
Generalized Maximum Flows over Time
?

Martin Gro� and Martin Skutella

Fakult�at II { Mathematik und Naturwissenschaften,
Institut f�ur Mathematik, Sekr. MA 5-2

Technische Universit�at Berlin, Stra�e des 17. Juni 136,
10623 Berlin, Germany

fgross,skutellag@math.tu-berlin.de

Abstract. Flows over time and generalized
ows are two advanced net-
work
ow models of utmost importance, as they incorporate two crucial
features occurring in numerous real-life networks. Flows over time fea-
ture time as a problem dimension and allow to realistically model the
fact that commodities (goods, information, etc.) are routed through a
network over time. Generalized
ows allow for gain/loss factors on the
arcs that model physical transformations of a commodity due to leakage,
evaporation, breeding, theft, or interest rates. Although the latter e�ects
are usually time-bound, generalized
ow models featuring a temporal
dimension have never been studied in the literature.
In this paper we introduce the problem of computing a generalized maxi-
mum
ow over time in networks with both gain factors and transit times
on the arcs. While generalized maximum
ows and maximum
ows over
time can be computed e�ciently, our combined problem turns out to be
NP-hard and even completely non-approximable. A natural special case
is given by lossy networks where the loss rate per time unit is identical
on all arcs. For this case we present a (practically e�cient) FPTAS that
also reveals a surprising connection to so-called earliest arrival
ows.

1 Introduction

Two crucial characteristics of network
ows occurring in real-world applications
are
ow variation over time and physical transformation of
ow resulting in
a lesser or greater amount of
ow. These characteristics are not captured by
standard network
ow models known from the literature.

Ford and Fulkerson [10, 11] introduce the notion of
ows over time (also called
dynamic
ows) which model
ow variation over time as well as the fact that

ow does not travel instantaneously through a network but requires a certain
amount of time to travel through each arc. Various interesting examples and
applications can be found in the survey articles of Aronson [1] and Powell, Jaillet,
and Odoni [27].

Generalized
ows have been suggested as a tool in production planning as
early as 1939 by Kantorovich [20]. They model the situation where
ow is not

? Supported by the DFG Research Center Matheon \Mathematics for key technolo-
gies" in Berlin.

necessarily conserved on every arc but may be physically transformed due to
leakage, evaporation, breeding, theft, or interest rates. We refer to the PhD thesis
of Wayne [33] for an in-depth treatment of various generalized
ow problems.

Both from a practical and theoretical point of view, it seems to be natural
to consider a combination of both
ow models. However, to the best of our
knowledge, generalized
ows over time are considered for the �rst time in this
paper. In particular, we hope that the paper will also stimulate further research
in this interesting and challenging direction.

Model and Problem. Consider a directed graph G with node set V (G), arc set
E(G), capacities ue 2 R�0, transit times �e 2 N0 and gain factors
e 2 R>0
on the arcs e 2 E(G). These arc attributes have the following meaning: the
capacity of an arc limits the amount of
ow that can enter the arc in any time
step. For each unit of
ow entering the tail of an arc e 2 E(G) at time �, exactly

e
ow units leave the arc at its head at time � + �e. We assume that we are
given a single source node s 2 V (G) without incoming arcs and a single sink
node t 2 V (G) without outgoing arcs and s 6= t. Furthermore, we are given
a time horizon T 2 N. Combined, we call (G; u; �;
; s; t; T) a network. For a
node v 2 V (G), we denote the outgoing and incoming arcs by �+G(v) and ��G(v),
respectively.

A generalized
ow over time f : E(G) � f0; 1; : : : ; T � 1g ! R�0 in such a
network is a mapping that assigns
ow values fe;� 2 [0; ue] to every arc e 2 E(G)
at every point in time1 � 2 f0; 1; : : : ; T � 1g with respect to (generalized)
ow
conservation:

X
e2��(v)

���eX
�=0

efe;� �
X

e2�+(v)

�X
�=0

fe;� v 2 V (G) n fsg ; � 2 f0; : : : ; T � 1g ; (1)

X
e2��(v)

T��e�1X
�=0

efe;� =
X

e2�+(v)

T�1X
�=0

fe;� v 2 V (G) n fs; tg :

Moreover, we require that fe;� = 0 for all � � T ��e such that no
ow remains in
the network at time T . The above de�nition of
ow conservation allows storage of

ow in nodes; this is referred to as holdover. If holdover is not desired, we require
that equality holds in (1) for all v 2 V (G) n fs; tg. The value jf j of a generalized

ow over time f is the amount of
ow sent to the sink within the time horizon:
jf j :=

P
e2��(t)

PT��e�1
�=0
efe;�. Similarly, we write jxj for the value of a static

generalized
ow x. The arrival pattern of a
ow over time is a mapping that
assigns to every time step � 2 f0; 1; : : : ; T � 1g the total amount of
ow that
has arrived at the sink in the time steps f0; : : : ; �g. The generalized maximum

ow over time problem asks for a generalized
ow over time of maximum value
in a given network (G; u; �;
; s; t; T).

1 In this paper, we use a discrete time model with time steps 0; 1; : : : ; T � 1 for a
given time horizon T 2 N. Results in this setting often carry over to continuous time
models; see, e. g., Fleischer and Tardos [7].

Previous Work. There has been considerable research on the static generalized
maximum
ow problem (i. e., our problem without transit times and temporal
dimension) and on the maximum
ow over time problem (i. e., our problem with-
out gain factors). Since generalized
ow problems can be formulated as linear
programs [4], they can be solved in polynomial time. The �rst combinatorial
polynomial time algorithm for computing generalized maximum
ows was pro-
posed by Goldberg, Plotkin and Tardos [14] and has subsequently been improved
by Radzik [28, 29]. Fleischer and Wayne [8], Goldfarb and Jin [15], Goldfarb,
Jin and Orlin [16], Restrepo and Williamson [30] and Wayne [33, 34] described
further polynomial time algorithms. Truemper [32] noted that generalized max-
imum
ow algorithms show several analogies to minimum cost
ow algorithms,
if the negative logarithm of a gain factor is used as the cost. Nonetheless, these
analogies are limited { it is an open problem whether a strongly polynomial
time algorithm for the generalized maximum
ow problem exists, contrary to
the minimum cost
ow problem.

Maximum
ows over time have been introduced by Ford and Fulkerson [10,
11] in the 1950's. They proposed two techniques for dealing with them { creating
a pseudo-polynomially large time-expanded network to reduce their computation
to a static maximum
ow problem, and a reduction to the static minimum cost

ow problem in the given network, which allows solving this problem in strongly
polynomial time. Flows over time that maximize the amount of
ow sent to the
sink at any point in time are called earliest arrival
ows or universally maximum

ows over time; this concept is due to Gale [13]. Minieka [23] and Wilkinson [35]
showed that the successive shortest path algorithm is capable of solving this
problem. Hoppe and Tardos [19] as well as Fleischer and Skutella [6] describe
di�erent types of FPTASes for this problem. Nonetheless, the complexity of the
earliest arrival
ow problem is mostly open; it is, for example, unclear whether
this problem is NP -hard or not. This is partly due to the fact, that the arrival
pattern (i.e. the function describing the amount of
ow arriving at the sink over
time) is a piecewise linear function with exponentially many breakpoints (which
follows from the work of Zadeh [36]).

Since both generalized maximum
ows and maximum
ows over time can
be dealt with techniques for minimum cost
ows, minimum cost
ow over time
algorithms might seem attractive candidates for generalized maximum
ow over
time algorithms. However, Klinz and Woeginger [22] showed that the minimum
cost
ow over time problem is NP -hard.

Our Contribution. In Section 3 we examine the complexity of the generalized
maximum
ow over time problem with arbitrary gain factors and show that
there is no polynomial approximation algorithm, even for the special case of
series-parallel networks, unless P = NP .

For the special case of lossy networks, we show in Section 4 that the concept of
condensed time-expanded networks introduced by Fleischer and Skutella [6] can
be successfully generalized to the setting of generalized
ows over time and yields
an FPTAS. Notice, however, that this FPTAS approximates the time horizon
rather than the
ow value. That is, for a given time horizon T and " > 0, the

algorithm computes a generalized
ow over time with time horizon (1+ ")T and
value at least as big as the value of a maximum generalized
ow over time with
time horizon T .

Section 5 contains the main contribution of this paper. We consider an impor-
tant special case of the generalized maximum
ow over time problem where gain
factors are proportional to transit times. Here proportional means that there
exists a c 2 R such that
e = 2c��e for every arc e 2 E(G). Such gain factors are
motivated by the fact that in many applications e�ects such as leakage, evapora-
tion or interest rates are strictly time-bound. Also many processes of growth or
decay in nature can be captured by such proportional gain factors. Notice that
in this setting paths with equal transit time have equal gain factors and vice
versa, due to transit times being additive and gain factors being multiplicative
along paths.

For the case c � 0 we reveal interesting connections between generalized
maximum
ows over time and earliest arrival
ows. In Section 5.1 we show how
to compute generalized maximum
ows over time with a variant of the succes-
sive shortest path algorithm on the static network. This result is particularly
interesting since { apart from the most basic maximum
ow over time problem
{ hardly any
ow over time problem is known to be solvable by a static
ow
computation on the underlying static network. It also implies that there are
always optimal solutions that do not need holdover. As the successive shortest
path algorithm requires an exponential number of iterations in the worst case,
our algorithm is not polynomial.

Therefore we prove in Section 5.2 that an FPTAS can be obtained by ter-
minating the successive shortest path algorithm after a polynomial number of
iterations. We wish to emphasize that this FPTAS approximates the maximum

ow value rather than the required time horizon (which FPTASes for
ow over
time problems normally do).

Finally, in Section 5.3 we show that generalized maximum
ows over time
have a unique
ow arrival pattern at the sink, thereby identifying an interesting
connection to earliest arrival
ows. In particular, the unique arrival pattern
of generalized maximum
ows over time is piecewise linear with exponentially
many breakpoints in the worst case. In this respect, the algorithm presented in
Section 5.1 is as good as it gets.

Finally, in Section 6 we conclude with interesting directions for future re-
search.

2 Preliminaries

A path in a graph G is a sequence of arcs P = (e1 = (v1; v2); : : : ; ek = (vk; vk+1))
for a k 2 N, e1; : : : ; ek 2 E(G), v1; : : : ; vk+1 2 V (G) and vi 6= vj unless i = j.
A cycle in a graph G is a sequence of arcs C = (e1 = (v1; v2); : : : ; ek = (vk; v1))
for a k 2 N, e1; : : : ; ek 2 E(G), v1; : : : ; vk 2 V (G) and vi 6= vj unless i = j.
We will treat paths and cycles as sets, if the order of the arcs in a path or cycle
is not relevant. With this convention, we will now extend the transit times and

gain factors to paths and cycles by de�ning: �P :=
P

e2P �e, �C :=
P

e2C �e,

P :=

Q
e2P
e, and
C :=

Q
e2C
e. Cycles C with
C = 1 are called unit

gain cycles, cycles with
C > 1
ow-generating cycles and cycles with
C < 1

ow-absorbing cycles.

In the following let
 ���
E(G) := f �e j e 2 E(G)g denote the set of reverse arcs

of E(G), i. e., each arc e = (v; w) 2 E(G) has a reverse arc �e := (w; v) 2
 ���
E(G).

Moreover, we set
 � �e := e for all e 2 E(G).

De�nition 1 The residual network (Gx; ux; �;
; s; t; T) of a generalized
ow x
in a network (G; u; �;
; s; t; T) is de�ned as follows:

V (Gx) := V (G)

E(Gx) := fe 2 E(G) j xe < ueg [f
 �e j e 2 E(G); xe > 0g � E(G) [

 ���
E(G);

(ux)e :=

(
ue � xe e 2 E(G);

 �e x �e e 2
 ���
E(G);

for all e 2 E(Gx):

Transit times and gain factors are extended to the reverse edges as follows:

� �e := ��e and
 �e =
1

e
; for all e 2 E(G):

De�nition 2 The time expanded network (GT ; uT ;
T ; s0; t0) is constructed from
a network (G; u; �;
; s; t; T) by \copying the network for each time step":

V (GT) := fv� j v 2 V (G); � 2 f0; 1; : : : ; T � 1gg ;

E(G)T := fe� = (v�; w�+�e) j e = (v; w) 2 E(G); � 2 f0; : : : ; T � �e � 1gg ;

HT := f (v�; v�+1) j v 2 V (G); � 2 f0; : : : ; T � 2gg ;

E(GT) := E(G)T [HT :

We call the arcs in HT holdover arcs. If holdover is forbidden at intermediate
nodes, we simply let HT := f (v�; v�+1) j v 2 fs; tg ; � 2 f0; : : : ; T � 2gg. Capac-
ities and gain factors are extended as follows:

uTe0 :=

(
ue e0 = e� 2 E(G)

T ;

1 e0 2 HT ;

Te0 :=

(

e e0 = e� 2 E(G)

T ;

1 e0 2 HT ;

for all e0 2 E(GT). Finally, we set s0 := s0 and t0 := tT�1.

The main advantage of using time expanded networks is that they allow us
to reduce a problem with a temporal dimension into a problem without it. This
comes at the cost of a pseudopolynomial increase in size, however. The following
theorem (based on the results of Ford and Fulkerson [10, 11]) formalizes the
relation of
ows over time in the static network and static
ows in the time-
expanded network.

Theorem 1 (Time expansion). Let (G; u; �;
; s; t; T) be a network with the
corresponding time expanded network (GT ; uT ;
T ; s0; t0). Then, for a given gen-
eralized
ow over time x in (G; u; �;
; s; t; T), there is a (static) generalized
ow
x0 in (GT ; uT ;
T ; s0; t0) that sends exactly the same amount of
ow to the sink,
and vice versa.

Proof. Given x, we de�ne x0 by

x0e� := xe;� for all e� 2 E(G
T);

x0(v�;v�+1) :=
X

e2��(v)

���eX
�=0

exe;� �
X

e2�+(v)

�X
�=0

xe;� for all
v 2 V (G) n fsg ;
� 2 f0; : : : ; T � 2g ;

x0(s�;s�+1) :=
X

e2�+(s)

T�1X
�=�+1

xe;� for all � 2 f0; : : : ; T � 2g :

By construction of the time-expanded network and x being a generalized
ow
over time it follows that x0 satis�es capacity and
ow conservation constraints.
It is easy to verify that if x ful�lls strict
ow conservation constraints, then x0

does as well.
Given x0, we de�ne x by xe;� := x0e� for all e 2 E(G), � 2 f0; : : : ; T � 1� �eg.

As before, it is straightforward to see that x ful�lls capacity and
ow conservation
constraints and strict
ow conservation constraints if x0 does the same. ut

As a result of this theorem, we may use generalized
ows over time in G and
generalized static
ows in GT interchangeably. We refer to [31] for an introduc-
tion to
ows over time and related concepts.

It is a well-known result that a static s-t-
ow can be decomposed into
ow
along s-t-paths and cycles. A similiar decomposition exists for generalized static

ows. The following theorem is due to Gondran and Minoux [17].

Theorem 2. A generalized
ow x in a network (G; u;
; s; t) can be decomposed

into generalized
ows x1; ::; xk, k � jE(G)j with x =
Pk

i=1 xi such that each
generalized
ow xi is of one of the following �ve types (see Figure 1):

Type I: a path from the source s to the sink t,
Type II: a
ow-generating cycle connected to the sink t by a path (possibly of

zero length),
Type III: a path from the source s (possibly of zero length) to a
ow-absorbing

cycle,
Type IV: a unit-gain cycle,
Type V: a
ow-generating cycle connected to a
ow-absorbing cycle by a path

(possibly of zero length).

Similarly, there is a generalized optimality criterion due to Onaga [25, 26].

Theorem 3. A generalized
ow x in a graph G with source s and sink t is a
generalized maximum
ow if, in the residual network Gx, there is neither an s-
t-path along which
ow can be augmented nor a
ow-generating cycle connected
to the sink.

s

t

Type I

s

t

Type II

s

t

Type III

s

t

Type IV

s

t

Type V

Fig. 1. The �ve types of elementary generalized
ows

These results carry over to generalized
ows over time, since we can treat gen-
eralized
ows over time as static generalized
ows in the time-expanded network
and vice versa.

3 Complexity and Hardness of Approximation

In this section we study the problem in the general case, i. e., in the setting of
arbitrary gain factors on the arcs. We begin by analyzing the computational
complexity of the problem.

It is easy to see that the generalized maximum
ow over time problem can
be solved by using the algorithms known for the static generalized maximum

ow problem on a time-expanded network. This yields pseudo-polynomial time
algorithms, implying that the problem is not strongly NP- or PSPACE-hard,
unless P = NP . As a lower bound for the complexity of the generalized max-
imum
ow over time problem, we will show that there is no polynomial time
approximation algorithm for it, unless P = NP . It is still unknown whether a
strongly polynomial time algorithm exists for the static generalized maximum

ow problem.

Theorem 4. There is neither a polynomial algorithm nor a polynomial approx-
imation algorithm for the generalized maximum
ow over time problem, even on
series-parallel graphs and proportional gains, unless P = NP .

3.1 Proof of Theorem 4

Proof. Let

IP = (a1; : : : ; an);

nX
i=1

ai = 2L; a1; : : : ; an; L 2 N

be an instance of the Partition problem. We de�ne a graph

G = (V = fv0; v1; : : : ; vn+1g ; f(v0; v1)g [E [E
0)

by
E := fe1 = (v1; v2); e2 = (v2; v3) : : : ; en = (vn; vn+1)g

E0 := fe01 = (v1; v2); e
0
2 = (v2; v3) : : : ; e

0
n = (vn; vn+1)g

s = v0 v1

� = ai,
 = 2c�ai

� = 0,
 = 1

u = 1
v2

u =1

u =1

u =1

u =1

t = vn+1

Fig. 2. The generalized maximum
ow over time instance used in the reduction.

We set s := v0, t := vn+1, T := L+ 1 and de�ne

ue :=

(
1 e = (v0; v1);

1 else,
�e :=

(
ai e = ei 2 E;

0 e 2 f(v0; v1)g [E
0;

and gain factors
e that are proportional to the transit times, i. e.,
e = 2c�e for
a constant c > 0 that we will �x later. Note that the gain factors are encoded
implicitly by the transit times; the resulting instance of the generalized maxi-
mum
ow over time problem is therefore polynomial in the size of the partition
instance. Figure 2 depicts this instance.

If IP is a Yes-instance with a solution I � f1; 2; : : : ; ng, then there is a
generalized
ow over time that sends at least 2c�L units of
ow from s to t
within the time horizon T . This is, for example, achieved by sending at time 0
one unit of
ow into the path induced by the edge set fei j i 2 Ig[fe

0
i j i 62 Ig.

This path has length L and gain factor 2c�L yielding 2c�L
ow units arriving at
the sink in time step L = T �1. If IP is a No-instance, then there exists no path
of length L. Thus, due to the time horizon of L + 1, there exists no path with
length at least L that is able to carry
ow to the sink in time. At most one unit
of
ow can leave the source at any point in time �, with 2c�minfL�1;L��g being
the best gain factor possible for
ow leaving at time �. This yields an upper
bound of

L�1X
i=0

2c�i + 2c(L�1) =
2c�L � 1

2c � 1
+ 2c(L�1)

on the amount of
ow that can be sent into the sink in aNo-instance. Notice that,
for c su�ciently large, this amount is strictly smaller than the lower bound 2c�L

on the maximum
ow value for a Yes-instance. The size of the gap depending
on c is:

2c�L

2c�L�1
2c�1 + 2c(L�1)

=
2c�L(2c � 1)

2c�L � 1 + (2c � 1)2c(L�1)
=

2c � 1

2� 1
2c �

1
2c�L
�

2c � 1

2
:

Thus, we can make the gap arbitrarily large by choosing c appropriately. There-
fore any polynomial time approximation algorithm for the generalized maximum

ow over time problem is able to solve the NP -hard Partition problem. ut

A similar result can be shown for lossy networks, i. e., networks where all gain
factors are � 1. This requires non-proportional gain factors and transit times,
however.

Note that Theorem 4 still holds if we encode a number n as n = m�2e and use
binary encoding form and e. This is common when using
oating-point numbers,
for instance. This allows us to encode a number n that is a power of 2 in space
O(log log n); it is easy to check that the hardness proof still holds in this case.
It is an interesting open question whether the theorem holds when a number
n in the input has to be encoded in space O(log n). We will see in Section 5.3
that arrival patterns of optimal solutions to the generalized maximum
ow over
time problem bear resemblance to earliest arrival
ows { another
ow over time
problem of unclear complexity which dates back to Gale [13] who referred to it
as universally maximum dynamic
ow problem.

On very restricted classes of graphs like, e. g., shortest-paths networks, it is
possible to deal with the generalized maximum
ow over time problem e�ciently,
along the lines of the work of Hall, Hippler, and Skutella [18].

4 Lossy Networks

In this section, we consider the special case of
e � 1, for all arcs e 2 E(G).
This means that
ow is only lost, but never gained along arcs. We refer to such
networks as lossy networks. It is well-known that any network without
ow-
generating cycles can be turned into a lossy network by node-dependent scaling
of
ow values. Thus, the results discussed in this section hold for all networks
without
ow-generating cycles.

Approximating the maximum
ow value is hard in general, as we have seen in
the last section. This result even carries over to lossy networks if the reduction
given in the proof of Theorem 4 is modi�ed accordingly2. Therefore, we now
focus on relaxing the feasibility, i. e., given some � > 1 and a problem instance I
with a time horizon T , we ask for a feasible solution to I with time horizon � �T
whose value is at least that of an optimal solution to I with time horizon T . We
can use the concept of condensed time-expanded networks from Fleischer and
Skutella [6] to show the following theorem.

Theorem 5. Let OPT be the value of an optimal solution to a generalized max-
imum
ow over time problem instance I = (G; u; �;
; s; t; T) on a lossy network.
For any � > 0, there is an algorithm with running time polynomial in the input
size and 1=� that computes a solution of value at least OPT for the problem
instance I 0 = (G; u; �;
; s; t; (1 + �) � T).

The proof of this theorem follows along the lines of Fleischer and Skutella's
proof for minimum cost
ows over time [6]. The main idea is to round up transit
times of arcs to multiples of some large number � and then to construct a

2 Instead of rewarding the use of the positive length arcs by exponentially large gains,
we punish the use of zero length arcs by exponentially small gains.

s u = 1

u =1;
 = 2u =1;
 = 2

u =1;
 = 2

u =1 t

Fig. 3. An instance where
ow visits nodes multiple times.

condensed time-expanded network containing roughly T=� time layers only. A
suitable choice of � is "2T=n resulting in a condensed time-expanded network
of size polynomial in the input size and 1=�.

It can be shown that one can make up for the imprecision due to the rounding
of transit times by simply increasing the time horizon T by a factor 1 + O(�).
One essential insight of the proof is that the rounding of transit times delays

ow particles by no more than n � � = �2T since we can restrict to solutions
with only simple
ow paths, i. e., no node is visited more than once. For the
case of lossy networks, this approach works for the generalized maximum
ow
problem as well since we can restrict ourselves to simple paths, which is crucial
for applying this technique.

Unfortunately, it is not clear whether Theorem 5 can be generalized to the
case of arbitrary gain factors on the arcs. The main problem is that the assump-
tion of simple
ow paths no longer holds in the general setting. Taking a closer
look at the analysis in the proof of Theorem 5, it su�ces to bound the number
of times a
ow particle visits a node by a polynomial in the input size. But even
this relaxed condition does in general not hold for arbitrary gain factors, as can
be seen from the example depicted in Figure 3. We assume unit transit times
and gains, unless speci�ed otherwise. Then in a generalized maximum
ow over
time each
ow particle has to use the cycle as many times as possible to generate
as much
ow as possible behind the bottleneck edge leaving s. Note, however,
that this cycle cannot be used to generate
ow from scratch as its transit time is
not zero { i. e., we can amplify
ow by spending time in the cycle, but we cannot
generate
ow from scratch.

5 Proportional Losses

In this section, we consider the special case of
 � 2c�� , for some constant c < 0.
This means that in each time unit the same percentage of the remaining
ow
value is lost. This is motivated by problems where goods cannot be transported
reliably, e. g., due to leakage or evaporation. In many applications, this loss
crucially depends on the time spent in the transportation network as many pro-
cesses of growth or decay in nature evolve over time according to an exponential
function.

In Section 5.1 we show that the maximum generalized
ow over time problem
can be solved on the static network by a variant of the Successive Shortest
Path Algorithm. This is particularly remarkable as so far only the most basic
maximum
ow over time problem and the closely related earliest arrival
ow
problem were known to be solvable to optimality by static
ow computations on
the static network (i. e., not requiring the use of time-expanded networks).

In Section 5.2 we show how this algorithm can be turned into an FPTAS
which is considerably more e�cient and uses much less space than the more
general FPTAS based on condensed time-expanded networks discussed in Sec-
tion 4. Furthermore, our FPTAS approximates the
ow value instead of the time
horizon like Fleischer and Skutella's FPTAS. That is, we approximate optimality
instead of feasibility.

Finally, in Section 5.3 we elaborate on an interesting uniqueness property of
maximum generalized
ows.

5.1 A Variant of the Successive Shortest Path Algorithm

Due to the work of Onaga [25, 26] it is known that augmenting
ow successively
along highest gain s-t-paths solves the generalized maximum s-t-
ow problem.
More precisely, Onaga's algorithm for lossy networks proceeds as follows. Be-
gin with the zero-
ow and the corresponding residual network. If no source-sink
path exists in this residual network, terminate. Otherwise, augment
ow along
a source-sink path of maximum gain and continue with the resulting
ow and
residual network. Thus, applying Onaga's algorithm in the time expanded net-
work solves the generalized maximum
ow over time problem { at the cost of
potentially requiring pseudo-polynomially many augmentations in the pseudo-
polynomially large time expanded network.

We will now present an algorithm capable of solving the special case described
above using only the original { not time expanded { network. The idea of this
algorithm is to employ a strategy similar to Onaga's in the original network and
use this as a foundation to construct a
ow over time solving the special case.

We begin by introducing some notations; more precisely, we introduce a
slightly non-standard way of building a time-expanded network from copies of
the original network. Let (G; u; �;
; s; t; T) be a (residual) network, let
v!w be
the maximum gain of a v-w-path in G and �v!w the length of a shortest v-w-path
(with respect to transit times) in G. Notice that �v!w := 1

c log
v!w. Initially,
we introduce our construction for the special case of unique gain networks (i. e.,
a network where all paths from a node v 2 V (G) to a node w 2 V (G) have the
same gain) only; this special case has the advantage of allowing for a simpler
and more concise de�nition. The �-copy �G of G for � 2 f0; : : : ; T � �s!t � 1g
is then:

V (�G) :=
�
v� 2 V (G

T)
�� v 2 V (G); � = � + �s!v

	
E(�G) :=

�
e� 2 E(G

T)
�� e = (v; w) 2 E(G); � = � + �s!v

	

More generally, we de�ne �-copy �G of G for some � 2 f0; : : : ; T � �s!t � 1g to
be the following subgraph of the time expanded network GT :

E(�G) :=
�
e� 2 E(G

T)
�� e = (v; w) 2 E(G); � = � + �s!v; � + �e + �w!t < T

	
V (�G) :=

[
e=(v;w)2E(�G)

fv; wg :

For the special case mentioned above these two de�nitions coincide. Similarly,
we de�ne the [�; �0]-copies [�; �0]G of G, 0 � � < �0 � T � �s!t � 1 as

V ([�; �0]G) :=

�0[
�=�

V (�G);

E([�; �0]G) :=

�0[
�=�

E(�G) [
[

v2V (G)

�0+�s!v�1[
�=�+�s!v

f(v�; v�+1)g :

For brevity, we also de�ne G := [0; T � �s!t � 1]G if �s!t < T � 1 and as the
empty graph otherwise. Note that G is the subnetwork of GT containing exactly
the nodes and edges of GT that can be part of s0-t0-paths (with s0, t0 being
the source and sink of the time-expanded network, see De�nition 2). For our
purposes, it is clearly su�cient to work with G instead of GT .

Furthermore, if we consider an s0-t0-
ow f in a time-expanded network GT ,
it can happen that
ow is sent through holdover edges at source and sink. In this
case, the residual network GT

f corresponding to such a
ow f can have reverse
holdover edges at source and sink. These reverse holdover edges do not help to
construct new s0-t0-paths in the time-expanded-network or new
ow-generating
cycles with a path to t0. By Theorem 2 it follows that they can be omitted as well.

We write fGT
f for the subnetwork of GT

f created by removing nodes and edges
not on s0-t0-paths and reverse holdover edges at source and sink. Figures 4, 5,
and 6 show a network, its time-expansion as well as selected �- and [�; �0]-copies.

Analogously, we de�ne for a
ow x in such a unique gain network G the
�-
ow �x of x in �G for some � 2 f0; : : : ; T � �s!t � 1g by (�x)e� := xe for
all e� 2 E(�G). Furthermore, we de�ne the [�; �0]-
ow [�; �0]x of x in [�; �0]G for
some �; �0 2 f0; : : : ; T � �s!t � 1g with � < �0 by setting for all e 2 E([�; �0]G):

([�; �0]x)e :=

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0 e = (v�; v�+1); v 2 V (G) n fs; tg ;

(�0 � � + 1)jxj e = (s�; s�+1); � < �;

(�0 � �)jxj e = (s�; s�+1); � � � < �0;

0 e = (s�; s�+1); �
0 � �;

0 e = (t�; t�+1); � � � + �s!t;

(� � � � �s!t + 1)jxj e = (t�; t�+1); � + �s!t < � < �0 + �s!t;

(�0 � � + 1)jxj e = (t�; t�+1); � � �0 + �s!t;

xe e = e�:

s

v
� = 1

w
� = 2

� = 1 t

� = 3

� = 1

G

s

v
� = 1

w
� = 2

� = 1 t

� = 1

G0

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G5

Fig. 4. A network G, its highest-gain network G0 and its time-expanded network G5

(note that gains are de�ned implicitly by the transit times)

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

0G

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

1G0

Fig. 5. 0G and 1G0 (dashed) as subnetworks of G5

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G0

Fig. 6. G and G0 (dashed) as subnetworks of G5

Again, we de�ne for brevity x := [0; T��s!t�1]x for a
ow x inG, if �s!t < T�1
and as the zero
ow otherwise. Informally spoken, the idea of our algorithm is to
start with the zero
ow, compute a maximum-
ow in the highest-gain / shortest-
path subnetwork of the static residual network, augment this
ow and repeat this
process until no s-t-path exists in the static residual network. We then use the
augmented maximum-
ows to construct an optimal solution to our problem, by
sending each
ow as long as possible into the network (i. e., temporally repeated).
We will use the notations introduced above to describe the construction of the

ow over time in the last step of our algorithm, and show its optimality.

Algorithm 1 Let I = (G; u; �;
; s; t; T) be an instance of the generalized max-
imum
ow over time problem.

1. Begin with i := 0 and the static zero-
ow x0 :� 0.

2. If no s-t-path exists in Gxi or if �s!t � T in Gxi , then set k := i � 1 and
go to step 6.

3. Restrict the static residual network Gxi to the network G0xi containing only
paths of maximum gain and compute a generalized maximum
ow x0i in G0xi .

4. De�ne xi+1 by adding x
0
i to xi as follows: (xi+1)e := (xi)e+(x0i)e+
�1e (x0i) �e

for all e 2 E(G). Notice that xi+1 is a feasible
ow in G, since x0i is a feasible

ow in a restricted residual network of xi.

5. Set i := i+ 1 and go to step 2.

6. Construct a generalized
ow over time f de�ned by f =
Pk

j=0 x
0
j.

We will prove the correctness of Algorithm 1 by comparing it to Onaga's
algorithm applied to the time expanded network. For i = 0; : : : ; k + 1, de�ne a

generalized
ow over time fi :=
Pi�1

j=0 x
0
j . In particular, f0 is the zero
ow over

time and f = fk+1. The strategy for our proof is to show that in every iteration
x0i is a
ow along highest gain paths in GT

fi
. Then successively adding x00; : : : ; x

0
k

produces the same result as Onaga's algorithm applied to the time expanded
network, showing correctness of our algorithm. The following claim turns out to
be helpful in proving the correctness of Algorithm 1.

Claim. For each i = 0; : : : ; k+ 1, it holds that Gxi =
gGT
fi
, i. e., the copied static

network is equal to the pruned time-expanded network after each iteration of
the algorithm.

Proof. The proof uses induction on i. For i = 0, we get Gx0 = G = fGT = gGT
f0
.

Now we assume that Gxi =
gGT
fi

holds for some i. In iteration i, the algorithm

adds x0i to fi and x0i to xi, resulting in fi+1 and xi+1, respectively. Due to x0i
being a maximum
ow in the highest gain network of Gxi it follows that x

0
i is a

maximum
ow in the highest gain network of Gxi .

Sending x0i in Gxi causes all copies �Gxi of Gxi to be changed as well. These
changes due to sending
ow are the same that sending x0i in Gxi causes. In
contrast to Gxi , Gxi+1 might also gain or lose arcs that either become again part
of an s0-t0-path or are no longer part of an s0-t0-path. However, note that both x0i
and x0i are
ows in the highest gain network of Gxi and Gxi , respectively. This
implies that sending these
ows does not increase the gain of source-node- or
node-sink-paths. By proportionality of gains and transit times it follows that
the transit time of source-node- or node-sink-paths does not decrease; thus, no
arcs are gained this way. Similiarly, all arcs lost due to no longer being on an

s0-t0-path in Gxi+1 are by de�nition also removed in ĜT
fi+1

. Thus, Gxi+1 = ĜT
fi+1

.
This concludes the proof. ut

Theorem 6. Algorithm 1 computes a generalized maximum
ow over time.

Proof. Making use of Claim 5.1 we show that, for i = k + 1 (i. e., after the �nal
iteration), there is no s0-t0-path in GT

f . Since the algorithm terminates, there

is no s-t-path in Gxi and therefore no s0-t0-path in Gxi =
fGT
f . As G

T
f has no

more s0-t0-paths then fGT
f the result follows. Note that our instance has no
ow-

generating cycles to begin with, due to c < 0, and sending
ow along highest
gain paths does not generate new
ow-generating cycles (see Onaga [25, 26]).

Thus, our algorithm starts with the zero
ow over time f0, similar to Onaga's
algorithm. In every iteration,
ow is only being augmented along highest gain

paths in Gxi and by Claim 5.1 this equals gGT
fi

as well. Since this is exactly
what Onaga's algorithm does, the correctness of our algorithm follows. Note
that Claim 5.1 also guarantees that f is a feasible generalized
ow over time,

due to each x0i being a
ow in G0xi which is a restricted residual network of gGT
fi
.

This concludes the proof. ut

We conclude this section by examining the running time of Algorithm 1.
Let n := jV (G)j, m := jE(G)j and U := maxe2E(G) ue for a problem instance
(G; u; �;
; s; t; T). In our case, a highest gain path can be found in O(nm) time
using Moore-Bellman-Ford's algorithm (see Bellman [2], Ford [9], Moore [24]) or
in O(m+n log n) by applying Dijkstra's algorithm [5] with Fibonacci heaps (see
Fredman and Tarjan [12]) and reduced costs. For both algorithms, �e =

1
c log
e

is being used as a cost function. Both algorithms are capable of computing the
highest-gain network as well. A generalized maximum
ow in the highest-gain
network can then be computed by a standard maximum
ow algorithm. Since
there are at most T time steps, there can be at most T iterations. The running
time of an iteration is dominated by the maximum
ow computation, yielding a
running time of O(maxflow � T), where O(maxflow) is the running time of the
maximum
ow algorithm. King, Rao, and Tarjan[21] describe a maximum
ow
algorithm with a running time of O(nm logm=(n logn) n), resulting in a running
time of O(nm logm=(n logn) n � T) for our algorithm.

For special cases, this runtime can be improved further. Beygang, Krumke,
and Zeck [3] recently studied static generalized maximum
ows in series-parallel
networks and discovered that a greedy-strategy that chooses always the highest-
gain path in the original { not residual { network is su�cient for �nding an
optimal solution. This can be carried over to our setting and can be used for
bounding the number of paths used. Since each augmentation saturates an arc,
there can be at most m iterations, yielding a polynomial time algorithm.

5.2 Turning the Algorithm into an FPTAS

In this section, we will see that Algorithm 1 can be terminated early to obtain
an approximate solution. In fact, the algorithm can be turned into an FPTAS.

Theorem 7. Let OPT be the value of an optimal solution to a generalized
maximum
ow over time problem instance I = (G; u; �;
; s; t; T), " > 0, and
U := maxe2E ue. Algorithm 1 has found a solution of value at least OPT � "
after all paths of length � �� with

�� := � 1
c (log

1
" + logm+ logU + 2 log T)

have been processed (recall that the lengths of the paths used by the algorithm
are monotonically increasing). For a constant c < 0 and using a maximum

ow based approach as proposed in Section 5.1, this leads to a running time of
O(maxflow � (log "�1+ logU + log T)) for a solution of value at least OPT � ".

Proof. Algorithm 1 computes an optimal solution for the generalized maximum

ow over time problem. For i 2 f0; : : : ; T � 1g, let ai denote the amount of
ow
sent into paths of length (transit time) i in a time step � 2 f0; : : : ; T � i� 1g by
the algorithm. Note that the algorithm does not use holdover; the gain factor of
a path of length i is therefore 2c�i and
ow is sent into a path of length i for T � i
time steps. The length of the paths used by Algorithm 1 increases monotonically.

After all paths of length � i have been found, only paths of length i+1; : : : ; T�1
remain. The amount of
ow arriving at the sink by such paths equals

T�1X
j=i+1

aj � 2
c�j � (T � j) :

Due to c < 0 it follows that max
�
2c(i+1); : : : ; 2c(T�1)

	
= 2c(i+1). Furthermore,

it is clear that T � j � T . The amount of
ow sent into paths in one time step
is bounded by m � U . This yields

T�1X
j=i+1

aj � 2
c�j � (T � j) �

T�1X
j=i+1

m � U � 2c(i+1) � T � m � U � 2c(i+1) � T 2 :

For i = � 1
c (log

1
" + logm+ logU +2 log T)� 1, the right hand side equals ". ut

The above theorem allows an approximation within a constant value ". For
an FPTAS, we need to approximate OPT within a factor of (1 � ") or a value
of "OPT . This can be done by a slight modi�cation of Theorem 7.

Theorem 8. Let OPT be the value of an optimal solution for a generalized
maximum
ow over time problem instance I = (G; u; �;
; s; t; T), " > 0 and
U := maxe2E ue. Algorithm 1 has found a solution of value at least (1� ")OPT
after �� iterations with

�� := d� 1
c (log

1
" + logm+ logU + 2 log T)e

For a constant c < 0 and using a maximum
ow based approach as proposed in
Section 5.1, this leads to a running time of O(maxflow �(log "�1+logU+log T))
for a solution of value at least (1� ")OPT .

Proof. We use the arguments and notations of the proof of Theorem 7. Let i0
be the length of the �rst iteration's paths. We assume w.l.o.g that the minimum
capacity in the network is 1. Consequently, at least 2ci0
ow is sent in the �rst
iteration. We now want to determine �� such that the amount of
ow sent to
the sink by later iterations is � "OPT .

T�1X
j=i0+��

aj � 2
c�j � (T � j) � m � U � 2c(i0+�

�) � T 2 � "2ci0 � "OPT

This inequality can be transformed to

m � U � 2c�
�

� T 2 � " , �� � � 1
c (log

1
" + logm+ logU + 2 log T)

This concludes the proof. ut

5.3 Arrival Pattern and Connections to Earliest Arrival Flows

In Section 5.1, we have seen that there is always an optimal solution that uses
no holdover at any node except for s and t. In this section, we will show that all
such optimal solutions share the same arrival pattern.

Theorem 9. Let I = (G; u; �;
; s; t; T) be an instance of the generalized max-
imum
ow over time problem such that
 � 2c� for some constant c < 0. Let
f , f 0 be generalized maximum
ows over time for I that do not use holdover in
any node except for s and t. Then f and f 0 have the same arrival pattern.

Proof. Assume that f and f 0 ful�ll the requirements of the theorem but have
di�erent arrival patterns. Consider the time-expanded network GT and treat f
and f 0 as generalized static
ows in GT . We can de�ne f�f 0 to be a generalized

ow in the residual network GT

f 0 of f
0 as follows:

(f � f 0)e :=

(
max ffe � f 0e; 0g e 2 E(GT);

max
�
(f 0 �e � f �e) �
 �e ; 0

	 �e 2 E(GT);
for all e 2 E(GT

f 0):

Generalized
ows can be decomposed into �ve types of elementary generalized

ows according to Theorem 2. Such an elementary
ow g in GT

f 0 can be added

to f 0 in GT in the following way:

(f 0 + g)e := f 0e + ge � g �e
 �e for all e 2 E(GT):

Thus we can conclude that the decomposition does not contain Type I or II
elementary
ows since they could be added to f 0 increasing the total
ow sent to
the sink t0, which would yield a contradiction to the maximality of f 0. Similarly,
the decomposition cannot contain Type III or V
ows routing
ow through a
copy t� of sink t since such a
ow would enable a Type I or II
ow. All other
kinds of Type III or V
ows can obviously not a�ect the arrival pattern when
added to f 0. Due to our choice of f and f 0, one of these
ows needs to change
the arrival pattern, however. This leaves Type IV
ows as the only possibility
left. Once again, we can con�ne ourselves to Type IV
ows sending
ow along
holdover or reverse holdover edges at t (if no form of holdover is used, the arrival
pattern does not change due to
ow conservation). Notice that such a Type IV

ow does not use holdover at s since it would otherwise enable a Type I
ow.

We now partition the edges used by a Type IV
ow into the set of all used
holdover edges H, the set of all used reverse holdover edges R and the set of all
other edges O. Type IV
ows send
ow along a unit-gain-cycle C. This leads to:

1 =
C =
Y
e2H

e| {z }
=1

�
Y
e2R

e| {z }
=1

�
Y
e2O

e =)
Y
e2O

e = 1

Each edge e 2 O corresponds to an edge at a certain point in time, each edge
e 2 H corresponds to waiting one time unit at a node and each edge e 2 R

t

�

� � 1

�+ 1

�

Case 1

t t

�

� � 1

�+ 1

�

Case 2

t

Fig. 7. Rerouting to construct
ow-generating cycles

corresponds to canceling waiting time at a node for one time unit. The unit-gain
cycle C itself corresponds to a cycle with transit time 0, yielding

0 = �C = jHj � jRj+
X
e2O

�e :

Proportionality of transit times and gain factors give us

1 =
Y
e2O

e =
Y
e2O

2c�e = 2c
P

e2O
�e =)

X
e2O

�e = 0 =) jHj = jRj :

Thus we know now that Type IV
ows using holdover / reverse holdover at tmust
use an equal number of holdover and reverse holdover arcs. We will complete
the proof by showing that a type IV
ow using an equal number of holdover
and reverse holdover arcs at t and none at s allows us to reroute
ow along a

ow-generating cycle in contradiction to the maximality of f 0. Figure 7 depicts
this rerouting.

Let f� be such a type IV
ow. By assumption, there is a holdover arc used
by f� to let
ow wait in t from time layer � to � + 1 and a reverse holdover
arc used by f� to cancel waiting in t from time layer � to � � 1. There are two
possible cases, depending on which happens earlier in time. We will refer to the
case where � < � as Case 1, the other as Case 2. Figure 7 shows these two cases.
Due to the fact that holdover arcs at the sink have unlimited capacity, we can
reroute the
ow by letting the
ow wait at t from � to � � 1 in the �rst case
and �+1 to � in the second case. The resulting cycles are
ow-generating, since
they use holdover but no reverse holdover; the rest of the cycle must therefore
have negative transit time, which implies
ow-generation by proportionality of
transit times and gain factors. This shows the contradiction and completes the
proof. ut

If we consider a slightly di�erent model of
ow-conservation, where
ow can
only be safely stored at source and sink and is subject to the same proportional
loss when waiting in a node that occurs when traversing arcs, we can give a
stronger version of the previous theorem.

Theorem 10. Let I = (G; u; �;
; s; t; T) be an instance of the generalized max-
imum
ow over time problem such that
 � 2c� for some constant c < 0 and
holdover at a node v 2 V (G) n fs; tg has a loss factor of 2c for each time unit
spent waiting. Let f , f 0 be generalized maximum
ows over time for I. Then f
and f 0 have the same arrival pattern.

Proof. The arguments of the previous proof hold here as well, if we make a single
modi�cation: instead of partioning the arcs of the Type IV
ow into holdover,
reverse holdover and normal arcs we partition the arcs now into holdover arcs
at the sink, reverse holdover at the sink and all other arcs (i.e. normal arcs
and holdover arcs at intermediate nodes). This is due to the fact, that holdover
arcs in nodes other than source and sink are now allowed, in contrast to the
previous theorem. These holdover arcs behave the same as normal arcs in terms of
proportional loss and are therefore grouped with them; the following arguments
of the previous proof show then this claim as well. ut

6 Conclusion

We have introduced the generalized maximum
ow over time problem that, for
the �rst time, combines important features captured by
ows over time and gen-
eralized
ows in one network
ow model. While the generalized maximum
ow
over time problem cannot be approximated in polynomial time, unless P=NP,
we have presented an e�cient FPTAS for the special case of lossy networks with
proportional gain factors. The algorithm relies on the successive shortest paths
algorithm and reveals an interesting connection to earliest arrival
ows.

The generalized
ow over time model presented in this paper raises numer-
ous interesting questions and directions for future research. The most natural
generalizations of the considered network
ow problem seem to be generalized
minimum cost
ows over time and generalized multicommodity
ows over time.
An interesting approach to these
ow problems is the concept of condensed
time-expanded networks introduced by Fleischer and Skutella [6]. However, as
mentioned in Section 4, the analysis of these condensed time-expanded networks
crucially relies on the assumption that, in an optimum solution,
ow particles
travel along simple paths from the source to the sink. This assumption, however,
is no longer valid for generalized
ows over time in networks containing
ow-
generating cycles. The same holds for multi-commodity
ows over time without
holdover at intermediate nodes. With respect to practical applications, it is an
important open problem and a big theoretical challenge to make condensed time-
expanded networks usable and, in particular, analyzable for such
ow over time
problems.

Acknowledgements. The authors wish to thank the anonymous referees whose
valuable comments helped to improve the presentation of the paper.

References

[1] J. E. Aronson. A survey of dynamic network
ows. Annals of Operations Research,
20:1{66, 1989.

[2] R. E. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87{
90, 1958.

[3] K. Beygang, S. O. Krumke, and C. Zeck. Generalized max
ow in series-parallel
graphs. Report in Wirtschaftsmathematik 125, TU Kaiserslautern, 2010.

[4] G. B. Dantzig. Linear programming and extensions. Princeton University Press,
1962.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269{271, 1959.

[6] L. Fleischer and M. Skutella. Quickest
ows over time. SIAM Journal on Com-

puting, 36:1600{1630, 2007.
[7] L. K. Fleischer and �E. Tardos. E�cient continuous-time dynamic network
ow

algorithms. Operations Research Letters, 23:71{80, 1998.
[8] L. K. Fleischer and K. D. Wayne. Fast and simple approximation schemes for

generalized
ow. Mathematical Programming, 91:215{238, 2002.
[9] L. R. Ford. Network
ow theory. Paper P-923, The Rand Corporation, 1956.
[10] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,

1962.
[11] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic
ows from static

ows. Operations Research, 6:419{433, 1987.
[12] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved

network optimization problems. Journal of the ACM, 34:596{615, 1987.
[13] D. Gale. Transient
ows in networks. Michigan Mathematical Journal, 6:59{63,

1959.
[14] A. V. Goldberg, S. A. Plotkin, and �E. Tardos. Combinatorial algorithms for the

generalized circulation problem. Mathematics of Operations Research, 16:351{379,
1991.

[15] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized
circulation problem. Mathematics of Operations Research, 21:529{539, 1996.

[16] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest gain augmenting
path algorithms for the generalized circulation problem. Mathematics of Opera-

tions Research, 22:793{802, 1997.
[17] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.
[18] A. Hall, S. Hippler, and M. Skutella. Multicommodity
ows over time: E�cient

algorithms and complexity. Theoretical Computer Science, 379:387{404, 2007.
[19] B. Hoppe and �E. Tardos. Polynomial time algorithms for some evacuation prob-

lems. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 433{441, 1994.
[20] L. V. Kantorovich. Mathematical methods of organizing and planning produc-

tion. Technical report, Publication House of the Leningrad State University, 1939.
Translated in Management Science, 6:366{422, 1960.

[21] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum
ow algorithm.
Journal of Algorithms, 17:447{474, 1994.

[22] B. Klinz and G. J. Woeginger. Minimum cost dynamic
ows: The series parallel
case. Networks, 43:153{162, 2004.

[23] E. Minieka. Maximal, lexicographic, and dynamic network
ows. Operations

Research, 21:517{527, 1973.

[24] E. F. Moore. The shortest path through a maze. In Proceedings of the Inter-

national Symposium on Switching, Part II, pages 285{292. Harvard University
Press, 1959.

[25] K. Onaga. Dynamic programming of optimum
ows in lossy communication nets.
IEEE Transactions on Circuit Theory, 13:282{287, 1966.

[26] K. Onaga. Optimal
ows in general communication networks. Journal of the

Franklin Institute, 283:308{327, 1967.
[27] W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and

routing. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser,
editors, Network Routing, volume 8 of Handbooks in Operations Research and

Management Science, chapter 3, pages 141{295. North{Holland, Amsterdam, The
Netherlands, 1995.

[28] T. Radzik. Faster algorithms for the generalized network
ow problem. Mathe-

matics of Operations Research, 23:69{100, 1998.
[29] T. Radzik. Improving time bounds on maximum generalised
ow computations

by contracting the network. Theoretical Computer Science, 312:75{94, 2004.
[30] M. Restrepo and D. P. Williamson. A simple gap-canceling algorithm for the

generalized maximum
ow problem. Mathematical Programming, 118:47{74, 2009.
[31] M. Skutella. An introduction to network
ows over time. In Research Trends in

Combinatorial Optimization, pages 451{482. Springer, 2009.
[32] K. Truemper. On max
ows with gains and pure min-cost
ows. SIAM Journal

on Applied Mathematics, 32:450{456, 1977.
[33] K. D. Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Cornell Uni-

versity, 1999.
[34] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum

cost
ow. Mathematics of Operations Research, 27:445{459, 2002.
[35] W. L. Wilkinson. An algorithm for universal maximal dynamic
ows in a network.

Operations Research, 19:1602{1612, 1971.
[36] N. Zadeh. A bad network problem for the simplex method and other minimum

cost
ow algorithms. Mathematical Programming, 5:255{266, 1973.

