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Folding and conformational changes of macromolecules often require the
generation of large amounts of simulation data that are difficult to ana-
lyze. Markov state models (MSMs) address this challenge by providing
a systematic way to decompose the state space of the molecular system
into substates and to estimate a transition matrix containing the transi-
tion probabilities between these substates. This transition matrix can be
analyzed to reveal the metastable, i.e. long-living, states of the system,
its slowest relaxation timescales and transition pathways and rates e.g.
from unfolded to folded, or from dissociated to bound states. To reduce
the technical burden of constructing such MSMs we provide the software
framework EMMA (available at https://simtk.org/home/emma) to con-
struct, validate and analyse such Markov State Models.

1 Introduction

Molecular dynamics (MD) or related simulation approaches are commonly used to in-
vestigate various complex molecular processes, such as transport processes [35], poly-
mer melts [43], electrolytes [19, 54], protein folding [42, 21, 95, 6, 62], protein-ligand
binding [30, 10], macromolecular aggregration [81, 28], and intramolecular transitions
[27, 60, 63]. Many of these processes are characterized by a large state spaces, and the
relevant states or conformations not known a priori. Hence, relevant reaction coor-
dinates are often hard to find or would necessarily be high-dimensional to include all
relevant directions. Projecting the dynamics onto low-dimensional a priori reaction
coordinates often leads to deceptive results [44, 58, 52].

Moreover, many of these molecular processes involve rare events which require a large
amount of sampling. Recent technical advances have enabled a substantial increase of
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the sampling, in particular fast simulation codes [31, 66, 48], public access to super-
computers, and efficient use of GPUs for molecular dynamics simulation [82, 88, 26, 29]
. Up to aggregate millisecond simulation data can be generated with folding@home
[80] and the Anton MD supercomputer [79].

The combination of large amounts of trajectory data and the fact that relevant states
are a priori unknown call for efficient and objective ways to analyze the simulation
data, and additionally to gain advice where more simulation will be needed. Markov
(state) models (MSMs) address this problem and have received a surge of interest in the
last few years [92, 58, 39, 33, 93, 11, 70, 52, 17, 76, 63, 69]. In MSMs, the molecular state
space is discretized into microstates and the transition probabilities or rates between
these microstates are estimated from the data. Due to the high dimensionality of
macromolecular systems, microstates can usually not be defined in terms of a grid
discretization, but are better obtained from clustering. The resulting transition or
rate matrix can then be analyzed in order to gain insight into the relevant metastable
states [59, 94, 77], the essential (slow) dynamical processes and their timescales [57, 62],
transition pathways between substates of special interest (such as unfolded and folded
subsets) [62, 30, 90]. It has also been shown that MSMs can be systematically compared
to experimental data, e.g. obtained from kinetic experiments such as temperature-
jump, fluorescence correlation or time-resolved IR data [61, 57, 78, 9, 96].

Despite the substantial advantages of MSM analysis, simple but potentially misleading
analysis techniques such as principal component analysis, coordinate mapping and
histogramming are still much more widely used. This may be due to the fact that the
construction and analysis of MSMs is technically more challenging. In order to make
MSMs more accessible, we provide the EMMA software that makes the currently most
common features of MSM analysis available to public use. Another currently available
MSM software package is MSMbuilder [2].

A word of warning is appropriate: The construction of Markov models still involves a
lot of choices to be made (distance metric, clustering and estimation methods, several
parameters), which involve some degree of experience to be made correctly. The MSM
research is not yet at a stage where all choices could be safely made in an automatic
fasion to hide this complexity from the user. Thus default parameters may not always
be appropriate in a specific situation and EMMA is provided to “use at your own risk”.

EMMA is programmed in Java. It provides a number of commands for the construc-
tion, validation and analysis of MSMs that can be either executed from command-line
and thus be controlled via shell scripts, or alternatively, the EMMA application pro-
gramming interface can be accessed through Java-compatible user interfaces such as
Matlab or Mathematica.

Here, we focus on the command-line-based MSM construction with EMMA that can
roughly be described by the following sequence of steps:

1. Generation of the MSM from simulation trajectories. This step consists of:

a) Clustering of the simulation data to microstates. Currently we support tra-
jectory input formats xtc (Gromacs), dcd (Charmm/NAMD) and ASCII.
Available clustering methods are k-centers, k-means, and equidistant clus-

2



tering in space or time.

b) Determination of an appropriate lagtime τ (the time resolution of the
MSM).

c) Estimation of a transition matrix T(τ) describing the transition probabili-
ties between microstates.

2. Determination of the metastable sets by means of kinetic clustering using the
PCCA method.

3. Validation of the MSM by comparing long-time probabilities of states predicted
by the MSM with those directly estimated from trajectory data (Chapman-
Kolmogorow test).

4. Analysis of the transition matrix, e.g. by

a) Calculation of the stationary probability distribution of states, ensemble
averages of molecular observables, or free energy differences.

b) Spectral analysis, i.e. determination of the slowest relaxation timescales of
the molecular process and the associated structural rearrangements

c) Calculation of transition pathways between subsets of special interest (e.g.
unfolded→folded or dissociated→bound)

d) Calculation of dynamical ensemble averages of molecular observables such
as perturbation-relaxation or correlation functions that can be compared to
kinetic experiments such as temperature-jump or fluorescence correlation
spectroscopy.
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Figure 1: Sketch of the steps involved in construction, validation and analysis of
Markov state models

These steps are discussed in the subsequent sections. For a detailed documentation of
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the EMMA syntax please refer to the EMMA documentation and tutorial available at
https://simtk.org/home/emma.

2 Generation of Markov State Models (I)

2.1 Determining microstates by clustering

The first step in building a MSM is to discretize the molecular state space into mi-
crostates by dividing the simulation data into clusters. A microstate is defined as the
set of molecular configurations exhibiting geometrical or structural similarity. EMMA
provides a number of clustering tools to do this. If the user would like to employ a
specific microstate definition that cannot be provided by EMMA, the simulation tra-
jectories may be transformed into discrete trajectories by other means (see Appendix
for definition of files) and proceed with the subsequent section. In EMMA, clustering
can be performed with the mm_discretize command, which requires three inputs: (1)
simulation trajectory data, (2) the number of clusters / microstates wanted or a way
to choose it, (3) the choice of the metric by which distances between structures are
measured.

The input trajectory data may be in either Gromacs (*.xtc), Charmm/NAMD (*.dcd),
or plain ASCII format. It may consist of a single trajectory or multiple/many trajec-
tories.

The number of clusters and thus the number of microstates is the most critical part
when trajectories are discretized into microstates. The number of microstates has a
severe influence on the quality of the Markov model. A small number of microstates
may lead to microstates that contain kinetically separated regions, thus leading to a
poor Markov model. Increasing the number of microstates thus generally improves
the quality of the MSM by reducing the discretization error [69], but may increase the
negative effect of limited statistics. The impact of the number of microstates on the
quality of the Markov model will be further regarded in Section 4. Typical numbers
of microstates are 100’s to 10.000’s.

In order to cluster data, a metric is required which assigns a distance d(x,y) to pairs of
data points x and y. When the overall position and orientation of a molecular system
is not of interest, it is desirable to use a metric that captures intramolecular changes.
For this, the minimal RMSD metric[86] has shown to be suitable. Minimal RMSD is
a proper distance metric[15] that is useful metric for protein folding, where the entire
molecule can exhibit structural changes, but the global position and orientation is not
of interest. When part of the simulation system is fixed or can be meaningfully aligned
to a reference structure, the direct Euclidean metric is also useful. Such a metric could
be useful for e.g. conformational transitions that affect only parts of the molecule or
transport processes through a pore. The Euclidean metric may also be used when the
input data consists of angles (e.g. dihedral angle values for investigating peptide dy-
namics). Note that it is not necessary to explicitly account for angle periodicity by the
clustering metric - an artificial splitting of the data at the -180/+180 degree boundary
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may split kinetically connected states, but such kinetic information is contained in the
transition matrix that is being estimated from the transitions between microstates.
Nevertheless, unnessecary splitting in angle microstates can be avoided by transform-
ing each angle φ into two values (sinφ, cosφ) and performing the clustering on this
extended set of input coordinates [1].

The clustering of input data (usually in continuous space, here denoted as z(t) ∈ R
n)

into discrete microstate trajectories (s(t) ∈ {1, ..., n}). mm_discretize performs two
steps:

1. Clustering: Using the set of simulation trajectories (or a subset thereof) as an
input, a clustering algorithm is used to determine a set of n representative points
(molecular structures) c0, ..., cn. With the parameter -stepwidth only a subset
of data points may be used for clustering by just taking every i-th trajectory
frame as input. This reduction of input data is often reasonable in order to
reduce memory consuption or to overcome too high computational effort when
performing clustering.

2. Assignment : All trajectory frames z(t) are assigned to closest cluster centers
ci, defining the so-called Voronoi-partitioning. The discretized trajectory or so
called microstate trajectory is obtained as: z(t) = argmin

i

d(z(t), ci).

With this general approach given, different clustering algorithms (EMMA option -algorithm)
can be applied to determine cluster centers. The following clustering algorithms are
implemented:

• K-Means: a well-known and established clustering approach that partitions the
input data points z(t) into sets S = {S1, ..., Sn} such that S is a (local) optimum
of the minimization problem S = arg min

S

∑N
t=1

∑

z(t)∈Si
d(z(t), ci)

2. This is

done by iterating two steps:

– Voronoi assignment of z(t) to cluster representatives ci
– Update clusters by: ci =

1
|Si|

∑

z(t)∈Si
z(t).

Note that K-means can not be used with minimal RMSD metric. If minimal
RMSD metric is desired, please use one of the subsequent clustering algorithms.

• K-Centers [16] is a fast algorithm to partition the input data points z(t) into
sets S = {S1, ..., Sn} in such a way as to approximate the optimization problem
∑

i,j,k,l maxxi∈Sj
minyk∈Sl

d(x,y).
Here, a simple and fast greedy approximation algorithm is used: The first itera-
tion chooses an arbitrary data point, defined as c1. Then, for n− 1 iterations, a
data point ci which maximizes

∑i
j=1 d(ci, cj) is sought. Note that this version

of K-centers has a tendency to find outliers as representatives which might only
provide a good clustering for large numbers of clusters [2]. We do therefore not
recommend K-Centers and prefer regular spatial or regular temporal clustering
(below).

• Regular spatial clustering: Cluster clusters are chosen to be approximately
equally separated in the conformation space with respect to the distance metric
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used. The distance between cluster centers is controlled by the parameter dmin.
In detail the cluster centers are determined as follows:

– The first data point z(0) is taken to be the first cluster center c1. Let n = 1
be the current number of clusters.

– Iterate datapoints z(t):
When a data-point z(t) is found, for which d(z(t), ci) > dmin is fulfilled
for all existing ci, then cn+1 = z(t) becomes a new cluster center and n is
incremented.

Regular spatial clustering guarantees that the conformation space is partitioned
in a roughly equidistant manner. Despite its simplicity we have found it to be
a good way to build microstates for an MSM [69]. Note that the number of
clusters n that will be obtained by the method strongly depends on the choice
of the threshold dmin.

• Regular temporal clustering: Given a step length s, every s-th data point of
the input trajectory set is selected as cluster center. If the trajectory has length
N , then n = ⌊N

s ⌋ cluster centers are selected. This approach makes most sense
when the trajectory data can be assumed to be close to equilibrium simulations,
i.e. they consist of trajectories that are long compared to the system’s slowest
relaxation times, or are generated by multiensemble simulations. In this case the
cluster centers are picked from the approximate Boltzmann distribution sampled
by these simulation methods.

Once clustering is performed, the discretized output trajectories will be determined and
be written out to a user-defined target directory. For typical settings, the clustering
step will be faster than the assignment step and thus the runtime of the clustering
is O(Nn) where N denotes the number of data points (trajectory frames) and n the
number of clusters. Nevertheless, clustering is often the most expensive step in MSM
construction and it is often desirable to reduce the dimensionality of the input data to
the coordinates that are relevant for describing the process of interest before clustering
(e.g. α-Carbon coordinates, Domain centers, backbone dihedrals, etc.).
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Figure 2: (a) Illustration of a two-dimensional model trajectory in a three-basin po-
tential landscape included in the EMMA examples. The green curve shows
the trajectory z(tj). The 30 cluster centers ci determined by the k-means al-
gorithms are shown as black dots. (b) Assignment of the thirty microstates
to three metastable sets (colored red, green, blue) determined via kinetic
clustering (PCCA) of the transition matrix.

2.2 Connectivity Test

The program mm_connectivity tests which microstates are dynamically connected
and can output the largest connected subset of microstates, which is usually used to
conduct the Markov model estimation on.

Two microstates i and j are said to be connected, if trajectories exist that go from i
to and j and from j to i. A set of states is said to be connected when all states in this
set can be reached from all other states. It is important to have dynamical connection
between the states used to build a Markov model because only within a connected
component one can calculate a well-defined stationary probability distribution, and
this is a prerequesite for the correct functionality of many MSM algorithms.

If all microstates used are dynamically connected, the analysis can be continued with-
out intervention. When the data is found to be split into several connected sets,
the largest set can be output and used as an input into the programs mm_estimate,
mm_impliedtimescales and mm_cgtest.

There may be different reasons why the state space Ω is seperated in several connected
sets:

• During the discretization step, cluster centers may have been determined, but
without being assigned in the partitioning step. This can happen with k-means
clustering. These microstates are never visited and thus are not belonging to the
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main connected set of states. Empty states will appear as connected sets with
single states, and can be removed without loosing information.

• Especially in the beginning and in the end of microstate trajectories it can hap-
pen that sets of states are visited only once, The trajectory never “returns” to
these states. E.g. the sequence of microstates {1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 4, 5, 7, 8, 9}
possesses no way to return back to states {1, 2, 3} from states {4, 5, 6}. Thus the
end snippets need to be omitted from the analysis. Removing such end-states
usually causes only a small amount of the simulation data to be not described
by the model.

• The clustering is too fine and misses the fact that trajectories actually do visit the
same kinetic regions. When the connectivity test reports strong disconnectivity,
attempt to use a coarser clustering.

• The trajectories visit different parts of state space and were too short or too few
to have connected these parts. This problem often arises in the simulation of
biomolecules since biomolecular dynamics is often metastable. In such a case,
one may still restrict the analysis to the largest connected set of states, but this
analysis may miss important contributions of the neglected parts of state space.
If the largest connected set does not comprise most of the simulation data, the
best solution may be to attempt to generate more simulation data.

Technically, the connectivity of microstates is determined by Tarjan’s algorithm[85],
which determines the strong connectivity components of a directed graph G(V,E).
This graph G has vertices V , here given by the microstates. The set of edges E
consist of edges eij , when at least one transition i → j has been found in subsequent
trajectory time steps. By the application of Tarjan’s algorithm to the graph G the
strong connected components are determined, the time complexity is O(|V |+ |E|).

The output of mm_connectivity contains the microstates per communicating class
(row-wise). The largest set of microstates is written out for further analysis steps.

2.3 Selection of the lagtime τ : Implied timescales plot

Once a dynamically connected set of microstates has been identified, it is possible to
count the number of transitions occurring for any pair of microstates between times
t and t + τ . The resulting transition matrix C(τ) is then converted into an estimate
of the transition matrix T(τ) which together with the microstate definition comprises
the Markov model. However, until arriving at a T(τ) which is useful for further
analysis some tests must be conducted. The assumption that the jump process between
microstates is Markovian is only approximately true. Its quality depends on two
properties [69, 74]: Firstly, is the microstate definition fine enough? Secondly, is τ
long enough?

In this step we test whether an MSM of good quality can be obtained for the microstate
definition that has been generated, and determine the minimal lag time τ which meets
this condition. Note that a transition matrix T(τ) has eigenvalue-eigenvector pairs:
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T(τ)ri = λi(τ)ri. (1)

Swope et al [84] have exploited that in Markovian dynamics, λi(τ) should be expo-
nentially decaying with increasing τ and hence the “implied timescales”, i.e. the decay
timescales of the spectral components of the MSM should be independent of τ and
given by:

t∗i (τ) =
−τ

ln |λi(τ)|
.

Assuming sufficiently good statistics, this independence of τ should improve when τ is
being increased [69, 74], and for too short lagtimes τ the timescales should always be
underestimated [67]. Thus, it was suggested [84] to test whether the timescales t∗i (τ)
become approximately constant in τ after some minimal value τ ′ and to then use the
Markov model with lag time τ ′.

The test for implied timescales is included in EMMA and is conducted by the command
mm_timescales. The main input options comprise the discretized trajectories (via -i),
the lagtimes τ (via -lagtimes) to compute the implied timescales for and the number
of processes (via the option -neig).

Apart from these main options, the countmatrix estimation can be adapted by an
additional prior to the case of rarely visited microstates (via -prior), for details,
please refer to Section 2.4. The counting mode for count matrix estimation can be
adapted via -sampling.

The dynamically connected set of microstates is set by the -restrictToStates option
and is advised to contain the largest set of microstates determined by the mm_connectivity.

In practice, this test may behave in an unexpected way for a number of reasons:

1. When τ ≫ t∗i , the numerical solution of the eigenvalue problem (1) may fail,
sometimes leading to an apparently linear increase of t∗i . Such a behavior is
sometimes observed for very long lagtimes τ , especially for fast timescales, and
is not necessarily a signature of a poor Markov model.

2. The convergence of t∗i (τ) to the true implied timescales occurs asymptotically
with τ−1 [67], i.e. relatively slow. This effect makes it sometimes hard to find a
lag time where convergence can be safely assumed.

3. In the case of poor statistics convergence in τ may not be observable.

Despite these issues, the implied timescale plot still provides a useful way to determine
whether a good MSM can be found. Fig. 3 shows implied timescales plots of Markov
models of the 2D-test dataset and the MR121-GSGS-W dataset, both showing a rea-
sonable convergence of the dominant implied timescales and allowing an appropriate
choice of τ to be made.
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Figure 3: (a) Implied timescales for the 30-state discretization of the two-dimensional
diffusion model in a three-well potential shown in Fig. 2. (b) Implied
timescales for Markov models T(τ) the 800-microstate discretization of
MR121-GSGS-W.

2.4 Transition matrix estimation

The main purpose of the mm_estimate command is to generate a transition matrix
T(τ) using the discretized simulation trajectories and the selected lagtime τ as inputs.
T(τ) together with the definition of the microstate discretization is the actual Markov
model and the main object of interest.

Basically, a series of transition matrix estimations has already been conducted for
different values of τ when generating the implied timescale plot above. In this step,
we just conduct the estimation step once again but select a specific lag time τ for
which the implied timescales are approximately converged, in order to generate the
transition matrix T(τ) that will be subsequently analyzed. The discrete input tra-
jectories should be dynamically connected so as to yield a dynamically connected
transition matrix. If multiple disconnected sets of states had been found with the
mm_connectivity command, the largest connected set of states should be selected
with the option -restrictToStates.

We briefly summarize the theory and options involved in transition matrix estimation.
Let us consider a discretized trajectory s(t) with n observations at time resolution ∆t.
For the sake of transition matrix estimation we can transform this trajectory into an
n× n count matrix Co from a given discrete trajectory:

coij(τ) =
T−τ
∑

t=0

δi[s(t)] δj [s(t+ τ)] (2)

Each count matrix element contains the number of transitions seen in the trajectory
at time lag τ between pairs of such clusters. When we have multiple trajectories,
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their count matrices are simply added. The counting approch given by Eq. (2) is
to shift a window of length τ over the data, which is the prefered count mode for
the estimation of the transition matrix [69]. However, the resulting counts are not
statistically independent and if a count matrix with statistically independent counts
is desired, the count mode can also be changed to sample the input data at lag τ .
The user can choose to add a prior matrix Cp to avoid numerical problems with states
that were rarely visited or never left [56, 68]:

cij = cpij + coij .

The purpose of the prior Cp is to avoid numerical problems in scenarios with little data.
It adds a bias which vanishes when much data is accumulated and cij is dominated by
coij . However, the prior should be chosen as small as possible and as large as necessary
to ensure numerical stability. As shown in [68, 2], a useful prior is the neighbor
prior: cpij = α when coij(1) + coji(1) > 0, i.e. when ever two states have been seen
adjacently in the trajectory, they are considered as neighbors and a small pseudocount
is added to both in order to make sure that the stationary probability is nonzero in all
states. The value of α can be set by the -prior option, available in mm_estimate and
mm_impliedtimescales. The count matrix C can be output for additional analysis.
Letting ci :=

∑m
k=1 cik, be the sum of counts leaving one state, the trivial estimator,

which is in fact the estimator of maximum likelihood given the count matrix C is given
by:

T̂ij(τ) =
cij
ci
. (3)

When unbiased molecular dynamics trajectories are used the system is assumed to be
in equilibrium, and in this situation we expect detailed balance to hold:

πiTij = πjTji, (4)

however the estimated matrix will generally not fulfill πiTij = πjTji, simply as a result
of statistical deviations from detailed balance for finite amounts of data. Therefore, in
cases where the dynamics are in equilibrium is is useful to enforce detailed balance on
the matrix. Earlier works had suggested to avoid this problem by biasing the observa-
tion by adding forward- and backward-count matrices [59, 32], but a better approach
is to use an estimator which finds the maximum likelihood T̂ under the constraints
(4) [8, 69]. We have implemented the optimal reversible estimator described in [69]
in EMMA, and this is available for the mm_estimation and mm_impliedtimescales

commands with the -reversible option.

3 Metastability (II): Lumping of microstates to
metastable sets

An important analysis tool is the grouping of microstates to metastable set, i.e. the
sets of states where there is rapid interconversion within the sets, and rare transitions
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between them. Such a kinetic clustering is a useful way to reduce the complexity of
a possible several-thousand-state MSM to few kinetically relevant sets and thus aids
visualization and further analysis [59]. Note that metastable sets are not used to
calculate kinetic properties, i.e. to generate a coarse transition matrix. Unless such a
coarse-graining is done in a very special manner [71], it would increase the error of the
MSM dramatically [73]. Thus, the fine microstate model is always kept as a numerical
means to approximately solve the molecular kinetics on a “fine grid”, while kinetically
grouped macrostates are useful for visualization of relevant sets or grouping of additive
properties, such as the probability of states or transition fluxes (see below).
The method of choice for determining kinetic clusters from a transition matrix is
PCCA, invented by Schütte et al [77], and later improved by Weber and Deuflhard
[20, 93]. The robust version of PCCA (also called PCCA+) [20] is implemented in
EMMA and described subsequently. Given a transition matrix T(τ) and a number
of states m < n, PCCA assigns each of the microstates to one of 1, ..,m clusters or
metastable sets. PCCA makes this assignment in a fuzzy way, i.e. the primary result
is not a clustering but a membership matrix χ ∈ R

m×n indicating by its elements χij

to what degree each microstate j belongs to metastable set i, where

∑

i

χij = 1 ∀i.

This matrix can then be used to generate a hard clustering by assigning each microstate
to the metastable set it belongs to most:

j ∈ Ci if argmaxχ∗j = i

This assignment is made based by first finding m microstates that are kinetic centers
and therefore representative states for the metastable sets, and then assigning kinetic
distances by the coordinates all microstates have in the m-dimensional space of dom-
inant eigenvectors of T(τ). A more detailed description can be found in [20, 93, 59].
The mm_pcca command implemented in EMMA can provide both the microstate clus-
tering and the fuzzy memberships. The main input parameter is the transition matrix
T (τ) and the number of kinetic clusters which is set by the option -nclusters. The
determined cluster assignments, either crisp or fuzzy, are written out by the options
-ocrisp and -ofuzzy respectively.
The result of PCCA clustering of the two-dimensional diffusion in a three-state energy
landscape is shown in Fig. 2. The PCCA clustering for an MSM obtained from 6 µs
simulation data of the MR121-GSGS-W peptide is shown in Fig. 7

4 Validation (III)

4.1 Chapman-Kolmogorov Test

A number of ways to test the validity of Markov models have been proposed in previous
papers [65, 83, 12, 69]. A rather direct and easy-to-interpret set of tests compares
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long-time observations generated from the model transition matrix T̂(τ) with long-
time information available from the trajectory data [12, 69]. Here we describe the
Chapman-Kolmogorov test proposed in [69] which has been implemented in the EMMA
program mm_chapman. The Chapman-Kolmogorow test is a strong test of the Markov
model, which essentially tests how well the following approximation holds:

[T̂(τ)]k ≈ T̂(kτ),

where T̂(τ) is the transition matrix estimated for the time series at lag time τ and
T̂(kτ) is the transition matrix which is estimated for the time series for lagtimes kτ .
The matrix T̂(τ) is taken to the power of k to simulate a propagation of the system
for time kτ . Thus, the test consists of checking whether the Markov model estimated
at τ can be propagated to match observed transition probabilities at longer times kτ .
This approximate turns to an equality only if the microstate transition dynamics are
exactly Markovian.

Since it is practically difficult to obtain an easily interpretable comparison of matrices
T̂(τ)k and T̂(kτ) directly, we instead choose to propagate a distribution p0 to T̂(τ)k

while we are estimating the quantity p0T̂(kτ) directly from the trajectory, yielding:

p0 · [T̂(τ)]k ≈ p0 · T̂(kτ). (5)

Here, p0 is chosen such that it sums up to 1 on a set Si of interest while being 0
otherwise. Within Si, p0 ∝ ρ where ρ is the a set of weights, which usually is taken
to be the stationary distribution of T̂. The test is visualized by plotting the total
probability on each set Si tested over times kτ , and checking whether Markov model
and direct calculation agree within statistical error (see [69] for further details).

The program mm_chapman expects three main input parameters: (1) the transitionma-
trix T(τ), (2) the input trajectories, which are used to construct the matrix T(k · τ)
from counting, (3) the sets of states on which the propagation 5 is tested. We suggest to
use the PCCA sets calculated with mm_pcca at this point, as the metastable states are
the ones which by definition have the fewest transitions between them, thus presenting
an especially hard test. Alternatively, one can also defined user-specific sets, such as
unfolded and folded sets in protein folding [61], or random sets (-randomsets). The
initial probability p0 may be either specified by the user (option -pinit), or else the
stationary distribution of T(τ) is used. The propagation length k is given in multiples
of the lagtime τ is selected by -kmax.

Fig. 4 shows the test results for the 2D diffusion example that comes with EMMA as
well as for the MR121-GSGS-W peptide. The sets chosen here are the 3 or 4 metastable
sets that have been previously identified with PCCA (see above). Metastable sets are
an especially hard test of the Markov model quality, as the transitions between the
metastable sets are those which have the least statistics. Note that the agreement at
the times t = τ and at t → ∞ is always expected and is no test of the Markov model
quality. The critical test is whether the Markov model reproduces the relaxation for
t > τ .
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Figure 4: Chapman-Kolmogorov Test. (a) Results for the relaxation out of three
metastable states of the 2d-diffusion example. (b) Results for the relaxation
out of four metastable states of the MR121-GSGS-W peptide.

5 Analysis (IV)

5.1 Stationary Distribution

A basic quantity of interest is the stationary probability πi of any microstate i. When
the molecular system investigated is in equilibrium, this is given by the Boltzmann dis-
tribution on the set of microstates. Denoting the vector of all stationary probabilities
as π, we can estimate them via:

π
T = π

TT(τ),

i.e. by calculating the eigenvector of the transition matrix with eigenvalue 1 which is
subsequently normalized such that

∑

i πi = 1. Stationary probabilities can be calcu-
lated by the mm_transitionmatrixAnalysisprogram with the -stationarydistribution
option.

Many scientists prefer to characterize the stability of states via their free energies.
The free energies can be directly calculated (via option -freeenergies) from the
stationary probabilities, via:

Fi = −kBT ln
πi

maxπj
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which measures the free energy differences with respect to the most stable microstate.
See Fig. 5a for an illustration of the relationship between stationary distribution and
energy in a one-dimensional model potential.

5.2 Spectral Analysis

The EMMA command mm_transitionmatrixAnalysis can be used to decompose the
transition matrix into eigenvalues and eigenvectors. Such a spectral analysis is useful
in order to gain insight about the slowest conformational transitions of a molecule that
take place between its metastable states, and the timescales on which these transitions
occur.

To see that, consider the propagation of the probability vector p in time via the
transition matrix:

pkτ = p0T
k(τ).

This propagation can be expressed as a sum of single-exponential terms when the
transition matrix is diagonalized into T(τ) = RΛL, where Λ is a diagonal matrix of
eigenvalues and R and L are right and left eigenvector matrices with eigenvectors li
and ri:

T(τ)ri = λiri

lTi T(τ) = λil
T
i

that are properly normalized (〈li, ri〉 = δij) and related by li,j = πjri,j . We can then
write:

pT
kτ = pT

0

n
∑

i=1

λki ril
T
i

=

n
∑

i=1

λki 〈p0, ri〉l
T
i , (6)

i.e., the relaxation of any initial distribution to the equilibrium distribution can be
understood in terms of a sum of single-exponential relaxations, each of which relaxes
with a rate set by eigenvalue λi and the associated implied timescale:

ti = −
τ

lnλi
(7)

and the structural rearrangment associated with this timescale is expressed by the
sign structure of the corresponding left eigenvector li or right eigenvector ri (Both left
and right eigenvector carry the same qualitative information, they are just differently
weighted. With the use of π, Eq. 6 can be written in terms of left eigenvectors only
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or right eigenvectors only). Fig. 5 shows the diffusion on an one-dimensional energy
surface as an example. The yellow eigenvector corresponds to the largest implied
timescale, i.e. the slowest relaxation process, and indicates that the corresponding
transition occurs between energy basins (A+B) and (C+D), i.e. across the largest
energy barrier. The green and blue eigenvectors further subdivide the (A,B) and
(C,D) basins.

Eigenvectors are useful to obtain information which structural rearrangements can
be associated to a specific relaxation timescale. Since the relaxation timescales are
measurable in kinetic experiments, an eigenvalue decomposition (spectral decomposi-
tion) of a Markov model transition matrix provides direct structural insight. In many
protein folding studies[61, 7, 90], the second eigenvector is analyzed because in ki-
netic experiments the corresponding slowest relaxation timescale is usually assumed
to correspond to the folding transition [38] (although this assumption may be wrong
[40, 57]). In [57], the first five eigenvectors were analyzed in order to understand the
dominant conformation dynamics of glycine-serine peptides of different lengths.

Eigenvectors and eigenvalues can be calculated directly with the mm_transitionmatrixAnalysis
program. The implied timescales can be calculated from the eigenvalues using Eq. (7).
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Figure 5: (a) Potential energy function with four metastable states and correspond-
ing stationary density µ(x), (b) Density plot of the transfer operator for a
simple diffusion-in-potential dynamics defined on the range Ω = [0, 100] (see
Supplementary Information), black and red indicates high transition proba-
bility, white zero transition probability. Of particular interest is the nearly
block-diagonal structure, where the transition density is large within blocks
allowing rapid transitions within metastable basins, and small or nearly zero
for jumps between different metastable basins. (c) The four dominant eigen-
functions of the transfer operator, ψ1, ..., ψ4, which indicate the associated
dynamical processes. The first eigenfunction is associated to the stationary
process, the second to a transition between A + B ↔ C +D and the third
and fourth eigenfunction to transitions between A↔ B and C ↔ D, respec-
tively. (d) Eigenvalues of the transfer operator, The gap between the four
metastable processes (λi ≈ 1) and the fast processes is clearly visible. e)
The four dominant eigenfunctions of the transfer operator weighted with the
stationary density, φ1, ..., φ4. Figure adapted from [69]
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5.3 Transition path theory (TPT)

Transition path theory allows us to analyze the essential statistical features of the
reactive transitions between two chosen subsets A and B [89, 49, 50, 61], especially
the set of transition pathways between A and B, their relative probilities, the total
A→ B flux and the A→ B rate. It was used the first time to investigate the ensemble
of protein folding pathways in [61] and protein-ligand binding pathways in [30]. Since
then several applications have followed [90, 10, 9]. The results of transition path
theory can be calculated with the mm_tpt program. Transition path properties can be
either calculated on the microstates, or on selected coarse states, such as the PCCA
sets (option -coarsesets).

The essential object needed to calculate statistics pertaining to the A → B reaction
is the committor probability, also called splitting probability or probability of folding
[25, 18, 5, 47, 4, 23, 36, 46]. The committor q+i is a state function that provides the
probability at any microstate i of next moving to B rather than to A under the action
of the system dynamics. By definition, q+i = 0 for i ∈ A and q+i = 1 for i ∈ B,
while q+i ∈ [0, 1] for all other states. The committor thus defines a dynamical reaction
coordinate, which has the advantage over ad hoc reaction coordinates that it does not
bring the danger of concealing relevant dynamics of the system [25, 4, 46]. Of special
interest is often the isocommittor surface of q+i ≈ 0.5, which has been interpreted as
the transition state ensemble in protein folding theory [64].

We also need the backward committor probability, q−i , which is the probability that
the process came from A last instead of B. In the case where dynamics are reversible,
i.e. the transition matrix fulfills detailed balance, it is simply the counterprobability
of the committor: q−i = 1− q+i .

From a practical point of view, an especially interesting property that can be calculated
with TPT is the reactive flux (or “current”), which is generally given by [50, 61]:

fij =

{

πiq
−
i Tijq

+
j i 6= j

0 i = j
(8)

which counts the number of transition pathways per time unit that move from state i
to state j. fij does include transitions from unproductive recrossings and transitions
into and out of dead ends.

Since it is often desirable to only analyze path probabilities without recrossings or
dead ends, the net flux can be calculated via:

f+
ij = max(q+i − q−i ). (9)

in the special case of reversible dynamics (detailed balance transition matrix), the net
flux is given by [3]:

f+
ij = πi(q

+
j − q+i )Tij

when q+i ≤ q+j . The net flux is available via the option -onetflux.
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Since f+
ij is defined between microstates, it potentially a very large and detailed net-

work of many small fluxes. In order to get a visual understanding it is often useful to
investigate the fluxes between coarse sets of states. The coarse-grained flux and net-
flux, as well as the coarse-grained forward- and backward commitor are available for
computation by the apropriate command via a preceding coarse, i.e. -coarseflux.
Fluxes can be trivially added for any set partition of the microstates. An especially
interesting set partition is the partition into metastable states that has been gener-
ated with PCCA (see Sec. 3). As examples, we show the net fluxes amongst the four
metastable states of MR121-GSGS-W and the folding flux network of PinWW (taken
from [61]) in Fig. 6.

f+
ij defines a flux-conserving network flow out of A and into B that can be decomposed

into a set of A→ B reaction pathways along with their probabilities [50, 89, 61].
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Figure 6: (a) Flux of the transition from the least-populated to the most-populated
metastable state of the two-dimensional diffusion in the EMMA tutorial. (b)
Flux of the folding transitions amongst the metastable states of the PinWW
protein (Figure adapted from [61])

Finally the total flux of the A→ B reaction is given by

FAB =
∑

i∈A,j /∈A

fij =
∑

i∈A,j /∈A

f+
ij . (10)

and the A→ B reaction rate [61] is given by:

kAB =
FAB

∑

i πiq
−
i

. (11)
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5.4 Expectation values, Correlation functions, Fingerprints

The EMMA program mm_observables is a useful tool to analyze MSMs in a way
that allows comparison to experimental measurements. We here assume that a scalar
observable ai is defined for each microstate, resulting in a vector a. Such an observable
vector must be stored in a file with a single column containing the elements ai in rows.
Such observables may be any function of the molecular state, such as a fluorescence,
a FRET efficiency, a distance, etc.

Many experiments measure ensemble averages. Given a transition matrix T(τ) with
associated stationary distribution π and observable vector a, the ensemble average can
be calculated with the -expectation command. It is simply estimated by:

E[a] =

n
∑

i=1

πiai. (12)

The most interesting features of mm_observables however allow dynamical observ-
ables to be calculated such as perturbation-relaxation and correlation curves as they
can also be measured in kinetic experiments. Importantly, mm_observables can help
to interpret these curves in terms of dynamical fingerprints which can be dissected
into dynamical features that are associated with individiual relaxation timescales and
structural rearrangement processes [57, 40]. Here, we differentiate between two types
of kinetic experiments: perturbation and correlation experiments.

In perturbation experiments, the ensemble average of an observable is tracked over
time while the ensemble relaxes from some perturbed or triggered initial state at time
t = 0 towards its stationary distribution. The initial trigger may consist of e.g. a jump
in temperature [37, 72], pressure [24], a change in the chemical environment [14] or
a photoflash [91, 75, 13]. Such time-dependent ensemble averages can be calculated
with the commands -perturbation and -relax via:

E[a(kτ)]p0
=

n
∑

i=1

n
∑

j=1

p0,iTij(kτ)aj (13)

A special perturbation experiment is the temperature-jump experiment where an en-
semble is prepared at temperature T1 at t < 0 and is then suddenly changed to
temperature T2 at t = 0. The system is kept at T2 and relaxes from its old sta-
tionary distribution p0 = π(T1) to its new stationary distribution π(T2). In cases
where simulations have been conducted at both temperatures T1 and T2, the station-
ary distribution at T1 can be straightforwardly plugged in as initial distribution to a
perturbation experiment using the transition matrix at T2 and the result can be calcu-
lated with the -perturbation command. If only a single-temperature simulation has
been made at temperature T2 we can still estimate the temperature-jump relaxation
curve with the command -Tjump. This makes the assumption that the microstates
clustering is fine enough such that
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πi(T1) ≈ Z−1
1 exp(−Ei/kBT1)

πi(T2) ≈ Z−1
1 exp(−Ei/kBT1)

with some common energy Ei. Based on this assumption, the initial distribution p0 for
an initial temperature T1 that is close to the target temperature T2 is approximated,
and the temperature-jump relaxation curve is calculated via Eq. 13.

A very common type of kinetic experiments are correlation experiments. Correla-
tion experiments may either be realized through scattering techniques such as inelastic
neutron scattering [22], or via low concentration or single molecule experiments accu-
mulating auto- or cross-correlations of fluctuations, e.g. correlation spectroscopy of the
fluorescence intensity [45, 55, 51, 87, 34] or Förster resonance energy transfer efficiency
[41, 53]. The -autocorrelation command calculates equilibrium autocorrelations of
observables a via:

E[a(0) a(kτ)]π =
n
∑

i=1

n
∑

j=1

aiπiTij(kτ)aj (14)

and the -crosscorrelation command calculates the cross-correlation between two
observables a and b via:

E[a(0) b(kτ)]π =

n
∑

i=1

n
∑

j=1

aiπiTij(kτ)bj (15)

Instead of directly printing the perturbation-relaxation or correlation curve via -relax,
one can output the dynamical fingerprint of a perturbation or correlation experiment
via the -fingerprint command. As explained in detail in [57, 40], the long-timescale
part of Eqs. (12), (13) and (14) can each be written in the form

E(..., kτ) =
m
∑

i=1

γi exp

(

−
kτ

t∗i

)

where t∗i is the i-th implied timescale and γi is an amplitude that depends on the
specific experiment conducted. The amplitudes γi are derived in [57, 40] and can
be calculated from scalar products of initial or stationary probability distributions,
properly normalized left or right eigenvectors li, ri and observable vectors a, b:

γperturbationi = 〈p0, ri〉〈a, li〉

γautocorrelationi = 〈a, li〉
2

γcrosscorrelationi = 〈a, li〉〈b, li〉.

The command -fingerprint outputs the amplitudes γi and timescales t∗i for all spec-
tral components with positive eigenvalues. This result can then be plotted into a
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dynamical fingerprint plot that can be directly compared to the fingerprint calculated
from the experimental measurement. When modeling and sampling errors are small,
one can match peaks between experimental and simulated fingerprints. Based on
this match one can assign structural processes to experimentally-detectable relaxation
timescales (see Fig. 7) or even propose new experiments that optimally amplify low-
amplitude features [57, 40]. Note that for comparing the dynamical fingerprint from
the MSM to its experimental counterpart, the experimental relaxation curve must
somehow be transformed into a spectral density. One way to do this suggested in
[57, 40] is implemented in the SciMex package available at simtk.org/home/scimex.
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(a)

(b)

(c)

Figure 7: (a) Experimental relaxation profiles (A) can be transformed into dynamical
fingerprints (B), which represent the timescales and amplitudes of the re-
laxation processes in the data without having to predetermine a particular
model or number of processes. On the theoretical side, the dynamics on
an energy landscape (D) also generates dynamical fingerprints (C), but here
each feature can be uniquely assigned to a particular transition or diffusion
process on the landscape. If the simulation model is a sufficiently accurate
model of the experimental system, structural processes can be assigned to
the experimental data by matching features in the experimental and theo-
retical fingerprint. (b) partition of the conformation space for the peptide
MR121-GSGS-W into the 6 most stable metastable (PCCA) states and the
associated 5 slowest relaxations (as indicated by the transition matrix eigen-
vectors). Representative structures are shown in cartoon representation with
flexibility indicated by the overlay of line structures. The fluorescent states
are shown bright, the dark states are shaded. The slow relaxation processes
are indicated by colored arrows. (c) Dynamical fingerprint for a fluorescence
quenching experiment of MR121-GSGS-W extracted from single molecule
FCS data directly (top), and from the MD simulation Markov model (bot-
tom). Features in experiment and simulation that can be qualitatively asso-
ciated with each other are linked with dashed lines. The mean positions and
amplitudes of the 5 slowest relaxations are marked in colors and correspond
to the structural transitions shown on the left. Regions that are unreliable
due to measurement or analysis artifacts are grayed out. Figures are taken
from [57]) 23



6 Conclusions

Markov state models are used by an increasingly wide community to model and ana-
lyze Molecular dynamics data. EMMA provides a number of tools for Markov model
construction of molecular kinetics. Molecular dynamics data can be partitioned into
microstates using different clustering techniques. Different methods are available to
estimate the Markov model transition and validate it by testing its ability to reproduce
long-time dynamics of the trajectory data. EMMA has a number of analysis tools that
help to calculate stationary probabilities, free energies, relaxation timescales, transi-
tion pathways and kinetic experimental observables.
In the future, we plan to support MSM software developers by releasing an API docu-
mentation that will permit direct Java access to the functionality of the EMMA classes,
and by further extending EMMA’s functionality.

Appendix: EMMA file types

Here, a concise definition of the file formats used in EMMA is given. All file formats
used for input and output are based on ascii-files. The sole exception are trajectory
data, which can also be binary data, according to the Gromacs (xtc), and Charmm
/ NAMD (dcd) format. The usage of ascii allows a high transparency, since all files
can be inspected visually and be easily modified by a user where appropriate. In the
following section the file formats are listed.

Simulation / MD Trajectories

Given a time-descrete trajectory z(tj) with n frames, where j ∈ 0, . . . , n− 1 denotes
the frame index of the trajectory. Each frame z(tj) is of dimension d, thus z(tj) ∈ R

d.
The trajectory is stored in row-wise orientation, each line of the file contains one frame
of the trajectory:

<t_0:double > <z_1_frame_0 :double > ... <x_d_frame_0 :double >

<t_1:double > <z_1_frame_1 :double > ... <x_d_frame_1 :double >

...

<t_n -1: double > <z_1_frame_n -1: double > ... <x_d_frame_n -1: double >

Multiple trajectories can be stored in one single file, when using ascii file format. A
new trajectory is indicated by a line starting with ! as the first character. Example:

0.0 2.35 4.5 3.5

1.0 4.6 2.1 7.9

!

0.0 5.3 5.2 5.1

1.0 3.4 5.1 5.0

2.0 5.4 2.5 2.1

indicates two trajectories of dimension 3, which a length of 2 for the first trajectory, a
length of 3 for the second trajectory
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Discrete-state Trajectories

Given a time-descrete microstate trajectory zµ(tj) with n frames, where j ∈ 0, . . . , n− 1
denotes the frame index of the trajectory. Each frame zµ(tj) deontes a single mi-
crostate. The trajectory is stored in row-wise orientation, each line of the file contains
one frame of the trajectory:

<t_0:double > <z_mu_frame_0:int >

<t_1:double > <z_mu_frame_1:int >

...

<t_n -1: double > <z_mu_frame_n -1: int >

Example:

0.0 3

1.0 4

!

0.0 4

1.0 5

2.0 2

Matrix files

Dense matrix format

A matrix M ∈ R
r×c is stored in dense format as defined below. The header line is

required.

DENSE <r:int > <c:int >

<m_0_0 :double > <m_0_1:double > ... <m_0_c -1: double >

<m_1_0 :double > <m_1_1:double > ... <m_1_c -1: double >

...

<m_r -1_0:double > <m_r -1_1:double > ... <m_r -1_c -1: double >

Sparse matrix format

A matrix M ∈ R
r×c is stored in a sparse format as defined below. The header line is

required. The file contains only entries mi,j , for which is mi,j 6= 0.0. Such an entry is
defined as i, j, mi,j .

SPARSE <r:int > <c:int >

<row(m_i_j ):int > <col (m_i_j ):int > <m_i_j:double >

<row(m_i_j ):int > <col (m_i_j ):int > <m_i_j:double >

... lines of the above format for every entry not zero ...
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Vector files

All vectors v, e.g. a stationary distribution vector, are written column-wise and in
dense format. A vector v ∈ R

d is stored as defined below. Currently there is no
header. The i-line represents the i-th entry vi of v.

<v_0:double >

<v_1:double >

...

<v_d:double >

State selection files

The state selection file contains a set of microstates. A file of this type is generated
by the command mm_connectivity and contains, if generated by the above command,
these microstates, which belong to the largest connected component.

This file can be used for input, where the option -restrictToStates is available, thus
for the command mm_timescales, mm_transitionmatrixEstimationand mm_chapman.

Each row of the file contains one state.

<state :int >

<state :int >

...

Set definition format

A set definition file contains sets S of state sets. E.g. all microstates belonging to
metastable states. The i-th row of the file corresponds to the set Si ∈ S and contains
all states (arbitrarily many) belonging to that specific set, separated by spaces.

<state_of_set_0:int > <state_of_set_0:int >

<state_of_set_1:int > ...

...

Example, which defines three sets S0 = {2, 3, 5, 6}, S1 = {1, 4} and S2 = {0, 7, 8, 9}
respectively:

2 3 5 6

1 4

0 7 8 9
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