
THE EXISTENCE OF DOMINATING LOCAL MARTINGALE MEASURES
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Abstract. We prove that for locally bounded processes, the absence of arbitrage of the first
kind is equivalent to the existence of a dominating local martingale measure. This is related to
results from the theory of filtration enlargements.
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1. Introduction

Let S be a d-dimensional stochastic process on a filtered probability space (Ω,F , (Ft)t≥0, P ).
We think of S as the price process of a given number of assets. The Fundamental Theorem
of Asset Pricing (Delbaen and Schachermayer, [DS94]) is certainly among the most important
achievements in financial mathematics. It states that for locally bounded S, there exists an
equivalent probability measure Q such that S is a Q-local martingale if and only if the two
conditions (NA1) and (NA) are satisfied. Here (NA) and (NA1) are two notions of arbitrage
that we will define later. In a related work, Delbaen and Schachermayer [DS95b] proved that
for a continuous process S, the condition (NA) implies the existence of an absolutely continuous
local martingale measure Q.

Here we “complete” this program, by proving that for predictable S, (NA1) is equivalent to
the existence of a dominating local martingale measure Q. Of course we have to be very careful
in defining the notion of a dominating martingale measure in the first place. It turns out that
Föllmer’s measure ([Föl72]) associated to a nonnegative supermartingale appears naturally in
this context.

For non-predictable locally bounded S, (NA1) is equivalent to the existence of a dominating
local martingale measure that needs to satisfy an additional condition.
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Denote by

K1 = {1 + (H · S)∞ : H is 1-admissible and (H · S)t converges as t→∞}

all portfolios that are attainable with starting wealth 1 and using only 1-admissible strategies.
A strategy H is called 1-admissible if its stochastic integral H · S with respect to S exists and if
a.s. for all t

(H · S)t ≥ −1.

If S is not a semimartingale, then we can only use simple strategies.
A family of random variables X is called bounded in probability, or bounded in L0, if

lim
M→∞

sup
X∈X

P (|X| ≥M) = 0.

Definition. We say that there is no arbitrage of the first kind (NA1) if K1 is bounded
in probability. If there is no X ∈ K1 with X ≥ 1 and P (X > 1) > 0, we say that there is
no arbitrage (NA). If both (NA1) and (NA) hold, we say that there is no free lunch with
vanishing risk (NFLVR).

Heuristically, (NA) says that it is not possible to make a profit without taking a risk. (NA1)
states that it is not possible to make infinite profit with a bounded credit line. This is why
(NA1) is also referred to as “no unbounded profit with bounded risk” (NUPBR), cf. Karatzas
and Kardaras [KK07].

Definition. If Z is a right-continuous and a.s. càdlàg positive supermartingale with

lim
t→∞

Zt > 0

such that

((1 + (H · S)t)Zt : t ≥ 0)

is a supermartingale for every 1-admissible strategy H, then we call Z a supermartingale
density.

Our main results are then:

Theorem 1.1. Let S be a d-dimensional, right-continuous, and adapted process. Then (NA1)
holds if and only if there exists a supermartingale density for S.

Theorem 1.2. Let S be predictable. If Z is a supermartingale density for S, then Z determines
a probability measure PZ � P such that S is a local martingale under PZ . Conversely, if Q� P
is a dominating local martingale measure for S, then S admits a supermartingale density.

Actually the current formulation is slightly too simple, but it describes the essential result.
We will have to reformulate Theorem 1.2 once we defined Föllmer’s measure.

For optional processes that are not predictable, we can give an easy counterexample to The-
orem 1.2. Recall that a stopping time T is accessible under a probability measure P if there
exists an increasing sequence (Tn) of stopping times, such that P -a.s. Tn < T for every n, and
such that limn→∞ Tn = T P -a.s. In this case, (Tn) is called an announcing sequence for T .
The correct formulation for non-predictable S is then

Theorem 1.3. Let S be locally bounded. Then (NA1) holds if and only if there exists a domi-
nating measure Q� P such that S is a Q-local martingale, and such that the hitting time

T = inf

{
t ≥ 0 :

dP

dQ

∣∣∣∣
Ft

= 0

}
is accessible under Q.
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Recently there has been an increased interest in Föllmer’s measure, which is motivated from
problems in mathematical finance: It appears naturally in the construction and study of “strict
local martingales”, i.e. local martingales that are not martingales. These are used to model
bubbles in financial markets, cf. Jarrow, Protter and Shimbo [JPS10]. A pioneering work on the
relation between Föllmer’s measure and strict local martingales is Delbaen and Schachermayer
[DS95a]. Other references are Pal and Protter [PP10] and Kardaras, Kreher and Nikeghbali
[KKN11]. The work most related to this one is Ruf [Ruf10], where it is shown that in a diffusion
setting, (NA1) implies the existence of a dominating local martingale measure. All these works
have in common that they study the Föllmer measure of strictly positive local martingales. In
an upcoming work of Carr, Fisher and Ruf [CFR11], they study the Föllmer measure of a local
martingale which is not strictly positive. To the best of our knowledge, here the Föllmer measures
of supermartingales which are not local martingales are used as local martingale measures for
the first time.

Another related work is Kardaras [Kar10], where it is shown that (NA1) is equivalent to the
existence of a finitely additive equivalent local martingale measure. Here we construct actual
probability measures rather than only finitely additive measures.

This work is motivated by insights from the theory of enlargements of filtrations, cf. Amendinger,
Imkeller and Schweizer [AIS98], Ankirchner’s thesis [Ank05], and Ankirchner, Dereich and Imkeller
[ADI06]. In these works it was shown that if M is a continuous local martingale in a given fil-
tration (Ft), then under an enlarged filtration (Gt), assuming suitable conditions, M is of the
form

M = M̃ +

∫ ·
0
αsd〈M̃〉s.

Here M̃ is a (Gt)-local martingale. Therefore it is a natural question to ask whether there exists
an equivalent measure Q that “eliminates” the drift, i.e. under whichM is a (Gt)-local martingale.
The answer to this question is in general negative. However Ankirchner observed that if it is
possible to do utility maximization in the large filtration, then the information drift α must
be locally square integrable with respect to M̃ (cf. [Ank05], Theorem 9.2.7). Here we show that
this condition is also sufficient, we relate it to (NA1), and we show that this allows to construct
dominating local martingale measures. We do all this for general locally bounded, d-dimensional
adapted processes, not even assuming the semimartingale property.

Section 2 describes our motivation coming from the theory of enlargement of filtrations in
more detail. In Section 2 we also explore of which form the supermartingales associated to the
dominating local martingale measure should be. In Section 3 we prove that the existence of these
supermartingale densities is equivalent to (NA1). In Section 4 we prove that for predictable S,
a supermartingale Z is a supermartingale density if and only if S is a local martingale under the
Föllmer measure PZ . For non-predictable S we prove the more complicated Theorem 1.3. In
Section 5 we return to the theory of filtration enlargements and examine how Jacod’s criterion
relates to our results.

Remark. That the existence of “supermartingale deflators” is equivalent to (NA1) (i.e. Theorem
1.1) was already shown in [KK07]. However we completed our proof without being aware of their
result. The proof here is very different from their proof. Also, we do not need to assume that
S is a semimartingale. Because we think of Z as the “density” of a dominating local martingale
measure, we prefer the term supermartingale density.

2. Motivation

In this section we show that under enlarged filtrations, generally there exists no equivalent local
martingale measure. Then we recall that nonetheless there often is a dominating local martingale
measure. Finally we argue that often the condition (NA1) is satisfied. This convinces us that
(NA1) should be in some relation to the existence of dominating local martingale measures.
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Then we assume that such a dominating measure exists, and we examine its Kunita-Yoeurp
decomposition under P .

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space with P (A) ∈ {0, 1} for every A ∈ F0.
Define F∞ := ∨t≥0Ft.

Let S be a one-dimensional semimartingale that describes a complete market (i.e. for every
F ∈ L∞(F∞) there exists a predictable process H, integrable with respect to S, such that
F = F0 +

∫∞
0 HsdSs for some constant F0 ∈ R). Let L be a random variable that is F∞-

measurable. Assume that L is not P -a.s. constant. Define the initially enlarged filtration

(Gt = Ft ∨ σ(L) : t ≥ 0).

This is a toy model for insider trading: At time 0, the insider has the additional knowledge of
L. It turns out that there exists no equivalent local martingale measure for S under (Gt). Since
L is not constant, there exists A ∈ σ(L) such that P (A) ∈ (0, 1). Assume Q is an equivalent
(Gt)-local martingale measure for S. Consider the (Q, (Ft))-martingale

Nt = EQ(1A|Ft), t ≥ 0.

Since the market is complete, 1A can be replicated. That is, there exists a (Ft)-predictable
strategy H such that N· = Q(A) +

∫ ·
0 HsdSs. But then

∫ ·
0 HsdSs is a bounded (Q, (Gt))-local

martingale. Hence it is a martingale, and we obtain

0 = EQ(1Ac1A) = EQ

(
1Ac

(
Q(A) +

∫ ∞
0

HsdSs

))
= Q(Ac)Q(A) > 0

which is absurd. The last step follows because Q is assumed to be equivalent to P .
So we see that already in the easiest insider trading models, there generally does not exist an

equivalent local martingale measure any more. By the Fundamental Theorem of Asset Pricing,
one of the two conditions (NA) or (NA1) has to be violated if S is locally bounded.

One of problems treated in the theory of filtration enlargements is the following: Let (Gt)
be a filtration enlargement of (Ft), i.e. Ft ⊆ Gt for every t ≥ 0. Let S be a family of (Ft)-
semimartingales. Under which conditions are all S ∈ S also (Gt)-semimartingales? Hypothèse
(H ′) is said to be satisfied if all (Ft)-semimartingales are (Gt)-semimartingales.

One of the most celebrated criterions that guarantee Hypothèse (H ′) to be satisfied is Jacod’s
criterion ([Jac85]). Here we give an equivalent formulation, first found in Föllmer and Imkeller
[FI93] and later generalized and carefully studied in Ankirchner, Dereich and Imkeller [ADI07]:
Let L be a random variable and define the initial enlargement

Gt = Ft ∨ σ(L).

Define the product space

Ω = Ω× Ω, G = F∞ ⊗ σ(L)

and the filtration

Gt = Ft ⊗ σ(L).

On Ω we define two measures: Q = P |F∞ ⊗ P |σ(L) and

P = P ◦ ψ−1 where

ψ : Ω→ Ω, ψ(ω) = (ω, ω).

We have the following result, which in this setting is just a reformulation of Jacod’s criterion:

Theorem (Theorem 1 in [ADI07]). If P � Q, then Hypothèse (H’) holds, i.e. any (Ft)-
semimartingale is a (Gt)-semimartingale.
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In this formulation it is quite obvious why Jacod’s criterion works: Under the measure Q, the
additional information L is independent of F∞. Therefore any (Ft)-martingale will stay a (Gt)-
martingale under Q (if we embed random variables from Ω to Ω by setting X(ω, ω′) = X(ω)).
The assumption is that the martingale measure Q dominates the actual measure P . Then an
application of Girsanov’s theorem implies that the martingale stays a P -semimartingale. This
can be transferred back to the original space and to the original measure. So the message is:
Observation: One of the most famous criteria in filtration enlargements implies the existence
of a dominating martingale measure under which any (Ft)-martingale is a (Gt)-martingale.

How does this relate to our first example? In fact it is not hard to see that Jacod’s criterion
is always satisfied as long as L takes its values in a discrete space. So Jacod’s criterion may be
satisfied even though there is no equivalent local martingale measure in the large filtration.

Let us also remark that there are many article devoted to calculating the additional utility
of an insider. It is shown e.g. in Ankirchner’s thesis ([Ank05], Theorem 12.6.1), that assuming
Jacod’s criterion, the maximal expected logarithmic utility under (Gt) is given by

sup
X∈K1(Gt)

E(log(X)) = sup
X∈K1(Ft)

E(log(X)) + I(L,F∞)

whereK1(Gt) andK1(Ft) are defined as above, using (Gt)- respectively (Ft)-predictable strategies,
and I(L,F∞) is the mutual information between L and F∞. And this quantity may be finite.
But in the next section we will prove the following result:

Proposition. S satisfies (NA1) if and only if there exists an unbounded increasing function U
such that the maximal expected utility is finite, i.e. such that

sup
X∈K1

E(U(X)) <∞.

Now if we gather all our observations, we see that under enlarged filtrations there are generally
no equivalent local martingale measures. However there are often dominating local martingale
measures. Also, the maximal expected utility is often finite if we assume the existence of a dom-
inating local martingale measure, and this implies that under the large filtration we still have
(NA1). So (NA1) seems to be related to the existence of a dominating martingale measure. In
this work we prove that in a certain sense, the two conditions are equivalent.

Now we only work under one given filtration (Ft), and we assume that S is a local martingale
under Q with P � Q. Define γt = dP/dQ|Ft . We assume that γ is right-continuous. Then
T = inf{t ≥ 0 : γt = 0} is a stopping time, and we can define the adapted process

Zt =
1

γt
1{t<T}.

Let H be 1-admissible for S under Q, that is Q-a.s. for any t ≥ 0∫ t

0
HsdSs ≥ −1.

Let t, s ≥ 0 and let At ∈ Ft. We have

EP (1AtZt+s(1 + (H · S)t+s)) = EQ

(
1At

1{t+s<T}

γt+s
(1 + (H · S)t+s)γt+s

)
≤ EQ

(
1At1{t<T}(1 + (H · S)t+s)

)
≤ EQ

(
1At1{t<T}(1 + (H · S)t)

)
= EP (1AtZt(1 + (H · S)t))

using in the second line that 1At(1+(H ·S)t+s) is nonnegative, and in the third line that 1+(H ·S)
is a nonnegative Q-local martingale and thus a Q-supermartingale. This indicates that Z should
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be a supermartingale density. Of course here we only considered strategies that are 1-admissible
under Q, and there might be strategies that are 1-admissible under P but not under Q. The
way out is to only consider those strategies until time T−. We will make this rigorous later.

Note that the couple (Z, T ) is the Kunita-Yoeurp decomposition of Q with respect to P .
The Kunita-Yoeurp decomposition is a progressive Lebesgue decomposition on filtered proba-
bility spaces. It was introduced in Kunita [Kun76] in a Markovian context, and generalized to
arbitrary filtered probability spaces in Yoeurp [Yoe85]. Namely we have for every t ≥ 0

(1) P (T =∞) = 1
(2) Q(· ∩ {T ≤ t}) and P are singular on Ft.
(3) Q(· ∩ {T > t}) is absolutely continuous with respect to P on Ft, and for A ∈ Ft

Q(A ∩ {T > t}) = EP (1AZt).

So our program will be as follows: First find a supermartingale density Z, and then find a
measure Q and a stopping time T , such that (Z, T ) is the Kunita-Yoeurp decomposition of Q
with respect to P . It turns out that the second part was already solved by [Yoe85], and that Q
will be the Föllmer measure of Z. After studying the interplay of S and Z, we can then apply
the generalized Girsanov theorem of Yoeurp to obtain that under Q, S will be a local martingale
until time T .

3. Existence of Supermartingale Densities

Now that we motivated why we are interested in finding supermartingale densities, let us prove
Theorem 1.1. We are in the following setting: (Ω,F , (Ft)t≥0, P ) is a filtered probability space
with a right-continuous filtration. We do not require (Ft) to be complete. Note that stochastic
integration is possible for non-complete filtrations, cf. Jacod and Shiryaev [JS03], Definition
I.1.2. S is a d-dimensional stochastic process that is adapted to (Ft) and right-continuous. If S
is a semimartingale, then we define

K1 =
{

1 + (H · S)∞ : H is 1-admissible and lim
t→∞

(H · S)t exists a.s.
}
.

The stochastic integral is to be understood in the sense of vector integration, cf. [JS03]. If S is
not a semimartingale, K1 is defined similarly, but only using simple strategies of the form

Ht =

n∑
j=1

Fj1(Tj ,Tj+1](t)

for stopping times 0 ≤ T0 < T1 < · · · < Tn < ∞ and bounded random variables Fj ∈ FTj . In
both cases it is understood that H is a row vector with components H i and S is a column vector
with components Si, and

HdS =

d∑
i=1

H idSi.

The structure of the proof is as follows:
• Show that under (NA1) we can find Q ∼ P such that K1 is bounded in L1(Q).
• Show that if X is a L1-bounded family of adapted two-step processes of the form (X0, X1),
and if X satisfies certain stability assumptions, then there exists a random variable Z,
such that (ZX0, X1) is a supermartingale.
• Use induction to prove the result in finite discrete time.
• Use a compactness argument to construct the “skeleton” (Zq : q ∈ Q+ ∪ {∞}): If no
supermartingale density Z indexed by Q+ exists, then there must already exist finitely
many times t1, . . . , tn such that for the processes (1 + (H · S)ti)i=1,...,n there is no super-
martingale density. This contradicts the previous step.
• Use standard results for supermartingales to define Z on all of R+.
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3.1. Discrete time. We start by proving a de la Vallée-Poussin type theorem for families of
random variables that are bounded in L0.

Proposition 3.1. A family of random variables X is bounded in probability if and only if there
exists an increasing, nonnegative and unbounded function U on [0,∞), such that

sup
X∈X

E(U(|X|)) = C <∞.

In this case, U can be chosen concave and such that U(0) = 0.

Proof. First, assume that such a U exists. Then

sup
X∈X

P (|X| ≥M) ≤ sup
X∈X

P (U(|X|) ≥ U(M)) ≤ sup
X∈X

E(U(|X|))
U(M)

=
C

U(M)
.

Since U is unbounded, the right hand side converges to zero as M tends to ∞.
Conversely, assume that X is bounded in probability. We need to construct an unbounded,

nonnegative, concave, increasing function U with U(0) = 0, and such that E(U(|X|)) is bounded
on X . The idea is of course to work with the function FX (M) = supX∈X P (|X| ≥ M). Our
construction is inspired by the proof of the de la Vallé-Poussin Theorem. That is, we will
construct a function U of the form

U(x) =

∫ x

0
g(y)dy where g(y) = gn, y ∈ [n− 1, n)

for a decreasing sequence of positive numbers gn. This U will be increasing, concave, U(0) = 0.
It will be unbounded if and only if

∑∞
n=1 gn =∞.

If U is of this form, we have by monotone convergence and Fubini (because all the terms are
nonnegative):

E(U(|X|)) =

∞∑
n=1

E(U(|X|)1{|X|∈[n−1,n)}) ≤
∞∑
n=1

U(n)P (|X| ∈ [n− 1, n))

=
∞∑
n=1

n∑
k=1

gkP (|X| ∈ [n− 1, n)) =
∞∑
k=1

∞∑
n=k

gkP (|X| ∈ [n− 1, n))

=
∞∑
k=1

gkP (|X| ≥ k − 1) ≤
∞∑
k=1

gkFX (k − 1)

The proof is therefore complete if we can find a decreasing sequence (gk) of nonnegative numbers,
such that

∞∑
k=1

gk =∞ but
∞∑
k=1

gkFX (k − 1) <∞.

To do so, let n ∈ N. Since (FX (k)) converges to zero, it also converges to zero in the Cesàro
sense. Therefore there exists Kn ∈ N, such that

1

Kn

Kn∑
k=1

FX (k − 1) ≤ 1

n
.

We choose such a Kn ≥ n. Define the sequence

gnk =

{
1

nKn
k ≤ Kn

0 k > Kn
.
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This is a decreasing sequence. For every n, we define such a (gnk )k. Then also the sequence (gk)
consisting of the terms

gk =
∞∑
n=1

gnk =
∞∑

n=nk

1

nKn
≤

∞∑
n=nk

1

n2
<∞

is decreasing. nk is of course the smallest n for which gnk 6= 0. We have by Fubini
∞∑
k=1

gk =
∞∑
k=1

∞∑
n=1

gnk =
∞∑
n=1

∞∑
k=1

gnk =
∞∑
n=1

Kn∑
k=1

1

nKn
=
∞∑
n=1

1

n
=∞

and at the same time
∞∑
k=1

gkFX (k − 1) =
∞∑
n=1

Kn∑
k=1

FX (k − 1)

nKn
≤
∞∑
n=1

1

n2
<∞

which completes the proof. �

In what follows, we will occasionally need this continuity result:

Proposition 3.2. Let g be a proper (i.e. g > −∞ and there exists x s.t. g(x) < ∞), convex,
and lower semi-continuous function on R. Then the map

X 7→ E(g(X))

is lower semi-continuous on (L1, σ(L1, L∞)). σ(L1, L∞) denotes the weak topology of L1, i.e.
the coarsest topology on L1 for which all the maps X 7→ E(XY ) with Y ∈ L∞ are continuous.

Proof. Since g is proper, convex, and lower semi-continuous, it is equal to its convex biconjugate
(cf. Rockafellar [Roc70], Theorem 12.2). That is,

g(x) = sup
y∈R
{xy − g∗(y)} where g∗(y) = sup

x∈R
{xy − g(x)}.

So let (Xn) be a sequence in L1 that converges to some X in the weak topology. Then

lim inf
n→∞

E(g(Xn)) = lim inf
n→∞

E

(
sup
y
{Xny − g∗(y)}

)
.

g∗ is lower semi-continuous and y 7→ Xny is continuous. Xn is measurable. Therefore the y are
defined in a measurable way, i.e.

E

(
sup
y
{Xny − g∗(y)}

)
= sup

Y r.v.
E ({XnY − g∗(Y )})

and so

lim inf
n→∞

E(g(Xn)) ≥ sup
Y

lim inf
n→∞

E(XnY − g∗(Y ))

≥ lim
m→∞

sup
|Y |≤m

lim inf
n→∞

E(XnY − g∗(Y ))

= lim
m→∞

sup
|Y |≤m

E(XY − g∗(Y )).

g is proper, therefore there existsM such that g∗(M) <∞. So form ≥ |M |, the expression in the
expectation is bounded from below by MX − g∗(M) which is in L1. By monotone convergence
we conclude

lim inf
n→∞

E(g(Xn)) ≥ E(g(X)).

�
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Now we restrict ourselves to families of nonnegative random variables: Ultimately we are
only interested in those, and our method of proof is based on techniques from Kramkov and
Schachermayer [KS99], which only work for nonnegative random variables. A similar result
should hold in general.

Proposition 3.3. Let X be a family of random variables. If there exists a strictly positive
random variable Z such that

X 3 X 7→ E(|X|Z)

is bounded by some constant C <∞, then X is bounded in probability.
If X is a convex family of nonnegative random variables, then such a Z exists if and only if

X is bounded in probability.

Proof. We will relate the existence of Z to the existence of U as described in Proposition 3.1.
(1) First assume that Z exists. We show that then there exists a lower semi-continuous,

convex function V on R, such that V |(−∞,0] = ∞ and limy→0 V (y) = ∞, for which
E(V (Z)) < ∞. We could again use a construction inspired by the proof of the de la
Vallée-Poussin Theorem. But here we will argue differently. Define

V̂ (y) =
1√
FZ(y)

where FZ(y) = P (Z ≤ y) is the cumulative distribution function of Z. By convention,
1/0 = ∞. Let V be the convex hull of V̂ (i.e. V is the largest lower semi-continuous,
convex function that satisfies V (y) ≤ V̂ (y) for all y). Then V is positive, because
1 ≤ 1/

√
FZ(y). for all y. Since the constant function 1 is lower semi-continuous and

convex, V must be bounded from below by 1. Also V (0) = ∞: Let n ∈ N and choose
yn > 0 such that for y ≤ yn

1√
FZ(y)

> n.

This is possible, because we assumed Z to be strictly positive. Then the affine function
f with f(0) = n and f(yn) = 0 is everywhere smaller than V̂ , and therefore V ≥ f . But
this implies V (0) ≥ n.

Let us calculate E(V (Z)).

E(V (Z)) =

∫ ∞
0

P (V (Z) > x)dx ≤
∫ ∞

0
P (V̂ (Z) > x)dx

≤ 1 +

∫ ∞
1

P

(
1√
FZ(Z)

> x

)
dx = 1 +

∫ ∞
1

P

(
FZ(Z) <

1

x2

)
dx

= 1 +

∫ ∞
1

P

(
Z < qZ

(
1

x2

))
dx

where the quantile function is defined as qZ(y) = inf{z : FZ(z) ≥ y}.
By right-continuity of the cumulative distribution function we have FZ(qZ(y)) ≥ y.

And because the distribution of Z can have at most countably many atoms, FZ(qZ(y)) =
y except for at most countably many y. So finally we obtain

E(V (Z)) ≤ 1 +

∫ ∞
1

FZ

(
qZ

(
1

x2

))
dx = 1 +

∫ ∞
1

1

x2
dx <∞.

Now define

U : R+ → R, U(x) = inf
y>0
{V (y) + xy}.
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This is the conjugate of V as it is used in utility maximization. It is an increasing, concave,
and upper semi-continuous function. It is also nonnegative, since V is nonnegative. To
see that it is unbounded, let n ∈ N and choose x > 0 such that

V

(
1√
x

)
> n and

√
x > n.

Note that V is decreasing. So for 0 < y ≤ 1/
√
x we have

V (y) + xy ≥ V
(

1√
x

)
+ 0 > n

on the other side for y > 1/
√
x and because V is bounded from below by 1:

V (y) + xy ≥ 1 +
√
x > n

Hence U(x) = infy>0{V (y) + xy} > n.
It remains to show that E(U(|X|)) is bounded on X . But this is easy:
sup
X∈X

E(U |X|)) = sup
X∈X

inf
Y >0

E(V (Y ) + |X|Y ) ≤ sup
X∈X

E(V (Z) + Z|X|) <∞.

(2) Now let X be convex and consist only of nonnegative random variables. We assume that
Z does not exist, and we show that then no nonnegative, concave, upper semi-continuous,
increasing and unbounded U can exist such that

sup
X∈X

E(U(X)) <∞.

Let U be such a function, and again define its conjugate in the sense of utility maximiza-
tion as

V (y) = sup
x≥0
{U(x)− xy}.

We assume U to be proper, i.e. U < ∞ and U(x) > −∞ for at least one x. This is
justified because the function U that we constructed in Proposition 3.1 was finite on R+.
Then

U(x) = inf
y≥0
{V (y) + xy}.

Note that for all y ≥ 0 we have V (y) ≥ U(0) ≥ 0, and that V (0) = ∞, since U is
unbounded. By definition

sup
X∈X

E(U(X)) = sup
X∈X

inf
Y≥0

E(V (Y ) +XY ) = sup
X∈X

inf
Y >0

E(V (Y ) +XY )

where the last step is true because V (0) = ∞. And since we assumed that Z does not
exist, we have

inf
Y >0

sup
X∈X

E(V (Y ) +XY ) ≥ inf
Y >0

sup
X∈X

E(XY ) =∞.

So if we can apply a minimax theorem to exchange the sup and the inf, then the proof
is complete. To do so, we will first have to restrict the Y to a compact set: For given n
define

An = {Y ∈ L1 : 0 ≤ Y ≤ n}.

An is uniformly integrable and therefore relatively compact in (L1, σ(L1, L∞)). It is also
closed, and therefore compact. An is also convex. For given m define

Bm = {X ∈ L∞ : there exists X ′ ∈ X : 0 ≤ X ≤ X ′ ∧m}.
This is a convex subset of L∞: Let X1 and X2 be such that

0 ≤ Xi ≤ X ′i ∧m.
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Then for all λ ∈ [0, 1]:

0 ≤ λX1 + (1− λ)X2 ≤ λ[X ′1 ∧m] + (1− λ)[X ′2 ∧m] ≤ [λX ′1 + (1− λ)X ′2] ∧m.

Because X is convex, Bm is also convex.
To apply Sion’s Minimax Theorem, it suffices now to show that

Y 7→ E(V (Y ) +XY ) is lower semi-continuous and convex for every X and
X 7→ E(V (Y ) +XY ) is continuous and concave for every Y.

Convexity / concavity are of course no problem. The continuity of the map X 7→
E(V (Y ) +XY ) is fine as well because the Y are in L1 (they are even bounded). For the
map with fixed X, the term Y 7→ E(XY ) is even continuous (X is in L∞). The term
Y 7→ E(V (Y )) is lower semi-continuous by Proposition 3.2. Therefore by the Minimax
Theorem (cf. Appendix, Theorem B.1):

sup
X∈Bm

inf
Y ∈An

E ({V (Y ) +XY }) = inf
Y ∈An

sup
X∈Bm

E ({V (Y ) +XY }) .(1)

For every n, the right hand side of (1) diverges to infinity as m tends to ∞: Let
Y ∈ An. If P (Y = 0) > 0, then E(V (Y )) =∞, so

sup
X∈Bm

E(V (Y ) +XY ) =∞.

Otherwise let C > 0. By our assumption there exists X ∈ X such that E(XY ) > C. By
monotone convergence,

lim
m→∞

E((X ∧m)Y ) = E(XY ) > C.

Since this is true for every C

lim
m→∞

sup
X∈Bm

E(XY ) =∞

for every strictly positive Y ∈ An. Let now 0 < C <∞ and define

Cm =

{
Y ∈ An : sup

X∈Bm

E(V (Y ) +XY ) ≤ C
}
.

We just showed that

∩∞m=1Cm = ∅.

Let us verify that the Cm are closed, because then they are closed subsets of the compact
space An with empty intersection. Therefore already a finite intersection would have to
be empty. And this would then imply

lim
m→∞

inf
Y ∈An

sup
X∈Bm

E(V (Y ) +XY ) > C.

Since this would be true for all C < ∞, we would have shown that the right hand side
in (1) diverges to infinity. To see that Cm is closed, let (Yk) be a sequence in Cm that
converges to Y . We want to show that Y ∈ Cm, i.e. that supX∈Bm

E(V (Y ) +XY ) ≤ C.
But

C ≥ lim inf
n→∞

sup
X∈Bm

E(V (Yn) +XYn)

≥ sup
X∈Bm

lim inf
n→∞

E(V (Yn) +XYn)

≥ sup
X∈Bm

E(V (Y ) +XY )

where the last step follows by lower semi-continuity of Y 7→ E(V (Y ) +XY ).
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Since this is true for every n, we have on the right hand side of (1)

lim
n→∞

lim
m→∞

inf
Y ∈An

sup
X∈Bm

E(V (Y ) +XY ) =∞

and therefore also for the left hand side of (1)

lim
n→∞

lim
m→∞

sup
X∈Bm

inf
Y ∈An

E (V (Y ) +XY ) =∞.

Let us show that this implies

sup
X∈X

inf
Y≥0

E (V (Y ) +XY ) = sup
X∈X

E(U(X)) =∞.

Getting rid of the m is easy: For every Z ∈ Bm there exists X ∈ X such that Z ≤ X∧m.
Therefore for any Y ∈ An

E(V (Y ) + ZY ) ≤ E(V (Y ) + (X ∧m)Y ) ≤ E(V (Y ) +XY )

and therefore

sup
X∈X

E(V (Y ) +XY ) ≥ sup
X∈Bm

E(V (Y ) +XY )

for any Y ∈ An and any m. So we have

lim
n→∞

sup
X∈X

inf
Y ∈An

E(V (Y ) +XY ) =∞.

Now let us deal with n. Note that

x 7→ arginfy≥0{V (y) + xy}
is a decreasing function of x which converges to zero as x tends to infinity. So there exists
some fn ≥ 0 such that for x ≥ fn

arginfy≥0{V (y) + xy} ≤ n.
Now let C > 0 and choose X ∈ X such that

C ≤ inf
Y ∈An

E(V (Y ) +XY )

= inf
0≤Y≤n

{E((V (Y ) +XY )1[fn,∞)(X)) + E((V (Y ) +XY )1[0,fn)(X))}

= inf
0≤Y≤n

E((V (Y ) +XY )1[fn,∞)(X)) + inf
0≤Y≤n

E((V (Y ) +XY )1[0,fn)(X))

≤ inf
0≤Y

E((V (Y ) +XY )1[fn,∞)(X)) + V (1) + E(X1[0,fn)(X))

≤ inf
0≤Y

E(V (Y ) +XY ) + V (1) + fn.

In the last step we used that V ≥ 0. The constant V (1) + fn does not depend on C or
X. This shows that also

X 7→ inf
0≤Y

E(V (Y ) +XY )

is unbounded on X , so the proof is complete:

∞ = sup
X∈X

inf
0≤Y

E(V (Y ) +XY ) = sup
X∈X

E(U(X)).

Since this is true for every such U , X cannot be bounded in probability.
�

Remark. While it should be possible to prove the result without the nonnegativity-condition,
convexity is necessary: Let {Ank : 1 ≤ k ≤ 2n, n ∈ N} be an increasing sequence of partitions of
Ω, such that for every n and k

P (Ank) = 2−n.
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This can for example be realized on Ω = [0, 1]. Define the random variables

Xn
k = 1An

k
22n.

Then (Xn
k : n, k) is bounded in probability. Let Z ≥ 0 be such that (ZXn

k : n, k) is bounded in
L1. Then there exists C > 0 such that

E(ZXn
k ) = E(1An

k
Z)22n ≤ C.

Summing over all k, we obtain

E(Z) =

2n∑
k=1

E(1An
k
Z) ≤ 2n

C

22n
= C2−n.

Since this has to hold for all n, Z = 0.

Remark. One way to interpret the previous result is as follows: Let X be a convex family of
nonnegative random variables. Then X is bounded in probability if and only if there exists a
measure Q ∼ P , such that X is L1(Q)-bounded. We might ask if we can choose Q such that
something stronger than L1(Q)-boundedness holds. In general this is not possible: Even if we
impose all the structure conditions that our portfolio variables satisfy, and if we assume the
stronger condition (NFLVR), and if S is a continuous semimartingale, there might still not even
be an absolutely continuous Q� P , such that K1 is uniformly integrable under Q. To see this,
choose an increasing sequence of partitions (Ank : 1 ≤ k ≤ 2n, n ∈ N) of R, such that if N(dx)
denotes the standard normal distribution, for every n, k we have∫

An
k

N(dx) = 2−n.

Now let S be a standard Brownian motion. Define the random variables

Xn
k = 1An

k
(S1)2n.

Then every Xn
k is a bounded random variable, and E(Xn

k ) = 1 for all n, k. By the predictable
representation property of Brownian motion, Xn

k ∈ K1 for every n, k. Now let Q � P , and let
g ≥ 0 be such that limx→∞ g(x)/x =∞. If we show that for any such g, (g(Xn

k ))n,k is unbounded
in L1(Q), then K1 is not uniformly integrable under Q by de la Vallée-Poussin’s theorem. Let
C > 0. Choose n ∈ N such that g(2n) ≥ C2n, and choose k such that Q(S1 ∈ Ank) ≥ 2−n (there
must exist such a k since Q has total mass 1). Then

EQ(g(Xn
k )) ≥ EQ(1An

k
(S1)2nC) ≥ 2−n2nC = C

which shows that EQ(g(·)) is unbounded on K1.

The next Lemma will be the main step towards the supermartingale property. The conditions
are slightly technical, but in the (simple) proof it will become immediately clear why we chose
them in this way.

Lemma 3.4. Let X be a L1-bounded family of nonnegative processes indexed by {0, 1}, adapted
to a filtration (F0,F1). Assume that for every X ∈ X

{X0 = 0} ⊆ {X1 = 0}.

Also suppose that for every disjoint A,B ∈ F0 and XA, XB ∈ X there exists XAB ∈ X such that

1A
XA

1

XA
0

+ 1B
XB

1

XB
0

≤ 1A∪BX
AB
1 and 1A

XA
1

XA
0

+ 1B
XB

1

XB
0

≤ 1A∪B
XAB

1

XAB
0

(2)

(we agree that 0/0 = 0). Further assume that for every X1, X2 ∈ X there exists X0 ∈ X such
that

X1
0

X2
1

X2
0

≤ X0
1 .(3)
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Then there exists a F0-measurable random variable Z ∈ L1
+(F0), such that (X0Z,X1) is a su-

permartingale for every X ∈ X . Z can be chosen such that for every X ∈ X
E(Z) ≤ sup

X∈X
max
i=0,1

E(Xi) and E(X0Z) ≤ sup
X∈X

max
i=0,1

E(Xi).(4)

Proof. Define the set function µ on F0 as follows:

µ(A) := sup
X∈X

E

(
1A
X1

X0

)
.

Since X is bounded in L1, µ is finite by condition (2). The conditions of the Lemma are chosen
exactly so that µ becomes a finite measure. First note that it is finitely additive: Let A∩B = ∅.
Then by (2)

µ(A) + µ(B) = sup
XA∈X

E

(
1A
XA

1

XA
0

)
+ sup
XB∈X

E

(
1B
XB

1

XB
0

)
= sup

(XA,XB)∈X 2

E

(
1A
XA

1

XA
0

+ 1B
XB

1

XB
0

)
≤ sup

(XA,XB)∈X 2

E

(
1A∪B

XAB
1

XAB
0

)
≤ sup

X∈X
E

(
1A∪B

X1

X0

)
= µ(A ∪B).

µ(A ∪B) ≤ µ(A) + µ(B) is obvious. Now let (An) be a sequence of disjoint sets in F0. Then

µ(∪∞n=1An) = sup
X∈X

∞∑
n=1

E

(
1An

X1

X0

)
≤
∞∑
n=1

sup
Xn∈X

E

(
1An

Xn
1

Xn
0

)
=

∞∑
n=1

µ(An).

But for every finitely additive positive set function the inverse inequality is true: For every N ∈ N

µ(∪∞n=1An) ≥ µ(∪Nn=1An) =
N∑
n=1

µ(An).

Letting N → ∞, we obtain that µ is in fact a finite positive measure on F0. It is absolutely
continuous with respect to P . Therefore there exists Z ∈ L1

+(F0, P ), such that

sup
X∈X

E

(
1A
X1

X0

)
= µ(A) = E(1AZ).

This holds for every A ∈ F0, and therefore for all F0-measurable step functions. Let G ≥ 0 be
F0-measurable and let Gn be a sequence of step functions monotonically increasing to X. Then

E(GZ) = lim
n→∞

sup
X∈X

E

(
Gn

X1

X0

)
≤ lim

n→∞
sup
X∈X

E

(
G
X1

X0

)
= sup

X∈X
E

(
G
X1

X0

)
and

E(GZ) = lim
n→∞

sup
X∈X

E

(
Gn

X1

X0

)
≥ sup

X∈X
lim
n→∞

E

(
Gn

X1

X0

)
= sup

X∈X
E

(
G
X1

X0

)
which proves the equality for all nonnegative G ∈ F0. In particular for any X ∈ X and A ∈ F0

E(1AX0Z) = sup
X̃∈X

E

(
1AX0

X̃1

X̃0

)
≥ E

(
1AX0

X1

X0

)
= E(1AX1).

So (X0Z,X1) is a supermartingale if E(X0Z) <∞. But the bound stated in (4) follows imme-
diately from assumption (3):

E(X0Z) = sup
X̃∈X

E

(
X0

X̃1

X̃0

)
≤ sup

X0∈X
E
(
X0

1

)
.

�
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Remark. It is also possible to prove this result by a compactness argument. The proof based on
the Radon-Nikodym theorem seems more elegant to us, which is why we only gave this one here.

Remark. Note that some type of stability assumption is necessary for the previous Lemma to
hold. Even for a uniformly integrable and convex family of processes X , the proposition may
fail without any stability assumptions: Let again {Ank : 1 ≤ k ≤ 2n, n ∈ N} be an increasing
sequence of partitions of Ω, such that for every n and k we have P (Ank) = 2−n. Define the
random variables

Xn
k = 1An

k

2n

n
.

Then (Xn
k : k, n) is uniformly integrable: Let M > 2n0 . Then

sup
n,k

E(|Xn
k |1{|Xn

k |≥M}) ≤ E(|Xn0
1 |) =

1

n0
.

From the de la Vallée-Poussin Theorem and Jensen’s inequality we obtain that also the convex
hull X of the Xn

k is uniformly integrable. Define F0 = F1 = σ(Ank : 1 ≤ k ≤ 2n, n ∈ N). The
processes we consider are all of the form (1, X) for some X ∈ X . Now assume that there exists
Z > 0 such that E(1AXZ) ≤ P (A) for all A ∈ F0 and X ∈ X . This is even a weaker statement
than what we showed in the Proposition. But it still is not possible, because then

E(1An
k
ZXn

k ) = E(1An
k
Z)

2n

n
≤ 2−n

and thus E(1An
k
Z) ≤ n2−2n. Summing over all k, we obtain E(Z) ≤ n2−n. This has to hold for

all n, and therefore E(Z) = 0 - a contradiction to Z > 0.

Corollary 3.5. Let X be a L1-bounded family of nonnegative processes indexed by {0, . . . , n},
adapted to a filtration (Fk : 0 ≤ k ≤ n). Assume that for every X ∈ X and k ≤ n− 1

{Xk = 0} ⊆ {Xk+1 = 0}

also suppose that for every disjoint A,B ∈ Fk and XA, XB ∈ X there exists XAB ∈ X such that

1A
XA
k+1

XA
k

+ 1B
XB
k+1

XB
k

≤ 1A∪B
XAB
k+1

XAB
k

and 1A
XA
k+1

XA
k

+ 1B
XB
k+1

XB
k

≤ 1A∪BX
AB
k+1

and that for every X1, X2 ∈ X there exists X0 ∈ X such that

X2
k+1

X2
k

X1
k ≤ X0

k+1.

Then there exists a strictly positive and adapted process (Zk : 0 ≤ k ≤ n), such that ZX is a
supermartingale for every X ∈ X . Z can be chosen such that that every X ∈ X

max
k=0...,n

E(Zk) ≤ sup
X∈X

max
k=0,...,n

E(Xk) ∨ 1 and max
k=0...,n

E(ZkXk) ≤ sup
X∈X

max
k=0,...,n

E(Xk) ∨ 1.

Proof. We will prove the result by induction. For n = 1, this is just Proposition 3.4: Take
Z0 = Z,Z1 = 1.

Now assume the result is true for n. Let X be a family of processes indexed by {0, . . . , n+ 1}.
Assume that X satisfies all the requirements. Then (X1, . . . , Xn+1) satisfies all the requirements
as well, and therefore there exists a strictly positive supermartingale (Z1, . . . , Zn+1) as stated.
It therefore suffices to construct a suitable Z0. This Z0 will have to satisfy

E(Z0) ≤ sup
X∈X

max
k=0,...,n

E(Xk) ∨ 1

and

E(Z0X0) ≤ sup
X∈X

max
k=0,...,n

E(Xk) ∨ 1
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and

E (1A0Z1X1) ≤ E(1A0Z0X0)

for all A0 ∈ F0, X ∈ X . We obtain such a Z0 by applying Proposition 3.4 to the family of
processes

{(X0, Z1X1) : X ∈ X}.

It is straightforward to show that this family satisfies all the requirements stated in Proposition
3.4. Therefore we obtain Z0, and we are done. �

The previous results can be combined to show that in the case of finite discrete time, the set
of attainable portfolios is bounded in probability if and only if there exists a strictly positive
supermartingale denisity Z:

Corollary 3.6. Let 0 ≤ t0 < · · · < tn ≤ ∞. Define

Ktn1 =

{
1 + (H · S)tn : H is 1-admissible and lim

t→tn
(H · S)t exists a.s.

}
.

Then Ktn1 is bounded in probability if and only if there exists a strictly positive supermartingale
(Zti : i = 0, . . . , n), such that for every 1-admissible H for which limt→tn(H · S)t exists,

((1 + (H · S)ti)Zti : i = 0, . . . , n)

is a supermartingale.

Proof. First assume that K1 is bounded in probability, and apply Proposition 3.3 to obtain
Q ∼ P , such that K1 is bounded in L1(Q).

It remains to show that the portfolio processes satisfy the stability properties required in
Corollary 3.5. For this purpose let k < n and A,B ∈ Ftk be two disjoint sets. Also, let HA

and HB be two 1-admissible strategies (under Q, but since Q is equivalent to P , the set of
1-admissible strategies is the same under the two measures). Denote XA

tk
= 1 + (HA · S)tk and

similarly for B. Define the strategy

HAB
t =

0, t ≤ tk
1A

HA
t

XA
tk

1{XA
tk
>0} + 1B

HB
t

XB
tk

1{XB
tk
>0}, t > tk

.

Then HAB is 1-admissible and satisfies for l > k (since 1 + (HAB · S)tk = 1):

1 + (HAB · S)tl
1 + (HAB · S)tk

= 1 + (HAB · S)tl ≥ 1A1{XA
tk
>0} + 1B1{XB

tk
>0} + (HAB · S)tl

= 1A
1

XA
tk

(XA
tk

+ (HA · S)tl − (HA · S)tk)

+ 1B
1

XB
tk

(XB
tk

+ (HB · S)tl − (HB · S)tk)

= 1A
XA
tl

XA
tk

+ 1B
XB
tl

XB
tk

.

Since outside of A ∪ B, the right hand side vanishes, we can multiply the left hand side with
1A∪B to get the first required stability assumption (2).

If H1 and H2 are 1-admissible, then define the strategy

H0
t =

H
1
t , t ≤ tk

H2
t

X1
tk

X2
tk

1{X2
tk
>0}, t > tk

.
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Then for l > k

1 + (H0 · S)tl = 1 + (H0 · S)tk + ((H0 · S)tl − (H0 · S)tk)

= X1
tk

+
X1
tk

X2
tk

1{X2
tk
>0}(X

2
tl
−X2

tk
)

≥ X1
tk

(
1 +

1{X2
tk
>0}

X2
tk

X2
tl
− 1

)
=
X2
tl

X2
tk

X1
tk

which proves the second stability assumption (3).
Finally we need to show that for any 1-admissibleH, {1+(H ·S)tk = 0} ⊆ {1+(H ·S)tk+1

= 0}.
But this is clear, because in this case H̃t = Ht1{1+(H·S)tk=0}1t∈(tk,tk+1] is a strategy which satisfies∫ tk+1

tk

H̃sdSs ≥ 0.

Therefore also nH̃ is 1-admissible for every n. If the integral was strictly positive with positive
probability, then K1 could not be bounded in probability.

So we can apply Corollary 3.5 to obtain a strictly positive Q-supermartingale Z such that for
every 1-admissible H

Z(1 + (H · S))

is a Q-supermartingale. If we define Z̃tk = EP (dQ/dP |Ftk), then ZZ̃ is a strictly positive
P -supermartingale, such that for every 1-admissible H,

ZZ̃(1 + (H · S))

is a P -supermartingale.
Conversely assume that such a supermartingale Z exists. Then in particular for everyX ∈ Ktn1 ,

E(XZn) ≤ 1. Thus Ktn1 is bounded in probability by Proposition 3.3. �

3.2. Continuous time. In this section, we want to transfer the results from the previous section
to the setting of continuous time processes. By Proposition 3.3, we can find an equivalent
probability measure Q, such that K1 is bounded in L1(Q).

To translate Corollary 3.6 to the continuous time setting is more complicated. Luckily we
are interested in finding a supermartingale Z, such that for every portfolio process X, XZ
is a supermartingale. For a supermartingale, it is essentially sufficient to define its skeleton
(Zq : q ∈ Q+). This allows us to use a compactness argument to reduce to the finite discrete
time case.

We will need the notion of convex compactness. It was defined by Zitkovic [Ž10]:

Definition. Let X be a topological vector space. A closed convex subset C ⊆ X is called
convexly compact if for any family of closed convex subsets {Fα : α ∈ A} of C,

∩α∈AFα = ∅
implies that there exists α1, . . . , αn ∈ A, such that

∩ni=1Fαi = ∅.

Zitkovic [Ž10] then proves the following result:

Proposition 3.7. Let X be a convex set of nonnegative random variables, closed with respect to
convergence in probability. Then X is convexly compact in L0 (the space of real-valued random
variables, equipped with the topology of convergence in probability) if and only if it is bounded in
probability.

In Proposition A.2 we prove a Tychonoff theorem for countable families of convexly compact
subsets of metric spaces. We will use this in the proof of the following Lemma.
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Lemma 3.8. Let Q be a probability measure that is equivalent to P , such that K1 is bounded in
L1(Q). Then there exists a nonnegative Q-supermartingale (Z̄q : q ∈ Q+ ∪ {∞}) with Z∞ > 0,
such that for every 1-admissible H for which limt→∞(H · S)t exists, the process

(Z̄q(1 + (H · S)q) : q ∈ Q+ ∪ {∞})
is a Q-supermartingale.

Proof. DefineM = supX∈K1
EQ(X)∨1, and let X be the set of all processes of the form 1+H ·S

for 1-admissible H such that limt→∞(H · S)t exists. Introduce the following class of processes:

C = {(Zq : q ∈ Q+ ∪ {∞}) : Z∞ = 1, Zq ≥ 0, Zq ∈ Fq and EQ(Zq) ≤M for all q}.

By Proposition 3.7 and Proposition A.2, this is a convexly compact set in
∏
q∈Q+∪{∞} L

0(Fq, Q)

if this space is equipped with the product topology (and all the single L0-spaces are equipped
with the topology of convergence in probability). Define for given q, r ∈ Q+ ∪ {∞}:

C(q, r) = {Z ∈ C : EQ(Zq+rXq+r/Xq|Fq) ≤ Zq for all X ∈ X}.
These are convex subsets of a convexly compact set. By Fatou’s lemma, they are also closed: Let
E(Znq+rXq+r/Xq|Fq) ≤ Znq for all n, and let Zn converge to Z in the product topology. Then

Zq = lim
n→∞

Znq ≥ EQ
(

lim inf
n→∞

Znq+r
Xq + r

Xq

∣∣∣∣Fq) = EQ

(
Zq+r

Xq+r

Xq

∣∣∣∣Fq) .
So if

∩q∈Q+,r∈Q+∪{∞}C(q, r)

was empty, then already a finite intersection would have to be empty. But this is impossible due to
Corollary 3.6: If a finite intersection was empty, then there would be some 0 ≤ t1 < · · · < tn ≤ ∞
for which it is impossible to find a strictly positive (Zt1 , . . . , Ztn) such that

(XtiZti : i = 1, . . . , n)

is a supermartingale for every X ∈ X . But Corollary 3.6 gives us exactly such a Z!
So let Z be in the intersection of all C(q, r). Then for any q ∈ Q+ and r ∈ Q+ ∪ {∞}:

EQ(Zq+r1/1|Fq) ≤ Zq
which shows that Z is a Q-supermartingale. Since Z∞ = 1, Zq must be strictly positive for every
q ≥ 0. The same argument with Xq+r/Xq replacing 1/1 shows that XZ is a Q-supermartingale
for every X ∈ X . �

Corollary 3.9. There exists a nonnegative Q-supermartingale Z with Z∞ > 0, such that for
every 1-admissible H for which limt→∞(H · S)t exists,

(Zt(1 + (H · S)t) : t ≥ 0)

is a Q-supermartingale.
Z can be chosen right-continuous for every ω ∈ Ω, and such that it a.s. possesses left limits

at every t.

Proof. Let Z̄ be the supermartingale given by Lemma 3.8. This is a supermartingale indexed by
Q+ ∪ {∞}. Since (Ft) is right-continuous, for every t ≥ 0 there exists a (Q−)null set Nt ∈ Ft,
such that for ω ∈ Ω\Nt

lim
r→s−
r∈Q

Z̄(ω)r and lim
r→s+
r∈Q

Z̄(ω)r

exist for every s ≤ t (cf. e.g. Ethier and Kurtz [EK86], right before Proposition 2.2.9). So we
define

Zt(ω) =

{
lims→t+

s∈Q
Z̄s(ω), ω ∈ Ω\Nt

0, otherwise
.
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Then Z is adapted because (Ft) is right-continuous. It is right-continuous by definition. However
it may not have left limits everywhere. Nonetheless outside of the null set N = ∪n∈NNn it has
left limits at every t > 0. Z is also a supermartingale: Using Fatou’s Lemma in the first step
and Corollary 2.2.10 of [EK86] in the second step, we obtain (since Nt+s is a null set)

EQ(Zt+s|Ft) ≤ lim inf
r→(t+s)+

r∈Q

EQ(Z̄r|Ft) = lim inf
r→(t+s)+

r∈Q

lim inf
u→t+
u∈Q

EQ(Z̄r|Fu) ≤ lim inf
r→(t+s)+

r∈Q

lim inf
u→t+
u∈Q

Z̄u = Zt.

If we recall that for every 1-admissible H, 1 + (H ·S) is almost surely right-continuous, then the
same argument shows that also

Z(1 + (H · S))

is a Q-supermartingale. �

Proof of Theorem 1.1. Assume K1 is bounded in probability and let (Z̃t) be a right-continuous
and a.s. càdlàg version of the martingale

Z̃t = EP

(
dQ

dP

∣∣∣∣Ft) .
This exists because (Ft) is right-continuous, cf. Corollary 2.2.11 of [EK86]. Then ZZ̃ is as
required: It is a.s. càdlàg, it is a P -supermartingale, strictly positive at ∞. From Theorem VI-6
of Dellacherie and Meyer [DM80], we obtain that limt→∞ ZtZ̃t exists and satisfies

lim
t→∞

ZtZ̃t ≥ Z∞Z̃∞ > 0.

For every 1-admissible strategy H for which limt→∞(H · S)t exists, ZZ̃(1 + (H · S)) is a super-
martingale. But in fact the limit exists for every 1-admissible strategy: Let H be 1-admissible.
Let t, s ∈ R+. Define the restricted strategy Hr

u = Hu, r ≤ t + s, Hr
u = 0, u > t + s. Then of

course for Hr the limit exists, and therefore

E(Zt+sZ̃t+s(1 + (H · S)t+s)|Ft) = E(Zt+sZ̃t+s(1 + (Hr · S)t+s)|Ft)

≤ ZtZ̃t(1 + (Hr · S)t)

= ZtZ̃t(1 + (H · S)t).

So for every 1-admissible strategy, ZZ̃(1 + (H · S)) is a supermartingale. It is also nonnegative.
Therefore it must a.s. converge as t→∞. Since Z̃Z converges to a strictly positive limit, (H ·S)
must converge as well.

Conversely assume that such a supermartingale Z exists. Then for every 1-admissible H,
(H · S)∞ = limt→∞(H · S)t must exist and satisfy

E(Z∞(1 + (H · S)∞)) ≤ 1.

In particular, Z∞K1 is norm-bounded in L1 and Z∞ is strictly positive. By Proposition 3.3, K1

must be bounded in probability. �

Corollary 3.10. In the previous proof we showed that if K1 is bounded in probability, then
limt→∞(H · S)t exists for every 1-admissible strategy H.

A strategy H is called admissible if it is C-admissible for some C > 0. If H is C-admissible,
then (1/C)H is 1-admissible. Therefore the limit exists for every admissible strategy.

Remark. Of course we can introduce trading constraints without any problem, as long as the
set that we constrain to is a convex cone at any given time. All we needed were the stability
assumptions that K1 needs to satisfy, and in that case they will still be satisfied.

Corollary 3.11. Let S be locally bounded. If (NA1) holds, then S is a semimartingale.
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Proof. We assume that S is one-dimensional. Otherwise we can repeat the arguments for every
component of S. Since local semimartingales are semimartingales (cf. Protter [Pro04], Theorem
II.6), it suffices to show the statement in the case when S is globally bounded. So assume
|S| ≤ C, and let Z be a supermartingale density. Then the strategy Ht ≡ 1 is C-admissible, and
therefore

(C + (H · S))Z = CZ + SZ

is a semimartingale. In particular SZ is a semimartingale. Since Zt > 0 for every t, 1/Z is
a semimartingale by Itô’s formula, which completes the proof after another application of Itô’s
formula to the product (SZ)(1/Z). �

It it not possible to extend this result to the unbounded case. Just take a one-dimensional
Lévy-process with jumps that are unbounded both from above and from below, and add to it
any independent process which is not a semimartingale. Then their sum is not a semimartingale.
But since in this case there are no admissible simple strategies, K1 = {1} is of course bounded
in probability.

4. Construction of a Dominating Martingale Measure

4.1. Föllmer’s measure. Now let Z be a supermartingale density. As is to be expected, it is
much more delicate to construct a dominating measure, than it is to construct an absolutely
continuous measure. The reason for this is that by the Radon-Nikodym theorem, the space of
absolutely continuous finite measures is in one-to-one correspondence with L1(P ), a relatively
simple space.

We want to construct a dominating measure and a stopping time T , such that (Z, T ) is the
Kunita-Yoeurp decomposition of Q with respect to P . Recall that (Z, T ) is the Kunita-Yoeurp
decomposition of Q with respect to P if

(1) P (T =∞) = 1
(2) Q(· ∩ {T ≤ t}) and P are singular on Ft.
(3) Q(· ∩ {T > t}) is absolutely continuous with respect to P on Ft, and for A ∈ Ft

Q(A ∩ {T > t}) = EP (1AZt).(5)

It is clear that it is not possible to find (Q,T ) on every filtered probability space. For one,
the space could be too small. Consider e.g. an Ω that consists of one single point, and define
F = Ft = {∅,Ω}, t ≥ 0. Then (e−t) is a continuous positive supermartingale. Nonetheless there
exists only one probability measure on Ω, and therefore we cannot possibly expect to find Q
and T such that (e−·, T ) is the Kunita-Yoeurp decomposition of Q with respect to P . This is
reminiscent of the Dambis Dubins-Schwarz Theorem without the assumption 〈M〉∞ = ∞ (cf.
Revuz and Yor [RY99], Theorem V.1.7). The way to deal with this is to enlarge the space.

But even if we assume the space to be large enough, there might still be problems. Namely
assume that the filtration (Ft) is complete with respect to P and that EP (Z0) = 1. Then Q
would have to be absolutely continuous with respect to P on F0. But F0 contains all P -null
sets. Thus Q has to be absolutely continuous with respect to P . But then Zt = EP (Z|Ft) with
Z = dQ/dP , i.e. Z has to be a uniformly integrable martingale under P . So for supermartingales
Z, the filtration (Ft) should not be completed. The solution to this problem is to assume that
(Ft) is the right-continuous modification of a standard system.

If Ω is large enough and if (Ft) is the right-continuous modification of a standard system,
then the problem of constructing Q and T has been solved by Yoeurp [Yoe85] with the help of
Föllmer’s measure. Let us describe that solution in detail.

First we enlarge Ω. Define Ω := Ω× (0,∞] and F = F ⊗ B(0,∞]. B(0,∞] denotes the Borel
σ-algebra of (0,∞]. Also define P = P ⊗ δ∞ where δ∞ is the Dirac measure at∞. The filtration
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(F t) is defined as

F t = ∩s>tFs ⊗ σ((0, r] : r ≤ s).

Random variables X on Ω are embedded into Ω by setting

X(ω, ζ) = X(ω).

Definition (cf. [RY99], p. 182). A filtered probability space (Ω̃, F̃ , (F̃t), P̃ ) is an enlargement
of (Ω,F , (Ft), P ) if there exists a measurable map π : Ω̃ → Ω, such that π−1(Ft) ⊆ F̃t and
P̃ ◦ π−1 = P . In this case, random variables are embedded from (Ω,F) into (Ω̃, F̃) by setting
X̃(ω̃) = X(π(ω̃)).

Note that (Ω,F , (F t), P ) is an enlargement of (Ω,F , (Ft), P ): Define π(ω, ζ) = ω. Then for
At ∈ Ft

π−1(At) = At × (0,∞] ∈ Ft

and therefore π−1(Ft) ⊆ Ft. For any set A ∈ F

P ◦ π−1(A) = P ⊗ δ∞(A× (0,∞]) = P (A).

And for a random variable X on (Ω,F)

X(ω, ζ) = X(ω) = X(π(ω, ζ)).

Now that we enlarged the space, let us remove the second problem in constructing (Q,T ). We
assume that the filtration (Ft) is the right-continuous modification of a standard system (F0

t ),
i.e.

(1) For every t ≥ 0, F0
t is σ-isomorphic to the Borel σ-algebra of a Polish space. That is,

there exists a Polish space (Xt,Bt), and a bijective map π : F0
t → Bt, such that π−1

preserves countable set operations.
(2) If (ti)i≥0 is an increasing sequence of positive times, and if (Ai)i≥0 is a decreasing sequence

of atoms of F0
ti , then ∩i≥0Ai 6= ∅.

(3) Ft = ∩s>tF0
s .

Path spaces equipped with the canonical filtration are standard systems only if we allow for
explosion in finite time, cf. Meyer [Mey72]. Note that if (Ft) is the right-continuous modification
of a standard system (F0

t ), then (F t) is the right-continuous modification of the standard system

F0
t = F0

t ⊗ σ((0, s] : s ≤ t).

Now we can proceed to construct (Q,T ) on (Ω,F , (F t)). In fact it suffices to construct Q,
because we define

T (ω, ζ) = ζ.

Then P (T =∞) = 1. Note however that in general we cannot hope to get a unique Q on F . Q
has to satisfy for every t ≥ 0

1 = Q(Ω) = Q(Ω ∩ {t < T}) +Q(Ω ∩ {t ≥ T}) = EP (Zt) +Q(t ≥ T ).

So if Z is not a martingale (i.e. its expectation is not constant), then Q and P become singular at
time T . Therefore knowing P ,Z, T , in general we can only uniquely determine Q on the σ-field

FT− = σ(F0, At ∩ {T > t} : At ∈ F t, t ≥ 0)

= σ(At × (t,∞] : At ∈ Ft, t ≥ 0).

For the second equality we refer to [Föl72]. Note that FT− is exactly the predictable sigma-
algebra on Ω× (0,∞].
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Under the assumption that (Ft) is the right-continuous modification of a standard system,
Föllmer constructs a measure PZ on (Ω,FT−), which satisfies for every t ≥ 0 and every At ∈ F t:

PZ(At ∩ {T > t}) =
1

EP (Z0)
EP (Zt1At

)

But this is exactly the relation (5).
Now that we described how to enlarge the space and how to obtain the measure and stopping

time corresponding to the given supermartingale Z, we omit the notation (·): We assume as
given a filtered probability space (Ω,F , (Ft), P ) with a right-continuous filtration, a positive
right-continuous supermartingale Z with Z∞ > 0, a stopping time T , and a measure Q on

FT− = σ(F0, At ∩ {T > t}, At ∈ Ft, t > 0)

such that (T,Z) is the Kunita-Yoeurp decomposition of Q with respect to P . Note that the
assumption Z∞ > 0 P -a.s. guarantees Q� P |FT− . Namely let At ∈ Ft. Then

P (At ∩ {T > t}) = EP

(
Z∞
Z∞

1At∩{T=∞}

)
= EQ

(
1

Z∞
1At∩{T=∞}

)
≤ EQ

(
1{Z∞>0}

Z∞
1At∩{T>t}

)
.

By the monotone class theorem, this inequality extends to arbitrary A ∈ FT−.
We also assume that Z is the supermartingale density for a given d-dimensional right-continuous

adapted process S. There is one major difficulty in determining whether or not S is a local mar-
tingale under Q: Q is only defined on the filtration FT−. That is, we only know the behavior of
S under Q up to time T−.

Definition. Let (Ω,F , (Ft), P ) be a filtered probability space, and let M be a (Ft)-adapted
process. Let T be a (Ft)-stopping time. Assume that there exists an increasing sequence of
stopping times Tn ↑ T P -a.s., such that for every n, MTn = MTn∧· is a uniformly integrable
P -martingale. Then we say that M is a P -local martingale until time T .

Define for a given process X the process XT− stopped at T−:
XT−
t = Xt1{t<T} + lim

s↑t
Xs1{t≥T}.

Yoeurp obtains the following generalized Girsanov theorem for processes stopped at time T−.

Theorem 4.1 (Theorem 8 of [Yoe85]). Let P and Q be two probability measures that are not
singular on F0. Let (Z, T ) be the Kunita-Yoeurp decomposition of Q with respect to P . Let M
be a P -local martingale. Assume that the oblique bracket 〈M,Z〉 exists under P . Then

MT− − 1

Z−
· 〈M,Z〉T−

is a Q-local martingale until time T .

If S is predictable, knowing Q on FT− determines the behavior of S under Q until time T (cf.
[JS03], Proposition I.2.4). Therefore we can determine whether or not a predictable S is a local
martingale under Q up to time T . Otherwise, things get more complicated, because in general
T− is not a stopping time. Therefore we first treat the predictable case.

4.2. The predictable case. We still assume (Ω,F , (Ft), P ), Z, S, T , and Q to be as described
above. In addition, we assume that S is predictable. We examine the structure of S and Z
closer. This allows us to apply Yoeurp’s generalized Girsanov theorem to deduce that under the
dominating measure associated to Z, S is a local martingale until time T .

First we observe that S is P -a.s. locally bounded. Namely, let for C ≥ 0: R = inf{t ≥
0 : |St| ≥ C}. Since S is right-continuous and adapted, this is a stopping time. Then this
is a predictable stopping time, so it is announced by a sequence of stopping times (Rn), i.e.
Rn < R P -a.s. on {R > 0} and limn→∞Rn = R P -a.s. (cf. [JS03], I.2.16). This allows
us to construct a localizing sequence (Un) for S, such that the stopped process SUn is P -a.s.
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bounded. By Corollary 3.11, this implies that S is a semimartingale. But then S is even a
special semimartingale (cf. [JS03], I.4.23 (iv)), i.e. there exists a unique decomposition

S = S0 +M +A(6)

with a local martingale M with M0 = 0, and with a predictable process of finite variation A
with A0 = 0. This implies that

M = S − S0 −A

is predictable. But any predictable right-continuous local martingale is continuous (cf. [JS03],
I.2.31). Therefore S is of the form (6) with M continuous and A predictable.

Let us examine the structure that S and Z must have in this situation more closely. It turns
out that S must satisfy the structure condition as described in Schweizer [Sch95]. Note however
that this result is not a special case of [Sch95], because we do not assume that A is continuous,
we do not suppose that Z is locally square integrable, and we do not suppose that ZS is a local
martingale. Nonetheless our result is of course strongly related to [Sch95].

Definition. Let

S = S0 +M +A

be a d-dimensional special semimartingale with locally square-integrable M . Define

Bt =

d∑
i=1

〈M i〉t and for 1 ≤ i, j ≤ d : σijt =
d〈M i,M j〉t

dBt
.

(σ exists because of the Kunita-Watanabe inequality). S satisfies the structure condition if
for every 1 ≤ i ≤ d:

dAi � d〈M i〉 with αit =
dAit

d〈M i〉t
predictable

and if there exists a predictable process λt = (λ1
t , . . . , λ

d
t )
∗ ∈ L2

loc(M) (x∗ denotes the transpose
of x), such that

(σtλt)i = αitσ
ii
t , i = 1, . . . , d.

In this case λ might not be uniquely determined, but the stochastic integral
∫
λdM does not

depend on the choice of λ (cf. [Sch95]).

Proposition 4.2. Suppose that Z is a supermartingale density for the d-dimensional predictable
right-continuous process S. Then S is P -a.s. continuous, it satisfies the structure condition, and

dZt = Zt−(−λ∗tdMt + dLt − dCt)(7)

where λ is as in the definition of the structure condition, L is a local martingale strongly orthog-
onal to M (i.e. LM is a local martingale), C is increasing, and ∆(L− C) > −1.

Conversely, if a predictable S satisfies the structure condition, and if Z is defined by (7), then
Z is a supermartingale density for S.

In particular, for predictable S, the structure condition is equivalent to (NA1).

Proof. Let

Z = Z0 +N − C

be the Doob-Meyer decomposition of the supermartingale Z, i.e. N is a local martingale, and C
is increasing and predictable. The semimartingale decomposition of S is given by

S = S0 +M +A

with a continuous local martingale M and a predictable A of finite variation.



24 PETER IMKELLER AND NICOLAS PERKOWSKI

Because M is continuous, there exists a predictable process β ∈ L2
loc(M), such that

N = β ·M + L

where L is a local martingale which is strongly orthogonal to all components of M (cf. [JS03],
Theorem III.4.11). Let H be a 1-admissible strategy. Let us apply the integration by parts
formula to Z(1 + (H · S)):

d[Z(1 + (H · S))] = (1 + (H · S)−)dZ + Z−d(H · S) + d[(H · S), Z]

= (1 + (H · S)−)(βdM + dL− dC) + Z−H(dM + dA)

+ d[(H ·M) + (H ·A), (β ·M) + L− C]

= (1 + (H · S)−)(βdM + dL) + Z−HdM

+ d[(H ·M), L]− d[(H ·M), C] + d[(H ·A), (β ·M) + L]

− (1 + (H · S)−)dC + Z−HdA+ d[(H ·M), (β ·M)]− d[(H ·A), C].

All the terms in the first two lines are local martingales. For the quadratic covariation terms,
this is true because L is strongly orthogonal to M , and because A and C are predictable (cf.
[JS03], Proposition I.4.49, c)). Let us write X ∼ Y , if X − Y is a local martingale. Then we
obtain from Proposition I.4.49 a) of [JS03]:

d[Z(1 + (H · S))] ∼ −(1 + (H · S)−)dC + Z−HdA+ d[(H ·M), (β ·M)]−∆(H ·A)dC.

Because M is continuous, ∆(H · S) = H∆S = H∆A = ∆(H ·A), so that

d[Z(1 + (H · S))] ∼ −(1 + (H · S))dC + Z−HdA+ d[(H ·M), (β ·M)]

∼ −(1 + (H · S))dC + Z−HdA+ d〈(H ·M), (β ·M)〉

= −(1 + (H · S))dC +

d∑
i=1

H i

Z−dAi +

d∑
j=1

σijβjdB


where the last step follows from Theorem III.4.5 of [JS03] (B and σ are as in the definition of
the structure condition). Assume that for some i, the term in the big brackets is not identically
zero. We show that then we can construct a 1-admissible H, such that the part of finite variation
in the Doob-Meyer decomposition of the supermartingale (1 +H · S)Z is locally increasing with
positive probability. This is a contradiction.

First observe that all the Ai must be continuous, because under (NA1), necessarily dAi �
d〈M i〉. This is a well known fact, cf. e.g. Ankirchner’s thesis [Ank05], Lemma 9.1.2 (otherwise
one could choose a strategy H i which satisfies H i ·M i ≡ 0, but for which H i · Ai is increasing;
this would contradict K1 being bounded in probability).

Now assume that there exists i for which the P -a.s. continuous process

Di
t =

∫ t

0

Zs−dAis +

d∑
j=1

σijs β
j
sdBs


is not P -evanescent. By the predictable Radon-Nikodym theorem of Delbaen and Schachermayer
(cf. [DS95b], Theorem 2.1 b)), there exists a predictable γi with values in {−1, 1}, such that∫ ·

0
γisdD

i
s = V i

where V i denotes the variation of Di. In particular, γi ∈ L2
loc(M

i). Define the admissible (S is
continuous!) strategy

H i,n
t = n(1 + (H i,n · Si)t−)γit = n(1 + (H i,n · Si)t)γit , Hj,n ≡ 0, j 6= i.
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Then we have

d[Z(1 + (Hn · S))] ∼ −(1 + (H i,n · Si))dCi + n(1 + (H i,n · Si))γidDi

= (1 + (H i · Si))(ndV i − dCi).

The first bracket is positive by choice of H i (since Si is continuous). V i and Ci are increasing. By
assumption, V i is not identically zero. Hence we can choose n large enough, such that nV i−Ci
becomes locally increasing with positive probability - a contradiction to Z(1 + Hn · S) being a
supermartingale.

So now we know that for some predictable αi,

0 =

Z−dAi +

d∑
j=1

σijβjdB

 =

Z−αid〈M i〉+

d∑
j=1

σijβjdB

 =
(
Z−α

iσii + (σβ)i
)
dB

so that

Z−α
iσii = (σβ)i dB(ω)P (dω)− a.e..

If we change α and β on dB(ω)P (dω)-null sets, then this does not change S and Z. Therefore
we can assume that the equality holds identically. Because Z− > 0, we can define λi = βi/Z−,
and obtain

αiσii = (σλ)i.

It remains to verify λ ∈ L2
loc(M). But this is obvious, because β ∈ L2

loc(M):

∞ >
d∑

i,j=1

∫ t

0
βisσ

ij
s β

j
sdBs =

d∑
i,j=1

∫ t

0
Z2
s−λ

i
sσ
ij
s λ

j
sdBs ≥

{
inf

0≤s≤t
Z2
s−

} d∑
i,j=1

∫ t

0
λisσ

ij
s λ

j
sdBs

and the infimum is strictly positive, because Z is a positive supermartingale.
For now we obtained Z of the form

dZ = −λZ−dM + dL− dC.

The statement of the proposition follows by defining dL̃ = 1/Z−dL and similarly for C̃. �

Corollary 4.3. ZSi is a local supermartingale if and only if Si ≥ 0 on the support of the measure
dC. If Si ≥ 0 identically, ZSi is an actual supermartingale, since positive local supermartingales
are supermartingales by Fatou’s lemma.
ZSi is a local martingale if and only if Si = 0 on the support of the measure dC.

Proof. We just apply integration by parts to ZSi:

d(ZSi) = Z−dS
i + Si−dZ + d[Si, Z]

∼ Z−αiσiidB − Z−SidC + d〈Si, Z〉

= Z−α
iσiidB − Z−SidC +

d∑
j=1

Z−σ
ijλjdB

= −Z−SidC.
This is the sum of a local martingale and a process of finite variation. It is therefore a local
supermartingale if and only if the process of finite variation is decreasing. This is the case if and
only if Si is nonnegative whenever C increases.

Since SidC is predictable and of finite variation, it is only a local martingale if it vanishes. �

We call a process X a maximal element of a family of processes X , if there exists no X̃ ∈ X ,
such that

P (X̃t ≥ Xt for all t ≥ 0) = 1 and P (there exists t ≥ 0 such that X̃t > Xt) > 0.
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Corollary 4.4. If Z is maximal among the supermartingale densities with a given initial value,
then it is a local martingale.

Proof. Since Z is a supermartingale density, it is of the form

dZ = Z−(−λdM + dL− dC)

for some local martingale L that is orthogonal to M and for some decreasing predictable C. If
C was not 0, then we could define

dZ̃ = Z̃−(λdM + dL), Z̃0 = Z0

to obtain a supermartingale density with the same initial value, such that Z̃ is strictly larger
than Z with positive probability. �

Corollary 4.5. Let Z be a supermartingale density for S, and let Q be the dominating measure
associated to Z. Let T be the associated stopping time, i.e. (Z/EP (Z0), T ) is the Kunita-Yoeurp
decomposition of Q with respect to P . Then S is a Q-local martingale until time T .

Proof. It suffices to show that for every i = 1, . . . , d, (Si)T is a local martingale until time T .
Since S is predictable and admits a supermartingale density, it must be continuous. Therefore
(Si)T = (Si)T−. Let

Si = M i + αi · 〈M i〉

be the semimartingale decomposition of Si under P (recall that by Proposition 4.2, S satisfies
the structure condition). We can apply Theorem 4.1 and Proposition 4.2 to obtain that under Q

(M i)T− − 1

Z−
· 〈M i, Z〉T− = (M i)T − 1

Z−
·

−Z− d∑
j=1

σijλj

 dBT

= (M i)T + αiσiidBT

= (M i)T + αid〈M i〉T

= (Si)T

is a local martingale until time T . �

Corollary 4.6 (“Predictable Weak Fundamental Theorem of Asset Pricing”). Let (Ft) be the
right-continuous modification of a standard system. Let S be a predictable right-continuous sto-
chastic process. Then S satisfies (NA1) if and and only there exists an enlarged probability space
(Ω,F , (F t), P ) and a dominating measure Q� P with Kunita-Yoeurp decomposition (Z, T ) with
respect to P , such that S is a Q-local martingale until time T .

Proof. We just showed the existence of Q assuming (NA1). Conversely, let us assume that Q
exists. Then S is a predictable right-continuous Q-local martingale until time T . Therefore it
is Q-a.s. continuous until time T . Let H be a P 1-admissible strategy. Since Q and P are
equivalent until time T−, this implies (H ·S)T = (H ·S)T− ≥ −1 Q-a.s. Now we can repeat the
arguments from the introduction, to obtain that

Zt =
1

γt
1{t<T} where γt =

dP

dQ

∣∣∣∣
Ft

is a supermartingale density for S. This implies that S satisfies (NA1) under P . Since (Ω,F ,
(F t), P ) is an enlargement of (Ω,F , (Ft), P ), this implies that S satisfies (NA1) under P . �
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4.3. The optional case. Let us start the treatment of the nonpredictable case with two negative
results.

Example. (1) If S is optional and if Q is a dominating local martingale measure for S, then
S does not need to satisfy (NA1). Namely, define

St = et1{t<T}, t ∈ [0, 1]

where under Q, T is exponentially distributed with parameter 1. It is not hard to see
that this is a martingale in its natural filtration. One way to verify this is to regard S
as the stochastic exponential of the martingale −Nt + t, where N is a standard Poisson
process. Since time is finite, this means that S is a uniformly integrable martingale. So
the measure dP = S1dQ is absolutely continuous with respect to Q. Let us examine the
distribution of St under P :

EP (f(St)) = EQ(f(et1{t<T})e
t1{t<T}) = f(et)etQ(t < T ) = f(et).

The only process with margins law(St) = et is the deterministic process et. So clearly S
does not satisfy (NA1) under P , although Q is a dominating martingale measure for S.
Note that S is not predictable, because T is totally inaccessible under Q and (Ft).

(2) If S is optional and satisfies (NA1), and if Q� P is a dominating measure with Kunita-
Yoeurp decomposition (Z, T ) such that T is not accessible under Q, then there exists
an optional process S̃, P -indistinguishable of S, such that S̃ is not a Q-local martingale
until time T :

Assume that (Tn) is a localizing sequence for S under Q, such that Tn ≤ n. Since
T is not accessible, this means that there exists n ∈ N for which Q(Tn = T ) > 0. In
particular, on the set A = {Tn = T} we have T <∞. Let x ∈ Rd and define

S̃t = St + x1t≥T .

Since T =∞ P -a.s., S̃ is P -indistinguishable of S. We have

EQ(S0) = EQ(S̃Tnt ) = EQ(STnt ) + xQ(t ∧ Tn ≥ T ).

Choosing t large enough such that Q(t ∧ Tn ≥ T ) and letting x vary through Rd, we
obtain a contradiction.

So in the non-predictable case, in general it is not a well-posed question whether Q determines
a dominating local martingale measure. However for a given version S, it should be possible to
extend Q from FT− to FT in a way that makes S a Q-local martingale until time T . But since
this extension of Q is quite arbitrary (it is not uniquely determined by Z), and since it is not
stable with respect to taking a P -indistinguishable version S̃ of S, we do not take this approach
here.

We rather note that the counterexamples only worked because T was not accessible under Q.
If T is accessible, then we can stop S before T , thereby not worrying about what happens to S
at time T .

The following is a slight extension of [Föl72], Proposition (2.1).

Proposition 4.7. Let (Z, T ) be the Kunita-Yoeurp decomposition of Q with respect to P . Then
T is accessible for Q if and only if Z is a P -local martingale.

Proof. If Z is a P -local martingale, and if Tn is a localizing sequence for T , then

1 = EP (ZTn∧n) = Q(Tn ∧ n < T )

(cf. [Yoe85], Proposition 4). At the same time Tn ∧ n ↑ ∞ P -a.s., so by Corollary 5 of [Yoe85],
Tn ∧ n ↑ T Q-a.s., which proves that T is announced by the sequence (Tn ∧ n) under Q.

Conversely, assume T is announced by Tn under Q. Then

1 = Q(Tn ∧ n ∧ t < T ) = EP (ZTn∧n∧t) = EP (ZTn∧nt ).
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Because the stopped process ZTn∧n remains a P -supermartingale by the optional sampling the-
orem, it is a supermartingale with constant expectation. Thus it is a martingale, i.e. Z is a local
martingale (we apply once again Corollary 5 of [Yoe85] to obtain Tn ∧ n ↑ ∞ P -a.s.). �

So we should look for supermartingale densities that are local martingales. This problem was
solved by Kardaras [Kar09]. Kardaras defines the notion of an equivalent local martingale defla-
tor. To go together with our notion of supermartingale densities, we call them local martingale
densities:

Definition. Let S be a right-continuous stochastic process. A local martingale density is a
local martingale Z, such that for every 1-admissible strategy H,

(1 + (H · S))Z

is a local martingale.

Theorem 1.1 of [Kar09] states that the existence of local martingale densities is equivalent to
(NA1). The proof is in the spirit of the article [KK07]. We leave it to future research to give an
independent proof in the spirit of Theorem 1.1.

Proposition 4.8. Let S be right-continuous, locally bounded and assume S satisfies (NA1). Let
Z be a local martingale density for S. If (T,Z/EP (Z0)) is the Kunita-Yoeurp decomposition of
the associated dominating measure Q, then S is a Q-local martingale until time T .

Proof. It suffices to argue for each component of S separately, so we assume S to be one-
dimensional. Let (Tn) be a localizing sequence for Z under P that announces T under Q.
Let (Rn) be a localizing sequence such that |SRn | is bounded by Cn. By replacing Rn with
Rn ∧ n, we can assume that Tn ∧Rn is finite. Let t, s ≥ 0 and At ∈ Ft. Then by the monotone
class theorem combined with Proposition 4 of [Yoe85],

EQ

[(
2Cn + 1At(S

Tn∧Rn
t+s − STn∧Rn

t )
)]

= EQ

[(
2Cn + 1At(S

Tn∧Rn
t+s − STn∧Rn

t )
)

1{Tn∧Rn<T}

]
=

1

EP (Z0)
EP

[(
2Cn + 1At(S

Tn∧Rn
t+s − STn∧Rn

t )
)
ZTn∧Rn∧(t+s)1{Tn∧Rn<∞}

]
=

1

EP (Z0)
EP

[(
2Cn + 1At(S

Tn∧Rn
t+s − STn∧Rn

t )
)
ZTn∧Rn
t+s

]
≤ 2Cn
EP (Z0)

.

At the same time EP (2CnZ
Tn∧Rn
t+s ) = 2Cn, so that

EQ

[
1At(S

Tn∧Rn
t+s − STn∧Rn

t )
]
≤ 0.

The same holds if we replace 1At with −1At , which proves that S is a Q-local martingale until
time T : (Rn ∧ Tn) converges to T Q-a.s., because it diverges to ∞ P -a.s.. �

Corollary 4.9 (“Optional Fundamental Theorem of Asset Pricing”). Let (Ft) be the right-
continuous modification of a standard system. Let S be a locally bounded, right-continuous and
adapted stochastic process. Then S satisfies (NA1) if and and only there exists an enlarged proba-
bility space (Ω,F , (F t), P ) and a dominating measure Q� P with Kunita-Yoeurp decomposition
(Z, T ) with respect to P , such that S is a Q-local martingale until time T , and such that T is
accessible under Q.

Proof. We just proved the existence of Q assuming (NA1). So now we assume that Q exists. Let
H be a P 1-admissible strategy. Let (Tn) be a sequence of stopping times announcing T under
Q. Since Q is equivalent to P on FT−, and since Tn < T Q-a.s., (H · S)Tn ≥ −1 Q-a.s. So we
can repeat the arguments from the introduction, to obtain that for every n,

(1 + (H · S)Tn)Z
Tn
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is a P -supermartingale. This means that

(1 + (H · S))Z

is a local P -supermartingale. Since it is P -a.s. nonnegative, it is an actual supermartingale
by Fatou’s lemma. This implies that S satisfies (NA1) under P . Since (Ω,F , (F t), P ) is an
enlargement of (Ω,F , (Ft), P ), this implies that S satisfies (NA1) under P . �

5. Relation to Filtration Enlargements

Let (Ω,F , (Ft), P ) be a filtered probability space, and let (Gt) be a filtration enlargement of
(Ft), i.e. for every t ≥ 0: Ft ⊆ Gt. Recall that Hypothèse (H ′) is said to be satisfied if all
(Ft)-semimartingales are (Gt)-semimartingales. It turns out that this question is closely related
to the existence of supermartingale densities.

First observe that if we want to verify whether Hypothèse (H ′) is satisfied, it suffices to show
that all bounded (Ft)-martingales stay (Gt)-semimartingales: Clearly we only need to verify
that (Ft)-local martingales stay (Gt)-local martingales. But every local martingale M can be
decomposed as

M = M ′ +M ′′

where M ′0 = 0 and M ′ has bounded jumps, and M ′′ is a process of finite variation (cf. [JS03],
Theorem I.4.17). Then M ′′ trivially is a (Gt)-semimartingale. But M ′ is locally bounded. Since
local (Gt)-semimartingales are (Gt)-semimartingales, it therefore suffices to verify that bounded
(Ft)-martingales stay (Gt)-semimartingales.

Let us now give the classical formulation of Jacod’s criterion: Let X be a random variable
taking its values in a Lusin space X , and define the initial enlargement

Gt = Ft ∨ σ(X).

Since X takes its values in a Lusin space, the regular conditional distributions

Pt(ω, dx) = P (X ∈ dx|Ft)(ω)

exist. Denote by PX the distribution of X. Jacod’s criterion states that Hypothèse (H ′) is
satisfied as long as for every t ≥ 0

Pt(ω, dx)� PX(dx) a.s..

We have the following result:

Proposition 5.1. Assume Jacod’s condition is satisfied. Define for a given bounded (Ft)-
martingale K1 by using 1-admissible simple (Gt)-predictable strategies of the form

Ht(ω) =

n∑
k=1

F k(ω,X(ω))1(tk,tk+1](t)

for bounded F k ∈ Ftk ⊗ σ(X).
Then there exists one single supermartingale density Z for every bounded (Ft)-martingale S.
In particular, Hypothése (H’) is satisfied.

Proof. (1) Define for every t ≥ 0

Yt(ω, x) =
dPt(ω, ·)
dPX

(x).

Let t, s ≥ 0 and let us show that {(ω, x) : Yt(ω, x) = 0} ⊆ {(ω, x) : Yt+s(ω, x) = 0}
P ⊗ PX -a.s. Note that Yt+s ≥ 0 P ⊗ PX -a.s. Further we have by Fubini’s Theorem and
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the tower property∫
Ω×X

1{Yt(ω,x)=0}Yt+s(ω, x)P ⊗ PX(dω, dx) =

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt+s(ω, dx)P (dω)

=

∫
Ω

∫
X

1{Yt(ω,X(ω))=0}P (dω)

=

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt(ω, dx)P (dω)

=

∫
Ω

0P (dω)

= 0

since of course Yt(ω, x) > 0 Pt(ω, ·)-a.s.
(2) Define

Z̃t(ω, x) =
1

Yt(ω, x)
1{Yt(ω,x)>0}.

Then Zt(ω) = Z̃t(ω,X(ω)) will be the requested supermartingale density: Let S be a
bounded (Ft)-martingale, and let H be a simple 1-admissible strategy for S (under (Gt)).
Then H is of the form

Ht(ω) =
n∑
k=1

F k(ω,X(ω))1(tk,tk+1](t) =:
n∑
k=1

Hk
t (ω).

We assume that the F k are bounded for every x ∈ X , such that for every fixed t ≥ 0 a.s.
for every x

n∑
k=1

F k(ω, x)(Stk+1∧t(ω)− Stk∧t(ω)) ≥ −1.

An inspection of the proof of Corollary 3.11 shows that this will be sufficient to obtain
the semimartingale property of S under (Gt). Let t, s ≥ 0, let At ∈ Ft and let B be a
borel subset of X . Then by the tower property

E (1At1B(X)(1 + (H · S)t+s)Zt+s)

=

∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t+s(ω, x))) Z̃t+s(ω, x)Pt+s(ω, dx)P (dω)

=

∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t+s(ω, x)))
Yt+s(ω, x)

Yt+s(ω, x)
1{Yt+s(ω,x)>0}PX(dx)P (dω)

=

∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t+s(ω, x))) 1{Yt+s(ω,x)>0}PX(dx)P (dω)

≤
∫

Ω
1At(ω)

∫
X

1B(x) (1 + (H · S)t+s(ω, x))) 1{Yt(ω,x)>0}PX(dx)P (dω).

In the last step we used that 1B(x) (1 + (H · S)t+s(ω, x))) is PX ⊗ P -a.s. nonnegative,
and that {Yt(ω, x) > 0} ⊇ {Yt+s(ω, x) > 0} under PX⊗P . Using the martingale property
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of (H · S)(·, x) with respect to (Ft), we obtain∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t+s(ω, x))) 1{Yt(ω,x)>0}PX(dx)P (dω)

=

∫
X

1B(x)

∫
Ω

1At(ω) (1 + (H · S)t+s(ω, x))) 1{Yt(ω,x)>0}P (dω)PX(dx)

=

∫
X

1B(x)

∫
Ω

1At(ω) (1 + (H · S)t(ω, x))) 1{Yt(ω,x)>0}P (dω)PX(dx)

=

∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t(ω, x)))
Yt(ω, x)

Yt(ω, x)
1{Yt(ω,x)>0}PX(dx)P (dω)

=

∫
Ω

1At(ω)

∫
X

1B(x) (1 + (H · S)t(ω, x))) Z̃t(ω, x)Pt(ω, dx)P (dω)

= E [1At1B(X)(1 + (H · S)t)Zt]

which after an application of the monotone class theorem proves that (1 + (H · S))Z is
a (Gt)-supermartingale.

(3) It remains to show that Z is P -a.s. strictly positive. But this is nearly trivial: Clearly it
suffices to show that Yt(ω,X(ω)) is P -a.s. positive, and we have by the tower property

E(1{Yt(·,X(·))=0}) =

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt(ω, dx)P (dω)

=

∫
Ω

∫
X

1{Yt(ω,x)=0}Yt(ω, x)PX(dx)P (dω)

= 0.

�

It is also possible to prove that Z is a supermartingale density for the stochastic integrals
under general 1-admissible (Gt)-predictable strategies.

Conversely, let (Ω,F , (Ft), P ) be a filtered probability space and let Gt ⊇ Ft be a filtration
enlargement. Assume that Gt is countably generated for every t ≥ 0. Then in particular, the
regular conditional probabilities

Pt(ω, ·)|Gt = P (·|Ft)|Gt(ω)

exist. We say that the generalized Jacod condition is satisfied if

Pt+s|Gt(ω, ·)� Pt|Gt(ω, ·) a.s.

for every t, s ≥ 0. It is known that neither Jacod’s condition, nor the generalized Jacod condition
are necessary for Hypothèse (H’) to hold. But if we assume something stronger than Hypothèse
(H’), then the generalized Jacod condition does become necessary:

Proposition 5.2. Assume that there exists a strictly positive (Gt)-supermartingale Z such that
for every bounded nonnegative (Ft)-martingale M , ZM is a (Gt)-supermartingale. Then the
generalized Jacod condition is satisfied.

Proof. (1) Let A ∈ F . Then

(MA
t := EP (1A|Ft) : t ≥ 0)

is a bounded and nonnegative (Ft) martingale. By our assumption, MAZ is a (Gt)-
supermartingale. Now fix t, s ≥ 0. Let A ∈ Ft+s and B ∈ Gt. Then we have for every
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n

E

(
1A1B

Zt+s
Zt

1{Zt≥1/n}

)
= E

(
1B1{Zt≥1/n}

Zt
MA
t+sZt+s

)
≤ E

(
1B1{Zt≥1/n}

Zt
MA
t Zt

)
= E(1AE(1B1{Zt≥1/n}|Ft)).

Applying monotone convergence on both sides, we obtain

E

(
1A1B

Zt+s
Zt

)
≤ E(1AEP (1B|Ft)).

The same inequality holds if we replace Zt+s/Zt by a version Z̃t+s/Z̃t that is strictly
positive for every ω. Since the inequality holds for every A ∈ Ft+s, this implies∫

1B(ω′)
Z̃t+s

Z̃t
(ω′)Pt+s(ω, dω

′) ≤ Pt(ω,B) for a.e. ω.

This looks promising. The only problem is that the null set outside of which this inequal-
ity holds may depend on B.

(2) Now we use the assumption that Gt is countably generated. This means that we can find
an increasing sequence of finite partitions

Pn = ∪Kn
k=1B

n
k

of Ω such that

Gt = σ(Pn : n ≥ 0).

Increasing means of course that Pn ⊆ Pn+1.
Since ∪n≥0σ(Pn) is countable, we can choose a null set N such that for every ω ∈ Ω\N

and B ∈ ∪nσ(Pn):∫
1B(ω′)

Z̃t+s

Z̃t
(ω′)Pt+s(ω, dω

′) ≤ Pt(ω,B).

Note that B ∈ ∪nσ(Pn) is stable by finite intersection (it even is an algebra). By the
monotone class theorem, this inequality holds for every B ∈ σ(Pn : n ≥ 0) = Gt. Since
Z̃t+s/Z̃t(ω

′) > 0 for every (ω′), the proof is complete.
�

Corollary 5.3. Let (Ft) be a filtration for which a continuous local martingale M has the pre-
dictable representation theory. Assume that under (Gt), M is of the form

Mt = M̃t +

∫ t

0
αsd〈M̃〉s

for a (Gt) local martingale M̃ and some α with∫ T

0
α2
sd〈M̃〉s <∞ a.s. for every T ≥ 0.

Then the generalized Jacod condition has to hold. This was previously shown by Imkeller, Pontier
and Weisz ([IPW01]) for the case of initial enlargements and under the stronger assumption

E

(∫ ∞
0

α2
sd〈M̃〉s

)
<∞.
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Appendix A. Convex Compactness

We needed a version of Tychonoff’s Theorem for convex compactness. Since we are only
interested in a countable product of metric spaces, we only prove the result in this case. Let us
recall the following definitions:

Definition. (1) A is a directed set if it is partially ordered and such that for every a, b ∈ A
there exists c ∈ A with a ≤ c, b ≤ c.

(2) Let X be a topological space. A net in X is a map from a directed set A to X.
(3) A net {xα}α∈A in X converges to a point x ∈ X if for every open neighborhood U of

X there exists α ∈ A, such that for every α′ ≥ α: xα′ ∈ U .

Example. In the case where A = N, a net in X is just a sequence in X.

Zitkovic [Ž10] introduces the notation Fin(A), which denotes all non-empty finite subsets of a
given set A. If B is a subset of a vector space, conv(B) denotes convex hull of B. Zitkovic then
gives the following definition:

Definition. Let {xα}α∈A be a net in a vector space X. A net {yβ}β∈B is called a subnet of
convex combinations of {xα}α∈A if there exists a map D : B → Fin(A) such that

(1) yβ ∈ conv{xα : α ∈ D(β)} for every β ∈ B, and
(2) for every α ∈ A there exists β ∈ B such that for every α′ ∈ ∪β′≥βD(β′): α′ ≥ α.

Remark. Let {yβ}β∈B be a subnet of convex combinations of {xα}α∈A, and let {zγ}γ∈C be a
subnet of convex combinations of {yβ}β∈B. Then {zγ}γ∈C is a subnet of convex combinations of
{xα}α∈A.

Proof. Let DB : B → Fin(A) and DC : C → Fin(B) be two maps as described in the definition
of a subnet of convex combinations. Define

D : C → Fin(A), D(γ) = ∪β∈DC(γ)DB(β).

Then for every γ ∈ C:

zγ ∈ conv{yβ : β ∈ DC(γ)} ⊆ conv{xα : α ∈ ∪β∈DC(γ)DB(β)} = conv{xα : α ∈ D(γ)}.

So the first condition of the definition is satisfied. As for the second one, let α ∈ A. Then there
exists β ∈ B, such that for α′ ∈ ∪β′≥βDB(β′): α′ ≥ α. For this given β, there exists γ ∈ C, such
that for β′ ∈ ∪γ′≥γDC(γ′): β′ ≥ β. Thus for

α′ ∈ ∪γ′≥γD(γ′) = ∪γ′≥γ ∪β′∈DC(γ′) DB(β′) ⊆ ∪β′≥βDB(β′)

we have α′ ≥ α. �

Zitkovic [Ž10] proves

Proposition A.1. A closed and convex subset C of a topological vector space X is convexly
compact if and only if for any net {xα : α ∈ A} in C there exists a a subnet {yβ : β ∈ B} of
convex combinations, such that {yβ} converges to some y ∈ X.

We will use this insight to prove the following weak version of Tychonoff’s Theorem for convexly
compact sets:

Proposition A.2. Let {Xn : n ∈ N} be a countable family of convexly compact metric spaces.
Then ∏

n∈N
Xn

is convexly compact in the product topology.
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Proof. Let {(xα(n))n∈N : α ∈ A} be a net in
∏
n∈NXn. Then in particular,

{xα(1) : α ∈ A}

is a net in X1. Therefore there exists a subnet of convex combinations

{(y1
β(n))n∈N : β ∈ B1}

such that {y1
β(1) : β ∈ B1} converges to some y(1). Using the remark above, we can inductively

construct for every k a subnet of convex combinations

{(ykβ(n))n∈N : β ∈ Bk}

of {xα : α ∈ A}, such that for every l = 1, . . . , k, {ykβ(l) : β ∈ Bk} converges to y(l) ∈ Xl. We
denote the corresponding maps from Bk to Fin(A) by Dk. Now take the directed set

N×A with the partial order (k, α) ≤ (k′, α′) iff k ≤ k′ and α ≤ α′.

Let

A(k, α) =

{
ykβ : for every α′ ∈ Dk(β) : α′ ≥ α and for l = 1, . . . , k : dl(y

k
β(l), y(l)) ≤ 1

k

}
.

By our construction of the (ykβ(n)), all these sets are non-empty. For every (k, α) ∈ N×A define
β(k, α) to be such that ykβ(k,α) is in A(k, α) - note that in general this is only possible if we
assume the Axiom of Choice! Set

z(k,α) = ykβ(k,α) and D((k, α)) = Dk(β(k, α)).

Then by construction, {z(k,α) : (k, α) ∈ N×A} is a subnet of convex combinations of {xα : α ∈ A},
which converges to some

(y(n))n∈N ∈
∏
n∈N

Xn

in the product topology. Therefore
∏
nXn is convexly compact in the product topology. �

Remark. It should be possible to prove a version of this result for general products of convexly
compact spaces.

If it is possible to reduce Zitkovic’s criterion to sequences rather than nets in the case of a
metric space X, then we can also prove this countable metric Tychonoff result without relying on
the Axiom of Choice. However it is not immediate that this is possible: The proof that a metric
space is sequentially compact if and only if it is compact uses the concept of total boundedness.
It is not clear how to translate this concept to the setting of convex compactness.

Appendix B. Minimax Theorem

We used Sion’s minimax theorem in the proof of Proposition 3.3. Using the notion of convex
compactness, we can in fact prove a version of the minimax theorem that is stronger than all
versions we could find in the literature. It is also stronger than the minimax theorem in [Ž10],
even though here we do not obtain the existence of a saddle point. However we should point out
that the proof here is just a reproduction of Komiya’s [Kom88] work. This proof is extremely
elegant, and robust enough to be applied without change to the more general version stated here.
First, a definition:

Definition. A function f : D → R∪{−∞}∪{∞} is called quasi-convex if for every x, y ∈ D:

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

Similarly it is called quasi-concave if

f(λx+ (1− λy)) ≥ min{f(x), f(y)}.
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Theorem B.1. Let Y be a convexly compact subset of a topological vector space, and let X be
a convex subset of a topological vector space. Let f be a function on X × Y, taking its values in
the extended real line R ∪ {−∞} ∪ {∞}. Assume that

(1) f(y, ·) is upper semi-continuous and quasi-concave on X for each y ∈ Y
(2) f(·, x) is lower semi-continuous and quasi-convex on Y for each x ∈ X .

Then

inf
y∈Y

sup
x∈X

f(y, x) = sup
x∈X

inf
y∈Y

f(y, x).

Remark. Komiya states this Theorem for real-valued f and convex and compact Y , so our
generalization consists in using functions with values in the extended real line, and in replacing
convexity and compactness by convex compactness.

Before we give the proof of Theorem B.1, let us make the following simple observation:

Proposition B.2. Let Y be a convexly compact subset of a topological vector space, and let
F : Y → R∪{−∞}∪{∞} be lower semi-continuous and quasi-convex. Then there exists y0 ∈ Y ,
such that F (y0) ≤ F (y) for all y ∈ Y .

Proof. In the case where F (y) = ∞ for all y, there is nothing to show. Otherwise define a :=
infy∈Y F (y). There are two possibilities: either a = −∞, or a ∈ R.

First assume a = −∞. Define for every given n ∈ N

Cn = {y ∈ Y : F (y) ≤ −n}.

By assumption, Cn 6= ∅. Also, Cn is closed (since F is lower semi-continuous), and convex (since
F is quasi-convex). Since Cn ⊆ Cm for n ≥ m, every finite intersection of the Cn is nonempty.
By convex compactness of Y , also

∩n∈NCn 6= ∅.

But for y ∈ ∩nCn, F (y) ≤ −n for all n, and therefore F (y) = −∞.
In case a ∈ R, define

Cn =

{
y ∈ Y : F (y) ≤ a+

1

n

}
.

Then we can proceed as before. �

Proof of Theorem B.1. (≥) is clear. As for (≤), the proof is based on two observations:
(1) Let −∞ < a < infy∈Y supx∈X f(y, x). If the infimum equals −∞, then we cannot find

such an a. But in this case there is nothing to show in the first place. Otherwise, define
for every x ∈ X

C(x, a) = {y ∈ Y : f(y, x) ≤ a}.

Note that this is a closed set: Let (yn) ∈ C(x, a) converge to y. Then by lower semi-
continuity of f(·, x)

a ≥ lim inf
n→∞

f(yn, x) ≥ f(y, x)

so that y ∈ C(x, a). Also, C(x, a) is convex: Let y1, y2 ∈ C(x, a). Then by quasi-
convexity

f(λy1 + (1− λ)y2, x) ≤ max{f(y1, x), f(y2, x)} ≤ a.

By our choice of a, we have

∩x∈XC(x, a) = ∅.
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This is an empty intersection over a family of closed convex subsets of the convexly
compact space Y. Thus there must exist x1, . . . , xn ∈ X such that

∩ni=1C(xi, a) = ∅.

But this means that for any y ∈ Y there is i ∈ {1, . . . , n}, such that y /∈ C(xi, a), i.e.
such that

f(y, xi) > a.

In particular,

inf
y∈Y

max
i=1,...,n

f(y, xi) > a.

(2) If x1, x2 ∈ X are such that

−∞ < a < inf
y∈Y

max{f(y, x1), f(y, x2)}

then there also exists a single x0 ∈ X such that

a < inf
y∈Y

f(y, x0).

By induction, this generalizes to x1, . . . , xn for every fixed n, which completes the proof
in combination with the first observation: Because then there exists x0 such that

inf
y∈Y

f(y, x0) > a.

In particular

sup
x∈X

inf
y∈Y

f(y, x) > a.

Let us show the statement for n = 2 (we do not include do the induction here, it can be
found in [Kom88], Lemma 2). Assume that it is not true, i.e. that

inf
y∈Y

f(y, x) ≤ a

for every x ∈ X . We will work with sets of the form C(x, b), where again

C(x, b) = {y ∈ Y : f(y, x) ≤ b}.
Namely, let

a < b < inf
y∈Y

max{f(y, x1), f(y, x2)}.

By assumption, C(x, b) 6= ∅ for any x ∈ X . In fact, even C(x, a) 6= ∅ for any x ∈ X :
By lower semi-continuity and quasi-convexity of f(·, x) and convex compactness of Y,
we can actually replace every inf by a min (cf. Proposition B.2). The assumption then
reads as miny∈Y f(y, x) ≤ a, i.e. for every x ∈ X there exists yx, such that f(yx, x) ≤ a.
But then yx ∈ C(x, a). Recall that all C(x, c) are closed for any x ∈ X and any c ∈ R.
Since for every y ∈ Y either f(y, x1) > a or f(y, x2) > a, we have C(x1, b)∩C(x2, b) = ∅.

Let z ∈ [x1, x2] be a convex combination of x1 and x2, write z = λx1 + (1 − λ)x2.
Then for all y ∈ Y,

f(y, z) = f(y, λx1 + (1− λ)x2) ≥ min{f(y, x1), f(y, x2)}

by quasi-convexity of f(y, ·). This shows that
C(z, b) ⊆ C(x1, b) ∪ C(x2, b).

Recall that C(z, b) is not only closed, but also convex by quasi-convexity of f(·, z). But
every convex set is path-connected, and therefore connected. So C(z, b) is a connected
set that is included in the union of two disjoint closed sets. Then it is already included
in one of these closed sets.
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So for every z ∈ [x1, x2]:

C(z, a) ⊆ C(z, b) ⊆ C(x1, b) or C(z, a) ⊆ C(z, b) ⊆ C(x2, b).

We define

I = {z ∈ [x1, x2] : C(z, a) ⊆ C(x1, b)} and
J = {z ∈ [x1, x2] : C(z, a) ⊆ C(x2, b)}.

I and J are both nonempty, I ∩ J = ∅, and I ∪ J = [x1, x2]. If we can show that I is
closed in [x1, x2], then we obtain a contradiction. But this is in fact easy to show: Let
(zn) be a sequence in I, converging to some z ∈ [x1, x2]. We need to show that z ∈ I,
i.e. that

C(z, a) ⊆ C(x1, b).

Let y ∈ C(z, a). Then f(y, z) ≤ a < b. By upper semi-continuity of f(y, ·)
lim sup
n→∞

f(y, zn) ≤ f(y, z) < b.

So there exists m such that f(y, zm) < b. But this means that

y ∈ C(zm, b) ⊆ C(x1, b)

and the proof is complete.
�
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