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Abstract. It is known that for each combinatorial type of convex 3-dimensio-
nal polyhedra, there is a representative with edges tangent to the unit sphere.
This representative is unique up to projective transformations that fix the unit
sphere. We show that there is a unique representative (up to congruence) with
edges tangent to the unit sphere such that the origin is the barycenter of the
points where the edges touch the sphere.

In today’s language, Steinitz’ fundamental theorem of convex types [11][12] states
that the combinatorial types of convex 3-dimensional polyhedra correspond to the
strongly regular cell decompositions of the 2-sphere. (A cell complex is regular if
the closed cells are attached without identifications on the boundary. A regular
cell complex is strongly regular if the intersection of two closed cells is a closed
cell or empty.) Grünbaum and Shephard [6] asked whether for every combinatorial
type there is a polyhedron with edges tangent to a sphere. This question has
been answered affirmatively: There is always such a polyhedron. Furthermore,
it is unique up to projective transformations of RP3 which fix the sphere and do
not make the polyhedron intersect the plane at infinity. For simplicial polyhedra,
this result is contained in Thurston’s notes [13]. The general case is equivalent
to a theorem on circle packings, of which the first published proof seems to be by
Brightwell and Scheinerman [3]. For another proof, which makes use of a variational
principle, see [2][10]. Schramm [9] proves the much stronger theorem that for every
combinatorial type T and for every smooth strictly convex body K ⊂ R3, there is
a polyhedron of type T with edges tangent to K.

The purpose of this article is to provide a proof (taken from the author’s doctoral
dissertation [10]) for the following theorem, which singles out a unique represen-
tative for each convex type. The claim is not new (see Ziegler [14], p. 118, and
the second edition of Grünbaum’s classic [5], p. 296a) but this proof seems to be.
I thank Alexander Bobenko and Günter Ziegler for making me familiar with the
problem and Ulrich Pinkall who has provided an important insight for its solution.

Theorem. For every combinatorial type of convex 3-dimensional polyhedra there
is, among the representatives with edges tangent to the unit sphere S2 ⊂ R3, a
unique polyhedron (up to isometry) such that the origin 0 ∈ R3 is the barycenter of
the points where the edges touch the sphere.

The following proof of the theorem is based on the fundamental relationship
between projective, hyperbolic, and Möbius geometry. The equation
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d+1 = 0

represents the d-dimensional sphere Sd as a quadric in (d+1)-dimensional projective
space RPd+1. The group of projective transformations of RPd+1 which fix Sd is
O(d+1, 1)/{±1}, where the orthogonal group O(d+1, 1) ⊂ GL (d+2) acts linearly
on the homogeneous coordinates. At the same time, O(d+1, 1)/{±1} acts faithfully
as the Möbius group on Sd, and as the isometry group of (d + 1)-dimensional
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Figure. The ‘distance’ to an infinite point v is measured by cutting off at
some horosphere through v. Left: Poincaré ball model. Right: half-space
model.

hyperbolic space Hd+1, which is identified with the open ball bounded by Sd (the
Klein model of hyperbolic space). For a detailed account of this classical material
see, for example, Hertrich-Jeromin [7] and Kulkarni, Pinkall [8].

The same interplay of geometries led Bern and Eppstein [1][4] to another choice
of a unique representative for each polyhedral type. For types with a symmetry
group which is not just a cyclic group, their representative coincides with ours.

Since the projective transformations of RPd+1 that fix Sd correspond to the
Möbius transformations of Sd, the theorem follows from the following lemma.

Lemma 1. Let v1, . . . , vn be n ≥ 3 distinct points in the d-dimensional unit sphere
Sd ⊂ Rd+1. There exits a Möbius transformation T of Sd, such that

n∑

j=1

Tvj = 0.

If T̃ is another such Möbius transformation, then T̃ = RT , where R is an isometry
of Sd.

On the other hand, the Möbius transformations of Sd correspond to isometries of
the hyperbolic space Hd+1, of which Sd is the infinite boundary. For n ≥ 3 points
v1, . . . , vn ∈ Sd, we are going show that there is a unique point x ∈ Hd+1 such that
the sum of the ‘distances’ to v1, . . . , vn is minimal. Of course, the distance to a
point in the infinite boundary is infinite. The right quantity to use instead is the
distance to a horosphere through the infinite point (see the figure).

Definition. For a horosphere h in Hd+1, define

δh : Hd+1 → R,

δh(x) =





− dist(x, h) if x is inside h,

0 if x ∈ h,

dist(x, h) if x is outside h,

where dist(x, h) is the distance from the point x to the horosphere h.

Suppose v is the infinite point of the horosphere h. Then the shortest path
from x to h lies on the geodesic connecting x and v. If h′ is another horosphere
through v, then δh− δh′ is constant. If g : R→ Hd+1 is an arc-length parametrized
geodesic, then δh ◦ g is a strictly convex function, unless v is an infinite endpoint of
the geodesic g. In that case, δh ◦g(s) = ±(s−s0). These claims are straightforward
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to prove using the Poincaré half-space model, where hyperbolic space is identified
with the upper half space:

Hd+1 =
{
(x0, . . . , xd) ∈ Rd+1

∣∣ x0 > 0
}
,

and the metric is
ds2 =

1
x2

0

(
dx2

0 + dx2
1 + · · ·+ dx2

d

)

Also, one finds that, as x ∈ Hd+1 approaches the infinite boundary,

lim
x→∞

n∑

j=1

δhj
(x) = ∞,

where hj are horospheres through different infinite points and n ≥ 3. Thus, the
following definition of the point of minimal distance sum is proper.

Lemma (and Definition) 2. Let v1, . . . , vn be n points in the infinite boundary of
Hd+1, where n ≥ 3. Choose horospheres h1, . . . , hn through v1, . . . , vn, respectively.
There is a unique point x ∈ Hd+1 for which

∑n
j=1 δhj

(x) is minimal. This point x
does not depend on the choice of horospheres. It is the point of minimal distance
sum from the infinite points v1, . . . , vn.

In the Poincaré ball model, hyperbolic space is identified with the unit ball as in
the Klein model, but the metric is ds2 = 4

(1−P x2
j )2

∑
dx2

j . (Since the Klein model
and the Poincaré ball model agree on the infinite boundary and in the center of the
sphere, one might as well use the Klein model in the following lemma.)

Lemma 3. Let v1, . . . , vn be n ≥ 3 different points in the infinite boundary of
Hd+1. In the Poincaré ball model, vj ∈ Sd ⊂ Rd+1. The origin is the point of
minimal distance sum, if and only if

∑
vj = 0.

Proof. If hj is a horosphere through vj , then the gradient of δhj at the origin is the
unit vector − 1

2vj . ¤

Lemma 1 is now almost immediate. Let x be the point of minimal distance sum
from the v1, . . . , vn in the Poincaré ball model. There is a hyperbolic isometry T

which moves x into the origin. If T̃ is another hyperbolic isometry which moves
x into the origin, then T̃ = RT , with R is an orthogonal transformation of Rd+1.
Lemma 1 follows. This concludes the proof of the theorem.
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