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While seemingly straightforward in principle, the reliable estimation of rate constants is seldom
easy in practice. Numerous issues, such as the complication of poor reaction coordinates, cause
obvious approaches to yield unreliable estimates. When a reliable order parameter is available, the
reactive flux theory of Chandler allows the rate constant to be extracted from the plateau region of
an appropriate reactive flux correlation function. However, when applied to real data from single-
molecule experiments or molecular dynamics simulations, the reactive flux correlation function
requires the numerical differentiation of a noisy empirical correlation function, which can result in
an unacceptably poor estimate of the rate and pathological dependence on the sampling interval.
We present a modified version of this theory which does not require numerical derivatives, allowing
rate constants to be robustly estimated from the time-correlation function directly. We illustrate the
approach using single-molecule passive force spectroscopy measurements of an RNA hairpin.

Section: Kinetics, Spectroscopy or Statistical Mechanics, Thermodynamics, Medium Effects

The observed dynamics of complex molecular systems
such as biomolecules often suggest a simple underlying be-
havior. Much of chemistry and biophysics revolves around
attempting to identify simple models that adequately de-
scribe the observed complex dynamics of these systems.
In many cases, stochastic conformational dynamics can be
modeled to good accuracy using simple first-order phe-
nomenological rate theory, a topic that has been extensively
studied theoretically [1, 2]. However, when it is necessary to
estimate rates from trajectories generated by computer sim-
ulation or observed in single-molecule experiments, numer-
ous pitfalls can frustrate the ability to extract robust, reli-
able, and accurate estimates of rate constants using seem-
ingly obvious approaches. Here, we consider a simple ap-
proach related to reactive flux theory [3–6], but with much
greater robustness to various factors that affect real measure-
ments, such as sampling frequency, finite statistics, and mea-
surement noise.

Suppose we have a population of N noninteracting
molecules in solution that can occupy one of two conforma-
tional states, denoted A and B. Without loss of generality,
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we assume we are given a trajectory of some order parameter
x(t) that allows us to define associated occupation functions
hA(t) and hB(t) for states A and B, such that

hA(t) =

{
1 if x(t) ≤ x‡

0 if x(t) > x‡
; hB(t) =

{
1 if x(t) > x‡

0 if x(t) ≤ x‡

If there is a separation of timescales between the short re-
laxation time within the conformational states and the long
time the system must wait, on average, in one conforma-
tional state before undergoing a transition to another state,
the asymptotic relaxation behavior of an initial population of
NA(0) molecules in conformation A and NB(0) molecules in
conformationB can be described by a simple linear rate law:

d

dt
NA(t) = −kA→B NA(t) + kB→ANB(t) (1)

where kA→B and kB→A are microscopic rate constants. In
terms of time-dependent expectations over trajectories initi-
ated from some initial nonequilibrium state, Eq. 1 is equiva-
lent to

d

dt
〈hA(t)〉ne = −kA→B 〈hA(t)〉ne + kB→A 〈hB(t)〉ne (2)

where 〈hA(t)〉ne denotes the nonequilibrium probability of
finding a given molecule in conformation A at time t given
that the fraction of molecules that were initially in conforma-
tionAwas 〈hA(0)〉ne = NA(0)/N . We hereafter write hA(t) as
shorthand for hA(x(t)).

Were Eq. 2 to govern dynamics at all times, the expected
fraction of molecules in conformationA as a function of time
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would be given by an exponential decay function

〈hA(t)〉ne = 〈hA〉+ [〈hA(0)〉ne − 〈hA〉] e
−kt (3)

where the quantity k ≡ kA→B + kB→A denotes the phe-
nomenological rate constant because it is the effective rate
that dominates the observed exponential asymptotic relax-
ation decay behavior. 〈hA〉 denotes the standard equilibrium
expectation, giving the equilibrium fraction of molecules in
conformation A. Note that we do not expect Eq. 3 to hold for
short times t < τmol, where τmol is the timescale associated
with relaxation processes that damp out recrossings that oc-
cur due to imperfect definition of the separatrix between the
reactant and product states [3, 4].

If the system were purely two-state, a number of naı̈ve ap-
proaches to estimation of the rate constant from observed
trajectory data would yield useful rate estimates. For ex-
ample, given an observed trajectory x(t), we could simply
compute the number of times nc the dividing surface x‡ was
crossed in either direction in total trajectory time T , estimat-
ing the rate as,

kcrossings ≈
nc
T
. (4)

Alternatively, we could partition the trajectory into segments
in which the system remains in one state, and estimate the
mean lifetime τ of these segements, from which the rate is
estimated as,

klifetime ≈ τ−1. (5)

Both approaches will yield rate estimates that converge to the
true rate k as T → ∞ when x provides a perfect reaction co-
ordinate for a perfectly two-state system, in that x‡ correctly
divides the two conformations states that interconvert with
first-order kinetics.

However, when considering trajectories obtained from
computer simulations or single-molecule experiments, these
naı̈ve approaches can lead to substantially erroneous esti-
mates. The observed coordinate x might function as a good
order parameter, in that it allows the conformational states
to be well-resolved at extreme values of x, but a poor reaction
coordinate, in that both conformational states are populated
in some region near the optimal dividing surface x‡ [7? ]. The
rate estimates from Eqs. 4 and 5 will therefore overestimate
the number of crossings or underestimate the state lifetimes,
instead converging to the transition state theory rate estimate
kTST that gives the instantaneous flux across the dividing sur-
face and overestimating the true rate k. Additionally, if the
trajectories are not continuous x(t) but instead consist of dis-
crete observations made with a sampling resolution ∆t, addi-
tional issues develop. As the sampling interval ∆t increases,
some crossing of the dividing surface x‡ will be missed, and
the perceived lifetimes of states will be increased, having the
opposite effect of a poor reaction coordinate in diminishing
the rate estimates of Eqs. 4 and 5. As a result, it can be diffi-
cult to predict whether the overall result is an underestimate
or overestimate of the true rate k. An example illustrating
these effects for a model system where the true rate is known
is given in the Supplementary Material.

To understand how these pathologies can affect real mea-
surements, we examined the behavior of the p5ab RNA hair-
pin in an optical trap under passive conditions. This hairpin
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FIG. 1. Force trace of p5ab RNA hairpin in a stationary op-
tical trap. A 60-second observation is shown, where the force
history x(t) recorded at 50 kHz and subsampled to 1 kHz is
plotted. A histogram of the observed force values is shown as
P (x) to the right. The red line indicates the optimal dividing
surface for rate calculations, x‡ ≈ 12.57 pN.

has been the subject of previous single-molecule force spec-
troscopy studies [8–10], and exhibits apparent two-state ki-
netics as the hairpin folds and unfolds under an external bi-
asing force. The force trace x(t) is shown in Fig. 1, and re-
ports on the instantaneous force on the bead along the bead-
bead axis; for a harmonic trap, this force is linearly propor-
tional to the displacement of the bead from the center of the
trap, and hence the bead-to-bead extension. As the hairpin
folds, the bead-to-bead distance contracts, increasing the ap-
plied force as the polystyrene bead conjugated to the end of
the polymer moves away from the center of the optical trap.
At the stationary trap position used for data collection, the
hairpin makes many transitions between the two states re-
solvable from the measured force in the 60-second trajectory,
populating each state nearly equally (Fig. 3, top). Data was
collected at 50 kHz using a dual-beam counter-propagating
optical trap [11, 12], a high sampling rate far above the cor-
ner frequency for bead response under these conditions, as
previously published [10]. To examine the dependence on
sampling interval ∆t, the data was also subsampled to 1
kHz, a frequency found to be below the corner frequency of
the bead, such that the bead velocity has decorrelated be-
tween sequential observations due to hydrodynamic interac-
tions [10].

The rate constant was estimated using the naı̈ve cross-
ing rate scheme (Eq. 4) as a function of the dividing sur-
face choice x‡, and plotted in Fig. 2 (middle upper and mid-
dle lower, dashed lines). Two issues are quickly discerned:
First, near the optimal choice of dividing surface (x‡ ∼ 12.57
pN), the estimated rate kcrossing differs greatly depending on
whether the 1 kHz data (black dashes, 45.4 s−1) or 50 kHz data
(red dashes, 552 s−1) were used to compute the rate estimate.
Second, as the dividing surface is perturbed slightly, the rate
estimate for either sampling rate changes rapidly. Both prop-
erties are highly undesirable, as practical estimators of the
rate should yield results insensitive to the sampling rate and
exact placement of dividing surface.

As a solution to some of the issue of an imperfect di-
viding surface, Chandler (and subsequent workers) demon-
strated how, despite the lack of a good reaction coordinate,
the phenomenological rate could be computed using time-
correlation functions through the reactive flux correlation
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FIG. 2. Dependence of rate estimates on dividing surface.
Top: Histogram of observed forces near transition region be-
tween conformational states states. Upper middle: Rate es-
timate from crossing rate kcrossing (dashed line), reactive flux
rate estimated kRF(τ) near plateau time of τ = 3 ms (dash-
dotted line), and implied rate kim(τ) evaluated at τ = 60 ms
(solid line), estimated from 1 kHz data (black) or 50 kHz data
(red) as a function of dividing surface x‡ choice. Lower mid-
dle: Same, but zoomed view near true rate constant. Bottom:
Estimates of equilibrium probabilities πA (dashed line) and
πB (solid line) estimated from 1 kHz data (black) and 50 kHz
data (red) as a function of dividing surface placement x‡.

function kRF(t) [3–6],

kRF(t) = − d

dt

〈δhA(0) δhA(t)〉
〈δh2

A〉
, (6)

where δhA(t) ≡ hA(t) − 〈hA〉 is the instantaneous deviation
from the equilibrium population for some trajectory x(t).
The reactive flux function kRF(t) measures the flux across the
boundary between A and B that is reactive, in the sense that
the system has crossed a dividing surface placed between A
and B at time zero and is located on the product side of the
boundary at time t. The reactive flux is bounded from above
by the transition state theory rate estimate kTST, the instan-
taneous flux across the boundary, because recrossings back
to the reactant state will diminish the reactive flux; kRF(t)
becomes identical to kTST as t → 0+ [3]. At t larger than
some τmol—the timescale of relaxation processes within the
conformational states—thermalization processes will cause
the molecule to be captured either in its reactant or prod-
uct states and remain there for a long time. As a result, the
asymptotic rate constant (whose existence requires the pre-
supposed separation of timescales) is only obtained at τmol <
t � τrxn, where kRF(t) reaches a plateau value, decaying to
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FIG. 3. Reactive flux correlation function and implied rates
from p5ab hairpin single-molecule force trajectory. The
implied rate kim(t) (red) and reactive flux rate correlation
function kRF(t) (black) are computed for the optimal divid-
ing surface x‡ ≈ 12.57 pN for 1 kHz (left) and 50 kHz (right).
A close-up view compares the rate estimates in the plateau
region between 3–4 ms for 50 kHz data (right inset).

zero at t� τrxn with a time constant of τrxn [3, 4]. Subsequent
work extends these concepts to the case of multiple confor-
mational states [5, 6].

The reactive flux correlation function kRF(t) can, in princi-
ple, be used to estimate the phenomenological rate constant
k and microscopic rate constants kA→B and kB→A from an
order parameter timeseries obtained from a computer sim-
ulation or single-molecule experiment, but this still presents
a number of practical difficulties. For observations recorded
at fixed intervals in time ∆t, the time derivative of the corre-
lation function (Eq. 6) must be estimated by finite-difference
methods, but the presence of statistical error in the estimated
correlation function often produces unacceptably large noise
in the resulting estimate of kRF(t). Alternatively, the correla-
tion function 〈δhA(0)δhA(t)〉 could be smoothed by fitting a
polynomial to produce a continuous estimate of the deriva-
tive, but this introduces a bias that is difficult to quantify. Ad-
ditionally, if the reaction timescale τrxn is not very long com-
pared to the observation interval ∆t, then the plateau region
where kRF(t) is identical to the rate may be small and difficult
to detect before kRF(t) decays to zero. Lastly, while alterna-
tive expressions to Eq. 6 exist where the velocity normal to the
separatrix at the time of barrier crossing is utilized instead of
a time derivative of the empirical correlation function [3, 4], it
is difficult to compute this velocity for complex dividing sur-
faces in computer simulations, and difficult to measure ex-
perimentally in single-molecule experiments.

We computed the reactive flux kRF(t) from this force tra-
jectory for both 1 kHz and 50 kHz sampling frequencies, us-
ing one-sided finite-difference to estimate the derivative in
Eq. 6 (Figure 3, black points). When estimated from 50 kHz
data (Fig. 3, right), the rate smoothly stabilizes to∼ 36 s−1 af-
ter a transient time of τmol ≈ 3 ms, but the numerical deriva-
tive introduces a great deal of noise into the estimate (Fig. 3,
right inset). However, when kRF was estimated from the 1
kHz data (Fig. 3, left), the plateau region near 3–4 ms is rela-
tively narrow and difficult to detect, and the kRF(t) falls (de-
caying as ke−kt) as t reaches times comparable to τrxn. While
the reactive flux does yield rates that are relatively insensitive
to the placement of the dividing surface (Fig. 2, middle upper
and middle lower panels, dash-dotted lines), the difficulty of
locating the plateau region may make this scheme impracti-
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cal for certain sampling frequencies.
We propose an alternative approach, similar in spirit to re-

active flux correlation, that avoids the need to compute the
time derivative of the correlation function in Eq. 6. Instead,
we estimate the rate kim(t) implied by the state-to-state tran-
sition probabilities observed for a given observation interval
t—referring to this quantity as the implied rate constant. As
with the reactive flux correlation function, for times t where
τmol < t � τrxn, the phenomenolgical rate constant (if it ex-
ists, by virtue of a separation of timescales) is recovered by
kim(t), but our modified estimator provides a much larger
plateau for times t > τmol where a usable rate estimate can
be extracted.

As before, if a separation of timescales exists, relaxation be-
havior for times t > τmol is defined in terms of first order rate
equations (Eq. 2), here recast in matrix form,

d

dt
p(t) = Kp(t) (7)

where p = [pA(t) pB(t)]T is the vector of equilibrium proba-
bilities, pA(t) = 〈hA(t)〉ne and pB(t) = 〈hB(t)〉ne denote the
nonequilibrium occupation probabilities of statesA andB at
time t, and K is the matrix of rate constants

K =

[
−kA→B kB→A
kA→B −kB→A

]
. (8)

The eigenvalues of K are λ1 = 0, reflecting conservation of
probability mass, and λ2 = −(kA→B + kB→A) = −k, which
governs the recovery toward equilibrium populations at the
phenomenological relaxation rate k.

The solution to Eq. 7 (corresponding to Eq. 3) is given by

p(t) = eKt p(0) = T(t)p(0) (9)

where eA ≡
∑∞
n=0 A

n/n! is the formal matrix exponential
and T(t) can be identified as the column-stochastic transi-
tion probability matrix whose elements Tji(t) give the condi-
tional probability of observing the system in conformation j
at time t given that it was initially in conformation i at time 0.

The elements of T(t) for a given observation interval t are
conveniently given in terms of the time-correlation function

Tji(t) ≡
〈hi(0)hj(t)〉
〈hi〉

≡ Cij(t)

πi
(10)

For t > τmol, we have T(t) ≈ eKt for a constant matrix K,
but this will not hold for t < τmol. Instead, we can establish
a one-to-one correspondence between T(t) and the rate ma-
trix Kim(t) it implies for any t,

T(t) = eKim(t) t ⇔ Kim(t) = t−1 logT(t), (11)

where the logarithm denotes the matrix logarithm. For t >
τmol, all Kim(t) ≈ K, and the rates are identical to those from
reactive flux theory.

Because of their relationship through the exponential
(Eq. 11), T(t) and Kim(t) share the same eigenvectors uk,
and their respective eigenvalues µk(t) and λk(t) are simply
related [13],

µk(t) = eλk(t) t. (12)

An estimate of the phenomenological rate constant kim(t) for
observation time t can be obtained from the second eigen-
value of Kim(t), which for t > τmol assumes the value of
−(kA→B + kB→A) = −k,

kim(t) = −λ2(t) = −t−1 lnµ2(t) (13)

where µ2(t) can be computed to be,

µ2(t) =
CAA(t)− π2

A

πA − π2
A

=
〈δhA(0)δhA(t)〉

〈δh2
A〉

, (14)

which is simply the normalized fluctuation autocorrelation
function for the indicator function hA for state A (or, equiv-
alently, for state B), assuming the value of unity at t = 0 and
decays to zero at large t.

Combining these expressions gives the expression for the
implied rate estimate kim(t),

kim(t) = −t−1 ln
〈δhA(0)δhA(t)〉

〈δh2
A〉

(15)

which is the main novel result of this paper.
In the limit t → 0+, kim(t) reduces to the transition state

theory estimate kTST. To see this, we expandCAA(t) in terms
of its behavior near t = 0,

CAA(t) = CAA(0) + t ĊAA(0) +O(t2)

= πA + t ĊAA(0) +O(t2) (16)

and so,

µ2(t) = 1 + t
ĊAA(0)

πAπB
+O(t2) (17)

Near t = 0, µ2(t) ≈ 1, allowing us to expand the argument
to the logarithm appearing in kim(t) to first order in t about
unity:

lim
t→0+

kim(t) = lim
t→0+

−t−1 lnµ2(t) = − ĊAA(0)

πAπB
= kTST(18)

Similarly, the true phenomenological rate k is given by the
long-time limit of kim(t):

k = lim
t→∞

kim(t) = lim
t→∞

−t−1 ln
〈δhA(0)δhA(t)〉

〈δh2
A〉

(19)

However, when estimating the phenomenological rate
through this expression, evaluation of the correlation func-
tion should be for some t � τrxn = k−1, as the statistical
error in the estimate of kim(t) grows with t (see Appendix).

When there is a separation of timescales such that τmol �
τrxn, such that a phenomenological rate exists, we can see
that kim(t) and kRF(t) are expected to provide similar esti-
mates in the regime τmol < t � τrxn. We note Eq. 15 can
be rearranged to yield a correlation function

〈δhA(0)δhA(t)〉
〈δh2

A〉
= e−kim(t) t (20)

By the definition of reactive flux correlation function (Eq. 6),
we can write kRF(t) in terms of kim(t) as,

kRF(t) = − d

dt

〈δhA(0)δhA(t)〉
〈δh2

A〉
= − d

dt
e−kim(t) t

= e−kim(t) t

[
kim(t) + t

d

dt
kim(t)

]
(21)

When t� τmol, then kim(t) ≈ k, and we have kRF(t) ≈ ke−k t.
To illustrate the estimation of the phenomenological rate

k using the implied timescale kim(t), we computed it for the
p5ab hairpin force trajectory described above. At the 50 kHz
sampling rate (Fig. 3, right), the rate estimates are almost
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identical to those from kRF(t) for a broad range of times
where t > τmol, though there is much less noise in the kim(t)
rate estimate than in kRF(t) (Fig. 3, right inset). At the 1 kHz
sampling rate (Fig. 3, left), however, the rate estimate from
kim(t) remains stable over several times τrxn, even though
the kRF(t) has already decayed from the plateau region. The
implied rate estimate, kim(t), therefore appears to provide a
more robust estimate of the phenomenological rate under a
variety of conditions.

This robustness also carries over to an insensitivity to the
placement of dividing surface x‡, the problem reactive flux
theory was originally envisioned to solve. Using an obser-
vation time of τ = 60 ms, the implied rate estimate kim(τ)
varies only a few percent over a wide range near the bound-
aries between states (Fig. 2, lower middle), which is striking
compared to the large range over which the estimate from
Eq. 4 varies in the same region (Fig. 2, upper middle).

To obtain individual microscopic rates kA→B and kB→A,
we recall that the phenomenological rate k represents the
sum of the forward and backward rates,

k = kA→B + kB→A (22)

as well as the fact that the flux across the dividing surface
must be balanced at equilibrium,

πAkA→B = πBkB→A (23)

which allows us to deduce that the individual rates are simply

kA→B = πB k ; kB→A = πA k (24)

A difficulty immediately appears—the estimate of πA and πB
can be quite sensitive to the choice of dividing surface be-
tween statesA andB (Fig. 2, bottom). As a result, the individ-
ual rates kA→B and kB→A will also be sensitive to the choice
of dividing surface, even though the phenomenological rate
k may not be; this problem appears unavoidable.
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Appendix A: Statistical error of implied rate estimate

[JDC: This might be moved to Supplementary Material.]
To estimate the statistical error in the implied rate kim(t),

we first define two trajectory functionals:

F [X] ≡ hA(x0)

G[X] ≡ hA(x0)hB(xτ ) (A1)

We define a timeseries Fn and Gn obtained from evaluating
these functionals on sequential (potentially overlapping) seg-
ments Xn of a much longer trajectory, or multiple indepen-
dent short trajectories, depending on what kind of data has
been collected,

Fn = F [Xn]

Gn = G[Xn] (A2)

Estimates of their expectations are given by the sample
means:

πA ≈ F̂ =
1

N

N∑
n=1

Fn

CAB(t) ≈ Ĝ =
1

N

N∑
n=1

Gn (A3)

We compute the rate constant for a given observation time
t (whose functional dependence we shall suppress) from an
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estimate of the second eigenvalue µ̂2:

k̂im = −t−1 ln µ̂2 (A4)

The second eigenvalue is estimated from Eq. 14:

µ2 = 1− CAB(t)

πA(1− πA)

⇔ µ̂2 = 1− Ĝ

F̂ (1− F̂ )
(A5)

The variance of the estimate k̂im(t) can be estimated by
simple first-order Taylor series expansion propagation of er-
ror,

δ2k̂im =

[
∂k̂im
∂µ̂2

]2
δ2µ̂2 =

δ2µ̂2

t2 µ̂2
2

(A6)

We apply the first-order Taylor series expansion propagation
of error to compute the uncertainty in δ2µ̂2:

δ2µ̂2 =

[
∂µ̂2

∂F̂

]2
δ2F̂ +

[
∂µ̂2

∂Ĝ

]2
δ2Ĝ+ 2

[
∂µ̂2

∂F̂

] [
∂µ̂2

∂Ĝ

]
δF̂ δĜ

(A7)

where the required derivatives are given by

∂µ̂2

∂F̂
=

Ĝ(1− 2F̂ )

F̂ 2(1− F̂ )2
;
∂µ̂2

∂Ĝ
=

1

F̂ (1− F̂ )
(A8)

To estimate δ2µ̂2, we must estimate the variance and covari-
ance of the estimators F̂ and Ĝ:

δ2F̂ =
varFn
N/g

; δ2Ĝ =
varGn
N/g

; δF̂ δĜ =
cov (Fn, Gn)

N/g
(A9)

where the sample covariances are used to estimate varAn,
varBn, and cov (An, Bn), and g is the maximum statistical in-
efficiency for the timeseries Fn and Gn. If the Xn denote in-
dependent short trajectories (such as obtained by a computer
simulation from uncorrelated initial starting configurations
x0), then g = 1; otherwise, the statistical inefficiency g can
be estimated via standard means (see Section 5.2 of Chodera
et al. [14]).

Practically, we take advantage of time-reversibility of dy-
namics, and use a slightly modified set of trajectory function-
als that yield the same expectation but average over more
snapshots from the trajectory in the case that the trajectory
segments are of length T > t:

G[X] =
1

T − t

T−τ∑
t0=0

1

2
[hA(x0)hB(xt0+t) + hB(xt0)hA(xt0+t)]

F [X] =
1

T − t

T−t∑
t0=0

1

2
[hA(x0) + hA(xt0+t)] (A10)

This appropriately accounts for the fact that all time origins
produce equally valid estimates and, for systems with mul-
tiple conformational states, ensures satisfaction of detailed
balance.

Appendix B: Model system
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FIG. 4. Rate estimates for model two-state system. A two-state discrete state trajectory between two states centered on x = 1
and x = 2 was generated, on top of which was superimposed Gaussian noise with standard deviation σ of 0.1 (top), 0.2 (upper
middle), 0.3 (lower middle), or 0.4 (bottom). Left: A portion of the resulting observed trajectory x(t) is shown, with the optimal
dividing surface x‡ = 1.5 drawn in red. Left middle: Histogram of the 50 000 observation trajectory. Right middle: Rate estimate
from crossing rate kcrossing (dashed line), reactive flux rate estimated kRF(τ) near plateau time of τ = 2 (dash-dotted line), and
implied rate kim(τ) evaluated at τ = 20 (solid line), estimated as a function of dividing surface x‡ choice the the vicinity of
the transition region. Right: Rate estimates from crossing rate kcrossing (dashed line), reactive flux rate estimated kRF(τ) (dash-
dotted line), and implied rate kim(τ) (solid line), evaluated at optimal dividing surface x‡ = 1.5.
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