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Abstract. In the article an optimal control problem subject to a stationary variational
inequality is investigated. The optimal control problem is complemented with pointwise
control constraints. The convergence of a smoothing scheme is analyzed. There, the varia-
tional inequality is replaced by a semilinear elliptic equation. It is shown that solutions of
the regularized optimal control problem converge to solutions of the original one. Passing to
the limit in the optimality system of the regularized problem allows to prove C-stationarity
of local solutions of the original problem. Moreover, convergence rates with respect to the
regularization parameter for the error in the control are obtained. These rates coincide with
rates obtained by numerical experiments, which are included in the paper.
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1 Introduction, problem statement, regularization

In this article we analyze a regularization algorithm to solve the following non-smooth
optimal control problem: Minimize the function J given by

J(y, u) = g(y) + j(u) (P)

over all (y, u) ∈ K × L2(Ω) subject to the elliptic variational inequality

〈Ay, v − y〉 ≥ (u, v − y) ∀v ∈ K (1.1)

and the control constraints

u ∈ Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. on Ω}. (1.2)

Here, Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain. The pairings 〈·, ·〉 and (·, ·) are
short-hand notations for the duality pairing in H−1(Ω) ×H1

0 (Ω) and the scalar product in
L2(Ω), respectively. The operator A is an elliptic second-order differential operator. The
set K is given by

K = {v ∈ H1
0 (Ω) : v ≤ ψ}. (1.3)

Hence, the variational inequality is a classical obstacle problem. Here, the function ψ ∈
H1(Ω)∩L∞(Ω) represents the obstacle. The assumptions on the various ingredients of the
optimization problem (P) will be made precise below.
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The optimization problem (P) is a non-smooth and non-convex optimization problem.
As we shall argue below, the non-smoothness arises due to the variational inequality con-
straint (1.1). This non-smoothness makes it challenging to prove sharp first-order necessary
optimality conditions. In addition, it is difficult to develop fast solution algorithms to solve
(P). In the present paper, we investigate a smoothing scheme for (P) to cope with both
issues.

Let us show briefly how the variational inequality (1.1) makes the problem non-smooth.
If the operator A satisfies the classical assumptions

ν1‖v‖2
H1

0
≤ 〈Av, v〉, and 〈Av,w〉 ≤ ν2‖v‖H1

0
‖w‖H1

0
, (1.4)

with 0 < ν1 ≤ ν2 then the variational inequality (1.1) is uniquely solvable, see [12]. Intro-
ducing a multiplier λ, the variational inequality can be written equivalently as

Ay + λ = u, y ≤ ψ, λ ≥ 0, 〈λ, y − ψ〉 = 0, (1.5)

where λ ∈ H−1, and λ ≥ 0 is short for 〈λ, v〉 ≥ 0 for all v ∈ H1
0 (Ω), with v ≥ 0. With the

reformulation (1.5), the problem (P) is an optimization problem subject to a complementary
condition constraint.

Under rather mild conditions [4], one obtains λ ∈ L2(Ω). Then the complementarity
condition in (1.5) can equivalently be expressed as

λ = max(0, λ+ c(y − ψ)), (1.6)

for any c > 0, which emphasizes the fact that the constraint (1.1) makes the optimal control
problem (P) non-smooth.

Optimal control problems constrained by a variational inequality were studied over
the last decades. Existence results and different kind of necessary optimality conditions
were obtained Barbu [1], Bergounioux [2], Hintermüller and Kopacka [7], Hintermüller and
Surowiec [9], Ito and Kunisch [10], Mignot [15], Mignot and Puel [16]. Sufficient optimality
conditions were studied by Kunisch and Wachsmuth [13].

The first-order necessary optimality conditions derived in these papers correspond to
different kind of stationarity concepts used in the context of finite-dimensional optimiza-
tion problems subject to complementarity constraints [17], see also [7]. Let us recall the
definitions of C- and strong stationarity.

Definition 1.1. The point (y∗, u∗, λ∗) ∈ K ×Uad ×L2(Ω) is called C-stationary for (P)
if it satisfies (1.5) and if there exist (p∗, µ∗) ∈ (H1

0 (Ω)∩L∞(Ω))× (H−1(Ω)∩L∞(Ω)∗) such
that the following system is fulfilled:

A∗p∗ + µ∗ = g′(y∗), (1.7a)
(j′(u∗) + p∗, u− u∗) ≥ 0 ∀u ∈ Uad, (1.7b)
p∗ = 0 a.e. on {x ∈ Ω : λ∗ > 0}, (1.7c)

〈µ∗, φ〉L∞(Ω)∗,L∞(Ω) = 0 ∀φ ∈ C(Ω̄) : φ = 0 a.e. on {x ∈ Ω : y∗ = ψ} (1.7d)
〈µ∗, p∗〉 ≥ 0. (1.7e)

The point (y∗, u∗, λ∗) is called strongly stationary if in addition

p∗ ≥ 0 a.e. on B, (1.8a)

〈µ∗, φ〉 ≥ 0 for all φ ∈ H1
0 (Ω) : (λ∗, φ) = 0, φ ≥ 0 a.e. on B, (1.8b)

is satisfied, where B is the biactive set

B := {x ∈ Ω : y∗ = ψ, λ∗ = 0}.
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Let us remark that C-stationarity gives p∗ = 0 on the strongly active set {x ∈ Ω : λ∗ >
0}. Moreover, the support of µ∗ is contained in the active set by (1.7d).

It is an open problem whether strong stationarity is a necessary optimality condition
for problem (P). In fact, only in the special case Uad = L2(Ω) such a proof can be found
in [16], see also [9]. For more general situations, it is difficult to prove the relations (1.8a)
and (1.8b) on the biactive set. In general, only C-stationarity can be proven [1, 2, 10], [7]
prove an even weaker variant, which they call ε-almost C-stationarity.

Due to the appearance of multipliers, which are only measures, and as a consequence
of the complementarity conditions (1.5) and (1.7c)–(1.8b), stationarity systems are not
well-suited for numerical realization. Algorithms to solve (P) are then based on a suitable
smoothing of the underlying constraints. Hintermüller and Kopacka [7] used a relaxation
scheme, where 〈λ, y − ψ〉 = 0 is replaced by 〈λ, y − ψ〉 ≤ α, coupled with a Moreau-Yosida
regularization of the resulting state-constrained problem. Another approach is based on
smoothing the max-function in (1.6), which is followed in Hintermüller and Kopacka [8],
Ito and Kunisch [10], and Kunisch and Wachsmuth [14].

In this paper, we will use this smoothing approach and apply it to the original problem.
That is, we replace the non-smooth condition λ = max(0, λ+ c(y − ψ)) by

λc = maxc(0, λ̄+ c(y − ψ)).

Here, c is the regularization and smoothing parameter. Moreover, λ̄ ∈ L∞(Ω) is a given
non-negative function, and maxc is a C2-approximation of x → max(0, x), which is made
precise below. For properly chosen λ̄ the solutions yc of the regularized equation are feasible,
i.e. yc ≤ ψ, see [10, 13, 14].

The resulting family of regularized problems is then given by
minJ(y, u)

over (y, u) ∈ H1
0 (Ω) × Uad subject to

Ay + maxc(0, λ̄+ c(y − ψ)) = u.

(Pc)

An important observation is that this problem does not incorporate any inequality con-
straints on yc, λc, and λc(yc − ψ).

If g and j are C1-regular, then the first order optimality system for (Pc) is given by

Ayc + maxc

(
λ̄+ c(yc − ψ)

)
= uc, (1.9a)

A∗pc + cmax′
c

(
λ̄+ c(yc − ψ)

)
pc + g′(yc) = 0, (1.9b)

(j′(uc) − pc, u− uc) ≥ 0 ∀u ∈ Uad. (1.9c)

In [11] and [13] existence of solutions (yc, uc) ∈ H1
0 (Ω) × L2(Ω) × H1

0 (Ω) to (1.9) for the
case Uad = L2(Ω) was established and subsequential convergence for c → ∞ to a solution
(y∗, u∗) of the unregularized problem was argued. For the same subsequence we have

λc → λ∗ and µc ⇀ µ∗ in H−1(Ω), pc ⇀ p∗ in H1
0 (Ω),

where → and ⇀ denote strong and weak convergence respectively, and the multiplier ap-
proximations λc and µc are defined by

λc = maxc(0, λ̄+ c(yc − ψ)), µc = cmax′
c(λ̄+ c(yc − ψ)).

Moreover, one can show that each strict local minimum of (P) is the (weak) limit of a
sequence of solutions of the regularized problem [13]. Hence, one can use these sequences
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to derive optimality conditions for the original problem. In this paper, we will extend these
results to the control constrained case and prove C-stationarity of local solutions of (P).

This regularization concept then can be used to devise numerically implementable al-
gorithms [14], that generate a sequence of solutions {(yc, uc)}. In [14] it was reported that
the sequence converges as

‖uc − u∗‖L2(Ω) = O(c−1/2).

We will prove this rate under assumptions on second-order information, see Theorem 4.5.
Moreover, we prove for the value function

V (c) := J(yc, uc)

the estimate ∣∣∣∣ ddcV (c)
∣∣∣∣ = O(c−2),

which can be found in Theorem 4.3 below. These findings improve the theoretical results
and explain the convergence rates obtained in numerical experiments in [14]. In section
5, we report about our computational experiments, which confirm the convergence rates
obtained in our analysis.

Standing assumptions

Throughout the paper we rely on the following regularity assumptions.

(A.i) The domain Ω ⊂ Rn, n ∈ {2, 3} is a bounded Lipschitz domain.

(A.ii) The operator A is an elliptic differential operator defined by

(Ay)(x) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
y(x)

)
+

n∑
j=1

aj(x)
∂

∂xj
y(x) + a0(x)y(x)

with functions aij ∈ C0,1(Ω̄), aj ,
∂

∂xj
aj , a0 ∈ L∞(Ω) satisfying the conditions aij(x) =

aji(x) and
n∑

i,j=1

aij(x)ξiξj ≥ δ0|ξ|2 a.e. on Ω for all ξ ∈ Rn

with some δ0 > 0. Additionally, we require a0(x) ≥ δ1 ≥ 0 with δ1 sufficiently large
such that A fulfills the coercivity condition (1.4).

(A.iii) The obstacle ψ ∈ H1(Ω) ∩ L∞(Ω) fulfills Aψ ∈ L∞(Ω) and ψ ≥ 0 on Γ.

The functions g, j satisfy:

(A.iv) g : L2(Ω) → R is twice continuously Fréchet-differentiable,

(A.v) j : L2(Ω) → R is twice continuously Fréchet-differentiable and weakly lower semi-
continuous.

The function λ̄ appearing in the regularization satisfies

(A.vi) λ̄ ∈ L∞(Ω), λ̄ ≥ 0 a.e. on Ω.

Let us introduce the adjoint operator A∗ to A by

(A∗p)(x) = −
n∑

j=1

∂

∂xj

(
n∑

i=1

aij(x)
∂

∂xi
p(x) + aj(x)p(x)

)
+ a0(x)p(x).
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Assumptions on the smooth approximation of max

We assume that the function maxc admits the following properties:

(B.i) maxc : (c, x) 7→ maxc(x), (c, x) ∈ (0,+∞) × R, is twice continuously differentiable
with respect to (c, x),

(B.ii) maxc(x) = max(0, x) for all x with |x| ≥ 1/2c, maxc(x) ≥ max(0, x) for all x with
|x| ≤ 1/2c.

We will denote the derivatives with respect to x by max′
c, max′′

c , whereas the derivatives
with respect to c are denoted by ∂

∂c maxc.
In addition we assume that there is a constantM > 0 such that the following inequalities

are satisfied for all x, x′:

(B.iii) 0 ≤ max′
c(x) ≤ 1,

(B.iv) 0 ≤ max′′
c (x),

(B.v)
∣∣ ∂
∂c maxc(x)

∣∣ ≤ M
c2 ,

Note, that the function

mc(x) :=

{
max(0, x) if |x| ≥ 1

2c ,
c3

2

(
x+ 1

2c

)3 ( 3
2c − x

)
if |x| < 1

2c ,
(1.10)

satisfies the requirements above, see [14]. Different kind of smooth approximations of
max(0, ·) were used by Hintermüller and Kopacka [8].

A simple consequence of the monotonicity of max′
c provided by (B.iv) is the following

inequality

maxc(x) ≤
(
x+

1
2c

)
max′

c(x) ∀x ∈ R. (1.11)

Notational convention

We will use in several places generic constants, all denoted by K. These constants are
independent of c and sequences {(yc, uc)} of local solutions of (Pc).

2 Regularization of the obstacle problem

Let us first recall the well-known existence and regularity results for the variational in-
equality (1.1), for the proofs we refer to [4, 12]. Then we proof additional results for the
regularized obstacle problem that we will need later.

Proposition 2.1. Let u ∈ L2(Ω) be given. Then the variational inequality (1.1) admits
a unique solution y ∈ H1

0 (Ω) ∩ L∞(Ω). The mapping u 7→ y is Lipschitz continuous.
Moreover, it holds λ,Ay ∈ L2(Ω).

In addition, the mapping u 7→ y is directionally differentiable in a certain sense, see e.g.
[15], but not Gâteaux differentiable.
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2.1 Uniform boundedness of solutions

Let us now study the regularized equation

Ay + maxc

(
λ̄+ c(y − ψ)

)
= u, (2.1)

for fixed c and given u ∈ L2(Ω). Since the function maxc is monotone, we have the following
existence and uniqueness result.

Proposition 2.2. Let u ∈ L2(Ω) be given. Then (2.1) admits a unique solution y ∈
H1

0 (Ω)∩L∞(Ω). There is a constant K > 0 independent of c such that ‖yc‖H1
0
+ ‖yc‖L∞ ≤

K‖u‖L2 .

Proof. Existence and uniqueness of solutions follow from standard arguments. To obtain
uniform bounds, one tests (2.1) by yc and uses the uniform boundedness of maxc(λ̄−cψ).

We are interested in the asymptotic behavior of the solutions of (2.1) for c→ ∞. In the
next lemma we will show that the constraint violation (yc − ψ)+ tends to zero for c→ ∞.
This improves earlier results of [10, 13]. Here, (v)+ refers to the positive part of v, i.e.
(v)+(x) = max(0, v(x)).

Lemma 2.3. Let u ∈ L2(Ω) be given. Let yc,u denote the corresponding solution of the
regularized equation (2.1).

If for some 2 ≤ q ≤ ∞ it holds u+max(0,−Aψ−λ̄) ∈ Lq(Ω), then we have the estimates

‖(yc,u − ψ)+‖Lq ≤ c−1‖u+ max(0,−Aψ − λ̄)‖Lq , (2.2)

‖(yc,u − ψ)+‖H1
0
≤ Kc−1/2,

and
‖Ayc,u‖Lq + ‖maxc

(
λ̄+ c(yc,u − ψ)

)
‖Lq ≤ K.

Proof. The proof follows to some extent the lines of the proof of [12, Lemma 5.1]. Clearly,
the function (yc,u − ψ)q

+ belongs to H1
0 (Ω) for all q ≥ 2, which follows from the chain rule

taking into account the boundedness of yc,u and ψ. Hence, we can test the equation

A(yc,u − ψ) + maxc

(
λ̄+ c(y − ψ)

)
= u−Aψ,

which is equivalent to (2.1), by (yc,u − ψ)q−1
+ .

By Assumption (A.ii), we have for every z ∈ L∞ ∩H1
0 (Ω)

〈Az, zq−1〉 ≥ 2
q
〈Azq/2, zq/2〉 +

(
1 − 2

q

)∫
Ω

a0|z|q ≥ 2ν1
q

‖zq/2‖2
H1 .

Using the fact that maxc(x) ≥ max(0, x) ≥ x for all x ∈ R, cf. (B.ii), we obtain∫
Ω

maxc

(
λ̄+ c(yc,u − ψ)

)
(yc,u − ψ)q−1

+ ≥ c‖(yc,u − ψ)+‖q
Lq +

∫
Ω

λ̄(yc,u − ψ)q−1
+ .

Combining these results yields

c‖(yc,u − ψ)+‖q
Lq ≤ (u−Aψ − λ̄, (yc,u − ψ)q−1

+ )

≤ ‖u+ max(0,−Aψ − λ̄)‖Lq‖(yc,u − ψ)+‖q−1
Lq ,
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which gives
c‖(yc,u − ψ)+‖Lq ≤ ‖u+ max(0,−Aψ − λ̄)‖Lq . (2.3)

This proves the first claim for 2 ≤ q < ∞. If u + max(0,−Aψ − λ̄) ∈ L∞(Ω) then we can
pass to the limit q → ∞ in (2.3), which gives the wanted L∞(Ω)-estimate, and (2.2) is
proven. The estimate for the H1-norm is an easy consequence of the estimates for q = 2.

Next, we write
Ay = u− maxc

(
λ̄+ c(yc,u − ψ)

)
.

By (1.11) we have the estimate

maxc

(
λ̄+ c(yc,u − ψ)

)
(x) ≤ 1

2c
+ λ̄(x) + c(yc,u(x) − ψ(x)).

Hence it holds ‖maxc

(
λ̄+ c(yc,u − ψ)

)
‖Lq ≤ K by (2.2), with a constant K > 0 indepen-

dent of q and c > 2. This implies ‖Ayc,u‖Lq ≤ K.

2.2 The linearized equation

Now let us consider the linearized version of (2.1)

Awc + cmax′
c

(
λ̄+ c(yc − ψ)

)
wc = rc, (2.4)

where yc is a given solution of the regularized equation (2.1), and rc ∈ L2(Ω) is a given
right-hand side. Regarding existence and boundedness of solutions we have the following:

Theorem 2.4. Let {yc}c>0 and {rc}c>0 be bounded in H1
0 (Ω) and L2(Ω), respectively.

Then equation (2.4) admits for each c > 0 a unique solution wc ∈ H1
0 (Ω) ∩ L∞(Ω), and

there is a constant K > 0 independent of c such that

‖wc‖H1 + ‖
√
cmax′

cwc‖L2 ≤ K‖ (1 + cmax′
c)

−1/2
rc‖L2 ,

‖cmax′
c wc‖L1 ≤ K‖rc‖L1 ,

‖wc‖L∞ ≤ K‖rc‖L2 .

Moreover, if (cmax′
c)

−1rc ∈ L∞(Ω), then we obtain

‖wc‖L∞ ≤ K‖(cmax′
c)

−1rc‖L∞

Here, we abbreviated cmax′
c := cmax′

c

(
λ̄+ c(yc − ψ)

)
.

Proof. For our first result, we test (2.4) by wc, and divide by the square-root of the left-
hand side. The second assertion follows by testing with a smoothed-sign function similarly
as in [10, Thm. 5.1]. The L∞(Ω)-bound follows from the result of Stampacchia [18].

For our last result, we use a duality technique. For each s ∈ L2(Ω) let zs = (A +
cmax′

c)
−1s

‖wc‖L∞ = sup
s∈L2,‖s‖L1≤1

〈wc, s〉L2

= sup
s
〈(A+ cmax′

c)
−1rc, s〉 = sup

s
〈rc, zs〉

≤ sup
s

‖(cmax′
c)

−1rc‖L∞‖cmax′
c zs‖L1 ≤ K‖(cmax′

c)
−1rc‖L∞ ,

which finishes the proof.
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We state a simple consequence of our previous result:

Corollary 2.5. The mapping u→ yc,u is Lipschitz continuous in the following sense:

‖A(yc,u1 − yc,u2)‖L1 + ‖yc,u1 − yc,u2‖H1 + ‖yc,u1 − yc,u2‖L∞ ≤ L‖u1 − u2‖L2

Moreover, we have the c-dependent Lipschitz estimate:

‖A(yc,u1 − yc,u2)‖L2 ≤ K
√
c‖u1 − u2‖L2

Proof. This follows from the implicit function theorem and the mean value theorem.

Remark 2.6. Our estimates indicate that the mapping u → yc,u cannot be expected to
be Lipschitz-continuous from L2(Ω) to H2(Ω), uniformly in c. Still, by interpolation, we
obtain the following uniform result on Hölder continuity:

‖A(yc,u1 − yc,u2)‖L2 ≤ K‖A(yc,u1 − yc,u2)‖
1/2
L∞‖A(yc,u1 − yc,u2)‖

1/2
L1 ≤ K‖u1 − u2‖1/2

L2 .

2.3 Convergence results for fixed u

Let now u ∈ L∞(Ω) be fixed and yc,u the solution of the regularized obstacle problem (2.1)
for parameter c. We consider the limiting behaviour of J(yc,u, u) for c → ∞. To this end,
we differentiate the equation

Ayc,u + maxc

(
λ̄+ c(yc,u − ψ)

)
= u

with respect to c, and obtain

0 = Aẏ + cmax′
c

(
λ̄+ c(yc,u − ψ)

)
ẏ

+
∂

∂c
maxc(λ̄+ c(yc,u − ψ)) + max′

c(λ̄+ c(yc,u − ψ))(yc,u − ψ) = 0.
(2.5)

Hence, the derivative ẏ of yc,u with respect to c is the solution of a linearized equation.
Let us define the following family of sets that will play an important role in the subse-

quent analysis

Pc,u =
{
x ∈ Ω : λ̄(x) + c(yc,u(x) − ψ(x)) > − 1

2c

}
. (2.6)

That is, Pc,u contains the points, where maxc

(
λ̄+ c(yc,u − ψ)

)
> 0. Obviously maxc

(
λ̄+ c(yc,u − ψ)

)
=

0 on Ω \ Pc,u, and thus also max′
c = 0 there.

Lemma 2.7. It holds
‖yc,u − ψ‖L∞(Pc,u) ≤ Kc−1

with a constant K > 0 independent of c.

Proof. By definition of Pc,u it follows

1
c

(
−λ̄− 1

2c

)
≤ yc,u − ψ ≤ (yc,u − ψ)+.

Since ‖(yc,u − ψ)+‖L∞ ≤ Kc−1 by Lemma 2.3 and Assumption (A.iii), the desired result
follows.
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Remark 2.8. Let us remark that the bound ‖yc,u − ψ‖L∞(Pc,u) = O(c−1) is sharp in the
following sense. Suppose it holds ‖yc,u −ψ‖Lq(Pc,u) = o(c−1). This implies on one hand the
convergence of λc,u := maxc

(
λ̄+ c(yc − ψ)

)
→ λ̄ in Lq. On the other hand, λc,u converges

to λu in H−1(Ω), where λu is the multiplier in the obstacle problem associated to u, see
Theorem 2.10 below. Hence, λ̄ = λu is necessary to get ‖yc,u − ψ‖Lq(Pc,u) = o(c−1), which
is unlikely, as this requires that the solution of the obstacle problem is known.

Similarly, the estimate ‖(yc,u − ψ)+‖Lq = O(c−1) of Lemma 2.3 is sharp. The relation
‖(yc,u − ψ)+‖Lq = o(c−1) implies 0 ≤ λu ≤ λ̄ a.e. on Ω. That is, if λu > λ̄ on a set of
positive measure, then the estimate (2.2) is sharp.

The estimate of Lemma 2.7 will turn out to be essential for our final convergence estimate
Theorem 4.5, as it allows to prove convergence rates of norms of ẏc as well as of the value
function V , see below Theorem 4.3.

Proposition 2.9. Let ẏ be the solution of (2.5). Then we have the estimates

‖ẏ‖L∞(Ω) ≤ Kc−2, (2.7)

‖ẏ‖H1
0 (Ω) ≤ Kc−3/2. (2.8)

Proof. By Theorem 2.4 we get

‖ẏ‖L∞ ≤ K

(
‖(cmax′

c)
−1 max′

c ·(yc,u − ψ)‖L∞ +
∥∥∥∥ ∂∂c maxc

∥∥∥∥
L2

)
,

where we omitted the argument (λ̄+ c(yc,u − ψ)) in the derivatives of maxc. By (B.v) the
second addend of the right hand side is of order c−2. Further, by definition of Pc,u and
Lemma 2.7 we have

‖(cmax′
c)

−1 max′
c ·(yc,u − ψ)‖L∞(Ω) = ‖c−1 · (yc,u − ψ)‖L∞(Pc,u).

Thus, we obtain
‖ẏ‖L∞(Ω) ≤ Kc−2.

Similarly, Theorem 2.4 also yields

‖ẏ‖H1 ≤ K

(
‖(cmax′

c)
−1/2 max′

c ·(yc,u − ψ)‖L2 +
∥∥∥∥ ∂∂c maxc

∥∥∥∥
L2

)
,

which implies with analogous arguments as above

‖ẏ‖H1 ≤ Kc−3/2.

With the help of estimates on ẏ we can now study the convergence of yc,u for c → ∞
and fixed control u.

Theorem 2.10. Let u ∈ L2(Ω) be given. Let yu and yc,u denote the corresponding solutions
of the variational inequality (1.1) and the regularized equation (2.1), respectively. Let λu be
the corresponding multiplier in (1.1) and set λc,u := maxc

(
λ̄+ c(yc,u − ψ)

)
.

Then there is a constant K > 0 independent of c such that

‖yu − yc,u‖L∞ ≤ Kc−1,

‖yu − yc,u‖H1 + ‖λu − λc,u‖H−1 ≤ Kc−1/2.

Moreover, we have an estimate on the function values:

|J(yu, u) − J(yc,u, u)| ≤ Kc−1. (2.9)
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Proof. Our convergence results on y follow from integration of (2.7) and (2.8) with respect
to c. The estimate on λ follows from inserting the estimates on y into the difference of (1.1)
and (2.1).

As for (2.9) we compute by the chain rule:

d

dc
J(yc,u, u) = g′(yc,u)ẏ

Inserting (2.7) we obtain

| d
dc
J(yc,u, u)| ≤ ‖g′(yc,u)‖L1(Ω)‖ẏ‖L∞(Ω) ≤ Kc−2.

Integration of this inequality with respect to c yields the assertion of this theorem.

3 C-stationarity of solutions of (P)

Let now (y∗, u∗) be a strict local optimal solution of the original problem (P). Then owing
to the following result there exist a sequence of solutions of the regularized problem (Pc).

Proposition 3.1. Let (y∗, u∗) be a strict local optimal solution of the original problem
(P). Then there exists a sequence {yc, uc} of local solutions of the regularized problem with
(yc, uc) with

yc → y∗ in H1
0 (Ω),

yc ⇀
∗ y∗ in L∞(Ω),

uc ⇀
∗ u∗ in L∞(Ω).

Moreover, for the associated multiplier λc we have λc → λ∗ in H−1(Ω).

Proof. The proof follows the lines of a similar result [13]. Here, weak lower semi-continuity
of j is needed. The uniform boundedness of {uc} in L∞(Ω) is a result of the control
constraints.

In particular, uc ⇀ u∗ in L2(Ω), which can also be shown in the absence of control
constraints and which is all we need in the following.

Corollary 3.2. There is a subsequence such that yc → y∗ in C(Ω̄).

Proof. By Theorem 2.10, we have yc,u∗ → y∗ strongly in L∞(Ω) as c → ∞. Due to
compact embeddings we also have uc → u∗ in W−1,4(Ω). Using the result of [18], this
implies ‖yc,u∗ − yc‖L∞(Ω) → 0. This proves the claim.

As observed in [13] the convergence of uc to u∗ is strong in L2(Ω) if j(u) = α
2 ‖u‖

2.
Alternatively, strong convergence can be achieved by adding a penalty term ‖u∗ − uc‖2 to
the functional, see [16] and the remarks at the end of this section.

Since the problem (Pc) is smooth, there exists an adjoint state pc such that the first-order
necessary optimality system (1.9) is satisfied. Now, let us prove the uniform boundedness
of the dual quantities in the regularized problem.

Lemma 3.3. There is a constant K, such that

‖pc‖H1 + ‖pc‖L∞ + ‖cmax′
c(λ̄+ (yc − ψ))pc‖L1 ≤ K.
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Proof. Since {yc} is bounded in L2(Ω), we have boundedness of {g′(yc)} in L2(Ω) as well by
Assumption (A.iv), and we can conclude from Theorem 2.4 the asserted L1(Ω) and L∞(Ω)
bounds for pc.

See also related results in [10, 13]. Let us remark, that the previous lemma implies
uniform boundedness of the sequence {µc} in L1(Ω).

Summarizing these results, we obtain the following.

Proposition 3.4. Let (y∗, u∗) be a strict local optimal solution of the original problem (P).
Then there exists a subsequence of {(yc, uc, λc, pc, µc)} of stationary points of (Pc), which
satisfy (1.9), such that

yc → y∗ in H1
0 (Ω) ∩ L∞(Ω),

uc ⇀
∗ u∗ in L∞(Ω),

λc → λ∗ in H−1(Ω),
λc ⇀

∗ λ∗ in L∞(Ω),

pc ⇀
∗ p∗ in H1

0 (Ω) ∩ L∞(Ω),
pc → p∗ in Lq(Ω) ∀q <∞,

µc ⇀
∗ µ∗ in H−1(Ω) ∩ L∞(Ω)∗.

It remains to prove that the limit point (y∗, u∗, λ∗, p∗, µ∗) is a C-stationary point for
(P).

Proposition 3.5. It holds
‖µc(yc − ψ)‖L1 = O(c−1),

‖λcpc‖L1 = O(c−1).

Moreover, we have for the limit

µ∗(y∗ − ψ) = 0 in L∞(Ω)∗.

λ∗p∗ = 0 a.e. in Ω.

Proof. For the first claim, we obtain using the result of Lemma 2.7

‖µc(yc − ψ)‖L1 =
∫

Ω

|µc(yc − ψ)| ≤ ‖µc‖L1‖yc − ψ‖L∞(Pc,uc ) ≤ Kc−1.

To prove the second assertion, we use the inequality maxc(x) ≤ (x+ 1
2c )max′

c(x), cf. (1.11).
Hence by Lemma 3.3∫

Ω

|λcpc| ≤
∫
Pc,uc

∣∣∣∣( 1
2c

+ λ̄+ c(yc − ψ)
)

max′
c

(
λ̄+ c(yc − ψ)

)
pc

∣∣∣∣
≤ Kc−1‖cmax′

c

(
λ̄+ c(yc − ψ)

)
pc‖L1 ≤ Kc−1.

By Proposition 3.4, we have that µc(yc − ψ) ⇀∗ µ∗(y∗ − ψ) in L∞(Ω)∗. Moreover, for
smooth test functions φ we have 〈λc, φpc〉 → 〈λ∗, φp∗〉. Since λ∗, p∗ ∈ L∞(Ω) this proves
λ∗p∗ = 0 a.e. on Ω.
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Lemma 3.6. We have
A∗p∗ + µ∗ = g′(y∗)

and
〈µ∗, ζ2p∗〉 ≥ lim sup

c→∞
〈µc, ζ

2pc〉 ≥ 0

for all functions ζ ∈W 1,∞(Ω̄).

Proof. Our first assertion follows from the fact that Apc and µc converge weakly in H−1.
Testing

A∗(pc − p∗) + (µc − µ∗) = g′(yc) − g′(y∗)

with ζ2(pc − p∗) yields

〈A∗(pc − p∗), ζ2(pc − p∗)〉 + 〈µc − µ∗, ζ2(pc − p∗)〉 = (g′(yc) − g′(y∗))(ζ2(pc − p∗)).

Since g′(yc) → g′(y∗) strongly the right-hand side tends to zero for c → ∞. For the first
addend we have due to the properties of A∗, see Assumption (A.ii),

〈A∗(pc − p∗), ζ2(pc − p∗)〉 = 〈A∗ζ(pc − p∗), ζ(pc − p∗)〉 +
∫

Ω

πcζ(pc − p∗)

with πc ∈ L2(Ω) given by

πc = 2
n∑

i,j=1

aij(x)
∂(pc − p∗)

∂xi

∂ζ

∂xj
+ (pc − p∗)

n∑
j=1

aj
∂ζ

∂xj
.

Since pc ⇀ p∗ in H1
0 (Ω) and pc → p∗ in L2(Ω), we find∫

Ω

πcζ(pc − p∗) → 0

for c→ ∞. Hence we obtain

0 ≥ lim sup〈µc − µ∗, ζ2(pc − p∗)〉
= lim sup(〈µc, ζ

2pc〉 + 〈µ∗, ζ2p∗〉 − 〈µc, ζ
2p∗〉 − 〈µ∗, ζ2pc〉)

= lim sup(〈µc, ζ
2pc〉 − 〈µ∗, ζ2p∗〉),

where we have used 〈µc, ζ
2p∗〉 → 〈µ∗, ζ2p∗〉 and 〈µ∗, ζ2pc〉 → 〈µ∗, ζ2p∗〉.

Proposition 3.7. The mapping v → 〈vp∗, µ∗〉L∞,(L∞)∗ has a representation as a positive
measure.

Proof. Let v be any positive continuous function, and vk ∈ C1 an approximation sequence.
Then setting v̂k := max(vk, 0) we obtain v̂k ∈W 1,∞(Ω) and also ‖v̂k −v‖∞ → 0. Moreover,
since µ∗ ∈ (L∞)∗, and p∗ ∈ L∞ the expression

〈vp∗, µ∗〉L∞,(L∞)∗

is well defined for all v ∈ C(Ω), and continuous. This implies

〈vp∗, µ∗〉L∞,(L∞)∗ = lim
k→∞

〈v̂kp
∗, µ∗〉L∞,(L∞)∗ ≥ 0.

Thus, the linear functional
v → 〈vp∗, µ∗〉L∞,(L∞)∗

is continuous on C(Ω) and positive, hence has a representation as a positive measure.
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Proposition 3.8. Let ζ ∈ C(Ω̄) with ζ = 0 on {y∗ = ψ}. Then it holds

〈µ∗, ζ〉(L∞)∗,L∞ = 0.

Proof. Let us define Iσ := {y∗ < ψ − σ} for σ ≥ 0.
Let σ > 0 be given. By strong convergence yc → y∗ in L∞(Ω) it follows that maxc

′(λ̄+
c(yc − ψ)) = 0 on the set {y∗ ≤ ψ − σ} = Iσ for all c > Cσ, Cσ sufficiently large. This
implies µc = 0 on Iσ for c > Cσ.

Let us take a nonnegative function ζ ∈ C(Ω̄) with ζ = 0 on {y∗ = ψ} = I0. Then the
function

ζσ := max(ζ − ‖ζ‖L∞(I0\Iσ), 0)

is continuous with support contained in Iσ. Hence 〈µc, ζσ〉(L∞)∗,L∞ = 0 for c sufficiently
large. Due to µc ⇀

∗ µ∗ in L∞(Ω)∗ it holds 〈µ∗, ζσ〉(L∞)∗,L∞ = 0 for all σ > 0.
By construction we have ‖ζ − ζσ‖L∞ ≤ ‖ζ‖L∞(I0\Iσ). Now let us argue that

limσ↘0 ‖ζ‖I0\Iσ
= 0. If this would not be true, then there would exist ε > 0 and se-

quences σn ↘ 0, xσn ∈ I0 \ Iσn with ζ(xσn) > ε. Since Ω is bounded, the sequence {xσn}
admits an accumulation point x̃. By definition of Iσ it follows that x̃ belongs to {y∗ = ψ}.
Hence ζ(x∗) = 0, which leads to the contradiction.

This implies ζσ → ζ in L∞(Ω), which allows to pass to the limit to show
〈µ∗, ζ〉(L∞)∗,L∞ = 0.

Theorem 3.9. Let (y∗, u∗) be a strict local optimal solution of the original problem (P). Let
{(yc, uc, λc, pc, µc)} be the sequence given by Proposition 3.4, which converges to
(y∗, u∗, λ∗, p∗, µ∗).

Assume that for a subsequence j′(uc) → j′(u∗) in L2(Ω) holds.
Then (y∗, u∗, λ∗, p∗, µ∗) is a C-stationary point of (P) that is it satisfies (1.7).

Proof. The claim is a direct consequence of the previous results. The assumption on the
convergence j′(uc) → j′(u∗) then allows to pass to the limit in (1.9c).

In order to prove C-stationarity of all local solutions of (P), we have to drop the as-
sumption on strong convergence of j′(uc). This can be done by considering a penalized
problem as follows 

min J(y, u) + ‖u− u∗‖2
L2

over (y, u) ∈ H1
0 (Ω) × Uad subject to

Ay + maxc(0, λ̄+ c(y − ψ)) = u.

(P̃c)

With the same arguments as in [13, 16], we obtain the existence of a sequence {(ỹc, ũc)} of
solutions of (P̃c) with (ỹc, ũc) → (y∗, u∗) strongly in (H1

0 (Ω)∩L∞(Ω))×L2(Ω). Besides an
obvious modification of the necessary condition given in (1.9), all the results of this section
remain valid. And we obtain

Theorem 3.10. Let (y∗, u∗) be a local optimal solution of the original problem (P). Then
(y∗, u∗, λ∗, p∗, µ∗) is a C-stationary point of (P).
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4 Convergence estimates of the path

In the following, we will prove convergence rates for c → ∞. Here we will rely on the
following assumption on the path:

Assumption 4.1. Let us impose the following assumptions:

(i) The pair (y∗, u∗) is a local solution of (P) that satisfies a quadratic growth condition

‖u− u∗‖2
L2(Ω) ≤ α(J(y∗, u∗) − J(y(u), u)) (4.1)

for all u in a neighourhood of u∗.

(ii) There is a sequence {(yc, uc)}c>0 ∈ H1
0 (Ω)×L2(Ω) of local solutions of (Pc) converging

strongly to (y∗, u∗).

(iii) The optimality system (1.9) for (yc, uc) is strongly regular for all c > C0 in the sense
of [3] for some C0 <∞.

Some comments are in order. The quadratic growth condition on (y∗, u∗) is fulfilled if
(y∗, u∗) fulfills a second-order sufficient optimality condition. Sufficient optimality condi-
tions were investigated in [13] for the special case Uad = L2(Ω). They can be transferred
to the control-constrained case using the ideas of [5]. Then (y∗, u∗) satisfies a quadratic
growth condition, if (y∗, u∗) is strongly stationary and the second-order derivative of the
Lagrangian is positive definite on a certain cone.

The existence of the path was discussed in [13], see also the discussion in Section 2. The
strong regularity of (1.9) is connected to the solvability of the linearization of (1.9). If the
linearized system is uniquely solvable, and the solutions depend continuously on the data,
then (1.9) is strongly regular, see e.g. [3, 6].

Let us define the optimal value function as the function value of J along the path,

V (c) := J(yc, uc).

Lemma 4.2. The value function V is continuously differentiable from (C0,+∞) to R.
Moreover we have

V̇ (c) =
(
∂

∂c
maxc

(
λ̄+ c(yc − ψ)

)
+ max′

c(λ̄+ c(yc − ψ))(yc − ψ), pc

)
=
(
∂

∂c
maxc

(
λ̄+ c(yc − ψ)

)
, pc

)
+ c−1(µc, yc − ψ).

(4.2)

Proof. The differentiability follows from the strong regularity of (1.9), see [3] and also [14].
The expression for V̇ follows from the definition of µc.

Theorem 4.3. Under the assumption imposed in this section it holds

V̇ (c) = O(c−2).

Proof. We will estimate the two summands in the right hand side of (4.2). For the first, let
us define the set

Nc =
{
x : |λ̄(x) + c(yc(x) − ψ(x))| < 1

2c

}
.
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On Ω \ Nc we have ∂
∂cmaxc

(
λ̄+ c(yc − ψ)

)
= 0. On Nc it holds by (B.v)∣∣∣∣ ∂∂cmaxc

(
λ̄+ c(yc − ψ)

)∣∣∣∣ ≤ K c−2.

Uniform boundedness of pc in Lq(Ω) yields an O(c−2) bound for the first summand.
Consider the second summand. Due to Lemma 3.3, the functions µc are bounded in

L1(Ω). By Lemma 2.7, we have ‖yc − ψ‖L∞(Pc,uc ) ≤ Kc−1, where Pc,uc ⊃ suppµc. Hence,

|(µc, yc − ψ)| ≤ c−1‖µc‖L1(Ω)‖yc − ψ‖L∞(Pc,uc ) ≤ Kc−2

with a constant K independent of c.

Remark 4.4. The result of Theorem 4.3 improves the estimate V̇ (c) = o(1/c) of [14].
Moreover, it explains the numerically observed convergence rate of V̇ (c) = O(c−2) of [14].

Let us now state and prove the main result of this section.

Theorem 4.5. Under the assumption imposed in this section it holds

|J(y∗, u∗) − J(yc, uc)| ≤ Kc−1,

|J(y∗, u∗) − J(y(uc), uc)| ≤ Kc−1,

‖y∗ − yc‖H1 + ‖y∗ − yc‖L∞ + ‖u∗ − uc‖L2 ≤ Kc−1/2.

Proof. Integration of the estimate of V̇ (c) in Theorem 4.3 with respect to c yields the first
estimate. The second estimate follows from (2.9) via

J(y∗, u∗) − J(y(uc), uc) = J(y∗, u∗) − J(yc, uc) + J(yc, uc) − J(y(uc), uc).

The third inequality for uc − u∗ follows from the growth condition (4.1):

‖uc − u∗‖2 ≤ α(J(y∗, u∗) − J(y(uc), uc)) ≤ Kc−1.

Finally, we can apply the triangle inequality:

‖yc − y∗‖L∞ ≤ ‖yc − yc,u∗‖L∞ + ‖yc,u∗ − y∗‖L∞ ≤ L‖u− u∗‖L2 +Kc−1,

‖yc − y∗‖H1 ≤ ‖yc − yc,u∗‖H1 + ‖yc,u∗ − y∗‖H1 ≤ L‖u− u∗‖L2 +Kc−1/2.

Here we used Theorem 2.10 and Corollary 2.5.

Remark 4.6. The convergence rate ‖u∗ − uc‖L2 ≤ Kc−1/2 provided by Theorem 4.5 co-
incides with the rates observed in the numerical computations of [14]. In this sense, the
results of Theorem 4.5 is sharp. See also our numerical results in the next section.

5 Numerical experiments

Let us report on the numerical results for the solution of the following problem: Minimize

J(y, u) =
1
2
‖y − yd‖2

L2 +
α

2
‖u‖2

L2

subject to the variational inequality

(∇y, ∇v −∇y) ≥ (u, v − y) ∀v ∈ K
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and the control constraints
u ∈ Uad

with K and Uad as in (1.3) and (1.2), respectively. As domain we choose Ω = (0, 1)2. The
data for our example are given by

yd(x) = 5x1 + x2 − 1, ψ(x) = 4(x1(x1 − 1) + x2(x2 − 1)) + 1.5

and
ua = 0.2, ub = 3.

Furthermore, we set α = 0.01. With these choices, all the standing assumptions are satisfied.
We applied the inexact path-following strategy from [14] with tolerances εcc = εnewt =

10−8. We started the path-following algorithm with c0 = 100, and set the parameter
θ = 0.5.

The underlying partial differential equation was discretized by finite elements. We used
P1-elements for state, adjoint, and control discretization. The computational mesh con-
sisted of 80, 000 triangles with maximal diameter h = 0.0071.

The numerical solutions (yc,h, pc,h, λc,h, µc,h) for c = cN ≈ 109 are depicted in Figures
1 and 2. Both control and state constraints are active. As one can see, the adjoint state
is zero on the active set. As shown in figure 2, the multipliers λc,h and µc,h only have low
regularity. Moreover, the support of their irregular part is concentrated on the boundary
of the active set {y = ψ}.

Figure 1: Numerical solution: yc,h, uc,h, pc,h

Figure 2: Numerical solution: λc,h, µc,h

Let us now comment on the convergence rates for this example. The development of the
convergence rates of ‖pcλc‖L1 , ‖µc(yc−ψ)‖L1 , ‖uc−u∗‖L2 , and |V̇ (c)| are depicted in Figure
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3. As the solution of the continuous problem u∗ is unknown, we took the solution of the
regularized problem for the largest value of cN ≈ 109 as reference solution, i.e. u∗ := ucN .

We observe the same convergence rates as predicted by the theory in Proposition 3.5,
Theorem 4.3, and Theorem 4.5.
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Figure 3: Convergence rates for ‖pcλc‖L1 , ‖µc(yc − ψ)‖L1 , |V̇ (c)|, and ‖uc − u∗‖L2
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[5] E. Casas, F. Tröltzsch, and A. Unger. Second-order sufficient optimality conditions for
a nonlinear elliptic control problem. J. for Analysis and its Applications, 15:687–707,
1996.

[6] A. L. Dontchev. Implicit function theorems for generalized equations. Math. Program.,
70 A:91–106, 1995.

[7] M. Hintermüller and I. Kopacka. Mathematical programs with complementarity con-
straints in function space: C- and strong stationarity and a path-following algorithm.
SIAM J. Optim., 20(2):868–902, 2009.

[8] M. Hintermüller and I. Kopacka. A smooth penalty approach and a nonlinear multigrid
algorithm for elliptic MPECs. Comp. Opt. Appl., 2009. To appear.

[9] M. Hintermüller and T. Surowiec. First order optimality conditions for elliptic math-
ematical programs with equilibrium constraints via variational analysis. 2010.

[10] K. Ito and K. Kunisch. Optimal control of elliptic variational inequalities. Appl. Math.
Optim., 41(3):343–364, 2000.

17



[11] K. Ito and K. Kunisch. On the Lagrange multiplier approach to variational prob-
lems and applications, volume 24 of Monographs and Studies in Mathematics. SIAM,,
Philadelphia, 2008.

[12] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and
their applications. Academic Press, New York, 1980.

[13] K. Kunisch and D. Wachsmuth. Sufficient optimality conditions and semi-smooth
Newton methods for optimal control of stationary variational inequalities. ESAIM
Control Optim. Calc. Var., 2010. To appear.

[14] K. Kunisch and D. Wachsmuth. Path-following for optimal control of stationary vari-
ational inequalities. Comp. Opt. Appl., 2011. To appear.

[15] F. Mignot. Contrôle dans les inéquations variationelles elliptiques. J. Functional Anal-
ysis, 22(2):130–185, 1976.

[16] F. Mignot and J.-P. Puel. Optimal control in some variational inequalities. SIAM J.
Control Optim., 22(3):466–476, 1984.

[17] H. Scheel and S. Scholtes. Mathematical programs with complementarity constraints:
stationarity, optimality, and sensitivity. Math. Oper. Res., 25(1):1–22, 2000.

[18] G. Stampacchia. Le problème de Dirichlet pour les équations elliptiques du second
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