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ABSTRACT. Given a set of service requests (events), a set of guided servers (units),
and a set of unguided service contractors (conts), the vehicle dispatching problem
VDP is the task to find an assignment of events to units and conts as well as tours
for all units starting at their current positions and ending at their home positions
(dispatch) such that the total cost of the dispatch is minimized.

The cost of a dispatch is the sum of unit costs, cont costs, and event costs. Unit
costs consist of driving costs, service costs and overtime costs; cont costs consist of
a fixed cost per service; event costs consist of late costs linear in the late time, which
occur whenever the service of the event starts later than its deadline.

The program ZIBDIP based on dynamic column generation and set partitioning
yields solutions on heavy-load real-world instances (215 events, 95 units) in less
than a minute that are no worse than 1% from optimum on state-of-the-art personal
computers.

1. INTRODUCTION

The german automobile club ADAC (Allgemeiner Deutscher Automobil-Club), the
second largest automobile club worldwide, maintains a heterogeneous fleet of over
1600 service vehicles in order to help people whose cars break down on their way.
All service vehicles (units, for short) are equipped with GPS, which helps to exactly
locate each unit in the fleet. In five ADAC help centers (Pannenhilfezentralen) spread
over Germany, human operators (dispatcher) constantly assign units to incoming help
requests (events, for short) so as to provide for a good quality of service (i.e., waiting
times of less than 20–60 minutes depending on the system load) and low operational
costs (i.e., short total tour length and little overtime costs). Moreover, about 5000 units
of service contractors (conts, for short)—not guided by ADAC—can be employed to
cover events that otherwise could not be served in time. This manual dispatching
system is now subject to automatization.

Given a snapshot in the continuously running planning process, the task of the dis-
patcher in one of the help centers is to assign a unit or a contractor to each event and a
tour to each unit such that every event is served by a unit or contractor that is capable
of this service and such that a certain cost function is minimized. The result of this
planning process is a (tentative) dispatch. The overall goal is to design an automatic
online dispatching system that guarantees small waiting times for events and low op-
erational costs when regarded over a larger period of time. In particular, the ADAC
chose to impose a soft deadline on the service of an event that may be missed at the
cost of a linearly increasing lateness penalty (soft time windows). Figure 1 indicates a
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FIGURE 1. A real-world instance of VDP (gray: units, black: events).
Lines indicate tours that end at the home positions of units in some
dispatching solution

typical, obviously not uniform distribution of units (gray) and events (black) in a real
world instance of ADAC.

A basic building block for such a system is a fast offline optimization module that
is able to produce an optimal or near-optimal dispatch under strict real-time require-
ments. More specifically, the optimization module must provide a reasonable answer
in less than a second and must have the ability to improve on that solution whenever
by some circumstances more time is granted to the optimization process. Given the
fact that in an average snapshot 200 yet unserved events have to be assigned to tours
for about 100 vehicles at distinct positions, the real-time aspect requires special atten-
tion. See [1] for evidence that the ability of fast reoptimization can help to improve
the performance of dynamic dispatching systems. A possible method to organize the
dynamics of a dispatching system in the language of agents can be found in [14].
Whether or not precomputed routes should be subject to sudden change are discussed
in [5], where the optimization part is done by tabu search.

The basic problem can be modeled as a multi depot vehicle routing problem with
soft time windows MVRPSTW, where each guided vehicle is a depot of its own and
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the contractors maintain a depot of a certain capacity. Many algorithms, heuristic
and exact (i.e., where a performance guarantee can be given a-posteriori), have been
proposed for the related vehicle routing problem with time windows, where the time
windows have to be respected in any feasible dispatch (see [3] and references therein
for a survey of various problem types and exact algorithms; see [10] for recent progress
in efficiency of exact algorithms; see [13] for a tabu search approach dealing with soft
time windows; see [11] for one approaches based on genetic algorithms).

To the best of our knowledge none of the exact algorithms was ever reported to pre-
dictably meet strict real time requirements in a large-scale real-world application, i.e.,
produce reasonable answers very early (after five seconds) in the course of the opti-
mization process. On the other hand, the heuristic methods cannot guarantee a certain
quality of the delivered solution. What should be done in practice? (The primary opin-
ion in industry when being asked to present an approach to solve this problem was to
use meta-heuristics because exact approaches would not be able to produce solutions
fast enough.)

We will show in this paper that we can employ a custom-made dynamic column gen-
eration method to this problem that delivers good solutions after a fraction of a second
and yields a provably optimal or near-optimal solution in less than five seconds in all
real-world data sets with about 200 events and about 100 units provided by ADAC.
The behaviour remains stable even for extremal load problems (artificially augmented
real-world problems) with up to 770 events and 200 units: the solution quality was
already within 12% from optimum after 5 seconds, within 5% from optimum after 15
seconds, and within 2% after one minute.

We had the chance to compare an implementation of our algorithm with an experi-
mental prototype using meta-heuristics based on genetic algorithms and hill-climbing,
which was produced by our industrial partner with serious effort; we show that four
variants of the code based on meta-heuristics are clearly outperformed by our exact
method.

Using the exact approach is viable mainly because we can explicitely exploit a rather
obvious but nevertheless crucial structure in the real-world problem data provided by
ADAC: Since in a planning snapshot all events have been released already, the rela-
tively tight soft time windows will enforce optimal solutions with almost only short
tours.

The problem for which we propose a solution in this work is how to specifically
make use of this advantageous property to accelerate convergence of a column gener-
ation procedure for our dispatching problem. Our solution to this is Dynamic Pricing
Control.

The issues that need to be addressed in order to gain speed in convergence in a
dynamic column generation method are

• reduce the number of columns generated
• consolidate the dual variables as early as possible
• accelerate the solution of the pricing problem

Other issues that on other problem sets may cause problems—like finding an integer
solution—have turned out to be well-behaved for our data sets: we could, e.g., get
away by using the MIP solver of CPLEX 7.0 to find good integer solutions in the course
of the column generation. This also means that there is room for improvement in our
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algorithm by employing a genuine branch&price algorithm. From the practicioner’s
point of view, however, the integrality problem in the ADAC data sets is solved by
CPLEX “off the shelf”.1

In order to emphasize that the structure of our dispatching problem is special, we
will use the name vehicle dispatching problem (VDP, for short) for the problem studied
in this paper.

The rest of the paper is organized as follows: In the next section we introduce the
exact setting of the VDP. Section 3 is devoted to the mathematical model that is the
basis for the column generation approach. In Section 4 we describe our real-time
compliant algorithm. Computational results on real-world data in Section 5 prove the
performance of the algorithm, where Section 6 evaluate the effectiveness of various
algorithmic tuning concepts. Section 7 summarizes the key points of this paper.

2. PROBLEM SPECIFICATION

In the following, we specify the exact form of VDP that is tackled by our algorithm.
An instance of the VDP consists of a set of units, a set of contractors, and a set of
events.

Each unit u has a current position ou, a home position du, a logon time tstart
u , a shift

end time tend
u , and a set of capabilities Fu. Moreover, the costs related to using this

unit are specified by values for costs per time unit for each of the following actions:
driving cdrv

u , waiting cwait
u , serving csvc

u , and overtime cot
u .

Each contractor v has a home position dv and a set of capabilities Fv. Moreover, the
costs for booking the contractor are specified by a value for costs per service csvc

v .
Each event e has a position xe, a release time θr

e, a deadline θd
e, a service time δe,

and a set of required capabilities Fe. Moreover, extra costs related to serving this event
are specified by the value of a lateness coefficient clate

e meaning that a cost of clate
e times

the delay w.r.t. the deadline of the event is incurred.
A feasible solution of the VDP (a dispatch) is an assignment of events to units and

contractors capable of serving them, as well as a tour for each unit such that all events
are assigned, the service of events does not start before their release times (waiting is
allowed), and all tours for all units start at their current positions not before their logon
times and end at their home positions. The costs of a dispatch are the sum of all unit
costs, contractor costs, and event costs.

3. MODELING

We will use a model based on tour variables. Models of this type are by now well-
established in the vehicle routing literature (see, e.g., [3]).

Let R be the set of all feasible tours. This set splits into the sets Ru of feasi-
ble tours for each unit u. A tour in Ru can be described by an ordered sequence
(u, e1, e2, . . . , ek) of k distinct events visited by u in that order. We will use the se-
quence (u) to denote the go-home tour, i.e., the tour in which u travels from its current
position directly to its home position. Feasibility means that the capabilities of the unit
are sufficient for ei, i.e., Fei

⊆ Fu, for all i = 1, . . . , k. Notice that this sequence also
fixes the arrival times of u at each event.

1One has to take into account that the chance for the incorporation of an algorithmic method in an
industrial product heavily depends on the relation between effort and benefit.



REAL-TIME DISPATCHING 5

For all R ∈ Ru we introduce binary variables xR with the following meaning: xR =

1 if and only if the route R is chosen to be in the dispatch.
The cost of the route R is denoted by cR and computed as follows. Let δef

u be the
driving time of unit u from event e to event f. Moreover, let δoue

u resp. δedu
u be the

driving times of unit u from its current position to event e resp. from event e to its
home position du. By te

R we denote the arrival time at event e in route R. The arrival
time of u at its home position be tdu

R . Then the cost cR of route R = (u, e1, e2, . . . , ek)

can be computed as

cR =

cdrv
u δoue1

u +

k∑

i=2

cdrv
u δ

ei−1ei
u + cdrv

u δekdu
u (driving)

+

k∑

i=1

csvc
u δei

(service)

+ cot
u max{(tdu

R − tend
u ), 0} (overtime)

+

k∑

i=1

clate
ei

max{(t
ei

R − θd
ei

), 0} (lateness)

A feasible “route” S for a contractor v can be written as a set {e1, e2, . . . , ek} of
events that this contractor may be assigned to serve, i.e., Fei

⊆ Fv for all i = 1, . . . , k.
Let te

v be the time by which contractor v can have reached event e with one of his
vehicles. The cost cS of such a “tour” S can be computed as follows:

cS =

csvc
v |S| (service)

+

k∑

i=1

clate
ei

max{(tei
v − θd

ei
), 0} (lateness)

Since this cost is linear in the events served by this contractor, every “tour” S of a
contractor can be combined from elementary contractor tours containing each only a
single event.2 Let Sv be the set of elementary feasible “tours” for v, and let S be their
union over all contractors v ∈ V .

For all S ∈ Sv we introduce binary variables xS with the following meaning: xS = 1

if and only if the elementary “tour” S is chosen to be in the dispatch.
The VDP can now be formulated as a set partitioning problem as follows. Let

aRe, bSe be binary coefficients with aRe = 1 (resp. bSe = 1) if and only if event
e is served in tour R (resp. in elementary contractor “tour” S).

2So far, there are no data about the capacities of contractors available to the ADAC. Thus, an infinite
capacity is assumed. Later, in the dynamic optimization process, a contractor that declines a request will
be removed form the dispatching system for some time.
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min
∑

R∈R

cRxR +
∑

S∈S

cSxS (IP)

subject to
∑

S∈S

bSexS +
∑

R∈R

aRexR = 1 ∀e ∈ E; (1)

∑

R∈Ru

xR = 1 ∀u ∈ U; (2)

xR ∈ {0, 1} ∀R ∈ R; (3)

xS ∈ {0, 1} ∀S ∈ S. (4)

Our method is based on solving the linear programming relaxation (LP) of (IP),
where the integrality constraints (3) and (4) are replaced by the non-negativity con-
straints (3’) and (4’):

min
∑

R∈R

cRxR +
∑

S∈S

cSxS (LP)

subject to
∑

S∈S

bSexS +
∑

R∈R

aRexR = 1 ∀e ∈ E; (1)

∑

R∈Ru

xR = 1 ∀u ∈ U; (2)

xR ≥ 0 ∀R ∈ R; (3’)

xS ≥ 0 ∀S ∈ S. (4’)

It is evident that not all columns of the coefficient matrix can be statically enumer-
ated for our problem size. It is, however, by now established that dynamic column
generation can be used [3].

After each iteration of the column generation procedure we have the optimal solu-
tion of the restricted LP, in which only tours from a subset R̃ ⊂ R have been consid-
ered. (We assume that all elementary contractor tours in S have already been added.)

min
∑

R∈eR

cRxR +
∑

S∈S

cSxS (RLP)

subject to
∑

S∈S

bSexS +
∑

R∈eR

aRexR = 1 ∀e ∈ E; (1’)

∑

R∈ fRu

xR = 1 ∀u ∈ U; (2’)

xR ≥ 0 ∀R ∈ R̃; (3’’)

xS ≥ 0 ∀S ∈ S. (4’)
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Consider the dual of (RLP) with variables πe, e ∈ E, for equations (1’) and πu,
u ∈ U, for equations (2’).

max
∑

e∈E

πe +
∑

u∈U

πu (DRLP)

subject to
∑

e∈E

aReπe + πu ≤ cR ∀R ∈ R̃u, ∀u ∈ U; (5)

∑

e∈E

bSeπe ≤ cS ∀S ∈ S. (6)

For a unit u ∈ U and a tour R ∈ Ru let c̄R be its reduced cost

c̄R = cR −
∑

e∈E

aReπe − πu.

Then, a tour R ∈ Ru \ R̃u can possibly improve the current solution of (RLP) only
if c̄R < 0 [2].

We would like to estimate during the column generation process how far we are still
away from the optimal solution of (LP). To this end, we use a bound, usually attributed
to Lasdon, coming from the Langrangean relaxation of (LP) w.r.t. the constraints (1).

Lemma 3.1. Let (π∗

e, π
∗

u) be an optimal solution to (DRLP) and (x∗

R, x∗S)T be the cor-
responding primal solution. Then the cost c

opt
LP of an optimal solution of (LP) satisfies

c
opt
LP ≥

∑

R∈eR

cRx∗R +
∑

S∈S

cSx∗S +
∑

u∈U

min
R∈Ru

(
cR −

∑

e∈E

aReπ
∗

e − π∗

u

)
(7)

�

This lower bound is useful in the course of a column generation algorithm since its
main terms have to be computed during the column generation process anyway.

4. THE ALGORITHM

In the following we outline the algorithm in a top-down manner. In order to make
it readable we refrain from introducing symbols for parameters used to guide the algo-
rithm. We also do not use formulas to describe it. We rather present a legible version
that we find is easier to decipher than a rigorous mathematical formulation.

Three key ingredients are designed to ensure fast convergence of the reduced LP
solutions:

(1) pricing on a initially small but dynamically growing search space,
(2) acceptance of columns on the basis of a dynamically updated acceptance thresh-

old,
(3) variation in the sorting criterion influencing the selection of the search sub-

space in the branch&bound pricing algorithm (in the default setting we alter-
natingly sort by reduced costs, completion time, and primal costs).

For further reference, we call the concert of these methods Dynamic Pricing Con-
trol.
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Input: Instance of VDP

Output: optimum dispatch

initialize LP, `, d, a, L, t, <

while true do
repeat

{generate new columns in search tree of degree d and depth `:}
5: ADDNEWCOLUMNS((LP, u, `, d, a, <))

double [halve] a if less [more] than 1000 columns were generated
solve LP
update dual prices
if LP progress sufficient and elapsed time large enough then

10: solve IP corresponding to LP with time limit t

increase t

output corresponding dispatch to a file
end if
if optimality check successful then

15: mark LP as optimal
break

end if
increase `

until LP progress stalls and ` > L

20: if LP marked optimal then
break

end if
increase d

set ` to initial value
25: end while

solve IP corresponding to LP to optimality
return corresponding dispatch

Algorithm 4.1: ZIBDIP

4.1. Top Level Algorithm. The input of the top level algorithm in ZIBDIP is an in-
stance of the VDP.

The initial LP consists of all elementary tours for all contractors plus a tour for each
unit from its current position to its home position (go-home-tour). This way, both the
initial LP and the initial IP are feasible.

The search for additional columns is done in a depth-first-search branch&bound
tree (search tree, for short) for each unit. Each node in the search tree corresponds to a
tour starting at the current position of a unit and ending at the position of the last event
served by the unit. A node can be completed to a feasible tour by appending the tour
from the position of the last event in the node to the unit’s home position. The pre-
cost of a node in the search tree is the reduced cost [2, 12] of the corresponding tour
(without returning to the unit’s home position and overtime). The cost of a node in the
search tree is defined as the reduced cost of the corresponding feasible tour (including
the costs for returning to the home position and overtime). The dual prices for the
events and units are taken from the previous run of the LP solver.



REAL-TIME DISPATCHING 9

Input: Linear program LP, maximal search depth `, maximal search degree d,
current node v (v := r if not specified), acceptance threshold a, sorting crite-
rion for partial tours <

Output: The linear program LP with additional columns

if v has length ` then
return

end if
while less than d children visited do

5: pick the next best child c of v according to search order <

if cost of c smaller than a then
add column corresponding to c to LP

end if
if LOWERBOUND(LP, c) smaller than a then

10: ADDNEWCOLUMNS(LP, l, d, c, a, <)
end if

end while
return LP

Algorithm 4.2: ADDNEWCOLUMNS

The root node r of the search tree corresponds to the empty tour. Given a node v in
the tree, the children of v are obtained by appending one event to v that is not yet in v.

We generate columns for each unit in loops with increasing values for the maximal
search depth (inner loop) and the maximal search degree (outer loop). The values for
the maximal search depth are increased until no progress has been made in the previous
step provided the search depth was sufficiently large, at latest when the depth equals
the number of events. The search degree is increased until an optimality criterion is
met or the search degree has reached the number of events (see Algorithm 4.1).

While we are adding columns to the LP we fix the upper bound to a negative ac-
ceptance threshold: all columns that have reduced costs smaller than the acceptance
threshold are added to the LP. This acceptance threshold is updated after each iteration
depending on the number of columns produced.

This search on a dynamically growing space ensures that

• the effort of finding new columns is small in the beginning, when the dual
variables are not yet in good shape

• the dual variables are updated often in the beginning
• this update is fast since the number of columns in the LP is still small
• we can enforce the output of a feasible integer solution early
• the search is exact later in the run when the dual information is reliable

Whenever a new integral solution is found we output the corresponding dispatch.

4.2. Column Generation. The input of the column generation part consists of an LP
(containing information on the dual prices of the previous optimum LP solution), a
maximal search depth `, a maximal search degree d, the current node, an acceptance
threshold a, and a sorting criterion < on nodes of the search tree.

Each node in the search tree of a unit is defined by an ordered sequence of events.
This sequence uniquely specifies a tour for the unit. For each unit, the root node of the
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Input: node v

Output: A lower bound on the cost of a node below v

for events e not in v do
compute the maximal gain of e below v

end for
set s to the sum of the largest l − l(v) maximal gains
return pre-cost of v minus s

Algorithm 4.3: LOWERBOUND

search tree is initialized with the empty tour. The cost of the root node is the reduced
cost of the go-home tour. If we have visited a node v in the search tree we recursively
traverse the subtrees of at most d children of v. The children of v are constructed by
appending a new event to the event sequence of v. The cost of the child is given by
the reduced cost of the corrensponding feasible tour. The order in which the subtrees
of the at most d children of v are traversed is given by sorting the children in the order
of increasing reduced costs of the new node (greedy), increasing completion time of
the new node (greedy makespan), or increasing primal cost (primal-greedy). (Other
sorting criteria can be activated on demand.)

Whenever the subtree below a node has no chance to contain a node with cost
smaller than the acceptance threshold we skip that branch (see Section 4.3). Whenever
a visited node has cost smaller than the negative acceptance threshold we add it to the
LP (see Algorithm 4.2).

The acceptance threshold is doubled or halved depending on how many columns
were found. Since the column generation procedure is called very often, this con-
trols the number of columns delivered. This has (in our case) certain advantages over
stopping after a fixed number of generated columns (forced early stop [10]):

• the optimal column in the current search space is not missed
• the generated columns might cover the set of events more uniformly than in

forced early stop

4.3. Pruning the Search Tree. The lower bound scheme for the subtree below a
node v in the search tree works as follows: for all events not yet in the sequence
of v, compute the maximal gain of serving e at some point after v as the dual price
of e minus the unavoidable (primal) cost of serving e no earlier then the completion
time of the last event in v. This unavoidable cost is the late cost plus the overtime
cost incurred when e were served next. If v has length l(v) then we call the sum of
the largest l − l(v) maximal gains the total maximal gain below v). The pre-cost of v

minus the total maximal gain below v is a lower bound for the cost of the cheapest
node below v (see Algorithm 4.3). This lower bound estimation is fast and effective
for our type of input data.

4.4. The start heuristic. We considered the alternative of starting the column gen-
eration process from a “good” initial solution constructed heuristically. The heuristic
we used consists of two phases. In the first phase, a dispatch is greedly built using a
best insertion approach. We start with all units having “return-home” tours (i.e., tours
without events) assigned to them. Then we consider all events sorted by increasing
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deadlines, which is the order in which they are given in our data sets. For each event e,
we search for the best unit’s tour—and the position within this tour—where e can be
inserted. If the cost for inserting e at this position is smaller than the cost of assigning
e to the best contractor capable of servicing it, the insertion is done and we continue
with the next event.

Input: Instance of VDP

Output: valid dispatch

{Phase I: construct dispatch greedly by best insertion:}
initialize Ru as “return-home” tour ∀u ∈ U

for i ∈ {1, . . . , |E|} do
determine route R∗

u and position k∗ for which the cost ∆c(R∗

u, k∗) of inserting
ei is minimal

5: if ∆c(R∗

u, k∗) is less than the cost of assigning i to its best contractor then
insert ei in R∗

u at position k∗

end if
end for
{Phase II: improve dispatch by node-exchanges while possible:}

10: while ∃i, j ∈ E with XCHCOST(ei, ej) < 0 do
execute node-exchange between events ei and ej

end while
Algorithm 4.4: STARTHEURISTIC

Input: two events ei, ej

Output: amount of increment in the dispatch cost if a node exchange between
the events ei and ej is executed

if ei and ej are currently assigned two different (unit or contractor) tours then
Let T1 = (u|v, ei1 , . . . , eik , ei, eik+1

, . . . , ein)

and T2 = (u|v, ej1 , . . . , ejl , ej, ejl+1
, . . . , ejm)

be the old tours
5: compute the costs cT∗

1
and cT∗

2
of the new tours

T∗

1 := (u|v, ei1 , . . . , eik , ej, eik+1
, . . . , ein)

T∗

2 := (u|v, ej1 , . . . , ejl , ei, ejl+1
, . . . , ejm)

∆ := cT∗

1
+ cT∗

2
- cT1

- cT2

end if
10: if both ei and ej are currently assigned to the same (unit) tour then

Let T = (u, ek1
, . . . , ekn

) with i = kr and j = ks

be the old tour. Assume w.l.o.g. r < s.
compute the cost of the new tour
T∗ := (u, ek1

, . . . , ekr−1
, eks

, ekr+1
, . . . , eks−1

, ekr
, eks+1

, . . . , ekn
)

15: ∆ := c∗T − cT

end if
return ∆

Algorithm 4.5: XCHCOST
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The second phase improves the dispatch by executing some node-exchange steps.
We define a node-exchange as an interchange between the current positions of two
events ei and ej. We considered hereby three possible cases: both ei and ej might
have been assigned to the same unit’s tour, to different tours, or one of them might
currently be served by a contractor. In all cases, the step consists in replacing ei by
ej in the node sequence that describes the route currently covering ei and viceversa.
Exchanges are taken whenever they lead to improvements of the solution. The heuristic
stops when no more improving steps can be made (see Algorithm 4.4).

To reduce the running-time of the heuristic, we used certain rules for discarding
insertions/node-exchanges that had no chance (or very little chance) of leading to an
improvement in the objective function. They are all based upon one simple idea which
takes advantage of the special structure of the cost function in our problems. For
any event e, it is easy to derive from its soft time window a “hard” deadline θh

e after
which the lateness cost clate

e (θh
e − θd

e) equals or exceeds the cost of assigning e to the
cheapest contractor capable of servicing it. Since this deadline has to be respected in
any optimal solution, all units that can’t reach e before that time are not considered
for insertions/exchanges. In all test datasets, it turned out that this hard deadline was
narrow enough to reduce the number of “reasonable moves” drastically.

The heuristic obtained a solution in less than an half second for ten of the twelve
instances considered. (The other two demanded about 1.3s.) The gap between the
solution value and the LP-lower bound LB (see section 5.2.3) varied between 2.1%
and 5.3% for the instances belonging to the “low” and “medium” load configurations,
and between 7.3% and 19.2% for the “high” and “extreme” load cases. Although
these values are in general significantly better than the first ones found by the column
generation algorithm alone (i.e., without using start heuristic), it turned out in all cases
that this advantage was rapidily consumed during the first 5 seconds. The column
generation process seems thus to be very efficient in finding all good tours constructed
by the heuristic.

4.5. Default Settings. We used the following start values as defaults in ZIBDIP. The
values were not changed during the test runs.

• The initial LP contains all elementary contractor tours plus the tours coming
from a column generation step with degree 1 and unbounded depth where each
event was assigned to its closest unit in advance.

• The initial search depth is set to ` := 3.
• The initial search degree is set to d := 1.
• The initial acceptance threshold is set to a := −1.
• The minimal tour length that is searched for is set to L := |E|/|U| + 3.
• The time bound for solving the reduced IP is set to 10% of the elapsed com-

puting time.
• The initial order < is set to reduced cost sorting, followed by completion time

sorting and primal cost sorting.

4.6. Limitations. The efficiency of ZIBDIP depends on the relation of late costs to
drive costs. Rule of thumb: the larger the late costs are in comparison to the drive costs
the better is the performance of ZIBDIP and vice versa. Also, whenever tours of length
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more than ten events are in an optimal solution, our method significantly degrades in
performance.

Consequently, the algorithm is not suitable for dispatching without effective time
windows. It is also not suitable when the drive costs dominate the late costs.

In the case of the particular dispatching problem of ADAC, the mentioned limita-
tions do not apply.

4.7. Remarks on the Test Implementation. The algorithm was implemented in stan-
dard C++ using the GNU C++ compiler version 2.95.2 [4]. Standard container struc-
tures were taken from the Standard Template Library (vector, list, priority
queue) [9]. For the computation of distances a distance cache was employed.

5. COMPUTATIONAL RESULTS ON REAL-WORLD DATA I: OUR MODEL VERSUS

A GENETIC ALGORITHM APPROACH

In this section, we present computational results and a comparison to an experimen-
tal prototype code AD2 which has been kindly provided by Intergraph Public Safety
(IPS), our industrial partner in addition to the ADAC. The key learning of this sec-
tion is that for the type of data in the real-world ADAC problem the method based on
Integer Programming outperforms a professional code based on primal heuristics and
genetic algorithms.

5.1. Prototype Codes. The first prototype is an experimental code AD2.exe, which
is based on a genetic algorithm combined with a number of heuristics. AD2 was care-
fully produced by our industrial partner in order to make the most out of the genetic
algorithms approach. It was evaluated in four parameter-settings proposed by the pro-
ducer (see Section 5.2.2).

The code ZIBDIP was run with and without the start heuristic ZHEU described in
Section 4.4. Other than that, the same configuration was used on all test instances:
the initial search depth was set to 3, the initial search degree was set to 1. The initial
acceptance threshold was set to 1.

The code AD2 is based on a genetic algorithm approach GA which can be initial-
ized with two different start-heuristics IT and CL. An additional best-insertion type
heuristic HEU may also be used in the solution process. This prototype was evaluated
in four parameter-settings proposed by the producer. The code ZIBDIP was run with
the same configuration on all test instances: the initial search depth was set to 3, the
initial search degree was set to 1. The initial acceptance threshold was set to −1.

5.2. Test Setup. In this section we explain the setup which was used for the tests. The
evaluation followed the scientific guidelines proposed in [7, 8]. Section 5.2.1 describes
the test data, Section 5.2.2 lists the hardware and software setup and Section 5.2.3
specifies the evaluation guidelines given by the ADAC.

5.2.1. Test Data. The test data was provided by ADAC/IPS from the database archive
of the currently running PANDA-system. For each of four “system load situations”,
low, medium, high and extreme, a number of data sets were selected. The test sets vary
in the number of open events (# events) which must be serviced and the number of
ADAC-units (# units). The three extreme load data sets were obtained by duplicating
events in smaller data sets. All other data sets consisted purely of snapshots of the
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Data File System Load # events # units
1403_low low 106 84
1903_low low 44 73
2702_low low 93 74
0904_medium medium 104 96
1504_medium medium 125 93
1602_medium medium 119 94
1704_high high 156 83
1903_high high 196 108
2702_high high 215 98
540e_99u productive data,

simulated extreme load
540 99

770e_200u simulated extreme load 770 200
Xtreme simulated extreme load 775 211

TABLE 1. Overview over the data sets used in the evaluation.

database. Table 1 lists the details of the various test instances. In all cases a single
external contractor (“generic contractor”) of unlimited capacity was available as an
alternative serving-unit for the requests.

The cost factors are in the following relations (absolut values are not disclosed here):
A delay of one hour is as expensive as 20 hours of driving and approximately as ex-
pensive as three contractor services. Overtime costs make for one third of the delay
penalty. These data are a result of a careful internal modeling process in cooperation
with ADAC and IPS.

5.2.2. Hardware and Software Setup. The code AD2 was used on a 933 Mhz Pen-
tium III machine equipped with 256 MB of RAM running the Windows 2000-server
operating system (version 5.00.2195, service-pack 1 installed). A single user was
logged in for the total evaluation period. As suggested by the producer, the proto-
type was run with four different settings: iterated combined with genetic algorithm
(IT+GA), close combined with genetic algorithm (CL+GA), iterated combined with
heuristics and genetic algorithm (IT+HEU+GA) and close combined with heuristics
and genetic algorithm (CL+HEU+GA).

The ZIBDIP-prototype was used on a 800 Mhz Pentium III machine equipped with
256 MB of RAM running Linux as operating system (kernel version 2.2.16). As in the
case of AD2, a single user was logged in during the test. The prototype ZIBDIP was
compiled using the GNU C++-compiler gcc, version 2.95.2 19991024 (release) [4].
The compiler flags were -O6 -mpentiumpro (-O6: optimize, -mpentiumpro:
produce code for Pentium II and later processors). ZIBDIP used the linear program-
ming (LP) and integer linear programming (ILP) solver CPLEX version 7.0 [6]).

The ZIB-prototype was run in two combinations, the core-algorithm ZIBDIP based
solely on dynamic column generation and a combination ZIBDIP+ZHEU of this ap-
proach together with the start heuristic from Section 4.4.

Virtual memory effects were not an issue during the test series. All codes ran
in RAM without swapping.
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FIGURE 2. Results for low system load.

5.2.3. Evaluation Guidelines. Both prototypes were used with the described param-
eter settings on all test instances. The solutions computed by the prototypes after 5,
15, 30, 60 and 120 seconds were evaluated. For the largest test instances 540e_99u,
770e_200u and Xtremewe also recorded the solution quality delivered after 600 sec-
onds. The measure used to judge the quality of the solutions we used the relative error
in percent with respect to the LP-lower bound LB for the optimal solution.

The LP-lower-bound LB was used instead of the “real” (integral) optimal solution,
since computing a proof of the optimality of the currently-at-hand integral solution
turned out to be time consuming. Moreover, for all test instances the optimal (integral)
solution was at most 0.494% above the lower bound and for most instances actually co-
incided with the lower bound; hence the relative error with respect to the lower bound
LB yields essentially the same results as the comparison with the optimal (integral)
solution.

5.3. Results. This section is dedicated to the presentation of the computational results
of the two prototypes on the 12 test instances described in Table 1.

5.3.1. Low Load. Three test instances representing “low load” situations were fed into
the two prototypes: 1403_low, 1903_low and 2702_low. The results are shown
in Figure 2. The solution quality of the start heuristic ZHEU which terminated in less
than 0.01 seconds for each of the instances is shown at the 5 second mark.

ZIBDIP found provably optimal solutions for all but the first instance (1403_low)
within the first 5 seconds of computing (in fact, all these solutions were determined
within less than five seconds of computing time). For 1403_low a solution with
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FIGURE 3. Results for medium system load.

0.22% error was output within the 5 second time limit (after 0.45 seconds). The use of
the start heuristic (ZIBDIP+ZHEU) appeared to be unnecessary in all cases.

The best parameter setting for AD2 was CL+GA. Within the critical 5 second
time limit solutions with relative error of at most 5% could be determined. IT+GA
performed similarly. The combinations involving the heuristics, IT+HEU+GA and
IT+CL+GA, initially found solutions with relative error of about 3–9% which were
not improved substantially until the 60 second time limit.

5.3.2. Medium Load. The test data for “medium load” consisted of the three instances
0904_medium, 1504_medium and 1602_medium. The results obtained are shown
in Figure 3.

All algorithms behaved similarly to the “low load” situation. ZIBDIP found prov-
ably optimal solutions for all instances within the first 5 seconds of computing (op-
timality certificates were obtained after 0.48 s, 0.70 s and 0.43 s). The combination
involving the start heuristic (ZIBDIP+ZHEU) performed the same. The start heuris-
tic ZHEU consumed less than 0.02 seconds of computing time on each of the three
instances.

As in the “low load” cases the best parameter setting for AD2 was CL+GA which
delivered solutions with maximum error of 5% within the first 5 seconds of comput-
ing. IT+GA was slightly worse and failed to beat the 5%-error barrier within the first
5 seconds twice, albeit only by a marginal amount.
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FIGURE 4. Results for high system load.

5.3.3. High Load. To determine the behavior of the prototypes in “high load” situa-
tions the three data sets 1704_high, 1903_high and 2702_high were given to
the prototype codes. Figure 4 displays the results.

ZIBDIP found solutions with maximum error 0.7% within the first 5 seconds of
computing time, independent from whether the start heuristic was used or not. The
start heuristic ZHEU needed at most 0.05 seconds to terminate for instances 1704_high
and 1903_high, and 0.13 seconds for 2702_high.

Instance 2702_high turned out to be the most difficult to handle for the proto-
types. ZIBDIP provided a 0.70% error after 4 seconds.

AD2 in its best setting for this data set (CL+HEU+GA) could not get below an
error of 20%.

In general, AD2 showed some degradation in performance on the data sets. For
none of the instances a solution with error better than 15% could be computed within
the first 5 seconds. To achieve an error of less than 10% it was necessary to run the
prototype for 30–60 seconds.

5.3.4. Extreme Load. Three test instances representing “extreme load” situations were
used to test the two prototypes: 540e_99u, 770e_200u and Xtreme. Due to the
size of the instances in addition to the previously listed time bounds the output of the
prototype after 600 seconds of computing were logged. The computational results are
shown in Figure 5.

The trends observed for the “high load” instances continued for the “extreme load”
data. The ZIB-prototype ZIBDIP degraded slightly in performance on the “extreme
load” data sets compared to the smaller examples from the previous sections. Instance
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FIGURE 5. Results for extreme system load.

540e_99u was easiest to handle by ZIBDIP and a solution with 1.0% error was
available after 5 seconds. This solution could be improved to a 0.28% error after two
minutes and to 0.21% error after the maximum of 600 seconds. For 770e_200u
ZIBDIP started with 10.1% error after 5 seconds (which is still roughly a factor of 5

better than the solution found by the best AD2 setting and roughly 40 times as small
as the error of CL+GA which was the best AD2 setting for smaller instances). The
last instance, Xtreme, appeared to be the most difficult for ZIBDIP to handle. After
5 seconds the error was 33% (compared to 65% for the best setting in AD2), after
15 seconds an error of only 5.5% remained. Still, even in this case the optimality gap
could be decreased to 0.53% before the 600 second time bound. For instance Xtreme
the use of the start heuristic (ZIBDIP+ZHEU) was advantageous. In combination with
the heuristic the benchmark error after 5 seconds of computing time was only 13%
compared to 33% without the heuristic. However, for the other “extreme load” data
sets the start heuristic did not help to improve the results. The start heuristic delivered
its solution on each instance in less than 1.3 seconds.

AD2 took a serious dip in performance. After 5 seconds only in one case (setting
IT+HEU+GA applied to 540e_99u) a solution with error less than 20% could be
determined. In all other cases the error was larger than 50%. Even after 600 seconds of
computing the best solutions could not beat the 5% error barrier. The setting CL+GA
more or less broke down completely. For none of the data sets solutions with less
than 400% error could be found within the first 5 seconds of computing time, after
600 seconds still about 100% error remained in the best case.
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FIGURE 6. Results for 2702_high

6. COMPUTATIONAL RESULTS ON REAL-WORLD DATA II: EFFECT OF DYNAMIC

PRICING CONTROL

While in the last section we have shown that the model and the algorithmic approach
are more suitable for our problem than an approach based on primal heuristics and
genetic algorithms, we add some more information on the performance of algorithmic
variants of ZIBDIP.

In particular, in order to show the effectiveness of the ZIBDIP algorithm, we com-
pared (on the basis of one high and one extreme load data set from the previous section)
the following setups:

• an unmodified column generation procedure, where the pricing step is done
on the whole search space and all columns with negative reduced costs are
included in the new reduced LP (all-off)

• forced early stop in the pricing step: whenever one column with negative re-
duced costs is found then the pricing step is interrupted, and the new column
is added to the reduced LP (this method was successfully applied by [10] on
modified instances of some Solomon problems (earlystop),
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FIGURE 7. Results for Xtreme

• the default settings of ZIBDIP (default).

We have plotted over time the development of the optimal solutions of the reduced
LPs (RLP) and the corresponding IPs (RIP) as well as the accumulated number of
columns.

The results in Figures 6 and 7 show that a vanilla column generation algorithm is
not capable to meet the real time requirements: far too many generated columns lead
to an unacceptable solution time both in pricing and in LP solving. This, by the way,
does not change if the column generation step is interrupted after the optimal column
was found. It can be seen that forced early stop is for our special kind of problem
not the proper approach to deal with this diffculty: too many iterations are wasted by
adding columns with inferior quality, and so forced early stop is clearly outperformed
by ZIBDIP’s default settings.

Observe in Figure 6 that a successful optimality check for the default setting of
ZIBDIP made the program terminate already within 15 seconds whereas the all-off and
the earlystop settings need a great deal longer to nail down the optimal LP solution.

We have run this test on all of our data with the same results, except that for the low
load instances the differences were not equally substancial.
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FIGURE 8. Results for 2702_high

For a more detailed look at the effects of specific algorithmic features of ZIBDIP,
we compared the performances of

• forced early stop (earlystop),
• ZIBDIP in default settings (default),
• ZIBDIP with start heuristics (default_heu2),
• ZIBDIP the acceptance threshold is set to zero throughout, thus all tours with

negative reduced costs found in the restricted searchspace are accepted (no-
accept-threshold),

• ZIBDIP without the variation of sorting criteria in the pricing step: tours are
always extended in the order of increasing reduced costs rather than according
to alternating sorting criteria (red-costs-only).

We concentrate on the early phase that is most important for the realtime-application
(5 seconds for high load instances, 15 seconds for extreme load instances). Figures 8
through 10 show the performance indicated by the objective values and the number of
generated columns.

We add one additional set of input data prob700 with 700 events and 100 units.
It was created randomly and has release times in the future. It serves as a stability
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FIGURE 9. Results for Xtreme

checker for our methods since we expect that its uniform structure and relatively small
late penalties allow for longer tours and make it harder for ZIBDIP to find the optimal
tours.

The results in Figures 8 through 10 show that using the starting heuristics ususally
improves the IP solutions of ZIBDIP during the first five seconds. The convergence of
the further column generation procedure is, however, not affected by the start heuris-
tics.

Dropping the dynamic acceptance threshold leads to more columns resulting in a
slightly worse performance in the speed of LP convergence. This behaviour is, how-
ever, by far not as significant as the restriction of the search space: once the search
space is restricted acceptance control of new columns is a fine tuning issue.

The influence of the variation of sorting criteria, while neglectable on the real-world
data, is strong in the random data example. This is plausible because a greedy search
by reduced costs is more promising in the absence of long tours. Since prob700 has
tours of length 9 in its near-optimal solution while for Xtreme there are only tours of
length 4, a pure greedy search is to “narrow-minded” to find the best tours early.
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FIGURE 10. Results for prob700

Anyway: since varying the sorting criterion does not harm in the other test cases it
seems advisable to use it in order to be weaponed against pathologic input data.

7. CONCLUSION

We have presented the specialized column generation algorithm ZIBDIP that solves
a real-world large scale vehicle dispatching problem with soft time windows under re-
altime requirements. The problem arises as a subproblem in an online-dispatching task
that was proposed to us by the German Automobile Association (ADAC). The algo-
rithm clearly outperforms an experimental prototype code based on primal heuristics
and genetic algorithms provided by our industrial partner. Moreover, ZIBDIP is able
to provide a lower bound based on an optimal LP solution in seconds for all real-world
instances provided by ADAC.

It was shown that the concept of Dynamic Pricing Control can significantly speed
up convergence of the column generation process, thereby making a method that has
proven to be effective for large scale offline problems ready for the use in online-
algorithms under realtime requirements. The most important ingredient is the dy-
namically growing search space, whereas the dynamic acceptance threshold and the
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variation of sorting criteria rather help to make the algorithm robust against pathologic
input data.

Another interesting experience is that of-the-shelf MIP solving by CPLEX was good
enough to provide us with near-optimal intergral solutions. Nevertheless, in extreme
load situations the time to repeatedly solve IPs can probably be reduced significantly
by employing clever rounding schemes. Since these are rare cases in practice, this was
not considered necessary by our project partners.

The practical impact of this work is that ZIBDIP is being reimplemented into the
new commercial standard automatic dispatch system distributed by IPS, one of the
main providers of dispatching software, superseding the former code based on primal
meta-heuristics. Moreover: this product will finally be used in ADAC’s help centers.
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