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Abstract

We consider a dynamical system described by the differential equation Ẏt = −U ′(Yt)
with a unique stable point at the origin. We perturb the system by Lévy noise of
intensity ε, to obtain the stochastic differential equation dXε

t = −U ′(Xε
t−)dt + εdLt.

The process L is a symmetric Lévy process whose jump measure ν has exponentially
light tails, ν([u,∞)) ∼ exp(−uα), α > 0, u →∞. We study the first exit problem for
the trajectories of the solutions of the stochastic differential equation from the interval
[−1, 1]. In the small noise limit ε → 0 we determine the law and the mean value of the
first exit time, to discover an intriguing phase transition at the critical index α = 1.

1 Introduction

In this paper a mathematically rigorous study of the first exit problem for jump-diffusions
driven by small scale Lévy processes with rare big jumps is given. The problem under
consideration can be outlined as follows. Consider a deterministic dynamical systems given
by a differential equation Ẏt = −U ′(Yt) which has a unique asymptotically stable state at
the origin 0. We assume that the interval [−1, 1] belongs to the domain of attraction of 0,
so that the solution trajectories of the deterministic part cannot leave this interval.

The situation becomes different if the dynamical system is perturbed by some noise of
small intensity. The stable state becomes meta-stable, and exits from the interval become
possible. The probabilistic characteristics of the first exit time such as its law or the mean
value are determined by the nature of the noise and geometry of the potential U .

Unquestionably, perturbations by Brownian motion are by far best understood. The
first exit problem for small Brownian perturbations was treated in a pioneering work by
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Kramers [18]. The main mathematical reference on this subject is the book [12] by Freidlin
and Wentzell, in which the theory of large deviations for dynamical systems with small
Brownian perturbations was developed as the main tool for exit problems. Among many
other papers on this subject we mention a paper by Williams [26], a book [24] by Schuss,
and a series of papers by Day [6, 7, 8] and Bovier et al. [2, 3].

In our particular case, the results obtained in very general geometric settings in the
references cited above offer a simple explanation. It turns out that the length of the mean exit
time is asymptotically given by eζ/ε2

, and its logarithmic rate ζ is determined by the lowest
potential barrier a Gaussian particle has to overcome in order to exit. For instance if U(−1) <
U(1), the exit occurs with an overwhelming probability at −1, and ζ = 2(U(−1) − U(0)).
Moreover, the normalized exit time has a standard exponential law in the limit of small noise
ε → 0.

It is interesting to note that asymptotics of the Gaussian type are also obtained in a situ-
ation in which a random Markov perturbation possesses locally infinitely divisible laws with
exponential moments of any order, while jump intensity increases and jump size decreases
simultaneously with an appropriate rate along with the noise parameter ε tending to 0. A
typical example of such a perturbation is given by a compensated Poisson process with jump
size ε, and jump intensity 1/ε, see [12, Chapter 5].

The situation becomes quite different for dynamical system perturbed by heavy tailed
Lévy noise. There the big jumps begin to play the major role in the exit time dynamics. If
the jump measure of the driving Lévy process has power tails, the mean exit time turns out
to behave like a power function of the small noise amplitude. Moreover, the leading term
of the average first exit time does not depend on the vertical parameters of the potential’s
geometry, the heights of potential barriers, but rather on horizontal ones such as the distances
between the stable point and the domain boundary. Due to the presence of big jumps, the
trajectories of the perturbed dynamical system leave the interval in one big jump, and do
not climb up the potential barrier as in the Gaussian case.

Rough large deviation estimates and the asymptotics of the mean first exit time from a
domain for a more general class of Markov processes with heavy tailed jumps were first ob-
tained by Godovanchuk [13], whereas a general large deviations theory for Markov processes
can be found in the book [25] by Wentzell. With different methods, Imkeller and Pavlyuke-
vich [15, 14] recently described the fine asymptotics for the law and moments of exit times for
jump diffusions driven by α-stable Lévy processes, and more generally by Lévy processes the
jump measure of which has regularly varying tails. These asymptotic properties were used
to show metastability properties for Lévy-driven jump diffusions in multi-well potentials (see
[16, 14]). The techniques were further generalized to study simulated annealing with time
nonhomogeneous jump processes, [21, 22].

Our recent interest in small noise jump diffusions arose from the acquaintance with the
paper [10] by Ditlevsen. In an attempt to model paleoclimatic time series from the Greenland
ice core by dynamical systems perturbed by noise, the author discovers an α-stable noise
signal with α ≈ 1.75. In his setting, big jumps of the α-stable Lévy process are responsible
for rapid catastrophic climate changes (the so-called Dansgaard-Oeschger events) observed
in the Earth’s northern hemisphere during the last glaciation. The appearance of a stable
Lévy noise signal can be explained if the observed time series is interpreted as a mesoscopic
limit of some more complicated climate dynamics.

2



Lévy driven stochastic dynamics has become a popular research field in physics, where
stable non-Gaussian Lévy processes are often named Lévy flights. We draw the reader’s
attention to the topical review by Metzler and Klafter [20], where Lévy flights are discussed
in detail from a physicists point of view.

The first exit problem (also called Kramers’ or barrier crossing problem) is of central
importance in the physical sciences. Small noise barrier crossing problems were studied
on a physical level of rigor by Ditlevsen [9], Chechkin at al. [5, 4] and Dybiec et al. [11].
In particular, Chechkin at al. [4] present numerical experiments that strongly support the
theoretical findings of [16, 14].

The relationship between Lévy and Gaussian exit time dynamics circumscribes another
problem that has received a considerable deal of attendance in physics applications. The
problem was first considered by Mantegna and Stanley in [19] and Koponen [17]. In order
to see Gaussian type asymptotic behavior emerge in dynamical systems perturbed by Lévy
processes, the authors suggest to either eliminate big jumps, or to make their appearance
rare by modifying the jump measure to have exponentially light tails.

In this paper, we will study exit times of solutions of the stochastic differential equation

dXε
t = −U ′(Xε

t−)dt + εdLt (1)

driven by a Lévy process L of (small) intensity ε whose jump measure ν is symmetric, and
which contains a non-trivial Gaussian component. The argument and results obtained in
[15, 14] for the heavy-tail jump measures when ν([u,∞)) ∼ u−r with some r > 0 show that
the exit occurs due to a single big jump of the order 1/ε, and thus a mean exit time is of the
order ν({|y| ≥ 1/ε})−1 ∼ ε−r, ε → 0. Moreover, one can see that the argument of [14] would
hold also for Lévy measures with sub-exponential tails ν([u, +∞)) ∼ e−uα

for very small
values α ¿ 1 leading to mean exit times of the order e1/εα

. Recalling that Gaussian exits
occur on time scales of the order e1/ε2

one may ask if a further reduction of the tail weight
can lead to Gaussian dynamics as α ↑ 2, and whether Gaussian exit dynamics dominate after
crossing the critical index, i.e. for α > 2? This is the motivating question of this paper.

The result is very surprising. We show that big jumps always dominate, independently
of how light they are. Looking at the results in more detail, the behavior of exit times
encounters a phase transition at the critical value α = 1 which marks the transition from
sub-exponential to super-exponential dynamics.

Our arguments leading to the discovery of this transition can be outlined as follows. As in
the case for power type tails in [15], for ε > 0 the process L is decomposed into a compound
Poisson pure jump part ηε with jumps of height larger than some critical level gε, and a
remainder ξε with jumps not exceeding this bound. The critical threshold gε has to be
chosen individually according to whether the jump law possesses sub- or super-exponential
tails. In the crucial estimate one has to show that to exit from the interval [−1, 1] around
the stable fixed point 0 before some finite time T while never returning to a small interval
[−δ, δ] requires that either the increments of the small jump component ξε exceed certain
bounds for which probability can be shown to be small enough by suitable choice of gε, or
that the sum of large jumps occurring before time T exceeds the bound 1 − δ. Generally,
the analysis reveals that large jumps are responsible for exits irrespective of whether we are
in the sub- or the super-exponential regime.
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To see the phase transition at α = 1, let NT be the random number of large jumps before
time T , Wi the random variable describing large jump i ∈ N. Then NT has a Poisson
law with expectation βεT , where βε = ν([−gε, gε]

c) = 2 exp(−xα). Hence, for n fixed, the
probability that the sum of large jumps exceeds the bound 1− δ can be estimated by

P (Nt > n) +
n∑

k=1

P (NT = k)P (
k∑

i=1

|εWi| > 1− δ).

The further estimation of the first term in this expression makes use of Stirling’s formula,
and ultimately stipulates the choice of a large enough ε-dependent n = nε. The essential
term to estimate for 1 ≤ k ≤ nε is

P (
k∑

i=1

|εWi| > 1− δ).

The law of the i.i.d. random variables (|Wi|)i∈N being given by β−1
ε 2ν|[gε,∞[, one gets

P (
k∑

i=1

|εWi| > 1− δ) ≤ β−k
ε exp(− inf{

k∑
i=1

xα
i :

k∑
i=1

xi ≥ 1− δ

ε
, xi ∈ [gε,∞[})

= β−k
ε exp(− inf{

k∑
i=1

xα
i :

k∑
i=1

xi =
1− δ

ε
, xi ∈ [gε,∞[}).

The phase transition emerges when solving the minimization problem in the exponent of this
estimate. From the choice of gε it is seen that the lower boundary for xi, 1 ≤ i ≤ k, in the
exponential rate can be taken 0. Now in the case of sub-exponential tails,

inf{
k∑

i=1

xα
i :

k∑
i=1

xi = 1, xi ≥ 0} = 1

is taken on the boundary of the simplex {(x1, · · · , xn) : xi ≥ 0,
∑n

i=1 xi = 1}, and xi =
1
n
, 1 ≤ i ≤ n, corresponds to the maximum of the function (x1, · · · , xn) 7→ ∑n

i=1 xα
i . For

super-exponential tails, the inf is taken for xi = 1
n
, 1 ≤ i ≤ n, and gives the the unique local

minimum of the function (x1, · · · , xn) 7→ ∑n
i=1 xα

i on the simplex. So the phase transition is
due to the switching from concavity to convexity of the function

x 7→ xα, x ≥ 0,

as α increases through 1. So, the surprising behavior of our jump diffusion with exponentially
light jumps of degree α can roughly be summarized by the statement: big jumps of the Lévy
process govern the asymptotic behavior in the sub- (α < 1) as well as in the super- (α > 1)
exponential regimes, but in the latter one the cumulative action of several large jumps
reminding the climbing of the potential well in the Gaussian regime, becomes important,
while for α < 1 the biggest jump alone governs the asymptotic behavior.

The material is organized as follows. In Section 2 we explain the setup of the problem and
state our main results about the asymptotics of exit times. Section 3 contains our general
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strategy of estimating the tails of the law of exit times from the knowledge of the tails of the
jump measure. The concept of ε-dependent separation of small and large jump parts which
already proved to be successful in [15] takes a central role, and is basic for the proof that,
apart from a Gaussian part, small jumps do not alter the behavior of solution curves of the
unperturbed dynamical system by much. This leaves the role of triggering exits to the large
jump part the contribution of which receives a careful estimation. In the technical Sections
4 and 5, upper and lower bounds for the tails of the exit time laws are derived.

2 Object of study and main result

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We assume that the filtration satisfies
the usual hypotheses in the sense of [23], i.e. it is right continuous, and F0 contains all the
P-null sets of F .

For ε > 0 we consider solutions Xε = (Xε
t )t≥0 of the one-dimensional stochastic differential

equation

Xε
t (x) = x−

∫ t

0

U ′(Xε
s−(x)) ds + εLt, x ∈ R, (2)

where L is a Lévy process and U is a potential function satisfying assumptions specified in
the following. The principal goal of our investigation is the small noise behavior of Xε, i.e.
the behavior of the process as ε → 0. More specifically, our interest is focused on the exit of
Xε from a neighborhood of the stable attracting point 0 of the real valued potential function
U defined on R. For this reason, besides assuming that U be continuously differentiable with
derivative U ′, we only have to fix some minimal conditions on U concerning its properties
in a neighborhood of 0. We shall work under the following assumption.

(U) U(x) = U ′(x) = 0 if only if x = 0, U ′ is Lipschitz continuous, and U ′(x)x ≥ 0, x ∈ R.

In order to state the conditions our Lévy process L is supposed to satisfy, let us recall that a
positive Lebesgue measurable function l is slowly varying at infinity if limu→+∞ l(λu)/l(u) =
1 for any λ > 0. For example, positive constants, logarithms and iterated logarithms are
slowly varying functions.

(L1) L has a generating triplet (d, ν, µ) with a Gaussian variance d ≥ 0, an arbitrary drift
µ ∈ R and a symmetric Lévy measure ν satisfying the usual condition

∫
R\{0}(y

2 ∧
1) ν(dy) < ∞.

(L2) Let f(u) := − ln ν([u, +∞)), u > 0. Then there is α > 0 such that

f(u) = u−αl(u), u ≥ 1, (3)

for some function l slowly varying at +∞.

We say that the Lévy measure ν has sub-exponential or super-exponential tails with index
α if 0 < α < 1 or α > 1 in (L2), respectively. Typical examples of Lévy processes under
consideration are given by a symmetric Lévy measures ν with tails

ν([u,∞)) = exp(−uα), α > 0, u ≥ 1. (4)
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The family of strongly tempered stable processes with the jump measures

ν(dy) = e−λ|y|α|y|−1−βI{y 6= 0} dy, λ > 0, β ∈ (0, 2), α > 0, α 6= 1, (5)

provides another example.
Since Lévy processes are semimartingales, and due to (U), the stochastic differential

equation (2) possesses a strong solution defined for all t ≥ 0. See [23] for the general theory.
Moreover, the underlying deterministic equation (ε = 0) given by

Yt(x) = x−
∫ t

0

U ′(Ys(x)) ds (6)

has a unique solution for any initial value x ∈ R and all t ≥ 0. The position x = 0 of the
minimum of U is a stable attractor for the dynamical system Y , i.e. for any x ∈ R we have
Yt(x) → 0 as t → ∞. It is clear that the deterministic solution Y (x) does not leave the
interval [−1, 1] for initial values x ∈ (−1, 1). The main object of study of this paper is the
asymptotic law and the mean value of the first exit time of the jump-diffusion Xε

σx(ε) = inf{t ≥ 0 : |Xε
t (x)| ≥ 1}, x ∈ R. (7)

Our main findings are stated in the following theorems.

Theorem 2.1 (sub-exponential tails) Let the jump measure ν of L be sub-exponential
with index 0 < α < 1. Then for any δ > 0 there is ε0 > 0 such that for all 0 < ε ≤ ε0 the
following inequalities hold uniformly for t ≥ 0:

(1− δ) exp(−C1−δ
ε t) ≤ inf

|x|≤1−δ
P(σx(ε) > t) ≤ sup

|x|≤1

P(σx(ε) > t) ≤ exp(−1
2
Cεt), (8)

with Cε := 2ν([1
ε
,∞)). Consequently, for any |x| < 1 we have

lim
ε→0

f
(

1
ε

)
lnEσx(ε) = 1. (9)

Theorem 2.2 (super-exponential tails) Let the jump measure ν of L be super-exponential
with index α > 1. Let qε denote its ε-quantile, qε := sup{u > 0 : ν([u,∞)) ≥ ε}. Then
for any δ > 0 there is ε0 > 0 such that for all 0 < ε ≤ ε0 the following inequalities hold
uniformly for t ≥ 0:

(1−δ) exp(−D1−δ
ε t) ≤ inf

|x|≤1−δ
P(σx(ε) > t) ≤ sup

|x|≤1

P(σx(ε) > t) ≤ (1+δ) exp(−D1+δ
ε t), (10)

where Dε = exp(−dα
| ln ε|
εqε

) and dα = α(α− 1)
1
α
−1. Consequently, for any |x| < 1 we have

d−1
α lim

ε→0

εqε

| ln ε| lnEσx(ε) = 1. (11)

6



It is instructive compare qualitatively the results of Theorems 2.1 and 2.2 with known
results for exit times in the case in which L is a pure Brownian motion, or contains a
symmetric jump component with regularly varying tails. We therefore briefly consider the
mean exit times of Lévy-driven diffusions of four types. Then the following limiting relations
hold and are uniform over all initial points x belonging to a compact subset K ⊂ (−1, 1).

1. Power tails. Let L be such that ν([u,∞)) = u−r, u ≥ 1 for some r > 0. Then as was
shown in [15] the mean exit time satisfies

2 lim
ε→0

εrEσx(ε) = 1. (12)

2. Sub-exponential tails. Assume that L is such that for some α ∈ (0, 1) we have
ν([u,∞)) = exp(−uα), u ≥ 1. Then Theorem 2.1 easily implies that

lim
ε→0

εα lnEσx(ε) = 1. (13)

3. Super-exponential tails. Assume that L is such that ν([u,∞)) = exp(−uα), u ≥ 1, for
some α ∈ (1,∞). Then the ε-quantile qε = | ln ε|1/α and Theorem 2.2 entails that

d−1
α lim

ε→0
ε| ln ε| 1α−1 lnEσx(ε) = 1. (14)

4. Gaussian diffusion. Assume that L possesses the characteristic triplet (1, 0, 0), i.e. L
is a standard one-dimensional Brownian motion. Then the mean exit time depends on the
height of the potential barrier at the interval ends, and

1
2
(U(−1) ∧ U(1))−1 lim

ε→0
ε2 lnEσx(ε) = 1. (15)

First we note that cases 1 and 2 mathematically do not differ by much, since the mean exit
time can be expressed by the same formula Eσx(ε) ∼ (2ν([1

ε
,∞))−1. The gaps between 2.

and 3., and 3. and 4. are much more surprising. The logarithmic rate of the expected first exit
time drastically changes its behavior in the super-exponential case: jump lightness influences
the mean exit time in a rather insignificant way. Even more surprising is the fact that we
do not obtain Gaussian asymptotics even for light tails with α ≥ 2. This is underlined in
an intriguing way through the form of the pre-factors: in the cases of perturbations with
jumps they only depend on the distance between the stable equilibrium 0 and the interval
boundary, whereas in the Gaussian case the heights of the potential barriers come into play.
The phase transition between 3. and 4. raises another question, that remains unanswered:
which types of noise in (2) can fill the gap between cases 3. and 4., in other words lead to
mean exit times of the order exp(ε−α) for α ∈ (1, 2)?

3 The general strategy of estimation

In this section we shall prepare the proof of our main results by setting up a global strategy.
It will mainly be based upon an appropriate ε-dependent separation of small and large jumps.
Given this separation, we will decompose our jump diffusion into a component depending
on the small jumps, which is described by trajectories that deviate by only little from the
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trajectories of the deterministic equation converging to the stable equilibrium 0. The small
size of this deviation will be sufficient to argue that exits from the interval considered can
asymptotically only be due to large jumps. These ideas compel us to proceed along the
following lines. In a first subsection, we shall give elementary but efficient estimates for tails
of the exit laws on short time intervals. The second subsection is crucial: for a given noise
intensity ε in (2) we separate jumps at a critical height gε which, as a function of ε, has
to increase slowly enough for the system perturbed by the small jump part to create small
deviations from deterministic behavior. A sensitive choice of gε is given later. In the third
subsection, uniform estimates for the small jump part are provided, while in the last one the
crucial tail estimates for the sums of finitely many big jumps creating exits by adding up
are given.

3.1 Estimates on short time intervals

Let X = (Xt(x))t≥0 be a time homogeneous Markov process starting in x ∈ R whose sample
paths are right-continuous and have left limits, I = [−1, 1]. Consider an interval J ⊂ I
and consider the (Markovian) first exit time σx := inf{t ≥ 0 : Xt(x) /∈ I}, and the (non-
Markovian) time σ∗x := sup{t < σ : Xt(x) ∈ J} which marks the start of the exit from
J .

The following Lemmas allow to estimate the law of σx from the dynamics of the process
X on relatively short time intervals. For the sake of simplicity of notation, we sometimes
omit the subscript x in expressions containing the times σx and σ∗x.

Lemma 3.1 Let C and T be positive real numbers such that CT < 1.
1. If infx∈I P(σx ≤ T ) ≥ CT , the following estimate from above for t ≥ 0 holds

sup
x∈I

P(σx > t) ≤ (1− CT )−1 exp(−Ct). (16)

2. If supx∈J P(σ∗x ≤ T ) ≤ CT , the following estimate from below for t ≥ 0 holds

inf
x∈J

P(σx > t) ≥ (1− CT ) exp

(
ln(1− CT )

T
t

)
. (17)

Proof: The proof of part 1 is a straightforward application of the strong Markov property
and time homogeneity of X. In fact, choose an arbitrary t > 0 and let k := [ t

T
]. Then for

any x ∈ I we obtain the following chain of inequalities

P(σx > t) ≤ P(σx > kT ) ≤
(

sup
x∈I

P(σx > T )

)k

≤ (1− CT )
t
T
−1 ≤ (1− CT )−1 exp(−Ct).

(18)
In order to use similar arguments to prove part 2, we need to define a sequence of stopping
times. Let T 0

J := 0 and for any n ≥ 1 let T n
J := inf{t | t ≥ T n−1

J + T, Xt ∈ J}. Obviously
{σ ≤ T 1

J} = {σ∗ ≤ T} holds for any x ∈ J , and moreover T n
J ≥ nT for any n ≥ 1. Again

choose an arbitrary t > 0 and let k := [ t
T
]. Then for any x ∈ J we have

P(σx > t) ≥ P(σx > T k+1
J ) ≥

(
inf
x∈J

P(σx > T 1
J )

)k+1

≥ (1− CT )
t
T

+1 ≥ (1− CT ) exp

(
ln(1− CT )

T
t

)
.

(19)
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3.2 Decomposition into small and large jump parts

In our separation of the jump part of the Lévy process L into a component for small and
one for large jumps the latter will turn out to be a compound Poisson process. This makes
large jumps relatively easily amenable to an individual investigation. Suppose that g > 0 is
a cutoff height. We shall leave a particular choice of g to later parts of this paper, and for
the moment use the cutoff height to define the g-dependent decomposition

L = ξ + η, (20)

with jump measures νξ = ν|[−g,g] and νη = ν|[−g,g]c . The resulting independent Lévy processes
η and ξ possess generating triplets (0, νη, 0) and (d, νξ, µ). For the compound Poisson part
η and k ≥ 1 we denote by Sk the arrival times of jumps (S0 = 0), by τk = Sk − Sk−1 its
interjump periods, and by Wk the respective jump sizes, and note that β = νη(R) expresses
its jump frequency, i.e. the inverse expected interjump time. Finally, we denote by Nt =
sup{k ≥ 0 : Sk ≤ t} the number of jumps until time t, t ≥ 0.

Lemma 3.1 reduces the main task of the proof of Theorem 2.1 and 2.2 to finding an
appropriate T > 0 and estimating the probabilities to exit before T and to start an exit from
a subinterval before T . For technical reasons, we have to reduce the interval I = [−1, 1] a
bit, and study exits from this subinterval. So for some 0 < δ < 1

2
let I−δ := [−1 + δ, 1 − δ],

and σ− := inf{t : Xε
t /∈ I−δ }. Now take Jδ = [−δ, δ] as subinterval of I−δ and, according to

Lemma 3.1 consider σ∗ := sup{t ≤ σ− : Xε
t ∈ Jδ}. The following auxiliary estimates intend

to control the probability of {σ∗ < T} through finding a covering by sets of sufficiently small
probability.

Lemma 3.2 (i) Let 0 < δ < 1
2

and ε > 0 be such that εg < δ, and x ∈ I−δ . Let m :=

infy∈I−δ \Jδ
|U ′(y)| and T̂ > 1

m
. Then for any T > 0 and t > T + T̂ the following estimate

holds
{σ∗ < T, σ− ≥ t} ⊆ {t− SNt < T̂} ∪

{
sup
r≤T̂

ε|ξt−T̂+r − ξt−T̂ | ≥ mT̂ − 1
}

(21)

(ii) For any T ∈ [0, σ], x ∈ I we have the following estimate

|XT | ≤ |x|+ (
sup− inf

t≤T

)
εLt. (22)

Proof: (i) Choose T > 0, T̂ > 1
m

and t ≥ T + T̂ arbitrarily. Consider the event A := {σ∗ <

T, σ− ≥ t, t− SNt ≥ T̂}. It is sufficient to show, that on A we have

sup
r≤T̂

ε|ξt−T̂+r − ξt−T̂ | ≥ mT̂ − 1. (23)

First of all, by definition, on A the process εL cannot make jumps larger than εg during the
time period [t − T̂ , t] and does not leave I−δ \ Jδ during the time period [T, t]. Further, by

choice of T, T̂ , we have [t − T̂ , T̂ ] ⊆ [T, t] and εg ≤ δ. Thus Xε does not change its sign
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during the time period [t− T̂ , T̂ ]. By definition we have A ⊆ {Xε
t 6= 0}. Hence it is sufficient

to consider the cases A ∩ {Xε
t > 0} and A ∩ {Xε

t > 0} separately. On the former we have

0 < Xε
t = Xε

t−T̂
−

∫ t

t−T̂

U ′(Xε
s−)ds + ε(Lt − Lt−T̂ ) ≤ 1−mT̂ + sup

s≤T̂

ε|ξt−T̂+s − ξt−T̂ |. (24)

Analogously, on A ∩ {Xε
t < 0} we may estimate

0 > −1 + mT̂ − sup
s≤T̂

ε|ξt−T̂+s − ξt−T̂ |. (25)

This completes the proof of part (i).

(ii) Let τ := inf{t ∈ [0, T ] : Xε
s > 0 for all s ∈ [t, T )}. By construction Xε

t ≥ 0 and
U ′(Xε

t ) ≥ 0 for any t ∈ (τ, T ). Thus

Xε
T = Xε

τ −
∫ T

τ

U ′(Xε
t−) dt + ε(LT − Lτ ) ≤ Xε

τ + ε(LT − Lτ ) ≤
{

x + supt≤T εLt, if τ = 0,

ε(LT − Lτ−), if τ > 0,

≤ |x|+ (
sup− inf

t≤T

)
εLt.

(26)
Analogously we have Xε

T ≥ −|x| − (
sup− inf

t≤T

)
εLt. ¥

Corollary 3.1 (i) Let 0 < δ < 1
2

and ε > 0 be such that εg < δ, and x ∈ I−δ . Let
m := infy∈I−δ \Jδ

|U ′(y)|, and T = 2
m

. Then for any k ≥ 1 the following inclusions hold:

{σ∗ < T, σ− ≥ Sk} ⊆ {σ∗ < T, σ− ≥ 2Tk ∧ Sk} ⊆ χk ∪
k⋂

i=1

{τi ≤ 2T} (27)

with

χk =
k−1⋃
i=0

{sup
t≤T

ε|ξSi+T+t − ξSi+T | ≥ 1}. (28)

(ii) For any x ∈ I, k ≥ 1 and T > 0 the following estimate holds:

sup
t<Sk∧T

|Xt| ≤ |x|+
k−1∑
i=1

|εWi|+ 2 sup
t≤T

|εξt|. (29)

Proof: (i) Obviously, it suffices to prove the second inclusion in (27). We set T̂ = T = 2
m

,
and let χ̂c

i =: {supt≤T ε|ξSi−1+T+t − ξSi−1+T | < 1}, i ≥ 0. Then we notice that

{σ∗ < T, σ− ≥ 2Tk ∧ Sk} ⊆ {σ∗ < T, σ− ≥ Sk} ∪ {σ∗ < T, σ− ≥ 2Tk, Sk > 2Tk}

⊆ {σ∗ < T, σ− ≥ Sk} ∪
k−1⋃
i=0

{σ∗ < T, σ− ≥ 2Tk, N2Tk = i}. (30)
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For 0 ≤ i ≤ k − 1 we have

{σ∗ < T, σ− ≥ 2Tk, N2Tk = i} ⊆{σ∗ < T, σ− ≥ 2Tk} ∩ ∪1≤j≤i{τj > 2T, Sj ≤ 2Tk}
⊆ {σ∗ < T, σ− ≥ Sj−1 + 2T} ∩ ∪1≤j≤i{τj > 2T}
⊆ (χ̂j ∩ {τj ≤ 2T}) ∩ ∪{τj > 2T}
⊆ χk,

(31)

where we applied Lemma 3.2 with t = Sj−1 + 2T to see that

{σ∗ < T, σ− ≥ Sj−1 + 2T} ⊆ {Sj−1 + T − SNSj−1+2T
< 0} ∪ χ̂j

⊆ {NSj−1+2T > j − 1} ∪ χ̂j ⊆ {τj ≤ 2T} ∪ χ̂j.
(32)

Next we prove the inclusions

{σ∗ < T, σ− ≥ Si} ∩ χ̂c
i ⊆ {τi ≤ 2T}, 1 ≤ i ≤ k, (33)

and taking intersections of their right- and left-hand-sides over i we obtain the proper cov-
ering for the set {σ∗ < T, σ− ≥ Sk}. Consider the decomposition

{σ∗ < T, σ− ≥ Si} ∩ χ̂c
i ⊆ {σ∗ < T, σ− ≥ Si−1 + 2T} ∩ χ̂c

i

∪ {Si ≤ σ− < Si−1 + 2T}. (34)

The second set in the previous formula is obviously contained in {τi ≤ 2T} while to study
the first one we apply again Lemma 3.2(i) with t = Si−1 + 2T to obtain

(
{Si−1 + T − SNSi−1+2T

< 0} ∪ χ̂i

)
∩ χ̂c

i ⊆ {NSi−1+2T > i− 1} = {τi ≤ 2T}. (35)

(ii) The second part follows from the estimate

(
sup− inf

t<Sk∧T

)
εLt ≤

(
sup− inf

t<Sk

)
εηt +

(
sup− inf

t<T

)
εξt ≤

k−1∑
i=1

|εWi|+ 2 sup
t≤T

|εξt|. (36)

¥

3.3 Estimates of the small jump process ξ

In this subsection we shall give some estimates for the tails of the maximal fluctuation of the
small jump component in the decomposition of noise derived in the previous subsection. In
the statement we intend to keep the dependence on the parameters as general as possible,
and as explicit as necessary later.

Lemma 3.3 Let ν 6= 0 be a symmetric Lévy measure, b ≥ 0 and ρ ∈ R. For g ≥ 1 let
ξ = (ξt)t≥0 denote the Lévy process defined by the characteristic triple (b, ν|[−g,g], ρ). Then

for any δ > 0 there exist u0 > 0 such that for T > 0, g ≥ 1, f > 0 satisfying f
Tg
≥ u0 the

following estimate holds:

P
(

sup
t≤T

|ξt| > f
)
≤ exp

(
− (1− δ)

f

g
ln

f

gT

)
. (37)
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Remark 3.1 In particular, if we parameterise g = gε, f = fε and T = Tε and assume that
fε

gεTε
→ ∞ as ε → 0, then for every δ > 0 there exists ε0 > 0, such that (37) holds for any

0 < ε ≤ ε0.

Proof: First let us consider the case ρ = 0. In this case for any g > 0 the process ξ is a
martingale. For any h > 0, the reflection principle for symmetric Lévy processes and the
Chebyshev inequality applied to the exponent of ξT yield

P

(
sup
t≤T

|ξt| > f

)
≤ 4P(ξT > f) ≤ 4e−hfEehξT . (38)

The Lévy measure of ξ has bounded support. Thus the analytic extension of the char-
acteristic function of ξ can be used to estimate Eehξt . Denote m :=

∫
R(1 ∧ y2)ν(dy) < ∞,

and let h := 1
g
ln f

gT
. Now recall that g ≥ 1, to be able to choose u0 large enough, such that

b
2
h2 ≤ b

2
(ln f

gT
)2 ≤ m f

gT
for any f

gT
≥ u0. The extension of the characteristic function of ξ

yields the chain of inequalities

EehξT = exp

[
b

2
h2T + T

∫

|y|≤g

(
ehy − 1− hyI{|y| < 1}) ν(dy)

]

= exp

[
b

2
h2T + T

∫

|y|≤g

(
hyI{|y| ≥ 1}+

∞∑

k=2

(hy)k

k!

)
ν(dy)

]

≤ exp

[
b

2
h2T + T

∫

|y|≤g

(
hg(1 ∧ y2) +

∞∑

k=2

(hg)k

k!
(1 ∧ y2)

)
ν(dy)

]

≤ exp

[
mf

g
+ Tm exp(hg)

]
= exp

[
2mf

g

]
.

(39)

The statement of the Lemma for ρ = 0 follows immediately from (38) for sufficiently large
u0, such that (2m + g

f
ln 4)/ ln( f

gT
) < δ for f

gT
≥ u0.

If ρ 6= 0, we apply the previous argument to the symmetric martingale (ξt − ρt)t≥0 and
use the estimate

P

(
sup
t≤T

|ξt| > f

)
≤ P

(
sup
t≤T

|ξt − ρt| > f − |ρ|T
)
≤ P

(
sup
t≤T

|ξt − ρt| > (1− δ′)f
)

, (40)

which holds for any δ′ > 0 and sufficiently large f
T
≥ f

gT
. ¥

3.4 Tail estimates for the sum of big jumps of η

In this crucial subsection we shall give tail estimates for finite sums of jump heights by
exponential rates depending on sums of logarithmic tails of the jump laws. The asymptotics
of the exit times considered will later be seen to depend on the convexity properties of this
sum of logarithmic tails.

Let again ν 6= 0 be a symmetric Lévy measure. For g ≥ 1 let η = (ηt)t≥0 be the Lévy
process defined by the characteristic triple (0, ν|[−g,g]c , 0). It is clear that η is a compound

12



Poisson process. Let Wk, k ≥ 0, denote its jump sizes, with the convention W0 = 0. The
random variables Wk, k ≥ 1, are i.i.d. and satisfy |Wk| ≥ g.

For u > 0 denote f(u) = − ln ν([g ∨ u,∞)), with the convention ln 0 = −∞. Let
β := ν([−g, g]c) = 2 exp(f(g)).

Lemma 3.4 For k ≥ 1 let r and g be such that r > kg. Then for any δ ∈ (0, 1) such that
(1− δ)r > kg the following estimate holds:

P
( k∑

i=1

|Wi| > r
)
≤ 2k

βk

(
2 +

ln r − ln g

ln(1 + δ)

)k

× exp
(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi = (1− δ)r, xi ∈ [g, r]
})

.

(41)

Proof: Denote A := {(x1, . . . , xk) ∈ [g, r]k :
∑k

i=1 xi ≥ r}. We have

P
( k∑

i=1

|Wi| > r
)
≤ kP(|W1| ≥ r) + P((|W1|, . . . , |Wk|) ∈ A). (42)

The first summand can be estimated as

P(|W1| ≥ r) ≤ 2β−1 exp(−f(r)) = 2kβ−k exp(−(f(r) + (k − 1)f(g)))

≤ 2kβ−k exp
(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi ≥ (1− δ)r, xi ∈ [g, r]
})

.
(43)

To estimate the second summand, we cover the set A by a union of parallelepipeds of a
special form. Let M := [ ln r−ln g

ln(1+δ)
] and consider a set of points

S := {si, 0 ≤ i ≤ M}, si = (1 + δ)ig, (44)

such that sM ≤ r and (1 + δ)sM > r. Consider (M + 1)k parallelepipeds of the type

Ps1,...,sk
:= [s1, (1 + δ)s1]× · · · × [sk, (1 + δ)sk], s1, . . . , sk ∈ S. (45)

Obviously, the union of these (M+1)k parallelepipeds covers the cube [g, r]k, and thus the set
A. Let N denote the smallest covering of A by these parallelepipeds. If some Ps1,...,sk

∈ N ,
i.e. Ps1,...,sk

∩ A 6= ∅, then

max
(x1,...,xk)∈Ps1,...,sk

k∑
i=1

xi = (1 + δ)
k∑

i=1

si ≥ r (46)
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and thus
∑k

i=1 si ≥ (1 + δ)−1r ≥ (1− δ)r. Then

P ((|W1|, . . . , |Wk|) ∈ A) ≤
∑

Ps1,...,sk
∈N

k∏
j=1

P (|Wj| ∈ [sj, (1 + δ)sj])

≤ (M + 1)k max
Ps1,...,sk

∈N

k∏
j=1

P (|Wj| ∈ [sj, (1 + δ)sj])

≤ (M + 1)k max
Ps1,...,sk

∈N

k∏
j=1

P (|W1| ≥ sj)

≤ 2k(M + 1)kβ−k max
Ps1,...,sk

∈N
exp

(
−

k∑
j=1

f(sj)
)

≤ 2k(1 + M)kβ−k exp
(
− inf

{ k∑
j=1

f(xj) :
k∑

j=1

xi ≥ (1− δ)r, xj ∈ [g, r]
})

.

(47)
The monotonicity of f and (43) lead to

P
( k∑

i=1

|Wi| > r
)
≤ 2k(k + (1 + M)k)β−k exp

(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi ≥ (1− δ)r, xi ∈ [g, r]
})

= 2k(k + (1 + M)k)β−k exp
(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi = (1− δ)r, xi ∈ [g, r]
})

.

(48)
Finally, the elementary inequality k + (1 + M)k ≤ (2 + M)k, k ≥ 1, M ≥ 0, applied to the
prefactor completes the estimation. ¥

3.5 A simple minimisation problem

Later in Sections 5.3.2 and 5.4.2 we will apply Lemma 3.4 to estimate the tails of sums of
big jumps of the process L. In particular, we shall use the following result. Let k ≥ 1 and
a > 0. Then

inf
{ k∑

i=1

xα
i :

k∑
i=1

xi = a, 0 ≤ xi ≤ a
}
≥ aα, if 0 < α ≤ 1, (49)

inf
{ k∑

i=1

xα
i :

k∑
i=1

xi = a, xi ≥ 0
}
≥ k

(a

k

)α

, if α ≥ 1. (50)

The inequality (49) is a direct consequence of the inequality xα
1 + · · ·+xα

k ≥ (x1 + · · ·+xk)
α,

xi ≥ 0, which in turn follows from the elementary inequality 1 + xα ≥ (1 + x)α, x ≥ 0,
α ∈ (0, 1].

The inequality (50) can be obtained by a straightforward application of the method of
Lagrangian multipliers which implies that the local (and global) minimum is attained for
x1 = · · · = xk = a/k.
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The essentially different solutions to the minimization problems above are due to convex
resp. concave behavior of the mapping x 7→ xα for α ∈ (0, 1] resp. α ≥ 1.

4 The upper bounds

In this section we employ the first part of Lemma 3.1 in order to deduce upper bounds for
the tails of the law of exit times presented in Theorems 2.1 and 2.2. This is done in separate
arguments in the sub- and super-exponential case.

4.1 Sub-exponential tails. Proof of Theorem 2.1, upper bound

For the choice gε := 1
2
ε−1, ε ∈ (0, 1], let us consider a decomposition L = ξε +ηε as in section

3.2. Let zε be a solution of the corresponding SDE driven by small jumps, namely

zε
t = x−

∫ t

0

U ′(zε
s−)ds + εξε

t . (51)

By construction we have Xε
τ1

= zε
τ1

+ εW1. Thus for any ε ∈ (0, 1], T ∈ (0, 1], and x ∈ I the
following estimate holds

{σ < T} ⊇ {τ1 < T,Xε
τ1

/∈ I} = {τ1 < T,W1 /∈ ε−1(−1− zε
τ1

, 1− zε
τ1

)}. (52)

Since τ1, W1 and zε are independent, we get

Px(σ < T ) ≥ P(τ1 < T ) inf
y∈R

P(W1 /∈ ε−1(−1− y, 1− y))

= (1− e−βεT )β−1
ε inf

y∈R
νε

η(R \ ε−1(−1− y, 1− y)).
(53)

Symmetry of the jump measure implies infy∈R νε
η(R\ε−1(−1−y, 1−y)) ≥ νε

η([ε
−1,∞)) = 1

2
Cε.

Using the elementary inequality 1− e−x ≥ x− x2/2, x ≥ 0, yields

Px(σ < T ) ≥ T
(
1− βεT

2

)Cε

2
. (54)

We apply Lemma 3.1 (1) to obtain for any t ≥ 0, T ∈ (0, 1] and ε small enough that

sup
x∈I

Px(σ > t) ≤
(
1− T

(
1− βεT

2

)Cε

2

)−1

exp
[
− t

(
1− βεT

2

)Cε

2

]
. (55)

The upper bound in Theorem 2.1 follows immediately by taking the infimum of the right-
hand side of the latter estimate over T ∈ (0, 1].

4.2 Super-exponential tails. Proof of Theorem 2.2, upper bound

We need to show, that for any δ ∈ (0, 1] there exists T > 0 and ε0 > 0, such that for any
0 < ε < ε0 we have TD1+δ

ε ≤ δ and the following estimate holds

inf
x∈I

Px(σ ≤ T ) ≥ TD1+δ
ε , (56)
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with Dε defined in Theorem 2.2. Then Lemma 3.1 yields the assertion.
Let δ′ := δ/7, M := supy∈I |U ′(y)|, and let us choose T ∈ (0, δ′

M
∧ 1). Due to symmetry, it

is sufficient to consider x ∈ [0, 1). We start by remarking that σx > T implies the inequality

1 > XT = x−
∫ T

0

U ′(Xs−)ds + εLt ≥ −MT + εLT . (57)

Since MT < δ′ we conclude {σ > T} ⊆ {εLT < 1 + δ′} and thus

{σ ≤ T} ⊇ {εLT ≥ 1 + δ′}. (58)

Recall that qε denotes the ε-quantile of ν([·,∞)), the positive tail of the Lévy measure, and
set

gε := (α− 1)−1/αqε. (59)

Since the exponent f(u) := − ln ν([u,∞)) is regularly varying at +∞ with index α > 1, we
have εgε → 0 as ε → 0.

Consider a decomposition L = ξ + ϕε + ηε, where ξ, ϕε and ηε are Lévy processes hav-
ing generating triplets (d, ν|(−∞,1], µ), (0, ν|(1,gε), 0), and (0, ν|[gε,∞), 0) accordingly. If N (η)

denotes the counting process of ηε, we have ϕε
T > 0 and ηε

T ≥ gεN
(η)
T . Inequality (58) yields

the inclusion

{σ ≤ T} ⊇ {εξT ≥ −δ′} ∩ {εηε
T ≥ 1 + 2δ′} ⊇ {εξT ≥ −δ′} ∩ {N (η)

T ≥ 1+2δ′
εgε

}. (60)

The random variables ξT and N
(η)
T are independent and P(εξT ≥ −δ′) ≥ 1 − δ′ for ε small

enough. Let kε := [1+2δ′
εgε

] + 1. Moreover, using the definition of regularly varying functions,
and the fact that qε →∞ as ε → 0, we estimate for small ε:

| ln β(η)
ε | = f(gε) ≤ (1 + δ′)

(
gε

qε

)α

f(qε) ≤ 1 + δ′

α− 1
| ln ε|. (61)

In particular, this means that kε/β
(η)
ε →∞ as ε → 0. Thus, with the help of the inequality

k! ≤ 3kk+1/2, k ≥ 1, and the previous estimate, we get for ε sufficiently small that

P(σ ≤ T ) ≥ (1− δ′)P(N
(η)
T = kε) = (1− δ′)

(β
(η)
ε T )kε

kε!
exp(−β(η)

ε T )

≥ exp
(−(1 + δ′)kε(ln kε + | ln β(η)

ε |)) .

(62)

By definition of kε we have ln kε ≤ | ln ε| and kε ≤ 1+3δ′
εgε

for ε small enough. This leads to
the final estimate

P(σ ≤ T ) ≥ exp

(
−(1 + δ′)2 α

α− 1
kε| ln ε|

)

≥ exp

(
−(1 + δ′)2(1 + 3δ′)dα

| ln ε|
εqε

)
≥ TD1+δ

ε .

(63)
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5 The lower bounds

5.1 General remarks

We will use the second part of Lemma 3.1 to establish the lower bound estimates for Theo-
rems 2.1 and 2.2. Consider σ− and σ∗ as in Lemma 3.2. In section 5.3 we will show, that for
some appropriately chosen δ0 > 0, r ∈ (0, 1], T > 0 and any δ ∈ (0, δ0) there exists ε0 > 0
such that for any ε ∈ (0, ε0) the following estimate holds:

sup
|x|≤δ

Px(σ
∗ < T ) ≤ TC1−rδ

ε , (64)

in the sub-exponential case, and an analogous inequality with Dε replacing Cε in section 5.4
for the super-exponential one. Lemma 3.1 yields

inf
|x|≤δ

Px(σ > t) ≥ inf
|x|≤δ

Px(σ
− > t) ≥ (1− δ) exp(−C1−rδ

ε t) (65)

for any t ≥ 0 and ε sufficiently small.
The structures of the proofs providing the lower bounds in Theorem 2.1 and Theorem 2.2

are similar. To prove that inequality (64) holds, we consider a decomposition L = ξε + ηε as
in Section 3.2 with some appropriately chosen gε, such that gε →∞ and εgε → 0 as ε → 0.
In the subsections 5.3.1 respectively 5.4.1 we will use Lemma 3.2 and Corollary 3.1 to obtain
an embedding of {σ∗ < T} in terms of sets described by the large and small jump parts ξε

and ηε. In subsections 5.3.2 respectively 5.4.2 we will use Lemmas 3.3 and 3.4 to estimate
the probabilities of the covering sets.

5.2 Reduction of starting values

In this section we will show that for any δ ∈ (0, 1
2
] the following estimate holds for small ε:

1− δ ≤
infx∈I−δ

P(σx > t)

inf |x|≤δ P(σx > t)
≤ 1. (66)

Thus equation (65) yields

inf
x∈I−δ

P(σ > t) ≥ (1− δ) exp(−C1−rδ
ε t) ≥ (1− δ) exp(−C1−δ

ε t) (67)

for any t ≥ 0 and ε sufficiently small. This entails the lower bounds of the estimate (8). The
estimate leading to (10) is obtained analogously.

Proof of estimate (66). Obviously we only need to prove the first estimate from below.
Let σ1 := inf{t ≥ 0 : |Xε

t (x)| ≤ δ} and σ2 := inf{t ≥ 0 : |Xε
t (x)| ≥ 1 − δ

2
}. The strong

Markov property and time homogeneity of Xε yield for any x ∈ I−δ

P(σx > t) ≥ P(σx > σ1+t) ≥ P(σx > σ1) inf
|x|≤δ

P(σx > t) ≥ P(σ2 > σ1) inf
|x|≤δ

P(σx > t). (68)

Let m̃ := miny∈I−
δ/2
|U ′(y)| and T := 2/m̃. We have

{σ2 ≤ σ1} ⊆ {σ1 ≥ T, σ2 ≥ T, τ1 > T} ∪ {σ2 < T ∧ τ1} ∪ {τ1 ≤ T}. (69)
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We choose gε such, that gε → ∞ and εgε → 0 as ε → 0. In analogy with (24) we get
{σ1 ≥ T, σ2 ≥ T, τ1 > T} ⊆ {supt≤T |εξε

t | > m̃T − 1 = 1}, and for any x ∈ I−δ the second
part of Lemma 3.2 yields {σ2 < T ∧ τ1} ⊆ {(sup− inf

t<T∧τ1

)
εLt ≥ δ

2
} ⊆ {supt≤T |εξε

t | ≥ δ
4
}. Thus

we have

P(σ2 < σ1) ≤ P

(
sup
t≤T

|εξε
t | ≥ δ

4

)
+ P(τ1 ≤ T ) ≤ δ, (70)

for ε small enough and (68) yields the assertion.

5.3 Sub-exponential tails. Proof of Theorem 2.2, lower bound

5.3.1 Estimate of beginning of exit

Let Jδ = [−δ, δ], and m = inf{|U ′(y)| : y ∈ I−δ \Jδ} as in Lemma 3.2. The following estimates

would hold analogously for any choice T > 0 and T̂ > 1
m

. For simplicity we choose T̂ = 2
m

and T = T̂ , such that mT̂ − 1 = 1 and T + T̂ = 2T . Let k ≥ 1 and abbreviate

χk :=
k−1⋃
i=0

{
sup
t≤T

ε|ξε
Si+T+t − ξε

Si+T | ≥ 1

}
. (71)

We have

{σ∗ < T} ⊆ χk ∪ ({σ∗ < T, σ− ≥ Sk} \ χk) ∪
k−1⋃
j=0

({σ∗ < T, σ− ∈ [Sj, Sj+1)} \ χk). (72)

The first part of Corollary 3.1 yields that for all 1 ≤ j ≤ k the following inclusion is valid:

{σ∗ < T, σ− ≥ Sj} ⊆ χk ∪
j⋂

i=1

{τi ≤ 2T}. (73)

Let us next fix 1 ≤ j ≤ k − 1 to prove

{σ∗ < T, σ− ∈ [Sj, Sj+1)} ⊆ χk ∪ {σ∗ < T, σ− ∈ [Sj, Sj+1 ∧ (Sj + 2T ))}. (74)

To see this inclusion, note first that σ− ∈ [Sj, Sj + 2T ) and Sj+1 > Sj + 2T clearly implies
σ− ∈ [Sj, Sj+1 ∧ (Sj + 2T )). Also, if σ− ∈ [Sj, Sj+1) and Sj+1 ≤ Sj + 2T , we conclude
σ− ∈ [Sj, Sj+1 ∧ (Sj + 2T )). It remains to argue for the case σ− ∈ [Sj + 2T, Sj+1) and
Sj+1 > Sj + 2T . In this case, we may apply Lemma 3.2(i) with t = Sj + 2T , and the fact
that NSj+2T = j on the set {Sj+1 > Sj + 2T}. It implies

{σ∗ < T, σ− ∈ [Sj + 2T, Sj+1), Sj+1 > Sj + 2T}
⊆ {σ∗ < T, σ− ≥ Sj + 2T} ∩ {Sj+1 > Sj + 2T}
⊆

(
{Sj + 2T − SNSj+2T

< T} ∪ χk

)
∩ {Sj+1 > Sj + 2T}

⊆
(
{Sj + T − SNSj+2T

< 0} ∩ {Sj+1 > Sj + 2T}
)
∪ χk

= ∅ ∪ χk = χk.

(75)
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This proves (74). An application of Corollary 3.1(ii) further yields for any x ∈ Jδ and
1 ≤ j ≤ k − 1

{σ∗ < T, σ− ∈ [Sj, Sj+1)} \ χk ⊆
j⋂

i=1

{τi ≤ 2T} ∩ {σ− < Sj+1 ∧ (Sj + 2T )}

⊆
j⋂

i=1

{τi ≤ 2T} ∩ {σ− < Sj+1 ∧ 2kT}

⊆
j⋂

i=1

{τi ≤ 2T} ∩
({ j∑

i=1

|εWi| ≥ 1− 3δ
}
∪

{
sup

t≤2kT
|εξε

t | ≥ δ
2

})
.

(76)
Putting all arguments in (72) together, we obtain

{σ∗ < T} ⊆ χk ∪
k⋂

i=1

{τi ≤ 2T} ∪
{

sup
t≤2kT

|εξε
t | ≥ δ

2

}

∪
k−1⋃
j=1

(
j⋂

i=1

{τi ≤ 2T} ∩
{ j∑

i=1

|εWi| ≥ 1− 3δ
})

.

(77)

5.3.2 The lower bound via beginning of exit

Let δ0 := 1
3
α(1− α). Pick δ ∈ (0, δ0) and let

gε := ε−(1−α−δ) and k = kε := [ε−(α−δ)]. (78)

By definition we have εkεgε → 0 as ε → 0. Then (77) yields

Px(σ
∗ < T ) ≤ P(χkε) + P(τ1 ≤ 2T )kε + P

(
sup

t≤2kεT
|εξε

t | ≥ δ
2

)

+
kε−1∑

k=1

P(τ1 ≤ 2T )k ·P
( k∑

i=1

|εWi| ≥ 1− 3δ
)
.

(79)

In the next steps we estimate the summands of the previous formula.
1. We first apply the strong Markov property of ξε and Lemma 3.3 with 2kεT instead of

T and δ
2ε

instead of f to the first and third term on the right hand side of (79) to obtain for
ε sufficiently small

P(χkε) + P
(

sup
t≤2kεT

|εξε
t | ≥ δ

2

)
≤ kεP

(
sup
t≤T

|εξε
t | ≥ 1

)
+ P

(
sup

t≤2kεT
|εξε

t | ≥ δ
2

)

≤ (kε + 1)P
(

sup
t≤2kεT

|εξε
t | ≥ δ

2

)

≤ (kε + 1) exp
(
− (1− δ)

δ

2εgε

ln
δ

4Tεkεgε

)

≤ exp
(
− 1

εgε

)
= exp(−ε−(α+δ)) < TCε.

(80)
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2. We next deal with the second term on the right hand side of (79). Recall that the
logarithm of the Lévy measure’s tail f(u), u > 0, is a regularly varying function with index
α ∈ (0, 1). Since gε →∞ as ε → 0, we can choose ε sufficiently small, such that f(gε) ≥ gα−δ

ε

and the following estimate holds:

P(τ1 ≤ 2T )kε ≤ (2Tβε)
kε = (4Te−f(gε))kε ≤ (4Te−gα−δ

ε )kε

≤ exp
(−(1− δ)ε−(1−α−δ)(α−δ)−(α−δ)

) ≤ exp
(−(1− δ)ε−(α+α(1−α)−3δ)

)
.

(81)

For the first inequality in the chain (81) we hereby use that the law of τ1 is exponential with
mean β−1

ε , while α ∈ (0, 1) is needed for the last. Thus the hypothesis δ < 1
3
α(1− α) yields

P(τ1 ≤ 2T )kε < TCε for ε sufficiently small.
3. We finally fix 1 ≤ k ≤ kε − 1 to treat a summand of the last term on the right hand

side of (79). By definition we have εgεkε → 0 as ε → 0. Thus ε can be chosen sufficiently

small, such that by Lemma 3.4 applied with r = 1−3δ
ε

, to estimate P
(∑k

i=1 |εWi| ≥ 1− 3δ
)
,

we get the following inequalities

max
1≤k≤kε−1

P(τ1 ≤ 2T )k ·P
( k∑

i=1

|εWi| ≥ 1− 3δ
)
≤ max

1≤k≤kε−1
(2Tβε)

k ·P
( k∑

i=1

|εWi| ≥ 1− 3δ
)

≤ max
1≤k≤kε−1

(
8T + 4T

| ln ε| − ln gε

ln(1 + δ)

)k

× exp
(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi = (1−3δ)(1−δ)
ε

, xi ∈ [gε,
1−3δ

ε
]
})

≤ | ln ε|2kε max
1≤k≤kε−1

exp
(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi = (1−3δ)(1−δ)
ε

, xi ∈ [gε,
1
ε
]
})

.

(82)
Note that for the second inequality, Lemma 3.4 tells us to minimize on jumps xi ∈ [gε,

1−3δ
ε

].
The minimizer on the intervals [gε,

1
ε
] we take is smaller, so gives an upper estimate. For

the crucial estimate of the exponential rate, we call upon Potters’ bound for the regularly
varying function f (see [1, Theorem 1.5.6]). Since gε →∞ as ε → 0, it provides the following
estimate for all x ∈ [gε,

1
ε
] and ε sufficiently small:

f(x) ≥ (1− δ)f(ε−1)(εx)α+δ. (83)

Therefore we get

inf
{ k∑

i=1

f(xi) :
k∑

i=1

xi = (1− 3δ)(1− δ)ε−1, xi ∈ [gε, ε
−1]

}

≥ (1− δ)f(ε−1)εα+δ inf
{ k∑

i=1

xα+δ
i :

k∑
i=1

xi = (1− 3δ)(1− δ)ε−1, xi ∈ [gε, ε
−1]

}

≥ (1− δ)f(ε−1)εα+δ((1− 3δ)(1− δ)ε−1)α+δ ≥ (1− 5δ)f(ε−1).

(84)
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For obtaining the second inequality in the preceding chain, we have to recall that α + δ < 1,
and use the inequality (49). So the estimation in (82) may be completed by

max
1≤k≤kε−1

P(τ1 ≤ 2T )k ·P
( k∑

i=1

|εWi| ≥ 1− 3δ
)
≤ exp(−(1− 5δ)f(ε−1) + 2kε ln | ln ε|)

≤ exp(−(1− 6δ)f(ε−1)) ≤ TC1−7δ
ε ,

(85)

which again holds for ε small enough. Collecting the bounds we obtained for the terms in
(79), we finally get for ε small enough

Px(σ
∗ < T ) ≤ 2TCε + (kε − 1)TC1−7δ

ε ≤ TC1−8δ
ε . (86)

So we just have to rename the δ we started with by δ′ = δ/8, to obtain the desired upper
bound, and complete the proof of Theorem 2.1.

5.4 Super-exponential tails. Proof of Theorem 2.2, lower bound

5.4.1 Estimate of beginning of exit

Again, we start by covering the crucial set {σ∗ < T} by sets described in terms of the small
and large jump parts. Let k ≥ 1. Let m, T̂ , T and χk be defined as in Section 5.3.1. Then
with help of Corollary 3.1(i) we obtain

{σ∗ < T} = {σ∗ < T, σ− < 2Tk ∧ Sk} ∪ {σ∗ < T, σ− ≥ 2Tk ∧ Sk}

⊆ {σ∗ < T, σ− < 2Tk ∧ Sk} ∪ χk ∪
k⋂

i=1

{τi ≤ 2T}. (87)

Define the set

χ̄k :=
k−1⋃
i=1

{εWi ≥ δ}. (88)

We notice that on the event {σ∗ < T, σ− < 2Tk ∧ Sk} ∩ χ̄c
k the estimate

(
sup− inf

t≤σ−

)
εLt ≥ m(σ− − σ∗) (89)

holds. To see this, we use similar arguments as in the proof of Lemma 3.2(i). Indeed, on the
event {σ∗ < T, σ− < 2Tk∧Sk}∩ χ̄c

k the process Xε does not change its sign during the time
interval [σ∗, σ−], and for any t ∈ (σ∗, σ−) we have |U ′(Xt−)| ≥ m. Further we have that if

0 < Xσ∗− ≤ δ then Xσ− ≥ 1 − δ, and Xσ− = Xσ∗− +
∫ σ−

σ∗ U ′(Xt−)dt + ε(Lσ− − Lσ∗−), and
thus (

sup− inf
t≤σ−

)
εLt ≥ (1− 2δ) + m(σ− − σ∗) ≥ m(σ− − σ∗). (90)

The case of negative values Xσ∗− is considered analogously.
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This and Lemma 3.2(ii) lead to the following estimate for k ≥ 1 (recall mT = 2):

{σ∗ < T, σ− < 2Tk ∧ Sk} ∩ χ̄c
k

⊆ {σ− < 4T} ∪
k−1⋃
i=2

({
σ∗ < T, σ− ∈ [2iT, 2(i + 1)T ], σ− < Sk

}
∩ χ̄c

k

)

⊆
{(

sup− inf
t<4T

)
εLt ≥ 1− 2δ

}
∪

k−1⋃
i=2

{
(
sup− inf
t<2(i+1)T

)
εLt ≥ (2i− 1)Tm

}

⊆
{(

sup− inf
t<4T

)
εLt ≥ 1− 2δ

}
∪

k−1⋃
i=2

{ i∑
j=0

(
sup− inf

t<2T

)
ε(L2jT+t − L2jT ) ≥ i + 1

}

⊆
{(

sup− inf
t<4T

)
εLt ≥ 1− 2δ

}
∪

k−1⋃
i=0

{(
sup− inf

t<2T

)
ε(L2iT+t − L2iT ) ≥ 1

}
.

(91)

In particular, this entails

{σ∗ < T} ⊆ χk ∪ χ̄k ∪
k⋂

i=1

{τi ≤ 2T} ∪
k−1⋃
i=0

{(
sup− inf

t≤4T

)
ε(L2iT+t − L2iT ) ≥ 1− 2δ

}
. (92)

5.4.2 The lower bound via beginning of exit

Let δ ∈ (0, 1
2
) be fixed, let qε := sup{u > 0 : ν([u,∞)) ≥ ε} denote the ε-quantile of the

Lévy measure ν, and set

gε :=
qε

3
and kε :=

[ | ln ε|
ε

]
. (93)

In particular, since the tails of ν are super-exponential, εgε → 0 as ε → 0.
We shall also use a simple estimate of dα := infy>0(y

−α+1 + y) = α(α − 1)
1
α
−1. It is easy

to see that
1 = inf

y>0
(y−α+1 ∨ y) ≤ dα ≤ (y−α+1 + y)|y=1 = 2. (94)

Next, we estimate the probabilities of the events in (92).
1. We use the inequality dα ≤ 2 and Lemma 3.3 with f = 1

ε
and to obtain for ε small

that

P(ξk) ≤ kεP
(

sup
t≤2T

|εξε
t | ≥ 1

)
≤ kε exp

(
− 1− δ

εgε

ln
1

2Tεgε

)

≤ kε exp
(
− 3(1− 2δ)ε−1q−1

ε | ln ε|
)

< TDε.

(95)

2. To deal with the second term, recall that f(u) = − ln ν([u,∞)) is regularly varying
with α > 1 at infinity. So we have

P(χ̄kε) ≤ kεP(|εW1| ≥ δ) ≤ 2kεβ
−1
ε e−f(δ/ε) ≤ exp(−(δ/ε)α−δ + 2| ln ε|+ ln kε) ≤ TDε.

(96)
3. Since βε → 0 as ε → 0 we have for sufficiently small ε > 0

P(∩kε
i=1{τi ≤ 2T}) ≤ P(τ1 ≤ 2T )kε ≤ (2Tβε)

kε ≤ exp(−kε) < TDε. (97)
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4. The estimate for the last union in (92) is the most important part of the proof. Since
for any 0 ≤ i ≤ k − 1 the processes (L2iT+t − L2iT )t≥0 are independent and have the same
law as L = (Lt)t≥0, its enough to work with the original process L. We prove the following
Lemma.

Lemma 5.1 Let the jump measure ν of L be symmetric and super-exponential with index
α > 1. Then for any T > 0, a > 0, and δ > 0 there exists ε0 > 0 such that for all 0 < ε ≤ ε0

the following estimate holds:

P

((
sup− inf

t≤T

)
εLt > a

)
≤ D(1−δ)a

ε . (98)

Applying Lemma 5.1 with a = 1− 2δ to the last event in (92) we get

kεP

((
sup− inf

t≤4T

)
εLt ≥ 1− 2δ

)
≤ kεD

1−3δ
ε ≤ TD1−4δ

ε (99)

for sufficiently small ε. This completes the proof of Theorem 2.2.

Proof of Lemma 5.1. Due to monotonicity, it is sufficient to consider δ ∈ (0, 1∧a
4

). Let
r := 8α. We shall prove that for any such δ there exists ε0 > 0, such that for every 0 < ε < ε0

the estimate P
((

sup− inf
t≤T

)
εLt > a

)
≤ D

(1−rδ)a
ε holds. This entails the asserted inequality.

Consider a decomposition L = ξε + ηε as in Section 3.2 with the threshold

gε :=
δqε

6
. (100)

Note that this gε is different from its counterpart defined in (93) at the beginning of this
subsection, and will be only used in the proof of the Lemma.

Since
(
sup− inf

t≤T

)
εξε

t ≤ 2 supt≤T |εξε
t |, we have for any n ≥ 1

{(
sup− inf

t≤T

)
εLt ≥ a

}
⊆

{(
sup− inf

t≤T

)
εξε

t ≥ δa
}
∪

{(
sup− inf

t≤T

)
εηε

t ≥ (1− δ)a
}

⊆
{

sup
t≤T

|εξε
t | ≥ 1

2
δa

}
∪ {NT > n} ∪

n⋃

k=1

{
NT = k,

k∑
i=1

|εWi| > (1− δ)a
}

.

(101)

The goal of the next steps consists in estimating the probabilities of the events figuring in
the second line of (101) with an appropriately chosen n, namely with

n := nε =

[
3a

qεε

]
. (102)

1. We apply Lemma 3.3 with f = δa
2ε

, and 2T instead of T to get

P

(
sup
t≤T

|εξε
t | ≥

δa

2

)
≤ exp

(
−(1− δ)

3a

εqε

ln
3a

Tεqε

)

≤ exp

(
−(1− 2δ)

3a

εqε

| ln ε|
)

< Da
ε

(103)
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for ε small enough.
2. To estimate P(NT > nε) we will use Stirling’s formula. By choice of gε and nε we have
εgε → 0, ln nε

| ln ε| → 1, and βεT ≤ 1 as ε → 0. Thus for ε sufficiently small the estimate

nε! ≥ exp(nε(ln nε − 1)) ≥ exp((1− δ)nε| ln ε|) holds, and we get

P(NT > nε) ≤
∞∑

k=nε

(βεT )k

k!
≤ (1 + δ)

(βεT )nε

nε!

≤ exp(−(1− δ)nε| ln ε|) ≤ exp

(
−(1− 2δ)

3a

εqε

| ln ε|
)

< Da
ε .

(104)

3. As in Section 5.3, the crucial ingredient which produces the phase transition at α = 1
comes from the following estimate for the exponential rate of sums of large jumps. Recall
that f(u) = − ln ν([u, +∞)), u > 0, is regularly varying with index α > 1. By choice of

parameters we have εgεnε → δ
2

< (1− δ)2a as ε → 0. Thus Lemma 3.4 with r = (1−δ)a
ε

can

be used to estimate P
(∑k

i=1 |εWi| ≥ (1− δ)a
)

for 1 ≤ k ≤ nε − 1. Hence for ε sufficiently

small the following estimate holds uniformly for all 1 ≤ k < nε:

P
( k∑

i=1

|εWi| ≥ (1− δ)a
)

≤ β−k
ε | ln ε|2k exp

(
− inf

{ k∑
i=1

f(xi) :
k∑

i=1

xi = (1−δ)2a
ε

, xi ∈ [gε,
(1−δ)a

ε
]
})

.

(105)

Again we invoke Potter’s bound to estimate the negative of the exponential rate. Choose δ̃
sufficiently small, such that α − δ̃ > 1 and (2δ)δ̃ ≥ 1 − δ̃| ln(2δ)| > 1 − δ. For sufficiently

small ε the estimate f(x) ≥ (1 − δ)f(gε)(
x
gε

)α−δ̃ then holds for any x ≥ gε. Thus for any
1 ≤ k < nε we get

inf
{ k∑

i=1

f(xi) :
k∑

i=1

xi = (1−δ)2a
ε

, xi ∈ [gε,
(1−δ)a

ε
]
}

≥ (1− δ)
f(gε)

gα−δ̃
ε

inf
{ k∑

i=1

xα−δ̃
i :

k∑
i=1

xi = (1−δ)2a
ε

, xi > 0
}

= (1− δ)
f(gε)

gα−δ̃
ε

k

(
(1− δ)2a

εk

)α−δ̃

≥ (1− 3αδ)f(gε)k

(
a

εgεk

)α−δ̃

≥ (1− 3αδ)f(gε)nε

(
a

εgεnε

)α−δ̃ (nε

k

)α−δ̃−1

≥ (1− 5αδ)3−α| ln ε|nε

(nε

k

)α−δ̃−1

.

(106)

In the crucial step from the second to the third line of the inequality chain we use that the
relation α− δ̃ > 1 imposes that the function x 7→ xα−δ̃ is convex, and therefore the minimum
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is taken for the choice xi = (1−δ)2a
kε

, 0 ≤ i ≤ k, due to (50). The same conditions imply the
following inequalities which are used in the last line of the chain. In fact, for sufficiently
small ε we obtain

f(gε) ≥ (1− δ)

(
gε

qε

)α

f(qε) ≥ (1− δ)

(
δ

6

)α

| ln ε| (107)

and (
a

εgεnε

)α−δ̃

≥
(

2

δ

)−(α−δ̃)

≥ (1− δ)

(
2

δ

)α

. (108)

Summarising our conclusions, we may continue the estimate in (105) by the inequality

P
( k∑

i=1

|εWi| ≥ (1− δ)a
)
≤ β−k

ε exp
(
− (1− 5αδ)3−α| ln ε|nε

(nε

k

)α−δ̃−1

+ nε ln | ln ε|
)

≤ β−k
ε exp

(
− (1− 6αδ)3−α| ln ε|nε

(nε

k

)α−δ̃−1)
,

(109)
again valid for ε small enough.

It remains to include the probabilities P(NT = k) for 1 ≤ k < nε into our estimates. For

this purpose, we shall estimate max1≤k<nε P(NT = k)P
(∑k

i=1 |εWi| > (1− δ)a
)
. This will

be done by looking separately at the cases k ∈ A and k ∈ B, where

A := {1 ≤ k < nε : (nε

k
)α−δ̃−1 > 3α}, B := {1 ≤ k < nε : (nε

k
)α−δ̃−1 ≤ 3α}. (110)

For any 1 ≤ k < nε the estimate P(NT = k) ≤ P(τ1 ≤ T )k ≤ (βεT )k is valid. So we obtain
for small enough ε

max
k∈A

P(NT = k)P
( k∑

i=1

|εWi| > (1− δ)a
)
≤ T nε exp(−(1− 6αδ)| ln ε|nε)

≤ exp
(
− (1− 7αδ)3a

| ln ε|
εqε

)
< Da

ε .

(111)

Finally we consider k ∈ B. By choice of parameters and definition of B we have infk∈B ln k ≥
(1− δ)| ln ε| for sufficiently small ε. Hence for ε small, again by means of Stirling’s formula

P(NT = k) ≤ (βεT )k

k!
≤ βk

ε exp(−k(ln k − 1− ln T )) ≤ βk
ε exp(−(1− 2δ)k| ln ε|)

≤ βk
ε exp

(
− (1− 2δ)nε| ln ε| k

nε

)
.

(112)

This combines with our estimate for the rate of sums of big jumps to the inequality

max
k∈B

P(NT = k)P
( k∑

i=1

|εWi| > (1− δ)a
)

≤ exp
(
− (1− 6αδ)| ln ε|nε

[
3−α

(nε

k

)α−δ̃−1

+
k

nε

])

≤ exp
(
− (1− 6αδ)| ln ε|nε inf

y>0
[3−αy−(α−δ̃−1) + y]

)
.

(113)
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It is easy to see that infy>0[3
−ρy−(ρ−1) + y] = 1

3
ρ(ρ − 1)−(1− 1

ρ
) holds for any ρ > 1. The

mapping ρ 7→ 1
3
ρ(ρ− 1)−(1− 1

ρ
) is continuous on (1,∞). Thus δ̃ can be chosen sufficiently

small for the following estimate to hold

inf
y>0

3−αy−(α−δ̃−1) + y ≥ 3−δ̃ inf
y>0

3−(α−δ̃)y−(α−δ̃−1) + y

≥ (1− δ) inf
y>0

3−αy−(α−1) + y =
1− δ

3
dα.

(114)

So we finally get the inequality

max
k∈B

P(NT = k)P
( k∑

i=1

|εWi| > (1− δ)a
)
≤ exp

(
− (1− 6αδ)

dα

3
| ln ε|nε

)

≤ exp
(
− (1− 7αδ)adα

| ln ε|
εqε

)

≤ D(1−7αδ)a
ε .

(115)

Now combine this with our estimate on A, and take into account that we have nε summands
of the two types. But by its choice, the factor nε being a power function of ε does not change
the exponential asymptotics in the limit ε → 0. This completes the proof of both Lemma
5.1 and Theorem 2.2. ¥

References

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27 of Ency-
clopedia of Mathematics and its applications. Cambridge University Press, Cambridge
etc., 1987.

[2] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion
processes I: Sharp asymptotics for capacities and exit times. Journal of the European
Mathematical Society, 6(4):399–424, 2004.

[3] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes
II: Precise asymptotics for small eigenvalues. Journal of the European Mathematical
Society, 7(1):69–99, 2005.

[4] A. Chechkin, O. Sliusarenko, R. Metzler, and J. Klafter. Barrier crossing driven by
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the Gaussian: the truncated Lévy flight. Physical Review Letters, 73(22):2946–2949,
1994.

[20] R. Metzler and J. Klafter. The restaurant at the end of the random walk: recent
developments in the descroption of anomalous transport by fractional dynamics. Journal
of Physics A: Mathematical and General, 37:R161–R208, 2004.

[21] I. Pavlyukevich. Simulated annealing of Lévy-driven jump-diffusions. Stochastic Pro-
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