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Abstract: We formulate the static mechanical coupling of a geometrically exact Cosserat rod
to an elastic continuum. The coupling conditions accommodate for the difference in dimension
between the two models. Also, the Cosserat rod model incorporates director variables, which are
not present in the elastic continuum model. Two alternative coupling conditions are proposed,
which correspond to two different configuration trace spaces. For both we show existence of
solutions of the coupled problems. We also derive the corresponding conditions for the dual
variables and interpret them in mechanical terms.
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1. INTRODUCTION

In this article we analyze the coupling of a three-
dimensional continuum model to a geometrically exact
one-dimensional rod with an orthonormal director frame
(Cosserat rod). We assume that both objects are governed
by hyperelastic material laws, and consider the static case
only. We then propose two different coupling conditions
and show that the coupled problem has solutions for both
of them. Existence of more than one set of plausible
coupling conditions is a general feature of heterogeneous
models (cf. Blanco et al. (2011)). The proof uses the direct
method of the calculus of variations. For each coupling
condition we also obtain the corresponding dual condi-
tions, which we interpret as coupling conditions for the
forces and moments.

The coupling of mechanical models of differing dimen-
sions has been treated both in the engineering and the
mathematical literature (Monaghan et al. (1998); Lagnese
et al. (1994); Ciarlet et al. (1989)). We would like to point
out the work of Blanco et al. (2011), where a systematic
treatment for coupling linear models (without directors) of
different dimensions is given. In particular, they provide
existence and uniqueness of solutions for their coupled
problems. To the knowledge of the authors, coupling con-
ditions for a reduced model with director variables has
only been treated in Sander (to appear). Additionally, in
that work, an algorithm based on fixed-point iteration was
proposed to numerically solve coupling problems of the
type considered here. Our variational approach instead
suggests to treat the problem as a global minimization
problem with nonlinear constraints. A detailed treatment
may appear in a separate article.

? This work has been supported by the DFG Research Center
Matheon “Mathematics for key technologies”, Berlin.

We proceed as follows. In Sections 2 and 3 we formally
introduce the rod and continuum models, and state several
assumptions. Then in Section 4 we propose two sets of
coupling conditions for the displacement and director vari-
ables. In Section 5 we give existence results and optimality
conditions for solutions for both these conditions. This
leads to corresponding conditions for the dual variables,
i.e., the coupling forces and moments. Due to limitations
of space, we skip proofs throughout the text. They will
be presented in a forthcoming publication (Sander and
Schiela (in preparation)).

2. GEOMETRICALLY EXACT COSSERAT RODS

Cosserat rods model the large deformation behavior of
long, slender objects. To each point of a one-dimensional
parameter domain they associate a point in space and
an orthonormal frame of director vectors, which is to be
interpreted as the orientation of a rigid cross-section. For
an in-depth presentation see the book by Antman (1991).

2.1 Rigid Body Motion

Let SO(3) be the special orthogonal group in three-
dimensional space, that is the group of orthogonal 3 × 3-
matrices with positive determinant. SO(3) has the struc-
ture of a three-dimensional compact manifold. Elements R
of SO(3) act on R3 by rotation around the origin.

Consider the product space SE(3) = R3 × SO(3), known
as the special Euclidean group. We denote elements of this
space as tuples ρ = (r,R), with r ∈ R3 and R ∈ SO(3).
An element ρ ∈ SE(3) acts on R3 by a rigid body motion
ρ : x 7→ Rx+ r.

For any R ∈ SO(3) the tangent space of SO(3) at R can
be characterized in two different ways



Fig. 1. Kinematics of Cosserat rods. Under deformation,
rod cross-sections remain planar, but not necessarily
orthogonal to the centerline.

TRSO(3) = {δR ∈ R3×3 | δR = MR,M ∈ so(3)}
= {δR ∈ R3×3 | δR = RM,M ∈ so(3)},

where so(3), the Lie algebra of SO(3), is the space of skew-
symmetric 3×3 matrices. The two representations are the
spatial and body representation, respectively. Obviously,
we have the relation

M = RMR−1,

and hence M arises from M by an orthogonal change of
coordinates.

With each M ∈ so(3) we can associate a vector u via the
relation

Mv = u× v ∀v ∈ R3,
and we will denote this relation by M = u×, with the
inverse u = M×. The vector u is called the axial vector
of the skew-symmetric matrix M . Setting u = M× and
u = M×, and using the relation R(w × v) = Rw ×Rv we
obtain

u = Ru.

The structure of the tangent space of SE(3) can be inferred
from the general rule about tangent spaces of product
manifolds. For each ρ = (r,R) ∈ SE(3) we have

TρSE(3) = TrR3 × TRSO(3).

By the above identifications, each element δρ of TρSE(3)
can be represented as

δρ = (v, Ru×) = (Rv, u×R).

Here (v,u) ∈ R3 × R3 and (v, u) = (R−1v, R−1u) ∈
R3 × R3 are again representations in spatial and body
coordinates, respectively.

2.2 Static Rod Model

Kinematics. The theory of Cosserat rods views a rod
as a curve in space, which at each point has attached a
rigid cross-section. The central assumption is that under
load, cross-sections do not change shape. They may, how-
ever, change their orientations, and are in particular not
restricted to remain normal to the curve tangent vector
(Figure 1). Hence, configurations of Cosserat rods are
continuous maps

ρ : [0, l]→ SE(3)

s 7→ ρ(s) = (r(s), R(s)),

for some l > 0. While the first component r(s) ∈ R3 of
ρ determines the position of the centerline of the rod at
s, the second component R(s) ∈ SO(3) determines the
orientation of the cross-section A(s) (Figure 1).

Let ei be the i-th canonical basis vector. The action of
an element ρ of SE(3) on ei produces a vector di at r,

which is called a director. For any ρ ∈ SE(3), the three
directors d1, d2, d3 form an orthonormal frame. For any
s ∈ [0, l] we interpret R(s) such that d1 and d2 span
the plane of the cross-section A(s). There, the vectors d1

and d2 introduce an orthonormal coordinate system with
coordinates ξ = (ξ1, ξ2). Under certain assumptions on
the rod curvature, any point X in the rod described by
the configuration function ρ can then be addressed as a
triple (s, ξ1, ξ2) by

X(s, ξ1, ξ2) = r(s) + ξ1R(s)e1 + ξ2R(s)e2.

We single out one configuration function ρ0 : [0, l] →
SE(3) and call it the reference configuration. It will be
convenient (but not necessary) to choose ρ0 to be the
stress-free configuration.

Strains. Let ρ : [0, l] → SE(3) be a given rod configura-
tion. We define the spatial derivative

ρ′ : [0, l]→ TSE(3) s 7→ (r′(s), R′(s)),

where the prime denotes derivation with respect to s.

Recall that any element δR ∈ Tρ(s)SO(3) can be repre-
sented as a product δR = MR, where M ∈ so(3). This
defines the vector

u = M× := (R′(s)R(s)−1)×.

Additionally, we define v(s) = r′(s). Then the correspond-
ing strain in spatial variables is defined as a function
ε(ρ) : [0, l]→ R3 × R3

ε(ρ)(s) := (v,u)(s)− (RR−1
0 v0, RR

−1
0 u0)(s).

In this expression, quantities with a subscript 0 refer to
the reference configuration ρ0.

The strain measures become invariant under rigid-body
motions Q : ρ 7→ Qρ when expressed in body coordinates.
There we have (v, u) ∈ R3 × R3

(v, u) = (R−1v, R−1u)− (R−1
0 v0, R

−1
0 u0)

as the strain in body coordinates. The coefficients of v
and u with respect to the coordinate system spanned
by the directors di can be interpreted in a natural way.
In particular, v1, v2 are the shear strains, because they
describe a displacement inside the cross section, while v3—
a displacement normal to the cross-section—is called the
stretching strain. Further, the values u1, u2—infinitesimal
rotations about an axis in the cross section—are the
bending strains, and u3 is the strain related to torsion.

Constitutive Laws. The stress variables in an elastic
Cosserat rod model are the total resultant force and
moment across a cross-section. Forces and moments are
linked to the strain by constitutive relations which describe
the properties of specific materials. We assume that the
rod material is hyperelastic in the sense that there exists
an energy functional W (v, u) with v, u ∈ R3 such that

nT := Wv(v, u) =
∂W

∂v
(v, u),

mT := Wu(v, u) =
∂W

∂u
(v, u)

are the forces and moments in body coordinates. We refer
to m1,m2 as the bending moments and to m3 as the



twisting moment. The values n1, n2 are shear forces and
n3 is the tension.

In spatial coordinates we obtain the forces n = Rn and
moments m = Rm. We note that due to RT = R−1 we get

nT v = nTR−1Rv = (Rn)TRv = nTv.

Absence of stress in the reference configuration ρ0 means
that

Wv(0, 0) = Wu(0, 0) = 0.

We assume the strain-energy function W to be convex,
Fréchet-differentiable, and coercive in the sense that

W (w, z)

|w|2 + |z|2
≥ α as |w|2 + |z|2 →∞

for some fixed α > 0.

Formulation as a Minimization Problem. The stable
equilibrium configurations of a Cosserat rod with a hyper-
elastic material law can be characterized as the minima of
an energy functional

j : ρ 7→
∫

[0,l]

W
(
v(ρ), u(ρ)

)
ds. (1)

To discuss the well-posedness of minimization problems
for this functional we need to introduce certain function
spaces. Note that SE(3) arises naturally as a submanifold
of R3 × R3×3 ' R12. We define (see, e.g., Bethuel (1991))

H1([0, l],SE(3))

:=
{
v ∈ H1([0, l],R12) | v(x) ∈ SE(3) a.e.

}
.

If we impose Dirichlet boundary conditions

ρ(0) = (r0, q0) and ρ(l) = (rl, ql), (2)

then the problem of finding stable equilibrium configura-
tions of Cosserat rods can be written as the optimization
problem

min j in H1([0, l],SE(3)) subject to (2).

Existence and regularity of solutions to this problem have
been shown by Seidman and Wolfe (1988). The main
difficulty is the additional condition

r′(s) · d3 > 0 for all s ∈ [0, l] (3)

used in that paper, which assures the preservation of
orientation, since it is a strict inequality and hence the
admissible set is open. Nevertheless, the following regular-
ity result holds.

Theorem 2.1. (Seidman and Wolfe (1988), Thm. 4.24) Let
ρ be a solution of the minimization problem (1), subject
to the boundary conditions (2) and the orientation condi-
tion (3). Then (u(ρ),v(ρ)) is in (C1[0, l])6.

Seidman and Wolfe also showed that solutions are gener-
ally not unique.

2.3 Neumann-Type Boundary Conditions

To be able to understand the constraint forces for the
coupling discussed in Section 4, we have to consider a
special type of Neumann boundary conditions for Cosserat
rods.

Let ρ : [0, l]→ SE(3) be a configuration of a rod, fixed at
s = l. An admissible variation δρ is a map δρ : [0, l] →

TSE(3) with π(δρ(s)) = ρ(s), where π : TSE(3)→ SE(3)
is the canonical projection, and δρ(l) = 0. We want
to investigate Neumann-type boundary conditions in a
variational form. The case of pure Dirichlet conditions has
been treated by Chouäıeb (2003). Assume therefore that
ρ satisfies the following weak formulation

0 =
d

dρ
j(ρ)δρ− [h · δρ]0.

Here h : Tρ(0)SE(3) → R is a linear functional. We

introduce a force field H : A(0)→ R3 on the cross-section
A(0) by requiring

h · δρ :=

∫
A(0)

H(ξ) · (δr + δRξ) dξ, (4)

where ξ are the coordinates with respect to the directors
d1 and d2.

Theorem 2.2. Let h : Tρ(0)SE(3) → R be a linear func-
tional as in (4), and let ρ : [0, l] → SE(3) be a rod
configuration such that

0 =
d

dρ
j(ρ)δρ− [h · δρ]0

for all admissible variations δρ = (δr, δR). Then, in spatial
coordinates the Euler–Lagrange equations of (1) read

n′ = 0, on [0, l],

m′ + r′ × n = 0, on [0, l],

and at the boundary s = 0 we obtain Neumann-type
conditions

n(0) =

∫
A(0)

H(ξ) dξ, m(0) =

∫
A(0)

R(0)ξ ×H(ξ) dξ.

3. ELASTIC CONTINUA

We now describe our model of the elastic continuum. Let
E3 be a three-dimensional Euclidean space, which we will
use as the parameter space. A body is an open connected
subset B ⊂ E3. A configuration of B is a mapping φ : B →
R3 such that φ(B) is open and connected and φ has an
inverse φ−1 : φ(B)→ B.

For a given deformation φ we define the deformation
gradient

F : TB → TR3, F = ∇φ.
For ease of notation we write xφ = φ(x). We single
out one configuration φ0 : B → R3 and call it the
reference configuration. In principle it is possible to use
any configuration as the reference configuration. We use
the one obtained by identifying E with R3 and setting
φ0 = Id. Then, for the reference configuration we have
∇φ0 ≡ Id.

We assume the boundary ∂B to be Lipschitz continuous
and to consist of two disjoint parts ∂DB and ∂NB such
that ∂B = ∂DB ∪ ∂NB. The unit boundary normals in the
undeformed and in the deformed region are denoted by ν
and νφ, respectively.

Let φD : ∂DB → R3 be a prescribed displacement on
the Dirichlet boundary ∂DB. By the Cauchy theorem,
conservation of linear momentum yields the boundary
value problem



−divσ = fφ in φ(B)

σνφ = gφ on φ(∂NB)

φ = φD on ∂DB.
Here, σ is the Cauchy stress tensor, fφ is a volume force
and gφ is a surface force, all on the deformed region.

By introducing the first Piola–Kirchhoff stress tensor

P (x) := det∇φ(x)σ(φ(x))∇φ(x)−T

we can reformulate the equilibrium conditions in the
reference domain

−divP = f in B,
Pν = g on ∂NB,
φ = φD on ∂DB,

(5)

where

f(x) = det∇φ(x)fφ(xφ),

g(x) = det∇φ(x) ·
∣∣∇φ(x)−Tνφ

∣∣ · gφ(xφ).

We cast the boundary value problem in a variational form.
Let the space of admissible configurations be

C := {φ ∈ H1(B) | φ = φD on ∂DB}.
We consider hyperelastic continua, i.e., we assume the
existence of a stored energy function Ŵ (X,F) which
induces an energy functional

E(φ) =

∫
B

[
Ŵ (x,∇φ)−Vf (φ)

]
dV −

∫
∂NB

Vg(φ) dA. (6)

We restrict our attention to dead loads Vf (φ) = f ·φ and
Vg(φ) = g · φ.

Finally, we make two assumptions on the energy func-
tional. The first guarantees existence of an energy mini-
mizer.

Assumption 3.1. The energy functional E is weakly lower
semi-continuous and coercive in the space H1(B).

Large classes of stored energy functionals satisfy this con-
dition, in particular, linearly elastic materials, and poly-
convex materials, such as Mooney–Rivlin materials. Our
restriction to the space H1(B) is merely for simplicity. In
the linear case, convexity and coercivity of E follow from
Korn’s inequality, and weak lower semi-continuity is a con-
sequence of the convexity of E. In the polyconvex case, E
is non-convex, and the proof of weak lower semi-continuity
of E is involved (see, e.g., (Ciarlet, 1988, Chap. 7)).

The second assumption concerns the regularity at the
minimizer.

Assumption 3.2. The energy functional E is differentiable
at any local minimizer φ∗.

This is again clear in the case of linear elasticity. However,
for realistic polyconvex energy functions it cannot be
guaranteed a priori. If it does hold, we can derive the
Euler–Lagrange-equation of (6)

0 = Tφ∗E(δφ)

=

∫
B

[
P (x,∇φ∗)δφ− f · δφ

]
dV −

∫
∂NB

g · δφ dA, (7)

for all δφ ∈ C∞(B) ∩ C. It turns out (cf. (Ciarlet, 1988,
Chap. 4)) that the first Piola–Kirchhoff tensor can be
identified as

P (x) = P (x,∇φ) =
∂Ŵ (x,∇φ)

∂∇φ
.

Fig. 2. Coupling between a two-dimensional domain and a
rod

After formal integration by parts, the weak form (7) is
formally equivalent to (5).

4. COUPLING CONDITIONS

We will now derive conditions for the coupling of an elastic
three-dimensional object and a Cosserat rod. Let B ⊂ E3

as in Section 3. However, the boundary ∂B is now supposed
to consist of three disjoint parts ΓD, ΓN , and Γ such that
∂B = ΓD ∪ ΓN ∪ Γ. We assume that ΓD and Γ have
positive two-dimensional measure. The three-dimensional
object represented by B will couple with the rod across
Γ, and we call Γ the coupling boundary. Consider also a
Cosserat rod defined on the interval [0, l], with reference
configuration ρ0 : [0, l]→ SE(3). The boundary of the one-
dimensional parameter domain [0, l] consists of the two
points 0 and l. To be specific, we pick 0 as the coupling
boundary (Figure 2).

Our coupling conditions involve the primal variables on
the coupling boundaries. These are the restriction of the
deformation φ on Γ

φ|Γ ∈ H1/2(Γ),

and the position and orientation of the rod cross-section
at 0

ρ(0) = (r(0), R(0)) ∈ SE(3).

Since the two configuration spaces are not the same
there are actually two classes of coupling conditions for
the primal variables (cf. Blanco et al. (2011) for the
linear case). One formulates the conditions in H1/2(Γ),
the configuration space of the coupling boundary of the
continuum, and the other one formulates them on SE(3),
the configuration space of the coupling boundary of the
rod. Both choices have advantages and disadvantages.
While H1/2(Γ) is infinite-dimensional but linear, SE(3) is
finite-dimensional but nonlinear.

4.1 A Variational Approach

In order to derive a model for the coupling between an
elastic continuum and a Cosserat rod, we take a variational
approach. This means that we formulate primal coupling
conditions of the form

c(φ,ρ) = 0

with a constraint mapping into a linear space V

c : H1(B)×H1([0, l],SE(3))→ V,



Fig. 3. Pointwise mapping G between the coupling bound-
ary Γ and the rod coupling cross-section A(0)

and consider the energy minimization problem

minE(φ) + j(ρ) s.t. c(φ,ρ) = 0.

At a minimizer (φ∗,ρ∗) we derive existence of Lagrange
multipliers λ ∈ V ∗ such that first-order optimality condi-
tions are fulfilled in a function space sense

Tφ∗E + Tρ∗j + (T(φ∗,ρ∗)c)
∗λ = 0. (8)

Then we will interpret this system of equations as equilib-
rium conditions, where λ plays the role of a constraint force
at the contact boundary. In this way, the so-called dual
coupling conditions appear as a consequence of the primal
coupling conditions and a variational principle. Since V
depends on the type of coupling conditions, and λ ∈ V ∗,
we obtain different types of constraint forces for the two
different coupling conditions.

In the remainder of this section we will introduce the
two alternative coupling conditions. The discussion of
existence of minimizers and the first-order optimality
conditions is given in Section 5.

4.2 Rigid Coupling

Our first coupling condition mandates that the interface Γ
be coupled pointwise to the cross-section A(0). To formu-
late this precisely we introduce the parameter domain

C :=
{

(ξ1, ξ2) ∈ R2
∣∣ r(0) +

2∑
i=1

ξidi(0) ∈ A(0)
}
,

and a C1-diffeomorphism

G : Γ→ C

(see Figure 3). Then we require

φ(x) = R(0)G(x) + r(0) for almost all x ∈ Γ.

This means that the rod and the continuum coincide at
the interface. Our nonlinear operator c is then defined as

c : H1(B)×H1([0, l],SE(3))→ H1/2(Γ)

c(φ,ρ) = τφ(x)− (r(0) +R(0)G(x))
(9)

where τ : H1(B)→ H1/2(Γ) is the trace mapping.

Proposition 4.1. Suppose that (φ,ρ) satisfies the first or-
der optimality conditions (8) with c given by (9). Then the
following equilibrium of forces and moments holds

n(0) =

∫
Γ

Pν(x) dA

m(0) =

∫
Γ

(φ(x)− r(0))× Pν(x) dA,

(10)

as long as Pν(x) = P (x,∇φ(x))ν(x) is an integrable
function.

The integrals in the balance equations (10) could equiva-
lently be written on A(0) instead of Γ, which would fit to
the Neumann boundary conditions in Section 2.3. Then, a
factor detG′(x)−1 would appear.

4.3 Coupling on Average

Our second coupling condition is formulated in SE(3), the
coupling trace space of the rod configuration space. We
require that the equality of position and rotation only
holds “on average”

0 =

∫
Γ

φ(x)− (r(0) +R(0)G(x)) dA, (11)

0 =

∫
Γ

(φ(x)− r(0))×R(0)G(x) dA. (12)

Equation (11) states that on average φ(x) coincides with
r(0) +R(0)G(x), while Eq. (12) states that on average the
rod cross-section and the continuum boundary rotate the
same way.

Proposition 4.2. For fixed φ consider the minimization
problem

min
(r,R)∈SE(3)

1

2

∥∥φ(x)− (r(0) +R(0)G(x))
∥∥2

L2(Γ)
.

A minimizer (r,R) of this problem satisfies (11)–(12).

We can thus interpret these conditions in the following
way: for given displacement φ ∈ H1/2(Γ), find a rod
position that fits best in the sense of least squares.

The coupling condition is cast in our variational framework
by defining the operator

c : H1(B)×H1([0, l],SE(3))→ R3 × R3

c(φ,ρ) =


∫

Γ

φ(x)− (r(0) +R(0)G(x)) dA∫
Γ

(φ(x)− r(0))×R(0)G(x) dA

 .
(13)

Proposition 4.3. Suppose that (φ,ρ) satisfies the first-
order optimality conditions (8) with c given by (13). Then
the following equilibrium of forces and moments holds

n(0) =

∫
Γ

Pν(x) dA

m(0) =

∫
Γ

(φ(x)− r(0))× Pν(x) dA,

(14)

where Pν is of the form

Pν(x) = η + ΛRG(x) (15)

for some (η,Λ) ∈ R3 × so(3).

Let us conclude this section with a comparison of the
two sets of balance equations (10) and (14). Obviously,
both have the same form, algebraically. However, while
in the rigid coupling case Pν is generically an element of
H1/2(Γ)∗, in the averaged case Pν defined via (15) as an
element of a 6-dimensional space. This is a consequence
of the face that the image space V of c is given by
V = H1/2(Γ) for rigid coupling and by V = R3 × R3

for averaged coupling.



5. ENERGY MINIMIZERS OF THE COUPLED
PROBLEM

Having introduced two alternative coupling conditions,
together with formal balance equations on forces and mo-
ments, we now discuss the existence of energy minimizers
for the coupled problems.

5.1 Existence of Minimizers

Recall the well-known definition of the indicator functional
ιS of a set S

ιS(x) =

{
0 x ∈ S,
∞ x /∈ S,

and define

F := {(φ,ρ) ∈ H1(B)×H1([0, l],SE(3)) | c(φ,ρ) = 0},
where c is given by either (9) or (13). Write down the total
energy of the coupled system

E(φ,ρ) = E(φ) +W (ρ) + ιF (φ,ρ)

and note that this is a function

E : H1(B)×H1([0, l],SE(3))→ R.
Remark 5.1. We may easily extend our analysis to an
arbitrary number of finitely many rods, continua, and
couplings. Then

E =

nE∑
k=1

Ek(φk) +

nW∑
i=1

Wi(ρi) +

nC∑
j=1

ιFj (φi(j),ρk(j)).

This would complicate the notation, without increasing
the mathematical difficulty of the problem.

Theorem 5.1. The energy functional E has a global mini-
mizer in among all (ρ,φ) ∈ C ×H1([0, l],SE(3)) such that
ρ(l) = ρl.

For the proof of this theorem one essentially has to show
weak lower semi-continuity of the energy functional E .
Then the standard proof on the existence of minimiz-
ers can be performed, cf. (Ekeland and Temam, 1999,
Ch. II.1). Weak lower semi-continuity of E follows from
weak lower semi-continuity of the addends, which is shown
in Sander and Schiela (in preparation).

Remark 5.2. Theorem 5.1 asserts the existence of a global
minimizer. Since the functional E is not convex, this
minimizer may not be unique. The best one can hope
for is local uniqueness, for which second-order sufficient
optimality conditions have to be imposed.

5.2 First-Order Necessary Conditions

Finally we derive the first-order necessary conditions for
energy minimizers of our coupled problem. To this end, let
(φ∗,ρ∗) be a local minimizer of E , again with c given by
either (9) or (13). We impose the following additional local
assumption on the energy functionals E(φ) and j(ρ).

Assumption 5.1. Assume that E is Fréchet differentiable
at φ∗ in W1,∞(B), with derivative Tφ∗E(φ∗) ∈ H1(B)∗.
Assume further that j is Fréchet differentiable at ρ∗ in
W1,∞([0, l],SE(3)) with derivative Tρ∗j ∈ H1([0, l],R3 ×
so(3))∗.

Moreover, for the case of rigid coupling we have to assume
that the trace mapping

τ : H3(B)→ H5/2(Γ) (16)

is continuous and surjective. This is true for sufficiently
regular B and Γ.

The restriction to the space W1,∞(B) is needed if we
want to include polyconvex materials that avoid local
self penetration. For such materials differentiability in
weaker norms does not hold. Under these assumption the
following theorem can be shown, which justifies our force
and moment balance equations in Section 4.

Theorem 5.2. There exists a Lagrange multiplier λ ∈ V ∗
such that the first order optimality conditions (8) have a
solution. For the rigid coupling we have V ∗ = H1/2(Γ)∗,
for the average coupling V ∗ = R3 × R3 ∼= R3 × so(3).

The proof is based on a combination of standard tech-
niques. First, we show, using the implicit function theorem,
that 0 minimizes a linearized problem on kerT(φ∗,ρ∗)c. To
this end, we need surjectivity of T(φ∗,ρ∗)c in a sufficiently

regular space, contained in W1,∞(B). This is always true
for the case of averaged coupling, and in the case of rigid
coupling, it holds by assumption due to (16). Then we
show existence of a Lagrangian multiplier with the help of
convex analysis, cf. (Ekeland and Temam, 1999, Ch. I.5).
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