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Abstract. We present an online algorithm for a real-world vehicle dispatching
problem at ADAC, the German Automobile Association.

1 Problem Description

The German Automobile Association ADAC (Allgemeiner Deutscher Auto-

mobil-Club), the second largest such organization in the world, surpassed only
by the American Automobile Association, maintains a heterogeneous fleet of
over 1,600 service vehicles in order to help people whose cars break down on
the road. All ADAC service vehicles (called units in the following, for short)
are equipped with a GPS system which allows to locate their positions at any
time. In five help centers (Pannenhilfezentralen) distributed throughout Ger-
many, human dispatchers have to reply to incoming help requests (events)
instantly. Their task is to assign a unit to serve each customer and to pre-
dict the estimated time of arrival at the customer’s location. In addition to
the ADAC fleet, about 5,000 units operated by service contractors can be
employed to cover events that otherwise could not be served in time.

There is no unique objective. The goals are high-quality service (e.g., short
waiting times for the customers) and low operational costs (e.g., short tour
lengths and small overtime costs). With increasing costs and request volume,
ADAC’s dispatching system has come under stress. The task is to design an
automatic system that guarantees small waiting times for events and keeps
operational costs low. Such a system must address two different issues:

Realtime-Problem Given a “snapshot” of the situation at some moment
in time, compute an optimal dispatch for attending all pending events with
the available units and (if required) contractors. Since it contains the classic
vehicle-routing problem as a special case, this problem is NP-hard. The diffi-
culty is that such a dispatch has to be returned in a very short time, usually
no more than 15 seconds for a system load of about 200 events and 100 units.

? Supported by the DFG research center ”Mathematics for key technologies” (FZT
86) in Berlin and by DFG grant Gr 883/10.”

?? Supported by the German Academic Exchange Service (DAAD,
grant A/99/03594)



2 Sven O. Krumke et al.

Online-Problem Once an algorithm for the first task has been found, design
a good strategy for embedding it within the constantly running dynamic
planning process, i.e., decide how often a new dispatch should be computed
in response to incoming events, and/or how far changes should be admitted
in a previous computed dispatch. The main challenge lies in the impossibility
to predict if, where and when events in the near future will take place.

The modeling of the first task, which we shall in the following call the
vehicle dispatching problem Vdp, involves many technical and organizational
side constraints—some hard, others soft—, and it takes some time to figure
out which restrictions and objectives really count. As one example, we have
considered constraints arising from a management decision: ADAC’s imposi-
tion of a soft deadline on the service time of an event, which may be missed
at the cost of a linearly increasing lateness penalty (soft time windows).

Using an approach based on column generation, it was possible to design
an optimization algorithm for the Vdp capable of finding optimal or near-
optimal solutions for real-world instances and which was compliant with the
real-time requirements of the problem. In section 3, we give a brief descrip-
tion of the algorithm (see [5] for the details). The main purpose of this paper
is to present our first results concerning the online-problem. In section 2, we
describe the criteria we used for evaluating different possible online solution
schemes and introduce the strategy that we have chosen. Experimental com-
petitive results for the application of this strategy on real-world instances are
reported in section 4. Section 5 summarizes the key points of this paper.

2 Online Strategy

We postpone until the next section the discussion about how the Vdp in-
stances corresponding to snapshot situations are solved and focus first on the
more subtle online-problem: the search for a strategy to carry out the actual
planning without knowing where future events will pop up. A decision that
is “optimal” at some point in time can prove later to have been unwise. In
particular, even if we were able to compute locally optimal dispatches for any
snapshot situation this does not mean that we obtain a dispatch which is (in
hindsight) optimal for the whole planning period.

A by now standard tool for measuring the “goodness” of an online algo-
rithm is competitive analysis [6]. Basically, one compares the solution pro-
vided by the algorithm for an instance of the online problem with the solution
provided by a “hindsight” adversary, which solves the same problem instance
but with knowledge of the whole input data in advance. It is usually almost
impossible to obtain theoretical proofs of (useful) competitive results, except
for elementary problems. Nevertheless, the concepts arising from competitive
analysis can still be used in practice, in the form of experimental a-posteriori
analysis of online strategies (see, e.g., [2] for some real-world examples), pro-
vided a measured hindsight adversary can be found.
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In our case, this a-posteriori analysis was carried out over input data col-
lected during one (resp. two) hour(s) of operation of the current system at
ADAC. This data was fed to our algorithm in a way that simulated how it
would occur in practice: each event was labeled by a time-stamp that indi-
cated the moment at which it became known to the system. Only after that
time the algorithm was allowed to incorporate information from this event
in a solution. After having briefly considered several simple online heuristics,
we took the decision to follow a REPLAN strategy.

This strategy consists of recomputing from scratch, at certain moments in
time, a completely new dispatch for the current Vdp snapshot (the so-called
offline problem). REPLAN assumes that an algorithm for this offline problem
is at hand, which is capable of delivering solutions with certain guaranteed
quality under real-time conditions (see [4] for more details). Fortunately, this
is the case for the instances arising at ADAC, as we shall see in the next
section.

3 Auxiliary Optimization Problem

In the following, we briefly specify the form of Vdp that is tackled by our
algorithm. More details concerning both the model as the solution method
can be found in [5].

An instance of the Vdp consists of a set of units, a set of contractors, and
a set of events. Each unit u has a current position ou, a home position du, a
logon time tstart

u
, a shift end time tend

u
, and a set of capabilities Fu. Moreover,

the costs related to using this unit are specified by values for costs per time
unit for each of the following actions: driving cdrv

u
, serving csvc

u
, and overtime

cot
u

. Each contractor v has a home position dv and a set of capabilities Fv.
The costs for booking the contractor are specified by a fixed value per service
csvc
v

. Each event e has a position ae, a release time θr
e
, a deadline θd

e
, a service

time δe, and a set of required capabilities Fe. Moreover, missing the deadline
of an event means incurring in a lateness cost equal to the delay times the
value of a lateness coefficient clate

e
.

A feasible solution of the Vdp (a dispatch) is an assignment of events to
units and contractors capable of serving them, as well as a tour for each unit
such that all events are assigned, the service of events does not start before
their release times (waiting of units is allowed at no extra-costs), and all tours
for all units start at their current positions not before their logon times and
end at their home positions. The costs of a dispatch are the sum of all unit
costs, contractor costs, and event costs.

Following a common approach in the vehicle routing literature (see, e.g.,
[1] and the references therein), we state our model using binary tour variables.
The Vdp can then be formulated as a set partitioning problem, where the
ground set of events and units has to be partitioned using a family of subsets
that represent unit tours (plus some special subsets to account for the alter-
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native of assigning events to contractors). The advantage of such a model lies
in its flexibility to incorporate complicated technical and organizational side
constraints within the individual tours and the possibility to tweak the cost
function to achieve certain desired properties of the online behaviour (e.g.,
non-linear lateness penalty). This set partitioning model may be written as
a huge integer linear program where the 0/1 restriction matrix contains one
row for each event and unit and one column for each tour. To solve this
problem, we use a column generation approach. Starting from some initial
columns produced heuristically, the main iteration of our algorithm consists
of adding new columns and resolving the linear relaxation of the problem
until a certain stopping criterion is met. Whenever a new integral solution is
found we output the corresponding dispatch.

The search for columns is done by enumeration in a depth-first-search

branch&bound tree (search tree, for short) for each unit. To prune the search
tree, a lower bound on the cost of a tour is used, which is based on the
dual prices of events and units obtained from the previous solution of the
linear problem. Our main contribution lies in what we call dynamic pricing

control. The depth and degree of the search tree, as well as the value of a
(negative) acceptance threshold imposed on the reduced cost of new columns
are adjusted at each iteration according to the number of columns produced
in the previous one. This ensures that (i) the effort of finding new columns
is small in the beginning, when the dual variables are not yet in good shape,
(ii) the dual variables are updated often in the beginning, (iii) this update is
fast since the number of columns in the LP is still small, (iv) we can enforce
the output of a feasible integer solution early, and (v) the search is exact later
in the run when the dual information is reliable.

Our algorithm ZIBDIP turned out to be very efficient on real-world snap-
shot-instances provided by ADAC. In all tested cases, provably optimal or
near-optimal (<1%) solutions were found in less than five seconds on state-
of-the-art personal computers, even for high load situations containing about
200 events and 100 units. This figures ensure compliance with the real-time
requirements of the application. The behavior of the algorithm remained sta-
ble for problem instances with (artificially augmented) extreme load: ZIBDIP

found a dispatch to attend 770 events with 200 units whose quality was
within 12% from optimum after 5 seconds, within 5% from optimum after 15
seconds, and within 2% after one minute.

Besides of solving the real-time “snapshot” problems, our algorithm is
also used for the evaluation of online strategies: by running it a-posteriori on
jobs collected during one/two hours, we found lower bounds on the value of
the hindsight-optimum discussed in section 2.
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4 Computational Results on Real-World-Data

The input data for the online-tests consisted of 68 one-hour instances and 68
two-hour instances that were extracted from accumulated whole-day datasets
provided by ADAC. The events occurring in these instances were labeled with
time-stamps that represent the moment in time when they pop up. Using this
information, a simulation was run on the ADOptCmd implementation of our
algorithm to test six variants of the REPLAN strategy mentioned in section
2. The total cost of the dispatch produced during the whole hour (resp. two
hours) was compared to a lower bound on the hindsight optimum, which
was obtained by solving to optimality the linear programming relaxation of
the offline problem (i.e., the problem of finding an optimal dispatch if all
events are known from the beginning). In all cases, the online algorithms
were required to deliver their (partial) solutions within 15 seconds of running
time.

Both for the one-hour as for the two-hours instances, the relative error
of the online solution achieved by ADOptCmd for all six alternatives is well
below 50% on the average with very rare substantial deviations of up to
230.71%, obtained for the setting int120 (replan every 120 seconds) in one
data set. There is a difference in the performances of the six different settings
in favour of newjob (replan with every occurrence of a new job) and int60

(replan every 60 seconds). This difference is, however, small enough to ensure
that there will be no serious performance problems in waiting say 60 seconds
for an optimization run to finish.

Figure 1 shows the distribution of the relative errors obtained for the best
two settings newjob and int60 on the one-hour instances. Setting newjob

achieves the best results on average (a relative error of 40.21% against 44.33%
for int60) and produces the least deviation (22.65 against 33.64). This trend
continues in the two-hour instances.
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(a) newjob: µ = 40.21, σ = 22.65
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(b) int60: µ = 44.33, σ = 33.64

Fig. 1. Relative errors in the solutions produced for the one-hour instances.

Another fact to be noticed is that there is no substantial degradation
in the performance of the algorithm when switching from the one-hour to
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the two-hours instances. In fact, the relative error obtained by newjob was
slightly better in the second case. We expect the same to hold also for larger
intervals of time. The computation of the required lower bounds, however,
becomes then technically unmanageable.

5 Conclusion

We have developed a specialized column generation algorithm ZIBDIP that
solves a real-world large scale vehicle dispatching problem with soft time win-
dows under realtime requirements. The problem arises as a subproblem in an
online-dispatching task that was proposed to us by the German Automobile
Association (ADAC). A key concept behind the algorithm is the Dynamic
Pricing Control, which can significantly speed up convergence of the column
generation process, thereby making a method that has proven to be effective
for large scale offline problems ready for the use in online-algorithms under re-
altime requirements. A further advantage of the column generation approach
is its flexibility to incorporate complicated restrictions: we are planning to
use non-linear lateness penalties in future tests.

Employing a-posteriori analysis on real-world problem instances provided
by ADAC, we tested the performance of several settings of the REPLAN

strategy (i.e., we determined a kind of experimental competitivity). The best
results were obtained for the case when a new dispatch was computed either
each time a new event was issued or at a fixed frequency of 60 seconds.

Although the development of the final version of the online algorithm is
still under way, the first results are promising: On average, the online costs
are within 50% above a lower bound on the “hindsight” (offline) adversary—
not too bad, in our experience, for an online algorithm. We hope, however,
to improve on these figures by utilizing estimates of future events in the
snapshot-dispatches. This is work in progress and leads to most interesting
questions as to how knowledge about the future can be exploited in combi-
natorial online optimization.
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