysis that is similar to the one-dimensional
approach, we will now reformulate the two-dimensional problem as linear second order



20 B. KETTNER

matrix recurrence relation. We have established before in Equations (3.14) and (3.15)
that both Aext

loc,i and B
ext
loc,i consist of two coupled tri-diagonal block matrices for each

trapezoid, dividing the corresponding vector of unknowns into two blocks. Each of
these blocks corresponds to one infinite side of the trapezoid. Since each infinite ray
is the boundary of two prismatoids, each of these tri-diagonal block matrices couples
with two other blocks. The unknowns uN+iL, ...uN+(i+1)L−1, i ∈ {0, ..., k} correspond
to the Hardy modes on the ith infinite ray. In order to obtain a formulation that allows
for a similar treatment as the one-dimensional situation and allows for computation of
a domain of convergence, we will now collect the degrees of freedom that correspond
to the same Hardy mode on each ray. That is, for m ∈ {0, ..., L − 1} we will create
a vector that collects the unknowns corresponding to the mth Hardy modes on each
ray:

u
(m)
ext = (uN+m,uN+L+m,uN+2L+m, ...,uN+kL+m)

⊤
. (3.16)

The unknown uN+iL+m is related with two neighboring unknowns uN+iL+m−1

and uN+iL+m+1 where i ∈ {0, ..., k} and m ∈ {0, ..., L−1}. Naming the entries of the
global stiffness matrix αi,j and of the global mass matrix βi,j , this relation is given
by

(αN+iL+m,N+iL+m−1 − n2
iω

2βN+iL+m,N+iL+m−1)uN+iL+m−1

+(αN+iL+m,N+iL+m − n2
iω

2βN+iL+m,N+iL+m) uN+iL+m

+(αN+iL+m,N+iL+m+1 − n2
iω

2βN+iL+m,N+iL+m+1)uN+iL+m+1= 0.

However, since each infinite ray ri couples with two other rays, rj and rl, we have

such a relation for three different values of i in each row. Using the vectors u
(m)
ext

defined in Equation (3.16), we have a linear second order matrix recurrence relation

M (0)
ω u

(m−1)
ext +M (1)

ω u
(m)
ext +M (2)

ω u
(m+1)
ext = 0. (3.17)

The coefficient matricesM
(0)
ω ,M

(1)
ω andM

(2)
ω are complex k×k matrices that depend

on ω2 and contain three nonzero entries composed of αi,j and βi,j per row.
In order to be able to gain some insight about the stability of its solutions, we

will transform it to a more convenient form by rephrasing it as linear first order
matrix recurrence relation with a 2k× 2k coefficient matrix . This is done by solving

Equation (3.17) for u
(m+1)
ext and then concatenating the two vectors u

(j+1)
ext and u

(j)
ext

into a vector:

0 =M (0)
ω u

(m−1)
ext +M (1)

ω u
(m)
ext +M (2)

ω u
(m+1)
ext

⇔
(
u
(m+1)
ext

u
(m)
ext

)
=

((
−M (2)

ω

)−1

M
(1)
ω

(
−M (2)

ω

)−1

M
(0)
ω

id 0

)

︸ ︷︷ ︸
=:C

(
u
(m)
ext

u
(m−1)
ext

)

As in the one-dimensional case, it is an established fact, that the stability of the
solutions of a linear vector iteration xn+1 = Cxn with A ∈ Cn×n depends on the
corresponding eigenvalues of the coefficient matrix C (see e.g. [5, Theorem 3.33]).

However, due to the inversion of M
(2)
ω and the computation of the eigenvalues of

C, it is not possible to find a closed formula for the computation of the domain of
convergence in the two-dimensional case. Instead, we will have to do a sampling for
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different values of ω and compute the eigenvalues of C for each ω. That means for each
value of ω, we compute the matrix C and its eigenvalues. This gives 2k eigenvalues
for each ω. It can be seen however, that these 2k eigenvalues are clustered around two
centers c1 and c2, one corresponding to an outgoing solution and one corresponding
to an incoming solution. The two centers and the mean deviation from them can be
computed using a kmeans algorithm. As in the one-dimensional case, the modulus
of the eigenvalue corresponding to the outgoing solution determines the convergence
rate of the solution. Even though the algorithmic computation of the convergence
rate requires one matrix inversion and the computation of the eigenvalues of a matrix
for each value of ω, its costs are moderate since the size of the matrices involved, k
corresponds to the number of prismatoids used for the discretization of the exterior
which is modest for typical applications.

4. Numerical Examples. We will start off with a simple one-dimensional cav-
ity depicted in Figure 4.1 and using an ansatz with special functions, its resonances

can be analytically computed to be ω = kπ
(xr−xl)ni

− i 1
(xr−xl)ni

ln
(

ni+ne

ni−ne

)
, k ∈ N.

n(x)

x

ni

ne ne

xl xr

ΩiΩext,l Ωext,r

Fig. 4.1. One-dimensional cavity layout.

We set nint =
√
2, next = 1, xl = −1 and xr = 1. To obtain an numerical solution,

we split R into Ωint = [−2, 2] which contains the cavity and some surrounding air.
The interior Ωint was discretized with first order finite elements with an equidistant
mesh with a mesh width h = 1

45 ≈ 0.022. For the exterior we used the pole condition
with L = 15 terms of the series expansion and a parameter value s0 = 0.4 − 1.0i.
The resonances computed by our algorithm are marked with dots in the left hand
side image of Figure 4.2 while the analytically computed resonances are marked with
squares. We then computed the weighted condition numbers for each resonance and
collected them into clusters using a kmeans algorithm. The other symbols mark the
cluster each resonance belongs to. We can see that all physical solutions belong to
the first three clusters. In the right-hand side image of Figure 4.2, the resonances who
respond to a perturbation of s0 with a perturbation that is ∆ω = O(∆s0) are marked.
Again, they correspond with the physical resonances of the system. Hence for this
simple model example, both methods for detecting spurious solutions will work.

Next we will look at another one-dimensional example. An air-filled cavity from
x = −1 to x = 1 is surrounded by a cladding with a material with refractive index
n = 3.5 and a thickness of d = 1 on each side which is embedded in an infinitely
thick material with refractive index n = 2.5. The layout of this example is sketched
in Figure 4.3.

In order to obtain a reference solution for this problem, we use the commercial
FEM software package JCMsuite [15, 23]. In the left-hand side image of Figure 4.4,
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Fig. 4.2. The spectrum σ(A,B) of the first example in the left-hand figure, eigenvalues are
marked corresponding to their weighted condition numbers, in the right-hand side figure eigenvalues
with ∆ω = O(∆s0) are marked.

n(x)

x

n(x) = 3.5

n(x) = 2.5

n(x) = 1

x = 1 x = 1.5x = −1x = −1.5

dd

Fig. 4.3. Sketch of the layout of the air-filled cavity used in the second example.

the reference solutions are marked with dots. By manual inspection it is possible to
confirm that the solutions where both methods are in good agreement are the only
physical resonances of the problem in the spectral region. For our solution we used
first order finite elements on a grid with a step size of h = 0.003. In the exterior we
use L = 25 Hardy modes and a parameter value s0 = 0.87− 1.14i.
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Fig. 4.4. The spectrum σ(A,B) of the second example in the left-hand figure, eigenvalues are
marked corresponding to their weighted condition numbers, in the right-hand side figure eigenvalues
with ∆ω = O(∆s0) are marked.

We can see that for this example there exist many spurious solutions with very
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low weighted condition numbers, which means that the approach of utilizing condition
numbers is not satisfactory for the detection of spurious solutions. However, the
right-hand side image of Figure 4.4 shows that again all physical solutions respond to
perturbation of s0 with a perturbation in the order of ∆s0.

Next, we will compute the regions of convergence for these two examples. We
set different values for the rate of convergence κ and plot the region in which we
can expect a convergence rate of at least κ alongside the spectrum of the problem.
These plots for the two one-dimensional examples can be seen in Figure 4.5. It can be
seen that for the fist example, even with a convergence rate of κ = 0.85 no spurious
solutions are computed, while for the second example the value is κ = 0.7. For
both convergence rates and our parameter selection we would expect well converged
solutions.

−2
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0 5 10 15

ℜ(ω)

ℑ
(ω

) κ = 0.9

κ = 0.85

κ = 0.8

κ = 0.75
κ = 0.7

κ = 0.65

κ = 0.6

13

−2

−4

−6

0 5 10

κ = 0.8κ = 0.75

κ = 0.7κ = 0.65

κ = 0.6

κ = 0.55

κ = 0.5

Fig. 4.5. The eigenvalue spectruma of the first two examples. The left-hand figure shows the
convergence monitor for the first example and the right-hand figure shows the convergence monitor
for the second example.

Finally we will give a two-dimensional example with a heterogeneous exterior
domain. It is a rectangular air-filled cavity bounded on three sides by a material
that is a good conductor. Due to its open side, there is significant radiation into the
surrounding air which makes it a good test case for the simulation of open resonators.
The mixed grid used for the simulation can be seen in the left-hand plot of Figure 4.6.
Moreover, the structure of the spectrum and the position of the spurious solutions
combined with their field distributions make a manual identification for of spurious
solutions difficult for this example.

The right-hand side plot in Figure 4.6 shows the comparison of the spectrum
computed with our Matlab-code compared with a reference solution obtained with
JCMsuite. We chose s0 = 2.05 − 0.6i and L = 10 as pole condition parameters.
The cavity has a witdth of 0.8 and a depth of 0.5, the material within the cavity is
air, the second material is a ficitonal material with good electric conductivity that
has a permittivity with a high imaginary part to cause damping and a low real part.
Some eigenvalues occur in both solutions and can be identified as physical solutions in
the spectral region in question, however the identification is not straightforward since
some of the spurious solutions have reasonable field distributions. In the right-hand
side plot of Figure 4.7, the resonances are marked, whose perturbation is in O(∆s0)
for a perturbation of s0. We can see that we again correctly identified the spurious
solutions for this example. The left-hand side plot of Figure 4.7 shows the computed
convergence monitor for the selected parameters. We can see that for a convergence
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Fig. 4.6. Left: Mixed grid generated with JCMgeo that is used for both pole condition and
reference calculations. The interior is discretized with triangles, the exterior with trapezes. Right:
Eigenvalue spectrum computed with our method and JCMsolve reference solution.

rate of κ = 0.45 we can expect the predictions for the first two physical solutions to
be correct, for the third physical solution we require a much worse convergence rate
and thus also capture some artificial solutions.
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Fig. 4.7. The spectrum σ(A,B) of the third example in the left-hand figure, eigenvalues are
marked corresponding to their weighted condition numbers, in the right-hand side figure eigenvalues
with ∆ω = O(∆s0) are marked.

5. Conclusion. We have presented an implementation of the pole condition for
Helmholtz resonance problems in one and two space dimensions with possible exten-
sion to three-dimensional problems. This implementation has a tuning parameter s0.
We used the dependence of this parameter to detect spurious solutions that are caused
by transparent boundary conditions. For this we applied condition numbers which
due to their generality yield satisfactory results only for simple model problems. We
thus reverted to computing the perturbation of an eigenvalue caused by a perturba-
tion of s0. This method allowed for a reliable detection of spurious solutions within
a resonance spectrum. We complemented it with a convergence monitor for one- and
two-dimensional problems in order to obtain a spectral range for which our detection
is reliable. Together this yields a practicable framework for the detection of spurious
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solutions in the simulation of open resonators without any a priori knowledge of the
spectrum or field distribution of the physical solutions.
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[13] J. Nédélec. Mixed Finite Elements in R3. Numerische Mathematik, 35(3):315–341, 1980.
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