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Single-molecule force spectroscopy has proven to be a powerful tool for studying the kinetic be-
havior of biomolecules. Through application of an external force, conformational states with small
or transient populations can be stabilized, allowing them to be characterized and the statistics of in-
dividual trajectories studied to provide insight into biomolecular folding and function. Because the
observed quantity (force or extension) is not necessarily an ideal reaction coordinate, individual ob-
servations cannot be uniquely associated with kinetically distinct conformations. While maximum-
likelihood schemes such as hidden Markov models have solved this problem for other classes of
single-molecule experiments by using temporal information to aid in the inference of a sequence of
distinct conformational states, these methods do not give a clear picture of how precisely the model
parameters are determined by the data due to instrument noise and finite-sample statistics, both sig-
nificant problems in force spectroscopy. We solve this problem through a Bayesian extension that
allows the experimental uncertainties to be directly quantified, and build in detailed balance to fur-
ther reduce uncertainty through physical constraints. We illustrate the utility of this approach in
characterizing the three-state kinetic behavior of an RNA hairpin in a stationary optical trap.

INTRODUCTION17

Recent advances in biophysical measurement have led to18

an unprecedented ability to monitor the dynamics of sin-19

gle biological macromolecules, such as proteins and nucleic20

acids [3]. As a new approach to probing the behavior of bio-21

logical macromolecules, these experiments promise to change22

the way we study folding, dynamics, catalysis, association,23

transcription, translation, and motility, providing otherwise-24

inaccessible information about microscopic kinetics, energet-25

ics, mechanism, and the stochastic heterogeneity inherent in26

these processes. Advances in instrumentation for optical force27

spectroscopy in particular have produced instruments of ex-28

traordinary stability, precision, and temporal resolution [4, 5]29

that have already demonstrated great utility in the study30

of biomolecules in the presence of externally perturbative31

forces [6–8]. Under external force, it becomes possible to sta-32

bilize and characterize short-lived conformational states, such33

as protein folding and unfolding intermediates [9–11].34

In a typical single-molecule optical trapping experiment, a35

protein or nucleic acid is tethered to two polystyrene beads36

by dsDNA handles that prevent the molecule under study37

from interacting with the beads (see Figure 1). The handle-38

biomolecule-handle assembly—referred to as a fiber—is asso-39

ciated with the beads through tight noncovalent interactions,40

with one bead held in an optical trap and the other either suc-41

tioned to a micropipette (as in Figure 1) or held in a second42

optical trap. During an experiment, the position of the bead43

within the laser trap is monitored, and either the relative dis-44

placement from the trap center or the total force on the bead is45

recorded, providing a series of displacement or force measure-46

ments equally spaced in time, resulting in a timeseries such as47

the one depicted in Figure 2. The instrument can generally be48

operated in several modes: a force ramp mode, in which the49

trap is translated rapidly enough to potentially carry the sys-50

tem out of equilibrium; an equilibrium passive mode, in which51

the trap is held fixed; and a constant force-feedback mode, in52

which the trap is continually repositioned to maintain a set53

constant force on the fiber. Here, we concern ourselves with54

the latter two classes of experiment, though nonequilibrium55

experiments remain an exciting topic of current research [12].56

Often, the dynamics observed in these experiments appears57

to be dominated by stochastic interconversions between two58

or more strongly metastable conformational states [13, 14]—59

regions of conformation space in which the system remains60

for long times before making a transition to another confor-61

mational state. These transitions are generally well-described62

by first-order kinetics [15]. While visual inspection of the dy-63

namics may suggest the clear presence of multiple metastable64

states, quantitative characterization of these states is often dif-65

ficult. First, the observed force or extension is unlikely to cor-66

respond to a true reaction coordinate easily able to separate67

all metastable states [16–19], and second, measurement noise68

may further broaden the force or extension signatures of indi-69

vidual states, increasing their overlap. Attempting to separate70

these states by simply dividing the observed force or extension71

range into regions, following current practice [20, 21], can of-72
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FIG. 1. Single-molecule optical trapping configuration for
p5ab RNA hairpin. The biomolecule of interest—here, the
p5ab RNA hairpin—is tethered to two polystyrene beads by
dsDNA handles. The fluctuating force on one bead held in
an optical trap is monitored, while the other bead is held
suctioned to a micropipette tip. Conformational transitions
of the hairpin—such as transitions among the three kinet-
ically metastable states illustrated here—are observed indi-
rectly through motion of the bead in the trap.

ten lead to a high degree of state mis-assignment that results in73

the estimated rate constants and state distributions containing74

a significant amount of error [22] (see Supporting Information).75

Hidden Markov models (HMMs) [23], which use tempo-76

ral information in addition to the instantaneous value of77

the observable (force or extension) to determine which con-78

formational states the system has visited during the exper-79

iment, have provided an effective solution to the hidden80

state problem in many other classes of single-molecule exper-81

iments, such as ion channel currents [24–27], single-molecule82

FRET [28–32], and the stepping of motor proteins [33–35]. In83

applying hidden Markov modeling to the analysis of single-84

molecule force spectroscopy data, the observed force or ex-85

tension trace is assumed to come from a realization of an86

underlying Markov chain, where the system makes history-87

independent transitions among a set of discrete conforma-88

tional states with probabilities governed by a transition or rate89

matrix. Data, in the form of force or bead-to-bead extension90

measurements, is sampled at an interval that ensures that se-91

quential observations satisfy the Markov property of history-92

independence, though the appropriate interval depends on93

the properties of the experimental configuration. Under a94

given set of external force conditions, each state has a distri-95

bution of forces or extensions associated with it. Given ob-96

served timeseries data for forces or extensions, the maximum97

likelihood estimate (MLE) of the model parameters (transition98

rates and state force or extension distributions) and sequence99

of hidden states corresponding to the observed data can be100

determined by standard methods [36, 37], as demonstrated in101

recent work [38].102

Unfortunately, this approach has a number of significant103

drawbacks. Due to technical limitations, experiments often104

suffer from limited statistics—the events of interest (transi-105

tions between states or visits to rare states) may occur only106

a few times during the course of the measurement, and data107

for additional fibers is time-consuming to collect. As a result,108

while the MLE yields the most likely set of model parame-109

ters, there may be enormous uncertainty in some of these pa-110

rameters, and the uncertainty in multiple parameters may be111

correlated in complex nonlinear ways. While methods exist112

for estimating the standard error or confidence intervals from113

MLHMMs [39], these schemes can be prohibitively costly for114

long traces, and may still significantly underestimate the sta-115

tistical error for short traces due to the normally-distributed116

error approximation inherent in the approach. The high cost117

(both in terms of instrument and experimenter time) of collect-118

ing additional data also means that it is not a simple task to119

judge how much data need be collected to test a particular hy-120

pothesis in a statistically meaningful way. Worse yet, the stan-121

dard algorithms employed to find the MLE may not even find122

the true maximum likelihood solution, instead converging to123

a local maximum in likelihood that is far from optimal [40].124

Here, we resolve this issue through the use of a Bayesian125

extension of hidden Markov models [41–44] applicable to sin-126

gle molecule force experiments. By sampling over the pos-127

terior distribution of model parameters and hidden state as-128

signments instead of simply finding the most likely values,129

the experimenter is able to accurately characterize the corre-130

lated uncertainties in both the model parameters (transition131

rates and state force or extension distributions) and hidden132

state sequences corresponding to observed data. Additionally,133

prior information (either from additional independent mea-134

surements or physical constraints) can be easily incorporated.135

We also include a reversibility constraint on the transition136

matrix—in which microscopic detailed balance is imposed on137

the kinetics—which has been shown to significantly reduce138

statistical uncertainties in data-poor conditions [45, 46]. The139

framework we present is based on Gibbs sampling [47, 48], al-140

lowing simple swap-in replacement of models for observable141

distributions, extension to multiple observables, and alterna-142

tive models for state transitions. Additionally, the Bayesian143

method provides a straightforward way to model the statisti-144

cal outcome and assess the utility of additional experiments145

given some preliminary data, allowing the experimenter a146

powerful tool for assessing whether the cost of collecting ad-147

ditional data is outweighed by their benefits. A Matlab im-148

plementation of this approach is available online [http://149

simtk.org/home/bhmm].150

HIDDEN MARKOV MODELS FOR FORCE151

SPECTROSCOPY152

Suppose the temporal behavior of some observable O(x)153

that is a function of molecular configuration x—here, gener-154

ally force or molecular extension—is observed at temporal in-155

tervals ∆t to produce a timeseries ot, where t = 0, 1, . . . , L.156

An instantaneous observation ot does not necessarily contain157

enough information to unambiguously identify the current158

conformational state the molecule occupies; to infer the hid-159

den state, we must also make use of the temporal information160

in the observed trace. We restrict ourselves to consideration of161

scalar functions O(x), but the generalization to multidimen-162

sional probes (or multiple probes, such as combined force and163

fluorescence measurements [49]) and multiple observed tem-164

poral traces is straightforward.165

We presume the system under study has M kinetically dis-166

tinct states, in the sense that the system generally remains in167

a given state for several observation intervals ∆t, but these168

http://simtk.org/home/bhmm
http://simtk.org/home/bhmm
http://simtk.org/home/bhmm
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states may not necessarily represent highly populated states169

of the system at equilibrium. We treat these conformational170

states as the hidden states of the model, because we cannot di-171

rectly observe the identity of the metastable state in which the172

system resides. The hidden Markov model presumes the ob-173

served data O ≡ {ot} was generated according to the follow-174

ing model dependent on parameters Θ ≡ {T,E}, where T175

is an M ×M row-stochastic transition matrix and E a set of176

emission parameters governing the observable (force or exten-177

sion) distributions for each of the M hidden states, and prior178

information about the initial state distribution ρ,179

P(s0) = ρs0
P(st | st−1,T) = Tst−1st

, t ≥ 1

P(ot | st, est) = ϕ(ot | est). (1)

In diagrammatic form, the observed state data {ot} and corre-180

sponding hidden state history {st} can be represented181

ρ−→ s0
T−→ s1

T−→ s2
T−→ · · · T−→ sL

↓ ϕ ↓ ϕ ↓ ϕ ↓ ϕ
o0 o1 o2 oL

(2)

The initial state distribution ρ reflects our knowledge of the182

initial conditions of the experiment that collected data o. In the183

case that the experiment was prepared in equilibrium, ρ cor-184

responds to the equilibrium distribution π of the model tran-185

sition matrix T; if the experiment was prepared out of equilib-186

rium, ρ may be chosen to reflect some other prior distribution187

(e.g. the uniform prior).188

State transitions (st−1 → st) are governed by the discrete189

transition probability Tst−1st
. The Markov property of HMMs190

prescribes that the probability that a system originally in state191

i at time t is later found in state j at time t+1 is dependent only192

on knowledge of the state i, and given by the corresponding193

matrix element Tij of the (row-stochastic) transition matrix T.194

Alternatively, one could instead use the rate matrix K, related195

to the transition matrix T through the equation T = eK∆t.196

If the processes described by T or K are slow compared to197

the observation interval ∆t, then we can easily estimate the198

rate matrix from the associated transition matrix in a way that199

avoids the matrix logarithm, through the expansion K ≈ (T−200

I)/∆t, where I denotes the M ×M identity matrix.201

The probabilistic “emission” of observables from each state202

(st → ot) is governed by the continuous emission probability203

ϕ(ot | est), parametrized by observable emission parameters e.204

For example, in the force spectroscopy applications described205

here, ϕ(o | es) is taken to be a univariate normal (Gaussian)206

distribution parameterized by a mean µ and variance σ2 that207

characterize each state, such that ei ≡ {µi, σ2
i }. Other choices208

of observable distribution can easily be substituted in a mod-209

ular way without affecting the structure of the algorithms pre-210

sented here.211

Given the HMM process specified in Eq. 1, the probability212

of observing data O given the model parameters Θ is then,213

P (O | Θ) =
∑
S

ρs0ϕ(o0 | es0)

L∏
t=1

Tst−1st
ϕ(ot | est), (3)

where the sum over hidden state histories S is shorthand for214

∑
S

≡
M∑
s0=1

M∑
s1=1

· · ·
M∑

s
L

=1

. (4)

If multiple independent traces {ot} are available, the probabil-215

ityP (O | Θ) is simply the product of Eq. 3 for the independent216

traces.217

Maximum likelihood hidden Markov model (MLHMM)218

The standard approach to construct an HMM from ob-219

served data is to compute the maximum likelihood estimator220

(MLE) for the model parameters Θ ≡ {T,E}, which maxi-221

mize the probability of the observed data O given the model,222

Θ̂ = arg max
Θ

P (O | Θ), (5)

yielding MLE estimates of transition matrix T̂ and state emis-223

sion parameters Ê. Typically, determination of the model224

parameters Θ is carried out using the Baum-Welch algo-225

rithm [36].226

Once the MLE parameters Θ̂ are determined, the most227

likely hidden state history that produced the observations O228

can be determined using these parameters:229

Ŝ = arg max
S

P (S | O, Θ̂). (6)

This is typically carried out using the Viterbi algorithm [37], a230

classic example of dynamic programming.231

Both the Baum-Welch and Viterbi schemes are described in232

detail in Algorithms.233

Bayesian hidden Markov model (BHMM)234

Instead of simply determining the model that maximizes235

the likelihood of observing the data O given the model param-236

eters Θ, we can make use of Bayes’ theorem to compute the237

posterior distribution of model parameters given the observed238

data:239

P (Θ | O) ∝ P (O | Θ)P (Θ). (7)

Here, P (Θ) denotes a prior distribution that encodes any a pri-240

ori information we may have about the model parameters Θ.241

This prior information might include, for example, physical242

constraints (such as ensuring the transition matrix satisfies de-243

tailed balance) or prior rounds of inference from other inde-244

pendent experiments.245

Making use of the likelihood (Eq. 3), the model posterior is246

then given by,247

P (Θ | O) ∝ P (Θ)
∑
S

ρs0ϕ(o0 | es0)

L∏
t=1

Tst−1st
ϕ(ot | est).(8)

Drawing samples of Θ from this distribution will, in princi-248

ple, allow the confidence with which individual parameters and249

combinations thereof are known, given the data (and subject250

to the validity of the model of Eq. 1 in correctly representing251

the process by which the observed data is generated). While252

the posterior P (Θ|O) is complex, we could in principle use253

a Markov chain Monte Carlo (MCMC) approach [48] to sam-254

ple it. In its current form, however, this would be extremely255

expensive due to the sum over all hidden state histories S256

appearing in ratios involving Eq. 8. Instead, we introduce257
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the hidden state histories S as an auxiliary variable, sampling258

from the augmented posterior,259

P (Θ,S | O) ∝

[
ρs0ϕ(o0 | es0)

L∏
t=1

Tst−1st
ϕ(ot | est)

]
P (Θ).

(9)

which makes it much less costly to compute the ratios required260

for MCMC on the augmented (Θ,S) parameter space.261

If we presume the prior is separable, such that P (Θ) ≡262

P (T)P (E), we can sample from the augmented posterior263

(Eq. 9) using the framework of Gibbs sampling [48], in which the264

augmented model parameters are updated by sampling from265

the conditional distributions,266

P (S | T,E,O) ∝ ρs0ϕ(o0 | es0)

L∏
t=1

Tst−1st
ϕ(ot | est)

P (T | E,S,O) = P (T | S) ∝ P (T)

L∏
t=1

Tst−1st

P (E | S,T,O) = P (E | S,O) ∝ P (E)

L∏
t=0

ϕ(ot | est). (10)

The equalities on the second and third lines reflect the con-267

ditional independence of the hidden Markov model defined268

by Eq. 1. When only the model parameters Θ ≡ {T,E}269

or the hidden state histories S are of interest, we can sim-270

ply marginalize out the uninteresting variables by sampling271

from the augmented joint posterior for {T,E,S} and examine272

only the variables of interest. In addition, the structure of the273

Gibbs sampling scheme above allows individual components274

(such as the observable distribution model ϕ(o | e) or transi-275

tion probability matrix T) to be modified without affecting the276

structure of the remainder of the calculation.277

In the illustrations presented here, we employ a Gaussian278

observable distribution model for ϕ(o | e),279

ϕ(o | e) = ϕ(o | µ, σ2) =
1√
2πσ

exp

[
−1

2

(o− µ)2

σ2

]
, (11)

where µ is the mean force or extension characterizing a partic-280

ular state, and σ is the standard deviation or width of forces or281

extensions corresponding to that state. We note that marginal282

posterior distributions of each mean P (µi|O) reflect the sta-283

tistical uncertainty in how well the mean force or position is284

determined, and need not correspond to the standard devia-285

tion σi, which may be much broader (or narrower, depending286

on the situation).287

ALGORITHMS288

Generating an initial model289

To initialize either computation of the MLHMM or sam-290

pling from the posterior for the BHMM, an initial model that291

respects any constraints imposed in the model prior P (Θ)292

must be selected. Here, we employ a Gaussian observable dis-293

tribution model for ϕ(o | e),294

ϕ(o | e) = ϕ(o | µ, σ2) =
1√
2πσ

exp

[
−1

2

(o− µ)2

σ2

]
, (12)

and enforce that the transition matrix T satisfy detailed bal-295

ance1.296

Observable parameter estimation297

We first initialize the observed distributions of each state by298

fitting a Gaussian mixture model with M states to the pooled299

observed data O, ignoring temporal information:300

P (O | π,E) =

L∏
t=0

M∑
m=1

πmϕ(ot | µm, σ2
m), (13)

where the state observable emission probability vector E ≡301

{e1, . . . , eM} and em ≡ {µm, σ2
m} with µm denoting the ob-302

servable mean and σ2
m the variance for state m for the Gaus-303

sian mixture model. The vector π is composed of equilibrium304

state populations {π1, . . . , πM} with πm ≥ 0 and
∑M
m=1 πm =305

1.306

A first approximation to π and E is computed by pooling307

and sorting the observed ot, and defining M indicator func-308

tions hm(o) that separate the data into M contiguous regions309

of the observed range of o of roughly equal population. Let310

Nm ≡
∑L
t=0 hm(ot) denote the total number of observations311

falling in region m, and Ntot =
∑M
m=1 Nm. The initial param-312

eters are then computed as,313

πm = Nm/Ntot

µm = N−1
m

L∑
t=0

ot hm(ot) (14)

σ2
m = N−1

m

L∑
t=0

(ot − µm)2 hm(ot). (15)

This approximation is then improved upon by utilizing the314

expectation-maximization procedure described by Bilmes [51],315

π′m = N−1
tot

L∑
t=0

χm(ot,E,π)

µ′m = (π′mNtot)
−1

L∑
t=0

ot χm(ot,E,π)

σ′
2
m = (π′mNtot)

−1
L∑
t=0

(ot − µ′m)2 χm(ot,E,π) (16)

where the function χm(o,E,π) is given by the fuzzy member-316

ship function,317

χm(o,E,π) =
πm ϕ(o | em)
M∑
l=1

πl ϕ(o | el)
. (17)

This iterative procedure is terminated at iteration j when the318

change in the parameters {π,µ,σ2} falls below a certain rela-319

tive threshold, such as ‖π[j] − π[j−1]‖2/‖π[j]‖2 < 10−4.320

1 Physical systems that are not driven in time by an external force or
fed by an energy reservoir should satisfy detailed balance [50], and
its use has been shown to provide a large reduction in transition ma-
trix uncertainty in data-poor conditions [45, 46]. Detailed balance
specifies that πiTij = πjTji for all i, j, where π is the equilibrium
distribution of the row-stochastic transition matrix T.
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Transition matrix estimation321

Once initial state observable emission parameters E are de-322

termined, an initial transition matrix is estimated using an iter-323

ative likelihood maximization approach that enforces detailed324

balance [52]. First, a matrix of fractional transition counts325

C ≡ (cij) is estimated using the membership function:326

cij =

L∑
t=1

χi(ot−1,E,π)χj(ot,E,π) (18)

A symmetric M ×M matrix X ≡ (xij) is initialized by327

xij = xji = cij + cji (19)

and a vector of row sums328

xi∗ =

M∑
j=1

xij . (20)

Then, the iterative procedure described in Algorithm 1 of [52]329

is applied. For each update iteration, we first update the diag-330

onal elements of X:331

x′ii =
cii(xi∗ − xii)
ci∗ − cii

(21)

where332

ci∗ =

M∑
j=1

cij (22)

followed by the off-diagonal elements:333

x′ij = x′ji =
−b+

√
b2 − 4ac

2a
(23)

where the quantities a, b, and c are computed from X and C334

as335

a ≡ ci∗ − cij + cj∗ − cji
b ≡ ci∗(xj∗ − xji) + cj∗(xi∗ − xij)
− (cij + cji)(xi∗ − xij + xj∗ − xji)

c ≡ −(cij + cji)(xi∗ − xij)(xj∗ − xji) (24)

Once a sufficient number of iterations j have been completed336

to compute a stable estimate of X (such as the relative conver-337

gence criteria ‖X[j]−X[j−1]‖2/‖X[j]‖2 < 10−4, the maximum338

likelihood transition matrix estimate T is computed as339

Tij =
xij
xi∗

. (25)

Note that the equilibrium probability vector π computed dur-340

ing the Gaussian mixture model fitting is not respected during341

this step.342

Fitting a maximum likelihood HMM343

The HMM model parameters Θ ≡ {T,E} are fit to the ob-344

served data O through use of the expectation-maximization345

(EM) algorithm [53]. This is an iterative procedure, where the346

model parameters are subsequently refined through succes-347

sive iterations. The initial HMM is usually quick to compute,348

and can give the experimenter a rough idea of the model pa-349

rameters, as well as providing a useful starting point for sam-350

pling models from the Bayesian posterior.351

During each iteration, the Baum-Welch algorithm [36] is352

used to compute Ξ ≡ (ξtij), which represents the probabil-353

ity that the system transitions from hidden state i at time t− 1354

to hidden state j at time t, and γti, the probability that the sys-355

tem occupied state i at time t. This is accomplished by first356

executing the forward algorithm,357

αtj =

{
ρj ϕ(o0 | ej) t = 0

ϕ(ot | ej)
∑M
i=1 α(t−1)iTij t = 1, . . . , L

(26)

followed by the backward algorithm,358

βti =

{
1 t = L∑M
j=1 Tijϕ(ot+1 | ej)β(t+1)j t = (L− 1), . . . , 0

(27)

TheL×M×M matrix Ξ is then computed for t = 0, . . . , (L−1)359

as,360

ξtij = αtiϕ(ot+1 | ei)Tijβ(t+1)j/

M∑
i=1

αTi (28)

γti =

M∑
j=1

ξtij (29)

In practice, the logarithms of these quantities are computed361

instead to avoid numerical underflow.362

The aggregate matrix of expected transition counts363

C ≡ (cij) is then computed from Ξ as,364

cij =

L−1∑
t=0

ξtij . (30)

This count matrix is used to update the maximum-likelihood365

transition matrix T using the method of Prinz et al. [52] de-366

scribed in the previous section.367

The state observable distribution parameters E are then up-368

dated from the γti. For the univariate normal distribution ap-369

plied to force spectroscopy data here, we update the mean µi370

and variance σ2
i for state i using the scheme,371

µ′i =

L∑
t=0

otγti

L∑
t=0

γti

; σ′
2
i =

L∑
t=0

(ot − µ′i)2γti

L∑
t=0

γti

. (31)

Once the model parameters have been fitted by iteration of372

the above update procedure to convergence (which may only373

converge to a local maximum of the likelihood), the most likely374

hidden state sequence can be determined given the observa-375

tions O and the MLE model Θ̂ using the Viterbi algorithm [37].376

Like the forward-backward algorithm employed in the Baum-377

Welch procedure, the Viterbi algorithm also has a forward re-378

cursion component,379

εjt =

{
ρjϕ(ot | ej) t = 0

ϕ(ot | ej) maxi εi(t−1)Tij t = 1, . . . , L
(32)

Φjt =

{
1 t = 0

arg maxi εi(t−1)Tij t = 1, . . . , L
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as well as a reverse reconstruction component to compute the380

most likely state sequence Ŝ,381

ŝt =

{
arg maxi εit t = L

Φŝt+1(t+1) t = (L− 1), . . . , 0
(33)

Sampling from the posterior of the BHMM382

Sampling from the posterior of the BHMM (Eq. 8) proceeds383

by rounds of Gibbs sampling, where each round consists of384

an update of the augmented model parameters {T,E,S} by385

sampling386

S′ | T,E,O ∼ P (S′ | T,E,O)
T′ | S′ ∼ P (T′ | S′)
E′ | S′,O ∼ P (E′ | S′,O)

where the conditional probabilities are given by Eq. 10.387

Updating the hidden state sequences388

We use a modified form of the Viterbi process to generate389

an independent sample of the hidden state history S given the390

transition probabilities T, state observable distribution param-391

eters E, and observed data O. Like the Viterbi scheme, a for-392

ward recursion is applied to each observation trace o, but in-393

stead of computing the most likely state history on the reverse394

pass, a new hidden state history S is drawn from the distri-395

bution P (S | O,T,E). The forward recursion uses the same396

forward algorithm as used in Baum-Welch [36],397

αtj =

{
ρj ϕ(o0 | ej) t = 0

ϕ(ot | ej)
∑M
i=1 α(t−1)iTij t = 1, . . . , L

(34)

In the reverse recursion, we now sample a state sequence by398

sampling each hidden state from the conditional distribution399

st ∼ P (st | st+1, . . . , sL) starting from t = L and proceeding400

down to t = 0, where the conditional distribution is given by,401

P (st = i | st+1, . . . , sL) (35)

∝

{
αti/

∑M
j=1 αtj t = L

αtiTist+1/
∑M
j=1 αtjTjst+1 t = (L− 1), . . . , 0

It is straightforward to show the result of these sampling402

steps reconstitutes the probability distribution P (S|T,E,O)403

(see Supplementary Material).404

Updating the transition probabilities405

If no detailed balance constraint is used and the prior P (T)406

is Dirichlet in each row of the transition matrix T, it is possi-407

ble to generate an independent sample of the transition matrix408

from the conditional distribution P (T′ | S′) by sampling each409

row of the transition matrix from the conjugate Dirichlet pos-410

terior using the transition counts from the sampled state se-411

quence S′ [45]. However, because physical systems in the ab-412

sence of energy input through an external driving force should413

satisfy detailed balance, we make use of this constraint in up-414

dating our transition probabilities, since this has been demon-415

strated to substantially reduce parameter uncertainty in the416

data-limited regime [45].417

The transition matrix is updated using the reversible transi-418

tion matrix sampling scheme of Noé [45, 54]. Here, an adjusted419

count matrix C ≡ (cij) is computed using the updated hidden420

state sequence S′,421

cij = bij +

L∑
t=1

δist−1δjst , (36)

where the Kronecker δij = 1 if i = j and zero otherwise, and422

B ≡ (bij) is a matrix of prior pseudocounts, which we take423

to be zero following the work of Noé et al. [15]. Using the424

adjusted count matrix C, a Metropolis-Hastings Monte Carlo425

procedure [55] is used to update the matrix and produce a new426

sample from P (T′ | S′). Two move types are attempted, se-427

lected with equal probability, and 1000 moves are attempted to428

generate a new sample T′ that is approximately uncorrelated429

from the previous T. Prior to starting the Monte Carlo proce-430

dure, the vector of equilibrium probabilities for all states π is431

computed according to432

TTπ = π. (37)

The first move type is a reversible element shift. A pair of
states (i, j), i 6= j, are selected with uniform probability, and a
random number ∆ is selected uniformly over the interval,

∆ ∈ [max(−Tii,−
πj
πi
Tjj), Tij ].

The changed elements in the proposed transition matrix T′ are
then given by:

T ′ij = Tij −∆ ; T ′ji = Tji −
πi
πj

∆

T ′ii = Tii + ∆ ; T ′jj = Tjj +
πi
πj

∆.

This move is accepted with probability433

Paccept(T→ T′) = min

1,

√
(T ′ij)

2 + (T ′ji)
2

(Tij)2 + (Tji)2
(38)

×
(
T ′ii
Tii

)cii (T ′ij
Tij

)cij (T ′jj
Tjj

)cjj (T ′ji
Tji

)cji}
This move will leave the vector of stationary probabilities π434

unchanged.435

The second move type is a row shift. A row i of T is selected
with uniform probability, and a random number η chosen uni-
formly over the interval

η ∈
[
0,

1

1− Tii

]
and used to update row i of T according to436

T ′ij =

{
ηTij j = 1, . . . ,M, j 6= i

η(Tii − 1) + 1 j = i
(39)

This move is accepted with probability437

Paccept(T→ T′) (40)

= min

{
1, η(M−2)η(ci∗−cii)

(
1− η(1− Tii)

Tii

)cii}
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The row shift operation will change the stationary distribution
of π′, but it may be efficiently updated with

π′i =
πi

πi + η(1− πi)
; π′j =

η πj
πi + η(1− πi)

.

Since this update scheme is incremental, it will accumulate nu-438

merical errors over time that cause the updated π to drift away439

from the stationary distribution of the current transition ma-440

trix. To avoid this, π is recomputed from the current sample441

of the transition matrix in regular intervals (here, every 100442

sampling steps).443

Updating the observable distribution parameters444

Following the update of the transition matrix T, the ob-445

servable distribution parameters E are updated by sampling446

E from the conditional probability P (E′ | S′,O). The condi-447

tional probability for the observable distribution parameters448

for state m, denoted em, is given in terms of the output model449

ϕ(o | e) by Bayes’ theorem,450

P (E | O,S) =

[
L∏
t=0

ϕ(ot | est)

]
P (E). (41)

An important choice must be made with regards to the451

prior, P (E). If the prior is chosen to be composed of inde-452

pendent priors for each state, as in453

P (E) =

M∏
m=1

P (em), (42)

then the full BHMM posterior (Eq. 8) will be invariant under454

any permutation of the states. This behavior might be undesir-455

able, as the states may switch labels during the posterior sam-456

pling procedure; this will require any analysis of the models457

sampled from the posterior to account for the possible permu-458

tation symmetry in the states. On the other hand, breaking this459

symmetry (e.g., by enforcing an ordering on the state mean ob-460

servables) can artificially restrict the confidence intervals of the461

states, which might additionally complicate data analysis.462

Here, we make the choice that the prior be separable463

(Eq. 42), which has the benefit of allowing the conditional464

probability for E (Eq. 41) to be decomposed into a separate465

posterior for each state. For each state m, collect all the obser-466

vations ot whose updated hidden state labels st′ = m into a467

single dataset o ≡ {on}Nm
n=1, where Nm is the total number of468

times state m is visited, for the purposes of this update pro-469

cedure. Then, the observable parameters e for this state are470

given by471

P (e | o) = P (o | e)P (e) =

[
Nm∏
n=1

ϕ(on | e)

]
P (e). (43)

In the application presented here, we use a Gaussian output472

model (Eq. 12) for the state observable distributions P (o | e),473

where e ≡ {µ, σ2}, with µ the state mean observable and σ2
474

the variance (which will include both the distribution of the475

observable characterizing the state and any broadening from476

measurement noise). Other models (including multidimen-477

sional or multimodal observation models) are possible, and478

require replacing only the observation model ϕ(o | e) and cor-479

responding prior P (e).480

We use the (improper) Jeffreys prior [56] which has the481

information-theoretic interpretation as the prior that maxi-482

mizes the information content of the data [57], (suppressing483

the state index subscript m),484

P (e) ∝ σ−1, (44)

which produces the posterior485

P (e | o) ∝ σ−(N+1) exp

[
− 1

2σ2

N∑
n=1

(on − µ)2

]
, (45)

where we remind the reader that here and in the remainder of486

this section, the symbols e, o, σ, µ, and N refer to em, om, σm,487

µm, and Nm, respectively.488

Updating {µ, σ2} also proceeds by a Gibbs sampling489

scheme, alternately updating µ and σ, as earlier described in490

Ref. [54],491

µ ∼ P (µ | σ2,o)

σ2 ∼ P (σ2 | µ,o) (46)

The conditional distribution of the mean µ is then given by492

P (µ | σ2,o) ≡ P (µ, σ2 | o)∫
dµP (µ, σ2 | o)

∝ exp

[
− 1

2(σ2/N)
(µ− µ̂)2

]
(47)

where µ̂ is the sample mean for o, the samples in state m,493

µ̂ ≡ 1

N

N∑
n=1

on (48)

This allows us to update µ according to494

µ′ ∼ N (µ̂, σ2/N) (49)

The conditional distribution of the variance σ2 is given by495

P (σ2 | µ,o) =
p(µ, σ2 | o)∫
dσ2 p(µ, σ2 | o)

∝ σ−(N+1) exp

[
− 1

2σ2

N∑
n=1

(on − µ)2

]

∝ σ−(N+1) exp

[
−Nσ̂

2

2σ2

]
(50)

where the quantity σ̂2, which is not in general identical to the496

sample variance, is given by497

σ̂2 ≡ 1

N

N∑
n=1

(on − µ)2. (51)

A convenient way to update σ2 | µ,o is to sample a random498

variate y from the chi-square distribution with N − 1 degrees499

of freedom,500

y ∼ χ2(N − 1) (52)

and then update σ2 as501

σ′
2

=
Nσ̂2

y
. (53)

Note that µ and σ2 can be updated in either order, but the up-502

dated values of µ or σ2 must be used in sampling the not-yet-503

updated σ2 or µ, and vice-versa.504

Other output probabilities, such as mixtures of normal dis-505

tributions or other distributions, can be substituted by simply506

changing P (E | O,S) and the scheme by which E is updated.507
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FIG. 2. Synthetic force trajectory and inferred state assignments in MLHMM. Observed samples are colored by their hidden
state assignments. Dark horizontal lines terminating in triangles to the right denote state means, while lightly colored bands
indicate one standard deviation on either side of the state mean. The gray histogram on the right side shows the total observed
probability of samples, while the colored peaks show the weighted Gaussian output contribution from each state, and the black
outline the weighted sum of the Gaussian output contributions from the HMM states.

TABLE I. Estimated mean model parameters and confidence intervals for synthetic timeseries data
Estimated Model Parameters

Property True Value 1 000 observations 10 000 observations 100 000 observations
stationary probability π1 0.308 0.228 0.480

0.074 0.318 0.407
0.244 0.324 0.355

0.292

π2 0.113 0.093 0.172
0.042 0.124 0.155

0.098 0.112 0.121
0.104

π3 0.579 0.679 0.870
0.415 0.558 0.648

0.455 0.564 0.599
0.531

transition probability T11 0.980 0.970 0.987
0.945 0.972 0.978

0.966 0.979 0.981
0.978

T12 0.019 0.023 0.045
0.009 0.026 0.032

0.021 0.020 0.021
0.018

T13 0.001 0.007 0.018
0.001 0.002 0.003

0.001 0.001 0.001
0.001

T21 0.053 0.054 0.106
0.018 0.067 0.082

0.053 0.057 0.061
0.052

T22 0.900 0.868 0.931
0.790 0.890 0.907

0.870 0.897 0.903
0.892

T23 0.050 0.078 0.136
0.035 0.043 0.056

0.033 0.046 0.050
0.042

T31 0.001 0.002 0.006
0.000 0.001 0.002

0.000 0.001 0.001
0.000

T32 0.009 0.010 0.019
0.004 0.010 0.012

0.007 0.009 0.010
0.008

T33 0.990 0.988 0.995
0.978 0.990 0.992

0.987 0.990 0.991
0.989

state mean force (pN) µ1 3.000 2.947 3.082
2.812 2.998 3.033

2.963 3.001 3.013
2.990

µ2 4.700 4.666 4.721
4.612 4.699 4.716

4.683 4.702 4.707
4.696

µ3 5.600 5.597 5.614
5.583 5.602 5.607

5.596 5.602 5.603
5.600

state std dev force (pN) σ1 1.000 1.037 1.134
0.951 0.992 1.018

0.967 0.999 1.007
0.991

σ2 0.300 0.254 0.300
0.217 0.287 0.300

0.275 0.301 0.305
0.296

σ3 0.200 0.200 0.211
0.190 0.203 0.207

0.199 0.201 0.203
0.200

VALIDATION USING SYNTHETIC DATA508

To verify that our BHMM posterior sampling scheme re-509

flects the true uncertainty in the model parameters, we tested510

the scheme on synthetic data generated from a model with511

known parameters Θ∗. Given observed data O generated512

from P (O | Θ∗), sampling from the posterior P (Θ | O) us-513

ing the scheme described in Sampling from the posterior of the514

BHMM will provide us with confidence intervals [θlow, θhigh]515

for a specified confidence interval size α ∈ [0, 1]. If these com-516

puted confidence intervals are accurate, we should find that517

the true model parameter θ∗ lies in the computed confidence518

interval [θ
(α)
low, θ

(α)
high] with probability α. This can be tested by519

generating synthetic observed data O from P (O | Θ∗) and520

verifying that we find θ∗ ∈ [θ
(α)
low, θ

(α)
high] in a fraction α of these521

synthetic experiments.522

As an example synthetic model, consider the three-state sys-523

tem intended to mimic a protein with (1) a highly-compliance,524

low-force unfolded state, (2) a moderately compliant low-525

population intermediate at intermediate force, and (3) a low-526

compliance, high-force folded state. Here, the term “compli-527

ance” refers to the width of the force or extension distribution528

characterizing the state. Parameters of the model are given in529

Table I, and the observation interval was taken to be τ = 1530

ms. An example realization of a model trajectory, along with531

the MLHMM state assignment, is shown in Figure 2. We gen-532

erated a trajectory of 100 000 observations, and characterized533

the BHMM mean parameter estimate and 95% confidence in-534

tervals for a subset of this trajectory of varying lengths. The535

results, shown in Table I, show that the confidence intervals536

contract as trajectory length increases, as expected, and the537

BHMM-computed 95% confidence intervals contain the true538

model parameters with the expected statistics. In contrast, a539

model created from simply segmenting the observed forces540

into disjoint region and assigning state membership based on541

the force value alone estimates model parameters with signifi-542

cant bias even for 1 000 000 observations (see Supporting Infor-543

mation).544

As a more rigorous test, we sampled 50 random models545

from the prior P (Θ) with two to six states, generated a 10546

000 observation synthetic trajectory for each, and accumulated547

statistics on the observed fraction of time the true model pa-548
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FIG. 3. Validation of confidence intervals using randomly-
generated synthetic test data. Observed confidence intervals
(points) are plotted as a function of the desired confidence in-
tervals for equilibrium probabilities (πi), transition probabili-
ties (Tij), state means (µi), and state standard deviations (σi).
The black diagonal line indicates perfect agreement between
expected and observed confidence intervals, while observed
confidence intervals above the diagonal indicate overestimates
of the uncertainty, and below the diagonal indicate underesti-
mates. Because only 50 random models were evaluated, er-
ror bars denote a 95% confidence interval in the estimated ob-
served confidence intervals.

rameters were within the BHMM confidence intervals for var-549

ious values of the confidence interval width α. The results of550

this test are depicted in Figure 3. We expect that the plot traces551

the diagonal if the observed and expected confidence inter-552

vals are identical; an overestimate of the confidence interval553

will be above the diagonal, and an underestimate will fall be-554

low it. Because only a finite number of independent replicates555

of the experiment are conducted, there is some associated un-556

certainty with the observed confidence intervals. The results557

show that the observed confidence intervals line up with the558

expected confidence intervals to within statistical error, sug-559

gesting the BHMM confidence intervals neither underestimate560

nor overestimate the actual uncertainty in model parameters.561

RNA HAIRPIN KINETICS IN A PASSIVE OPTICAL TRAP562

We illustrate the BHMM approach applied to real force563

spectroscopy data by characterizing the average forces and564

transition rates among kinetically distinct states of the p5ab565

RNA hairpin in an optical trap under passive (equilibrium)566

conditions.567

The p5ab RNA hairpin from Tetrahymena thermophilia was568

TABLE II. BHMM model estimates for p5ab hairpin data.
Property Value
Equilibrium probability π1 0.215 0.236

0.193

π2 0.046 0.050
0.041

π3 0.740 0.762
0.717

Transition probability (∆t = 1 ms) T11 0.954 0.959
0.950

T12 0.033 0.037
0.029

T13 0.013 0.015
0.011

T21 0.154 0.169
0.139

T22 0.650 0.673
0.627

T23 0.196 0.216
0.180

T31 0.004 0.004
0.003

T32 0.012 0.013
0.011

T33 0.984 0.985
0.983

State force mean (pN) µ1 12.549 12.552
12.544

µ2 13.016 13.027
13.006

µ3 13.849 13.852
13.848

State force std dev (pN) σ1 0.210 0.213
0.207

σ2 0.201 0.208
0.193

σ3 0.213 0.214
0.211

Transition rate (s−1) k12 41.4 46.6
36.3

k13 9.1 11.3
7.2

k21 194.7 216.7
173.1

k23 243.7 271.5
219.0

k31 2.6 3.2
2.1

k32 15.0 16.6
13.4

State mean lifetime (ms) τ1 21.9 24.1
20.0

τ2 2.9 3.1
2.7

τ3 63.1 68.5
58.4

provided by Jin-Der Wen, and prepared as previously de-569

scribed [58]. Within the population of RNA hairpin molecules570

in the examined sample, there were two chemically dis-571

tinct species present in the sample (i.e. as a result of post-572

transcriptional or other covalent modification during sample573

storage), exhibiting either apparent two-state (as reported pre-574

viously [58]) or three-state behavior (studied here). For the575

purposes of testing this method, we examined a fiber that ap-576

peared to consistently exhibit three-state behavior upon visual577

inspection of the force timeseries data.578

The instrument used in this experiment was a dual-beam579

counter-propagating optical trap with a spring constant of 0.1580

pN/nm. A piezoactuator controlled the position of the trap581

and allowed position resolution to within 0.5 nm [59]. Drift582

in the instrument was less than 1 nm/minute resulting in a583

constant average force within 0.1 pN over the course of a typ-584

ical 60 s experiment. For these constant trap position experi-585

ments, higher frequency data was recorded at 50 kHz record-586

ing the voltage corresponding to the force on the tether di-587

rectly from the position-sensitive detectors. To ensure sequen-588

tial samples obeyed Markovian statistics, these data were sub-589

sampled down to 1 kHz for analysis by the BHMM framework590

after examination of autocorrelation functions for trap posi-591

tions where the hairpin appeared to remain in a single confor-592

mational state (see Supplementary Information).593

A single observed force trajectory at a fixed trap position594

adequate to cause hopping among multiple states is shown in595

Figure 4. The most likely state trajectory from the MLHMM fit596

with three states is shown by coloring the observations most597

likely to be associated with each state, with bands of color indi-598
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FIG. 4. Experimental force trajectory of the p5ab hairpin and MLHMM state assignments. Observed samples are colored
by their hidden state assignments. Dark horizontal lines terminating in triangles to the right denote state means, while lightly
colored bands indicate one standard deviation on either side of the state mean. The gray histogram on the right side shows the
total observed probability of samples, while the colored peaks show the weighted Gaussian output contribution from each state,
and the black outline the weighted sum of the Gaussian output contributions from the HMM states.

cating the mean and standard deviation about the mean force599

characterizing each state.600

Table II lists the BHMM posterior means and confidence601

intervals characterizing the three-state model extracted from602

this single 60 s observed force trace. Several things are no-603

table about the estimated model parameters. Surprisingly,604

while there is a clearly-resolved intermediate-force state (state605

2) through which most of the flux from the high- and low-force606

states passes (as seen from large K12 and K23), there are non-607

trivial rate constants connecting the high and low force states608

directly (K13), indicating that while a sequential mechanism609

involving passing through the intermediate state is preferred,610

it may not be an obligatory step in hairpin formation under611

these conditions. While the state mean forces are clearly dis-612

tinct, the state standard deviations—which reflect the width613

of the observed force distribution characterizing each state,614

rather than the uncertainty in state means—possess overlap-615

ping confidence intervals. These standard deviations reflect616

not only contributions from both the distribution of extensions617

sampled by the hairpin in each conformational state, but also618

from fluctuations in the handles and beads, and other sources619

of mechanical and electrical noise in the measurement. As620

we would expect the unfolded hairpin to be more compliant621

(i.e. possess a wider distribution of forces) than the folded hair-622

pin, the inability to distinguish the standard deviations among623

states is suggestive that, for this experimental configuration624

and observation time, the predominant contribution to the ob-625

served force distributions for each state may be in the form of626

handle or bead fluctuations or other sources of measurement627

noise.628

Finally, the lifetime of the intermediate-force state is signifi-629

cantly shorter than for the low- and high-force states by nearly630

an order of magnitude, and only a few times longer than the631

observation interval of 1 ms—despite this, the lifetime appears632

to be well-determined, as indicated by the narrow confidence633

intervals.634

DISCUSSION635

We have described an approach to determining the first-636

order kinetic parameters and observable (force or extension)637

distributions characterizing conformational states in single-638

molecule force spectroscopy. By use of a Bayesian extension639

of hidden Markov models, we are able to characterize the ex-640

perimental uncertainty in these parameters due to instrument641

noise and finite-size datasets. The use of a detailed balance642

constraint additionally helps reduce the experimental uncer-643

tainty over standard hidden Markov models, as both tran-644

sitions into and out of conformational states provide valu-645

able information about state kinetics and populations in data-646

poor conditions. Additionally, the Gibbs sampling framework647

used to sample from the Bayesian posterior can be easily ex-648

tended to incorporate additional nuisance parameters, such as649

stochastic models of instrument drift or laser power fluctua-650

tions.651

We have opted to make use of a reversible transition ma-652

trix to describe the statistical kinetic behavior between the ob-653

servation intervals ∆t, but it is possible to use a reversible654

rate matrix instead by substituting a rate matrix sampling655

scheme [60] in the appropriate stage of the Gibbs sampling up-656

dates.657

While the experimenter must currently choose the number658

of conformational states by hand, a number of extensions of659

Bayesian hidden Markov models can be used to automati-660

cally determine the number of states best supported by the661

data, including reversible-jump schemes [61, 62] and varia-662

tional Bayes methods [63, 64].663

We note that the experimenter in principle has access to664

the full posterior distribution of models given the observed665

data, so that instead of looking at the confidence of single pa-666

rameters, confidence intervals in more complex functions of667

parameters—such as the rates or lifetimes in Table II—can be668

computed, or joint posterior distributions of multiple param-669

eters examined. It is also possible to generate synthetic data670

from the current model, or family of models, to examine how671

the collection of additional data will further reduce uncertain-672

ties or allow discrimination among particular hypotheses. The673

field of Bayesian experimental design [65] holds numerous pos-674

sibilities for selecting how future experiments can maximize675

information gain, and whether the information gain from the676

collection of additional data will be of sufficient utility to jus-677

tify the expense.678
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[35] Müllner, F. E., S. Syed, P. R. Sevin, and F. J. Sigworth, 2010.804

Improved hidden Markov models for molecular motors,805



12

part 1: Basic theory. Biophys. J. 99:3684–3695.806

[36] Baum, L. E., T. Petrie, G. Soules, and N. Weiss, 1970. A807

maximization technique occurring in the statistical analy-808

sis of probabilistic functions of Markov chains. Ann. Math.809

Statist. 41:164–171.810

[37] Viterbi, A. J., 1967. Error bounds for convolutional811

codes and an asymptotically optimum decoding algo-812

rithm. IEEE Trans. Info. Theory 13:260–269.813

[38] Kruithof, M., and J. van Noort, 2009. Hidden Markov814

analysis of nucleosome unwrapping under force. Biophys.815

J. 96:3708–3715.816

[39] Aittokallio, T., and E. Uusipaikka, 2008. Computation817

of standard errors for maximum-likelihood estimates in818

hidden Markov models. Technical report, University of819

Turku. Technical Report No. 379.820

[40] Merialdo, B., 1993. On the locality of the forward-821

backward algorithm. IEEE Trans. Speech and Audio Proc.822

1:255–257.823

[41] Robert, C. P., G. Celeux, and J. Diebolt, 1993. Bayesian824

estimation of hidden Markov chains: A stochastic imple-825

mentation. Stat. Prob. Lett. 16:77–83.826

[42] Chib, S., 1996. Calculating posterior distributions and827

modal estimates in Markov mixture models. J. Economet-828

rics 75:79–97.829

[43] Scott, S. L., 2002. Bayesian methods for hidden Markov830

models: Recursive computing in the 21st century. J. Am.831

Stat. Assoc. 97:337–351.832

[44] Rydén, T., 2008. EM versus Markov chain Monte Carlo for833

estimation of hidden Markov models: A computational834

perspective. Bayesian Analysis 3:659–688.835
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[54] Chodera, J. D., and F. Noé, 2010. Probability distribu-864

tions of molecular observables computed from Markov865

models: II. uncertainties in observables and their time-866

evolution. J. Chem. Phys. 133:105012.867

[55] Hastings, W. K., 1970. Monte Carlo sampling methods868

using Markov chains and their applications. Biometrika869

57:97–109.870

[56] Jeffreys, H., 1946. An invariant form for the prior proba-871

bility in estimation problems. Proc. Royal Soc. A 186:453–872

461.873

[57] Goyal, P., 2005. Prior probabilities: An information-874

theoretic approach. In K. H. Knuth, A. E. Abbas, R. D.875

Morriss, and J. P. Castle, editors, Bayesian Inference and876

Maximum Entropy Methods in Science and Engineering,877

American Institute of Physics, 366–373.878

[58] Wen, J.-D., M. Manosas, P. T. X. Li, S. B. Smith, C. Bus-879

tamante, F. Ritort, and J. Ignacio Tinoco, 2007. Force un-880

folding kinetics of RNA using optical tweezers. I. Effects881

of experimental variables on measured results. Biophys. J.882

92:2996–3009.883

[59] Bustamante, C. J., and S. B. Smith, 2006. Light-force sen-884

sor and method for measuring axial optical-trap forces885

from changes in light momentum along an optic axis.886

[60] Hummer, G., 2005. Position-dependent diffusion coeffi-887

cients and free energies from Bayesian analysis of equi-888

librium and replica molecular dynamics simulations. New889

Journal of Physics 7:34.890

[61] Robert, C. P., T. Rydén, and D. M. Titterington, 2000.891

Bayesian inference in hidden Markov models through the892

reversible jump Markov chain Monte Carlo method. J. R.893

Statist. Soc. B 62:57–75.894

[62] De Gunst, M. C. M., and B. Schouten, 2003. Model selec-895

tion for hidden Markov models of ion channel data by re-896

versible Markov chain Monte Carlo. Bernoulli 9:373–393.897

[63] Beal, M. J., 2003. Variational algorithms for approximate898

Bayesian inference. Master’s thesis, University of Cam-899

bridge, UK.900

[64] Bronson, J. E., J. Fei, J. M. Hofman, R. L. G. Jr., and C. H.901

Wiggins, 2009. Learning rates and states from biophysical902

time series: a Bayesian approach to model selection and903

single-molecule FRET data. Biophys. J. 97:3196–3205.904

[65] Chaloner, K., and I. Verdinelli, 1995. Bayesian experimen-905

tal design: A review. Statist. Sci. 10:273–204.906


	Bayesian hidden Markov model analysis of single-molecule force spectroscopy: Characterizing kinetics under measurement uncertainty
	Abstract
	Introduction
	Hidden Markov models for force spectroscopy
	Maximum likelihood hidden Markov model (MLHMM)
	Bayesian hidden Markov model (BHMM)

	Algorithms
	Generating an initial model
	Observable parameter estimation
	Transition matrix estimation

	Fitting a maximum likelihood HMM
	Sampling from the posterior of the BHMM
	Updating the hidden state sequences
	Updating the transition probabilities
	Updating the observable distribution parameters


	Validation using synthetic data
	RNA hairpin kinetics in a passive optical trap
	Discussion
	Acknowledgments
	References


