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Abstract. We introduce nonsmooth Schur–Newton methods for the solution

of the nonlinear discrete saddle-point problems arising from discretized vector-

valued Cahn–Hilliard equations with logarithmic and obstacle potentials. The

discrete problems are obtained by semi-implicit discretization in time and a

first order finite element discretization in space. We incorporate the linear con-

straints that enforce solutions to stay on the Gibbs simplex using Lagrangian

multipliers and prove existence of these multipliers under the assumption of a

non-trivial initial condition for the order parameters.

1. Vector-valued Cahn–Hilliard equations

We consider phase separation in isothermal, multi-phase systems on a polygonal
(polyhedral) domain Ω ⊂ R

d, d = 1, 2, 3. The concentrations of the different phases
i = 1, . . . , N at (x, t) ∈ Ω × [0, T0], T0 > 0, are represented by the components
ui(x, t) of the order parameter u = (u1, . . . , uN)T . The order parameter satisfies
the constraints

u(x, t) ∈ G = {v ∈ R
N | vi ≥ 0,

∑N

i=1 vi = 1} ∀(x, t) ∈ Ω× [0, T0],

because concentrations are non-negative and add up to unity. The closed convex
set G ⊂ R

N is often called Gibbs simplex. We assume that the Ginzburg–Landau
total free energy of our system takes the form

(1.1) E(u) =
ˆ

Ω

ε

2

N∑

i=1

|∇ui|2 +
1

ε
Ψ(u) dx

with fixed interface parameter ε > 0. While the quadratic interfacial energy is
penalizing steep gradients the free energy Ψ gives rise to phase separation. We
concentrate on a multi-phase version of the well-known logarithmic free energy [3, 4].
More precisely, Ψ = Ψθ is given by

(1.2) Ψθ(u) = Φθ(u) + Ψ0(u), u ∈ G,

with the convex function

Φθ(u) =







N∑

i=1

θui ln(ui) + χ[0,∞)(ui), for θ > 0,

N∑

i=1

χ[0,∞)(ui), for θ = 0

u ∈ G,(1.3)

1
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and the quadratic term

Ψ0(u) = θc
N
2 u · Cu = θc

N
2

N∑

i=1

ui(Cu)i, (Cu)i =

N∑

j=1

cijuj

induced by a symmetric interaction matrix C = (cij)
N
i,j=1 (cf. De Fontaine [9]).

Here, θ, θc are denoting absolute and critical temperature, respectively. Note that
we also incorporate the obstacle potential Ψ0 as limiting case for θ = 0 using the
indicator functional χ[0,∞) of [0,∞) = R

+
0 . We also use this for θ > 0 to naturally

extend Φθ and Ψθ to the whole real line. In principle we could also use χ[0,r] for
any r ≥ 1 instead since ui ≤ 1 is ensured by the sum constraint.

For θ < θc, we assume that Ψθ has exactly N distinct local minima on G cor-
responding to almost pure phases i = 1, . . . , N . For example, this is true for the
choice

(1.4) C = (1− δij)
N
i,j=1 (Kronecker-δ)

which means that the interaction of all different phases is equal and no self-interac-
tion occurs. For this setting, we obtain the classical obstacle potential (cf. Blowey
& Barrett [3])

Ψ0(u) = θc
N
2

N∑

i=1

ui(1− ui), u ∈ G.

For N = 2 the well-known logarithmic free energy

Ψθ(ũ) =
1
2θ[(1 + ũ) ln(1+ũ

2 ) + (1− ũ) ln(1−ũ
2 )] + 1

2θc(1 − ũ2)

of the scalar order parameter ũ := u2 − u1 is recovered in this way. In the shallow
quench, i.e. for θ ≈ θc, polynomial free energies generalizing the quartic potential
(1− ũ2)2 provide good approximations of the logarithmic free energy Ψθ (cf. Stein-
bach et al. [21]). As polynomials are defined everywhere, the non-differentiable
constraints ui ≥ 0 are usually skipped in this case. On the other hand, in the deep
quench limit θ → 0 we obviously have Ψθ(u) → Ψ0(u) uniformly on G.

The vector-valued Cahn–Hilliard equation

ut = L∆w

w = −ε2∆u + PΨ′
θ(u)

(1.5)

is thermodynamically consistent in the sense that the total free energy E de-
fined in (1.1) is monotonically decreasing in course of the evolution. The matrix
L ∈ R

N×N is symmetric, positive semi-definite and has the one-dimensional kernel
R1 := R(1, . . . , 1)T ⊂ R

N . The orthogonal projection Pv = v− 1
N
(1 ·v)1 maps RN

onto the linear subspace

H = {v ∈ R
N | ∑N

i=1 vi = 0}.
It accounts for the fact that admissible variations of u(x, t) ∈ G must be in H .

For given initial condition u0(x) with
´

Ω u0(x) < 1|Ω| and ∑N

i=1 u
0
i ≡ 1 and

Neumann boundary conditions for u and w, the Cahn–Hilliard equation (1.5) is
conservative in the sense that

ˆ

Ω

u(x, t) dx =

ˆ

Ω

u0(x) dx,

N∑

i=1

ui(x, t) = 1,

N∑

i=1

wi(x, t) = 0
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holds for all t > 0.
In the deep quench limit θ = 0 the second equation in (1.5) becomes the varia-

tional inclusion

(1.6) w ∈ −ε2∆u+ PΨ′
0(u) + ∂χG(u).

Here ∂χG denotes the subdifferential of the indicator functional χG of the Gibbs
simplex G.

Concerning existence, uniqueness and sharp interface limits of (1.5), we refer to
Elliott & Luckhaus [8], Blowey & Barrett [3] and Bronsard et al. [5].

2. Discretization

2.1. Finite element spaces and notation. The following notation for finite ele-
ments is essentially copied from [15]. The problems in each time step are discretized
in space by piecewise linear conforming finite elements

S(T ) = {v ∈ C(Ω) | v|e is affine ∀e ∈ T }
on a simplicial partition T of Ω. We assume that T = Tj for an underlying grid
hierarchy T0, . . . , Tj that is obtained by successive refinement of a conforming in-
tentionally coarse partition T0. Note that, also T0 is conforming, we allow T to
have so-called “hanging nodes” on edge mid points. The conforming nodal basis
of S(T ) is denoted by λp, p ∈ N (T ), where N (T ) is the set of non-hanging nodes
in T . For a precise definition of hanging nodes and the conforming nodal basis we
refer to [11]. The conforming space of vector-valued linear finite element functions
with N components is denoted by

SN (T ) = {v ∈ C(Ω)N | v|e is affine ∀e ∈ T }.
A basis of this N |N (T )|-dimensional space is given by

BN(T ) := {eiλp | p ∈ N (T ), 1 ≤ i ≤ N},
where ei ∈ R

N with (ei)j = δij denotes the i-th Euclidean basis vector. Besides
this we will need the space

Hc(T ) = {v ∈ SN (T ) | v(p) · 1 = c ∀p ∈ N (T )}
for c = 0 and c = 1 and the convex set

K(T ) = {v ∈ SN (T ) | v(p) ≥ 0 ∀p ∈ N (T )}.
Note that this implies

G(T ) := H1(T ) ∩ K(T ) = {v ∈ SN (T ) | v(p) ∈ G ∀p ∈ N (T )}.
The lumped L2-product in SN (T ) is defined by

(u, v)T =

ˆ

Ω

IT (u · v)(x)dx

where the dot product is taken point wise and IT : C(Ω) → S(T ) is the linear
interpolation operator given by

IT (v) =
∑

p∈N (T )

v(p)λp.

The approximate nonsmooth nonlinear functional φT ,

φT
θ (v) = (Φθ(v),1)

T
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is obtained by replacing exact integration by a quadrature rule based the nodal
interpolation operator in S(T ).

2.2. Semi-implicit time discretization. To simplify the notation, we will not
use indices for different time steps but denote solutions from the current time step
by u,w and those from the previous one by uold, wold. Furthermore T denotes the
grid in the current time step that might in general differ from grid in the previous
step.

For the logarithmic potential with θ > 0 and a fixed spatial grid Blowey et al. [4]
analyzed a fully discrete version using a fully implicit time discretization (FI).

(FI) Find u ∈ G(T ), w ∈ SN (T ) such that

ε2 (∇u,∇v) + (PΨ′
θ(u), v)

T
= (w, v)

T ∀v ∈ SN (T ),

(u, v)
T
+ τ (L∇w,∇v) =

(
uold, v

)T ∀v ∈ SN (T ).

Existence and uniqueness is shown by Blowey et al. [4, Theorem 2.4] under the
constraint

τ < 4ε2/(Nθ2cλ
2
C‖L‖)

where λC is the largest positive eigenvalue of C.
In order to avoid such severe stability restrictions on the time step, the expanding

linear part of Ψ′
θ is often discretized explicitly (cf. [4] and others). This approach

leads to an unconditionally stable semi-implicit scheme of the form:

(SI) Find u ∈ G(T ), w ∈ SN (T ) such that

ε2 (∇u,∇v) + (PΦ′
θ(u), v)

T

+
(
Ψ′

0(u
old) + (P − I)Ψ′

0(u), v
)T

= (w, v)
T ∀v ∈ SN (T ),

(u, v)
T
+ τ (L∇w,∇v) =

(
uold, v

)T ∀v ∈ SN (T ).

For convergence results and error estimates of the fully implicit version (FI), we
refer to Blowey et al. [4] and Barrett and Blowey [2] who also treat the obstacle
potential [3] and concentration-dependent mobilities [1].

While it is easy to see that (FI) satisfies w ∈ H0(T ) this is no longer true for
(SI) where we get

1 · w = 1 · (Ψ′
0(u

old)−Ψ′
0(u)).

Both formulations do not allow for a direct generalization to the deep quench
limit θ = 0 due to the use of the projected derivative PΦ′

θ(·). In the following we
will derive semi-implicit discretizations that also incorporate θ = 0. Corresponding
fully implicit discretizations can be obtained analogously.

To this end we test the first equation in (SI) with v ∈ H0 only to obtain

ε2 (∇u,∇v) + (Φ′
θ(u), v)

T
+
(
Ψ′

0(u
old), v

)T
= (Pw, v)

T ∀v ∈ H0(T ).

It is easy to see that this equation complemented by the second one in (SI) already
guarantees uniqueness of u. Since only Pw but not (I−P )w is determined uniquely
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by these two equations we introduce w0 = Pw ∈ H0(T ) as new variable. Further-
more it is sufficient to test the second equation in (SI) by v ∈ H0(T ) only. The
resulting system can also be written using a variational inequality leading to

ε2 (∇u,∇(v − u)) + φT
θ (v) − φT

θ (u)

− (w0, v − u)T ≥ −
(
Ψ′

0(u
old), v − u

)T ∀v ∈ H1(T ),

(u, v)T + τ (L∇w0,∇v) =
(
uold, v

)T ∀v ∈ H0(T ).

This formulation has the advantage that it does naturally include the deep quench
limit θ = 0. For θ > 0 it is equivalent to (SI) in the sense that for any solution
(u,w) of (SI) a solution of this system is given by (u, Pw).

Since solutions vary strongly in space we are interested in different adaptive
spatial discretizations in each time step. Because the usage of lumped L2 products
would either destroy symmetry or mass conservation if subsequent spatial grids
differ we will not use lumping besides the approximation of the convex nonlinearity.
For a detailed discussion of the selection of discrete L2 products with adaptive grids
we refer to [11].

(SI2) Find u ∈ H1(T ), w0 ∈ H0(T ) such that

ε2 (∇u,∇(v − u)) + φT
θ (v)− φT

θ (u)

− (w0, v − u) ≥ −
(
Ψ′

0(u
old), v − u

)
∀v ∈ H1(T ),

− (u, v)− τ (L∇w0,∇v) = −
(
uold, v

)
∀v ∈ H0(T ).

Here we have replaced the nodal convex constraints u ∈ G(T ) by the nodal linear
constraints u ∈ H1(T ). Note that this does not change solutions because u ∈ K(T )
is already enforced by the characteristic functional in φT

θ .
If we want to apply a nonlinear saddle point solver to (SI2) we would still have

to deal with the nodal linear constraints directly. In the following we introduce
Lagrangian multipliers for those constraints in order to avoid this.

First we note that the local linear constraints u(p) · 1 can be expressed equiva-
lently in variational form by

(u,1v) = (u · 1, v) = (1, v) ∀v ∈ S(T ).

Introducing the Lagrangian multiplier η ∈ S(T ) for this constraint we end up with:

(SI3) Find u ∈ SN (T ), w0 ∈ H0(T ), η ∈ S(T ) such that

ε2 (∇u,∇(v − u)) + φT
θ (v) − φT

θ (u)

− (w0 + 1η, v − u) ≥ −
(
Ψ′

0(u
old), v − u

)
∀v ∈ SN (T ),

− (u, v)− τ (L∇w0,∇v) = −
(
uold, v

)
∀v ∈ H0(T )

− (u,1v) = −
(
uold,1v

)
∀v ∈ S(T ).

Setting w̃ = w0 + 1η and adding the last two equations and using L1 = 0 this
turns out to be the same as:
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(SI4) Find u ∈ SN (T ), w̃ ∈ SN (T ) such that

ε2 (∇u,∇(v − u)) + φT
θ (v) − φT

θ (u)

− (w̃, v − u) ≥ −
(
Ψ′

0(u
old), v − u

)
∀v ∈ SN (T ),

− (u, v)− τ (L∇w̃,∇v) = −
(
uold, v

)
∀v ∈ SN (T ).

It is straight forward to prove that (SI2) and (SI4) are equivalent in the sense
that if (u1, w1) and (u2, w2) are solutions of (SI2) and (SI4), respectively, then we
have u1 = u2 and Pw1 = Pw2. It is easy to see that (SI4) is a saddle point problem
where the primal operator ε1 (∇·,∇·) is only coercive on the space that satisfies the
second variational equation. However, we can avoid this using the technique used
in [10, 11, 14] for the two component case. As in the continuous case we observe
the mass conservation

ˆ

Ω

ui(x) dx =

ˆ

Ω

uold
i (x) dx.

Hence we can add the terms

ε2
ˆ

Ω

u ·
ˆ

Ω

(v − u) = ε2
ˆ

Ω

uold ·
ˆ

Ω

(v − u)

on both sides of the variational inequality without changing the solution. Adding
this bilinear integral operator leading to:

(SI5) Find u ∈ SN (T ), w̃ ∈ SN (T ) such that

ε2 (∇u,∇(v − u))+ε2
ˆ

Ω

u ·
ˆ

Ω

(v − u) + φT
θ (v)− φT

θ (u)

− (w̃, v − u) ≥ ε2
ˆ

Ω

uold ·
ˆ

Ω

(v − u)−
(
Ψ′

0(u
old), v − u

)
∀v ∈ SN (T ),

− (u, v)− τ (L∇w̃,∇v) = −
(
uold, v

)
∀v ∈ SN (T ).

Note that this reformulation is equivalent to adding the term

ε2

2

∣
∣
∣
∣

ˆ

Ω

(u− uold)

∣
∣
∣
∣

2

to the Lagrangian functional associated with (SI4).

Theorem 2.1. Assume that 0 <
´

Ω uold
i < |Ω| holds true for all 1 ≤ i ≤ N . Then

there exists a solution (u, w̃) of problem (SI5).

Proof. First we note that (u, w̃) is a solution of (SI5) iff it is a saddle point of the
Lagrangian functional

L(v, z) := J (v) + (uold − v, z)− τ

2
(L∇z,∇z) ,

J (v) :=
ε2

2
(∇v,∇v) +

ε2

2

∣
∣
∣
∣

ˆ

Ω

(v − uold)

∣
∣
∣
∣

2

+ φT
θ (v) +

(
Ψ′

0(u
old), v

)

defined on the set

dom(J )× SN (T ) = {v ∈ SN (T ) | v ≥ 0} × SN (T ).

For such saddle point problems Proposition 2.4 in [7] provides existence if

(1) L is finite-valued,
(2) L(·, z) is convex, lower semi-continuous,
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(3) L(v, ·) is concave, upper semi-continuous,
(4) there is a z0 ∈ SN (T ) such that L(·, z0) is coercive,
(5) the function − infv∈dom(J ) L(v, ·) is coercive.

While (1), (2), (3) are obvious, (4) follows from the Poincaré inequality (see [11]).
To show (5) let z ∈ SN (T ) be arbitrary and define v(1), v(2) ∈ SN (T ) by

v
(1)
i =

1 + sgn(z
(c)
i )

2
= const, v(2)(p) =

(

1 + sgn[1 · z(p)]
)

ρ1

where ρ > 0 is arbitrary by now. Then 0 ≤ v = v(1) + v(2) ≤ 2 and thus

L(v, z) ≤ C1 + (uold − v, z)− C2(∇Pz,∇Pz).

In order to show coercivity we decompose z according to

z = z − |Ω|−1

ˆ

Ω

z

︸ ︷︷ ︸

z(0)

+ |Ω|−1

ˆ

Ω

z

︸ ︷︷ ︸

z(c)

.

Then we have for
(
uold − v, z

)
=
(

uold, P z(0)
)

+
(

uold, (I − P )z(0)
)

+
(

uold − v(1), z(c)
)

−
(

v(2), z
)

=
(

uold, P z(0)
)

−
(

ρ1, z(0)
)

+
(

uold − v(1), z(c)
)

−
(

v(2), z
)

=
(

uold, P z(0)
)

+
(

uold − ρ1− v(1), z(c)
)

+
(

ρ1− v(2), z
)

.

Using the Poincaré inequality the first term can be estimated by
(

uold, P z(0)
)

≤ ‖uold‖0‖Pz(0)‖0 ≤ C3

√
(
∇Pz(0),∇Pz(0)

)
= C3

√

(∇Pz,∇Pz).

Before estimating the second term we fix

ρ =
1

2|Ω| min
i

ˆ

Ω

uold
i > 0

and set µi = |Ω|−1
´

Ω(u
old
i − ρ). Then 0 < µi < 1, the equivalence of | · |1 and | · |

in R
N , and the fact that P is a projection imply

(

uold − ρ1− v, z(c)
)

=

N∑

i=1

(µi − vi)

ˆ

Ω

zi = −
N∑

i=1

|µi − vi|
∣
∣
∣
∣

ˆ

Ω

zi

∣
∣
∣
∣

≤ −C4

∣
∣
∣
∣

ˆ

Ω

z

∣
∣
∣
∣
1

≤ −C5

∣
∣
∣
∣

ˆ

Ω

z

∣
∣
∣
∣
2

≤ −C5

∣
∣
∣
∣

ˆ

Ω

Pz

∣
∣
∣
∣
2

.

To estimate the third term we note that

(ρ1− v(2)(p)) · z(p) = −ρ sgn[1 · z(p)]1 · (I − P )z(p) = −ρ|1 · z(p)|.
Hence we get

(

ρ1− v(2), z
)

= −ρ

ˆ

Ω

|1 · z| = −ρ
√
N

ˆ

Ω

|(I − P )z|.

Finally we get

L(v, z) ≤ C6 − C5

∣
∣
∣
∣

ˆ

Ω

Pz

∣
∣
∣
∣
− C7(∇Pz,∇Pz)− C8

ˆ

Ω

|(I − P )z|

Hence the infimum over all v must also be bounded uniformly in ‖z‖. �
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Remark 2.1. Due to the mass conservation for each component of u the assuption
in Theorem 2.1 does only means that the initial configuration u0 does neither consist
of one phase only nor does a phase completely vanish. Hence we only exclude trivial
initial conditions.

Theorem 2.2. Under the assumptions of Theorem 2.1 the order parameter u and
∇Pw̃ of the solution to problem (SI5) are unique.

Proof. Let u1, w̃1 and u2, w̃2 be two solutions of (SI5). Testing the variational
inequality for u1 with u2 and vice versa and adding both inequalities we get

ε2
(
∇(u1 − u2),∇(u1 − u2)

)
+ ε2

ˆ

Ω

(u1 − u2) ·
ˆ

Ω

(u1 − u2) ≤
(
w̃1 − w̃2, u1 − u2

)
.

Conversely testing the variational equation for both solutions with w1 − w2 and
adding them gives

(
w̃1 − w̃2, u1 − u2

)
= −τ

(
L∇(w̃1 − w̃2),∇(w̃1 − w̃2)

)
.

Insertin this in the inequality yields the assertion. �

For uniqeness of w̃ we need an extra assumptions on the solution.

Theorem 2.3. Additionally to the assumptions of Theorem 2.2 assume that there
is a basis

B ⊂ {ηi,j = ei − ej ∈ R
N | 1 ≤ i, j ≤ N, i 6= j}

of H = {x ∈ R
N | 1 · x = 0} such that for each ηi,j ∈ B there is a vertex p ∈ N (T )

with ui(p), uj(p) > 0. Then the solution (u, w̃) of (SI5) is unique.

Proof. For simplicity we denote the primal bilinear form in the variational inequal-
ity by a and the right hand side by f .

Let w̃1, w̃2 to solutions. First we show Pw̃1 = Pw̃2. By Theorem 2.2 we already
know ∇P (w̃1 − w̃2) = 0. Hence P (w̃1 − w̃2) = c for a fixed constant vector c ∈ H .
Now let ηi,j ∈ B and p ∈ N (T ) such that ui(p), uj(p) > 0. Then v± = u±δηi,jλp ≥
0 holds true for δ > 0 small enough. Testing the variational inequality for w̃1 with
v+ and for w̃2 with v−, adding the results, and deviding by δ yields

φT
θ (u + δηi,jλp)− φT

θ (u)

δ
− φT

θ (u)− φT
θ (u− δηi,jλp)

δ
−
(
w̃1 − w̃2, ηi,jλp

)
≥ 0.

Due to ui(p), uj(p) > 0 the function r 7→ φT
θ (u+ δηi,jrp) is differentiable. Thus we

can take the limit δ → 0 to get

−
(
w̃1 − w̃2, ηi,jλp

)
≥ 0.

Exchanging the role of w̃1 and w̃2 we get.

0 =
(
w̃1 − w̃2, ηi,jλp

)
=
(
P (w̃1 − w̃2), ηi,jλp

)
= c · ηi,j

ˆ

Ω

λp = c · ηi,j

Since this is true for all basis vectors ηi,j of H we have c = 0 and thus Pw̃1 = Pw̃2.
Now w̃1 − w̃2 must satisfy w̃1 − w̃2 = (I − P )(w̃1 − w̃2) = 1 · w̄ for some scalar

function w̄ ∈ SN (T ). To show w̄ = 0 let p ∈ N (T ) and select 1 ≤ i ≤ N such that
ui(p) > 0. Then v± = u ± δeiλp ∈ SN (T ) satisfies v± ≥ 0 for δ > 0 small enough.
Proceeding as above we get

0 =
(
w̃1 − w̃2, eiλp

)
=
(
1 · w̄, eiλp

)
= (w̄, λp) .

Since we can do this for all p ∈ N (T ) we have w̄ = 0. �
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Remark 2.2. The extra assumption on u in Theorem 2.3 does essentially mean
that for each phase has an interface to another phase.

2.3. Algebraic formulation. Now we rewrite the discrete problems (SI4) and
(SI5) in algebraic form to simplify the presentation of the nonlinear algebraic in
the next section. To this end we assume an enumeration

N (T ) = {p1, . . . , pm}
with m := |N (T )| and define the bijective index map π by

π : {1, . . . , N} × N (T ) → {1, . . . , n}, π(i, pk) = i+N(k − 1)

where n := mN . Then the basis of S(T )N takes the form BN(T ) = {λ1 . . . λn}
with λπ(i,p) = eiλp. Using these indices we define the matrices Ã, B, C ∈ R

n,n and

the vectors f̃ , g ∈ R
n by

Ãi,j := ε2
(
∇λj ,∇λi

)
, f̃i := −

(
Ψ′

0(u
old), λi

)
,

Bi,j := −
(
λj , λi

)
, gi := −

(
uold, λi

)
,

Ci,j := τ
(
L∇λj ,∇λi

)
,

for all i, j = 1, . . . , n. Furthermore we define the algebraic representation ϕ : Rn →
R ∪ {∞} of the nonlinearity φθ by

ϕ(V ) = φθ

(
n∑

i=1

Viλ
i

)

=
n∑

i=1

ϕi(Vi), ϕi(ξ) :=
(
λi,1

)T
Φθ(ξ).

Then (SI4) takes the form

ÃU · (V − U∗) + ϕ(U∗)− ϕ(V ) +BW · (V − U∗) ≥ f̃ · (V − U∗), ∀V ∈ R
n,

BU∗ − CW ∗ = g

where U∗,W ∗ are the coefficient vectors of u,w, respectively. If we also write the
variational inequality in operator form using the subdifferential of ϕ we get the
following algebraic problem:

(SP4) Find U∗,W ∗ ∈ R
n such that
(

Ã+ ∂ϕ BT

B −C

)(
U∗

W ∗

)

∋
(

f̃
g

)

.

Analogously to (SI4) the matrix Ã is only positive semi-definite. In order to
write (SI5) algebraically we also define the matrix M ∈ R

N,n by

Mi,j = ε

(
ˆ

Ω

λj

)

i

.

Then we have

MV = ε

ˆ

Ω

n∑

i=1

Viλ
i, MTMU · V = ε2

ˆ

Ω

n∑

i=1

Uiλ
i ·
ˆ

Ω

n∑

i=1

Viλ
i.

Hence we can represent the primal bilinear form and the right hand side in (SI5)
by the matrix and the vector

A := Ã+MTM, f := f̃ +MT (ε

ˆ

Ω

uold)

leading to the algebraic problem:
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(SP5) Find U∗,W ∗ ∈ R
n such that
(
A+ ∂ϕ BT

B −C

)(
U∗

W ∗

)

∋
(
f
g

)

.

3. Nonsmooth Schur–Newton methods

In this section we consider the efficient algebraic solution of the nonsmooth
nonlinear saddle point problem (SP5).

For saddle point problems resulting from time and space discretization of a bi-
nary Cahn–Hiliard equation with obstacle potential the Schur nonsmooth Newton
method was introduced in [14]. Numerical results show that the method behaves
mesh independent and outperforms former approaches. In [17, 12] the algorithm
was extended to more general nonsmooth nonlinearities and applied to a binary
Cahn–Hilliard equation with logarithmic potential.

In the following we will present the method and discuss how its application to
multi-component Cahn–Hilliard equations with obstacle and logarithmic potential.

3.1. Nonlinear Schur complement and unconstrained minimization. The
starting point for the development of the Schur nonsmooth Newton method is a
dual unconstrained minimization problem.

First we note that (SP5) is indeed a saddle point problem whose solutions satisfy

L(U∗, µ) ≤ L(U∗,W ∗) ≤ L(V,W ∗) ∀µ, V ∈ R
n

for the associated Lagrangian functional given by

L(U,W ) =
1

2
AU · U − f · U + ϕ(U) + (BU − g) ·W − 1

2
CW ·W.

In order to derive the dual problem we eliminate U to get the equation H(W ∗) = 0
for the nonsmooth nonlinear Schur complement

H(W ) := −B(A+ ∂ϕ)−1(f −BTW ) + CW + g.(3.1)

Lemma 3.1. The nonlinear saddle point problem (SP5) is equivalent to H(W ∗) = 0
in the sense that U∗,W ∗ is a solution of (SP5) iff H(W ∗) = 0 and U∗ = (A +
∂ϕ)−1(f −BTW ∗).

�

Proposition 3.1. The operator H has the following properties:

(1) H is single valued and Lipschitz continuous.
(2) H is a monotone operator.
(3) There is a Fréchet-differentiable convex functional h : Rn → R such that

H = ∇h.

Proof. (1) By the Poincaré inequality the primal bilinear form in (SI5) is coercive
and thus A is symmetric and positive definite. Since ϕ is convex, proper, lower semi-
continuous the operator A + ∂ϕ has a single valued Lipschitz continuous inverse
with Lipschitz constant given by the reciprocal of the coercivity constant of A.
(2) Monotonicity of H follows from symmetry and positive semi-definiteness of C
and monotonicity of ∂ϕ.
(3) Using Corollary 5.2 in [7, p. 22] it can be seen, that the subdifferential of

h(W ) = − inf
V ∈Rn

L(V,W ) = −L((A+ ∂ϕ)−1(f −BTW ),W )
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is given by ∂h(W ) = H(W ). Single valuedness and continuity of H imply that it
is actually a Fréchet-derivative. �

A direct consequence of Proposition 3.1 is that (SP5) is equivalent to minimizing
h over Rn. This equivalence to an unconstrained convex minimization problem for
an LC1 function is the basis for the development of the iterative solver which is by
construction a descent method for h.

3.2. Newton like gradient-Related Methods. We now give a short summary
of gradient-related descent methods for h skipping all proofs. For a detailed pre-
sentation we refer to text books like, e.g., [18]. Adapted proofs that exactly fit into
the setting considered here can be found in [11].

We consider iterative methods of the form

W ν+1 = W ν + ρνD
ν .(3.2)

In the simplest caseDν can be chosen to be Dν = −∇h(W ν) leading to the classical
gradient method. This method is in general very slow for the problems we consider.
Thus we will look at so called gradient-related directions instead. More specifically
we skip the definition of such directions and look at Newton-like directions of the
form

Dν = −S−1
ν ∇h(W ν)

for a sequence of symmetric positive define preconditioners Sν . Such directions
turn out to be gradient-related if the sequence Sν is bounden from above an below.

While it is essential that the directions allow for sufficient descent of the func-
tional h the step sizes ρν have to guarantee that this descent is actually realized.
This is guaranteed by so called efficient step sizes that satisfy

h(W ν + ρνD
ν) ≤ h(W ν)− cS

(∇h(W ν) ·Dν

|Dν |

)2

for a constant cS > 0 independent of ν.

Theorem 3.1. Assume that the sublevel set {W ∈ R
n | h(W ) ≤ h(W 0) is compact,

that there are constants γ,Γ > 0 such that

γ|v|2 ≤ SνV · V ≤ Γ|V |2,
and that the step sizes ρν are efficient. Then W ν converges to the minimizer W ∗.

Proof. See, e.g., Theorem 5.2 and Theorem 5.7 in [11]. �

The following lemma guarantees that Theorem 3.1 can be applied to the problem
at hand.

Lemma 3.2. If h is convex, continuous, and has a unique minimizer, then the
sublevel set {W ∈ R

n | h(W ) ≤ h(W 0) are compact for all W 0 ∈ R
n.

Proof. See Lemma 5.1 in [11]. �

While the selection of directions essentially determines the properties of the al-
gorithm there are a lot of generic strategies to select efficient step sizes, for example
the widely known Armijo rule. As an alternative we propose a strategy that ap-
proximates the minimizer of h along W ν + ρDν .
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Proposition 3.2. Assume that Dν · ∇h(W ν) < 0 and that

∇h(W ν + ρνD
ν) ·Dν ∈ [α∇h(W ν) ·Dν , 0]

for all ν and some fixed α ∈ [0, 1). Then the step sizes ρν are efficient.

Proof. See Proposition 5.4 in [11]. �

While the exact minimizers obtained for α = 0 are in general not available, such
step sizes can be computed by a simple bisection for any fixed α ∈ (0, 1).

Remark 3.1. The above result remains valid for certain inexact variants of the
algorithm. On the one hand the directions Dν can be replaced by inexact versions
D̃ν . In this case convergence is still guaranteed as long as these are still descent
directions and the relative error decreases, i.e.,

D̃ν · ∇h(W ν) < 0, |Dν − D̃ν |/|D̃ν | → 0.

On the other hand the step sizes ρν = 1 can be used for all steps where the con-
traction |Dν | ≤ σ|Dν−1| holds true for some fixes σ < 1. For a detailed analysis of
these inexact versions we refer to [11].

3.3. Nonsmooth Schur–Newton directions. For a sufficiently smooth func-
tional h the most efficient choice of preconditioners would clearly by Sν = ∇2h(W ν)
leading to the classical Newton method.

Since h is only once differentiable and its derivative ∇h = H is only Lipschitz
continuous but not differentiable itself this is not applicable here. For problems of
this type one could in principle apply a semi-smooth Newton method by selecting
Sν ∈ ∂CH(W ν) where ∂C denoted the generalized Jacobian in the sense of Clarke
[6]. However, it is in general very hard to compute elements of this set, since the
chain rule does not hold for ∂C in general.

As a remedy preconditioner that are in general not contained in ∂CH(W ν) are
constructed by assuming a chain rule in [11]. We follow the same approach here
omitting the details construction. Instead we will only present the main ideas and
the resulting preconditioner for the present case.

In principle we want to construct linearizations of ∇h = H at some W by

BQBT + C(3.3)

where Q is a linearization of the nonsmooth operator (A + ∂ϕ)−1 at f − BTW .
The main idea is that (A+ ∂ϕ)−1 is smooth in certain components and essentially
constant in all the others. To specify this we introduce the inactive set

I(U) := {i | ∂ϕi(Ui) is single valued}
of all components where A+ ∂ϕ is smooth. For the present case this reduces to

I(U) = {i | Ui > 0}.

It turns out that for all i ∈ I((A + ∂ϕ)−1Y ) the i-th component of the operator
is differentiable while it is constant (at least in one direction) for all the others.
Using this idea we can define a linearization of (A + ∂ϕ)−1 at some Y with X =
(A+ ∂ϕ)−1Y by

(A+ ϕ′′(X))+
I(X)
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where ϕ′′(X) denotes the diagonal matrix with the diagonal entries ϕ′′
i (Xi). Here

we used the notation R+ for the Moore–Penrose pseudoinverse of R and RI for the
truncated matrix

(RI)i,j =

{

Ri,j if i, j ∈ I,
0 else.

Note that we only need to evaluate ϕ′′
i for components where it is differentiable.

Plugging this into (3.3) we get the linearization

∂H(W ) := B(A+ ϕ′′(U))+
I(U)B

T + C

of H at W where U = (A+ ∂ϕ)−1(f −BTW ).
Unfortunately even without truncation the matrices ∂H(W ) are in general not

uniformly bounded from below for the logarithmic potential. This is because the
diagonal entries ϕ′′

i (Ui) might be arbitrarily large if Ui is close to zero. To avoid
this problem we will also truncate indices i where Φ′′

θ (Ui) ≥ cT for some fixed large
constant cT . The latter is equivalent to using the smaller inactive set

Ī(U) := {i | Ui > δ}
for some small δ > 0 depending on cT leading to reduced linearizations

∂̄H(W ) := B(A + ϕ′′(U))+
Ī(U)

BT + C.

It is furthermore possible that ∂̄H(W ) has a nontrivial kernel. In this case we
regularize it by adding some scaled symmetric positive definite matrix to it, e.g., a
scaled mass matrix βB, ending up with the following preconditioner

Sν =

{

∂̄H(W ν) if ∂̄H(W ν) is regular,

∂̄H(W ν) + βB else.

It is obvious that these matrices are symmetric positive definite. But even more
they are sufficient to apply the convergence result in Theorem 3.1.

Theorem 3.2. There preconditioners Sν satisfy the assumption of Theorem 3.1.

Proof. See Theorem 5.7 in [11]. �

Corollary 3.1. If we use the directions Dν = −Sν∇h(W ν) and efficient step
sizes, then algorithm (3.2) converges to the minimizer W ∗ of h for arbitrary initial
iterate. The same is true for the inexact versions of the algorithm mentioned in
Remark 3.1.

�

Remark 3.2. Although the convergence theory is based on the interpretation as
gradient-like method it was observed that the algorithm converges superlineraly in
general for binary Cahn–Hilliard equations [14, 11].

In contrast to the analysis used here, classical convergence analysis for semi-
smooth Newton methods leads to local superlinear convergence results [19] with un-
known region of convergence. However, this would not give any further insight
since the region of convergence could be contained in the region with exact inactive
set. In this case the algorithm would be anyway a classical Newton method for the
logarithmic potential and terminate in one step for the obstacle potential.
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Remark 3.3. We stated the convergence theory in terms of the euclidean norm | · |
so that the convergence theory is not mesh-independent. While we could also use
a different norm there are more finite dimensional arguments in the convergence
proof. In contrast to the theory the algorithm behaves mesh-independent for binary
Cahn–Hilliard equations in practice [14, 11]. The theoretical justification for this is
still an open problem.

3.4. Algorithmic aspects. Although algorithm was derived in terms of the dual
unknown W only it can also be written in the primal–dual form

Uν = (A+ ∂ϕ)−1(f −BTW ν)

W ν+1 = wν + ρνS
−1
ν (BUν + CW ν + g).

This reveals that it is essentially a preconditioned Uzawa method. In each iteration
there are least two expensive problems two solve.

The first one is the evaluation of (A + ∂ϕ)−1 in the computation of Uν . It is
equivalent to solving a convex minimization problem for an energy functional that
is essentially the primal convex part of the Lagrangian functional L. While there is
a multitude of methods for the obstacle problems obtained in case of the obstacle
potential, only few efficient methods are available for the case of the logarithmic
potential. The truncated nonsmooth Newton method [13, 16, 11] has shown to
perform very well for both cases. It allows to solve these problems with basically
the same multigrid efficiency as for linear elliptic problems. It has to be stressed
that it is possible to implement such multigrid methods with O(n) complexity per
iteration step although the matrix A is not sparse. The reason is that a careful
implementation can exploit the fact that A is the sum of a sparse matrix and a full
low-rank matrix with a known product representation [10].

The second problem in each step is the evaluation of Sν . This can be rewritten
as a linear saddle point problem. Again there is a multitude of methods for the
solution of these problems. Amongst the most efficient ones are multigrid methods
with Vanka smoothers [22] that solve local saddle point problems either Gauß–
Seidel like successively or Jacobi like in parallel. While there are only theoretical
results for the Jacobi version [20] the Gauß–Seidel version performs even better in
general. Unfortunately the algorithm does sometimes not converge for truncated
saddle point problems as they appear here. In practice this can be avoided by using
the multigrid method as preconditioner in a GMRES method. The development
of a convergent multigrid algorithm that also works in these cases is still an open
problem.

Besides these two problems the use of a step size rule might require several
evaluations of h or H = ∇h. Both incorporate the evaluation of (A + ∂ϕ)−1 that
has been discussed above. Even if these problems can be solved with multigrid
efficiency this is better avoided by using the adaptive step size rule mentioned in
Remark 3.1.
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