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Abstract. We consider a basic subproblem which arises in line plan-

ning, and is of particular importance in the context of a high system

load or robustness: How much can be routed maximally along all possi-

ble lines? The essence of this problem is the Path Constrained Network

Flow (PCN) problem. We explore the complexity of this problem and

its dual. In particular we show for the primal that it is as hard to

approximate as MAX CLIQUE and for the dual that it is as hard to

approximate as SET COVER. We also prove that the PCN problem is

hard for special graph classes, interesting both from a complexity and

from a practical perspective. Finally, we present a special graph class

for which there is a polynomial-time algorithm.

Keywords: Line Planning, Network Flows, Complexity, Robustness, Planar

Graphs, Bounded Treewidth

1. Introduction

Motivation. A classical step in the hierarchy of planning scheduled trans-

portation networks is line planning. Its task is to determine the lines and

their frequencies along which the transportation service shall be offered.

Given a network, i.e., a directed graph with upper capacities on the arcs,

a line plan is a set of lines, i.e., paths in the network, and an integer as-

signed to each line, its frequency. A line plan is feasible, if it satisfies a given

transportation demand and respects the upper arc-capacities of the under-

lying network. Moreover, the lines that can be used, i.e., the trips a physical

train and its crew can serve, are subject to various regulations such as length

bounds, limits on the number of terminals and several other, partly very spe-

cific requirements. Therefore, line planning often relies on a so-called line
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pool, i.e., an explicitly given set of possible paths to which the line plan is

restricted.

The objective in line planning is usually some minimization of opera-

tive cost or cost of passenger’s discomfort. Special events, like world cups,

fairs, concerts, or temporary exhibitions could create exceptional demand for

which special line plans have to be designed. In other cases, construction or

maintenance works create exceptionally low upper capacities in the network.

Again special line plans are required. Finally, even daily, high utilization of

a scarce infrastructure may demand for the construction of a line plan that

makes the system work to its capacity. It is natural to ask for the maximum

demand that can be met given a network, upper arc-capacities and a line

pool.

This poses the Path Constrained Network Flow Problem, which has al-

ready been mentioned in [5]. We examine the complexity of this question,

showing that even its single-source, single-sink version is NP-hard and in

a strong sense inapproximable. Moreover, we study the problem on special

graph classes like planar graphs, graphs with bounded treewidth, and a cer-

tain class derived from trees, for which we devise a non-trivial, polynomial-

time algorithm.

Related Work. Usually an instance of a line planning problem is given by

a directed graph G = (V, A), with arc-capacities c : A → R+, and projected

demands, e.g., how many passengers intend to travel from node x to node

y. Moreover, we are given explicitly or implicitly the set of possible lines,

i.e., certain paths in G, the line pool denoted by P. A feasible line plan is

an assignment of integer frequencies fp to the lines p ∈ P, such that the

capacity of each arc a is respected, i.e.,
∑

p∈P:a∈p fp ≤ c(a), and the demand

can be fulfilled.

Whether the demand, i.e., a certain amount of transportation for each

origin-destination pair, can be fulfilled by a fixed line plan is itself a non-

trivial problem. The passengers have to be routed along the chosen lines

respecting the capacities on their path offered by the line plan. In practice,

the routing constructed by a central optimization may not coincide with

the routing actually chosen by the individual passengers. Hereby, violations

of capacities may arise in a real, individual routing even though a feasible,

central routing exists.
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There are different approaches in the literature to address this issue. For

example, in the work of Bussieck et al. [2] a system split in optimiza-

tion is used. Prior to constructing the line plan the passengers are routed

through the network G according to their origin and destination, and some

assumptions on their routing behavior. This step entails a (fractional) multi-

commodity flow problem. The total resulting flow on an arc a is interpreted

as its lower arc capacity ℓ(a). Then an instance of a line planning problem is

a quintuple (G, c, ℓ,P, cst) consisting of a network, upper and lower capaci-

ties on each arc, a line pool, and some cost function cst. The optimization

problem can be expressed as:

min cst(f)

ℓ(a) ≤
∑

p∈P:a∈p

fp ≤ c(a) ∀a ∈ A

f ≥ 0

For f restricted to integer vectors, this is known to be NP-hard [2].

A different way to define the demand satisfaction is pursued by [1, 12].

Here the multi-commodity flow problem of routing the passengers is part

of the line planning optimization procedure. The articles [1, 2] contain a

comprehensive overview on the literature for their specific approaches. Any

approach with implicit or explicit reference to a line pool has the path con-

strained network flow as a subproblem that becomes crucial when the system

works to capacity.

Our question is basic to both approaches, and crucial whenever upper

capacities become tight.

The problem we consider is a slight specialization of the Path Constrained

Network Flow (PCN) problem defined already in Garey and Johnson ([5],

Problem ND34). They stated that the PCN problem is—among some other

complexity features—NP-complete. Our hardness and inapproximability

results carry over to the original PCN as we consider a specialization.

For the proof of hardness Garey and Johnson refer to a private com-

munication with H.J. Prömel. To our knowledge no proof has ever been

published and Prömel himself in a further private communication with the

authors kindly stated that he was no longer in possession of one. The proofs

we give recover all results stated in [5] and add several complexity results,

in particular the inapproximability of the optimization problem. Moreover,

we add results for special graph classes and study the dual problem.
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The (s, t)-PCN problem on (s, t)-extended trees is closely related to the

maximum multi-commodity flow problem in trees. Garg et al. [6] show that

the problem is NP-hard for capacities of 1 and 2.

Definition of the PCN Problem. In the classical flow theory, flow is sent

in a network from source to sink respecting arc capacities. In the 60s Ford

and Fulkerson showed that any flow can be decomposed into path flows and

cycle flows [4]. In the general case the set of paths used for the decomposition

is not restricted. In our case we are given a set of paths P. We are now

interested in those flows that can be decomposed using only the paths in P.

We give the formal definition of the PCN problem according to Garey and

Johnson [5]:

Definition 1.1. [Path Constrained Network Flow Problem] Let G = (V, A)

be a directed graph with capacities c(a) ∈ N for each a ∈ A, a source s ∈ V

and a sink t ∈ V . Furthermore, a collection P of directed paths in G and a

requirement K ∈ N is given. The set of paths Pa ⊂ P is the set of all paths in

P containing the arc a. The question is whether there is a function y : P → N

such that for the flow function f : A → N defined by f(a) =
∑

p∈Pa
y(p),

the following three conditions hold:

(1) f(a) ≤ c(a) for all a ∈ A,

(2) for each v ∈ V \{s, t}, flow is conserved at v, and

(3) the net flow into t is at least K.

We specialize the PCN problem twice: first to the (s, t)-PCN by restricting

the set of paths P to a set of (s, t)-paths, and second to the (s, t)-PCN1

problem by additionally demanding unit capacities on the arcs. Note that

flow conservation (2) is automatically given in this case. Due to the unit

capacities any solution for the (s, t)-PCN1 consists of arc disjoint (s, t)-paths.

Hardness results for (s, t)-PCN1 hold for (s, t)-PCN and those for (s, t)-PCN

carry over to PCN.

As we also consider inapproximability we have to define a PCN optimiza-

tion problem. The objective is to maximize the value of the net flow K. We

will refer to both problems as the PCN problem, as it will be clear from the

context whether the optimization or the decision problem is meant.

The dual problem of (s, t)-PCN is defined as it arises from the dualization

of the obvious IP formulation:

Definition 1.2. Let G = (V, A) be a directed graph with capacities c(a) ∈ N

for each a ∈ A, a source s ∈ V and a sink t ∈ V . Furthermore, a collection P
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of directed (s, t)-paths in G and a requirement K ∈ N is given. The objective

is to find a set of arcs A′ with weight
∑

a∈A′ c(a) smaller than K, such that

every path in P traverses at least one arc in A′.

The optimization version of this problem is to find a proper arc set A′

with minimum weight.

Results and Techniques. We give positive and negative results for the

(s, t)-PCN problem and the (s, t)-PCN1 problem and their duals. Note that

the hardness results carry over to the more general cases.

In detail we prove NP-hardness for the (s, t)-PCN1 problem, and we es-

tablish NP-completeness for the questions whether its integrality gaps, re-

spectively its duality gaps, are zero. We prove that the maximum value

of an (s, t)-PCN1 cannot be approximated within a constant factor, unless

P = NP. We extend the inapproximability of the (s, t)-PCN1 problem for

graphs with bounded treewidth and planar graphs, and for the (s, t)-PCN

problem on grid graphs.

We will present two paradigmatic reductions in detail. All hardness and

inapproximability results are shown by reductions similar to those.

Our factor preserving reduction from MAX CLIQUE for the inapproxima-

bility is reversible. Therefore, any practical algorithm for MAX CLIQUE can

easily be turned into an algorithm for the (s, t)-PCN1 problem.

For the dual of the (s, t)-PCN1 problem (and thus the less specialized dual

PCN problems) we give an L-reduction from SET COVER. Under certain

conditions the dual problem is easy while the primal remains inapproximable.

Finally, we devise a polynomial-time algorithm for the (s, t)-PCN1 prob-

lem on (s, t)-extended outtrees, which we define in this paper. The problem

on this graph class is equivalent to the transshipment problem on outtrees.

Moreover, (s, t)-extended outtrees are motivated by transportation systems,

which are trees except for the connection to a common depot of the vehicles.

Note that the fractional PCN problem in general is easy as it can be

formulated as an LP of polynomial size.

Structure of this Paper. In Section 2 we compile the general complexity

results and the paradigmatic proofs. In Section 3 and 4 we give the positive

and negative results for special graph classes. In particular, we present the

algorithm for (s, t)-extended outtrees.
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2. Complexity and Inapproximability for Arbitrary Graphs

We start this section with the NP-completeness of the PCN problem.

All PCN problems considered are in NP: Given a path multiplicity vector

y ∈ N|P| we can calculate its value in polynomial time, construct the cor-

responding flow and check its feasibility. By our reductions for the PCN

problem it will become clear that a certificate that would only comprise the

flow without the decomposition could not in polynomial time be checked to

be decomposable into paths in P, unless P = NP.

We start by showing that the (s, t)-PCN1 problem is strongly NP-complete

by using a reduction from 3SAT.

Recall that a decision problem X is called strongly NP-hard, iff there is a

polynomial p such that the restriction of X to the set of instances x where the

largest integer in the input of x is bounded from above by p(inputsize(x)) is

still NP-hard (cf. [9]). (We can assume that the input contains no numbers

other than integers.) In other words, even a unary encoding of the numbers

in the input would not allow for algorithms polynomial in the input size,

unless P = NP.

Theorem 2.1. The (s, t)-PCN1 is strongly NP-complete.

Proof. We reduce from 3SAT. Let I be an instance of 3SAT with n variables

x1, ..., xn and m clauses C1, ..., Cm ⊆ {x1, x1, . . . , xn, xn} with |Cj | = 3.

We start with the construction of G and P. The set P contains for every

variable xi a path pxi
and a path pxi

both crossing the arc ei. For every

clause Cj there are three paths p̃j,1, p̃j,2 and p̃j,3 in P traversing the arc

en+j and three arcs cj,1, cj,2 and cj,3. Each arc cj,i represents exactly one

literal zj,i of Cj . The path p̃j,i traverses arc cj,i. Any other path pz with

z ∈ {x1, x1, ..., xn, xn} contains arc cj,i if and only if zj,i = z (Fig. 2.1). To

complete the construction of an (s, t)-PCN1 instance we set K to n + m.

Note the following properties of the construction:

(1) Any feasible function y must satisfy y(pxi
)+y(pxi

) ≤ 1 and y(p̃j,1)+

y(p̃j,2) + y(p̃j,3) ≤ 1 for capacity reasons on the arcs eℓ.

(2) Any feasible function y with net flow value n+m must satisfy y(pxi
)+

y(pxi
) = 1 and y(p̃j,1)+ y(p̃j,2)+ y(p̃j,3) = 1, because {e1, . . . , en+m}

is a cut.

Now we show that there exists a function y : P → N with value n + m

and
∑

p∈Pa
y(p) ≤ 1 for all arcs a ∈ A if and only if the instance I can be

satisfied.
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e1

e2

en

en+1

en+m

c1,1 c1,2 c1,3s t

px1

px2

p̃1,1

p̃1,2

p̃1,3

Figure 2.1. The set of paths P contains 2n + 3m (s, t)-paths.

Let y : P → N be a function with
∑

p∈Pa
y(p) ≤ 1 and

∑

p∈P y(p) = n+m.

Define the vector x by

xi :=







1 if y(pxi
) = 1

0 if y(pxi
) = 1.

By observation (2) x is well defined.

We now show that x satisfies all clauses. Suppose there exists a clause Cj

which is not satisfied. Then y(pz1
) = y(pz2

) = y(pz3
) = 1 for zi = zj,i and

due to capacity no other path using arc cj,1, cj,2 or cj,3 contains any flow.

Therefore, y(p̃j,1) + y(p̃j,2) + y(p̃j,3) = 0, a contradiction to observation (2).

Let now x be a vector that satisfies all clauses. We compose a function

y : P → N with
∑

a∈Pa
y(p) ≤ 1 by

y(pxi
) =







1 if xi = 1

0 else
and y(pxi

) =







1 if xi = 0

0 else.

For any clause there exists a literal zj,i∗ = 1. Therefore, no flow is passing

through arc cj,i∗ . Define y(p̃j,i∗) = 1 and y(p̃j,i) = 0 for i 6= i∗. The function

y therefore fulfills all capacity restrictions and has the value n + m. �
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This also follows from Theorem 2.6. But the construction in this proof

leads nicely to two further reductions concerning the dual gap and the LP-

IP-relation of the PCN optimization problems.

The PCN problem (and its considered specializations) with non-integral

flow is equivalent to linear programming and therefore polynomially solvable.

But the question whether the best rational flow fails to exceed the best

integral flow is NP-complete. By the construction of G and P in Theorem

2.1 this is easy to see, since a feasible, rational flow y∗ : P → Q|P| with

value n + m is always given by y∗(pz) = 1
2 for all z ∈ {x1, x1, . . . , xn, xn}

and y∗(p̃ji
) = 1

3 for all j = 1, . . . , m and i = 1, 2, 3.

Theorem 2.2. Given an (s, t)-PCN1 instance, the decision whether the best

rational flow fails to exceed the best integral flow is NP-complete.

Furthermore, the decision problem whether for the (s, t)-PCN1 optimiza-

tion problem the dual gap equals zero is NP-complete. Recall that the dual

(s, t)-PCN1 optimization problem asks for a subset of arcs A′ with mini-

mum cardinality |A′| such that every path p ∈ P traverses at least one arc

of A′. For the (s, t)-PCN1 instance in the proof of Theorem 2.1 the arcs

{e1, . . . , en+m} form an optimal dual solution A′ with the value n+m. This

observation suffices to prove the following theorem:

Theorem 2.3. Given an (s, t)-PCN1 instance, the decision whether the dual

gap is equal to zero is NP-complete.

We are now interested in the complexity and approximability of the dual

PCN problems. A certain type of reduction, called L-reduction, preserves

approximability (whereas in general polynomial transformations do not). Re-

call that to establish an L-reduction (cf. [9]) from an optimization problem

X to an optimization problem X ′ we have to devise a pair of functions f and

g, both computable in polynomial time, and two constants α, β > 0 such

that for any instance x of X :

• f(x) is an instance of X ′ with OPT(f(x)) ≤ αOPT(x);

• For any feasible solution y′ of f(x), g(x, y′) is a feasible solution of

x such that |cx(g(x, y′)) − OPT(x)| ≤ β|cf(x)(y
′) − OPT(f(x))|,

where cx is the cost function of the instance x. We now introduce an L-

reduction from the SET COVER problem to the dual (s, t)-PCN problem.

Theorem 2.4. The SET COVER problem is L-reducible to the dual (s, t)-

PCN problem with constants α = β = 1 and vice versa.
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Set Cover Dual Problem

I

S1

S2
S3

w1

w1
w2 w2
w3

w3
s t

Figure 2.2. Every optimal solution of the dual (s, t)-PCN

problem yields a solution for the SET COVER problem.

Proof. We start by defining an L-reduction from SET COVER to the dual

(s, t)-PCN problem. Let I be an instance of the SET COVER problem given

by a set S = {x1, . . . , xm} of m elements to be covered and a collection of

sets Sj ⊆ S, j ∈ J = {1, . . . , n} with integral weights wj for each j ∈ J .

W.l.o.g. we assume that every element xi is element of at least one set Sj .

Therefore, we can extend the given sets Sj by the sets Si = {xi} with weights

wi := max{wj | xi ∈ Sj} without changing the problem.

The equivalent dual (s, t)-PCN instance I ′ contains a graph G = (V ′, A′)

with an arc aj corresponding to the set Sj with upper capacities caj
= wj

and a set of (s, t)-paths P which is comprised of exactly one (s, t)-path pi

for every element xi ∈ S (Fig. 2.2). The paths are constructed such that

pi traverses arc aj iff xi ∈ Sj . Apart from those arcs aj the paths shall

be disjoint. The required arcs to obtain this property get upper capacities

ca = wi iff pi crosses arc a. The graph G′ can be constructed with at most

(n+1) ·m+n arcs and 2 ·(n+1) nodes. The set of paths contains m different

paths.

A feasible solution A′′ of I ′ can be converted into a feasible solution of I

by choosing Sj for every aj ∈ A′′ and Si for every a ∈ A′′ with ca = wi. The

values of the objective function for both solutions are the same.

The reduction from the dual (s, t)-PCN problem to the SET COVER

problem is similar. �

Due to this reduction the NP-completeness and all inapproximability re-

sults for SET COVER can be transferred to the dual (s, t)-PCN problem. Re-

call that the SET COVER problem remains NP-complete for unit weights.

This problem is L-equivalent to the dual (s, t)-PCN1 problem. Furthermore,

we get the following approximability classification:
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Corollary 2.5. If there is some ε > 0 such that a polynomial-time algorithm

can approximate the dual (s, t)-PCN problem within (1−ε) ln(|P|), then NP

is contained in DTIME(nO(log log(n))).

The class DTIME(nO(log log(n))) is the class of problems solvable by a de-

terministic algorithm in time nO(log log(n)). This result follows immediately

from Feige’s lower bound on the complexity of the SET COVER problem [3].

In the following theorem we introduce an L-reduction from MAX CLIQUE

to the (s, t)-PCN1 problem. In Section 3 this reduction from MAX CLIQUE

will be transferred to other PCN instances with graphs of special graph

classes.

Theorem 2.6. The MAX CLIQUE problem is L-reducible to the (s, t)-PCN1

problem with constants α = β = 1 and vice versa.

Proof. We define an L-reduction from MAX CLIQUE to (s, t)-PCN1. Given

a graph G = (V, E) as a MAX CLIQUE instance I we want to construct

an (s, t)-PCN1 instance I ′ such that for any clique C ⊆ V in G one easily

obtains a set of arc disjoint (s, t)-paths with the same cardinality |C| and

vice versa.

To this end, the instance I ′ shall consist of a graph G′ = (V ′, E′) and

a set of (s, t)-paths P ′ such that for any v ∈ V there exists an (s, t)-path

pv ∈ P ′, and we have: pv and pu are arc disjoint if and only if the arc (u, v)

is in E. We will call a graph G′ together with a set of paths P ′ that fulfills

those requirements clique-reducing.

The construction of a clique-reducing pair (G′,P ′) for a MAX CLIQUE

instance G with at most n2 + 2 nodes and at most 3n2 + 2n arcs in G′ is

best understood as a process: Assume V to be indexed by {1, . . . , n}. We

start with n parallel (disjoint) paths from s to t. We change the graph and

the paths successively from 1 to n. For each n ≥ i > j ≥ 1 and {vi, vj} /∈ E

we deviate the path pvi
corresponding to node vi such that it intersects

on an exclusive arc of path pvj
. Carefully inserting necessary arcs for this

construction we can end up with paths of at most 3n + 2 arcs each.

Let P be a subset of P ′ and C := {v ∈ V |pv ∈ P}. By construction C is

a clique if and only if all paths in P are arc disjoint. Therefore, any feasible

solution of the (s, t)-PCN1 instance yields a feasible solution for the MAX

CLIQUE instance with the same value.
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s t

p1

p2

p3

pk

pn

a12 a1k

Figure 2.3. The (s, t)-paths p1 and p2, and p1 and pk

of P ′ have a common arc, whereas p1 and p3 are disjoint.

Correspondingly in the graph of the clique instance the arc

(1, 3) exists, whereas (1, 2) and (1, k) do not exist.

In a similar way an L-reduction from (s, t)-PCN1 to MAX CLIQUE can

be constructed. �

The complexity of MAX CLIQUE is well studied and belongs to the high-

est class, Class IV, of approximation problems classified in [8]. In particular,

an n0.5−ǫ approximation is NP-hard. Further MAX CLIQUE is hard to ap-

proximate within a factor n1−ε for any ε > 0 , unless NP = ZPP [7]. Due

to the given L-reduction these results transfer to the PCN problems.

Corollary 2.7. For any ǫ > 0 approximating the (s, t)-PCN1 within a factor

of |P|0.5−ǫ is NP-hard.

By the L-reduction from (s, t)-PCN1 to MAX CLIQUE any algorithm,

heuristic or algorithmic result for the MAX CLIQUE problem directly trans-

fers to the (s, t)-PCN1 problem. Note that we have no L-reduction from the

(s, t)-PCN without unit capacity to MAX CLIQUE.

3. Planar Graphs and Bounded Treewidth

In many cases NP-complete problems can be solved efficiently on spe-

cial graph classes. We studied the PCN problem on graphs with bounded

treewidth and planar graphs. In both cases the complexity of the problems

remained the same.

In the 80s Robertson and Seymour introduced the notion of treewidth for

undirected graphs [11].
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Definition 3.1. A tree-decomposition of a graph G = (V, E) is a pair

({Xi|i ∈ I}, T = (I, F )) with {Xi|i ∈ I} a family of subsets of V , one

for each node of T , and T a tree such that

•
⋃

i∈I Xi = V ,

• for all arcs (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi,

• for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊂

Xj .

The treewidth of a tree-decomposition ({Xi|i ∈ I}, T = (I, F )) is maxi∈I |Xi|−

1. The treewidth of a graph G is the minimum treewidth over all possible

tree-decompositions of G. The treewidth of a directed graph equals that of

its underlying undirected graph.

For many NP-complete problems on graphs there exists a polynomial,

often even a linear algorithm on graphs with bounded treewidth. For the

PCN problem this is not the case. The clique-reducible pair (G′,P ′) in the

reduction of the proof of Theorem 2.6 can be constructed such that G′ is

a chain graph: A chain graph consists of n nodes v1, . . . , vn and parallel

arcs between two nodes vi and vi+1. A simple tree-decomposition of a chain

graph is defined by Xi := {vi, vi+1} for i ∈ I = {1, ..., n − 1} and the path

T = (I, E) with arcs (i, i + 1) ∈ E. The treewidth of this decomposition is

1. Due to the parallel arcs we can construct an (s, t)-PCN1 instance I ′ on a

chain graph for any MAX CLIQUE instance I such that two paths pu and

pv are arc disjoint if and only if the nodes u and v are connected by an arc in

I (Fig. 3.1). Replacing each parallel arc by a path of length 2 gives a simple

graph, that serves the same purpose except that the treewidth increases by 1.

Theorem 3.2. The MAX CLIQUE problem is L-reducible to the (s, t)-PCN1

problem on graphs with bounded treewidth.

s = v0 t

pu

pv

Figure 3.1. The L-reduction in Theorem 2.6 can be trans-

ferred to chain graphs.

The construction of the proof yields inapproximability already for the

class of instances, where the graph is a chain graph and the path set has

the following, strong property: Each arc is crossed by at most two paths.
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Observe that in general the dual of the (s, t)-PCN1 problem is polynomial

solvable by a maximum matching, if the latter property is fulfilled.

Since chain graphs are planar the result holds for this graph class, too.

Corollary 3.3. The (s, t)-PCN1 problem on planar graphs is NP-complete.

An interesting class of graphs for line planning are grid graphs. The street

network of cities like Manhattan or Mannheim are based on this structure.

Moreover, the class of grid graphs has unbounded treewidth. But even on

this class of well structured graphs the (s, t)-PCN problem cannot be ap-

proximated within a constant factor, unless P = NP.

Theorem 3.4. The MAX CLIQUE problem is L-reducible to the (s, t)-PCN

problem on grid graphs.

s

t

n

n

n

n

n

n

n

n

pv

pu

Figure 3.2. The paths pu and pv have a common arc if

and only if (u, v) is not in the graph of the clique instance.

The L-reduction is again based on the construction of Theorem 2.6 (Fig.

3.2). It is possible to construct the clique-reducible pair, such that the graph

is a grid. Yet, in this case it is essential to use arbitrary capacities. In fact

we show in the next section that there is a polynomial-time algorithm for

the (s, t)-PCN1 problem in grids.

4. Tractable Graph Classes

So far we considered only classes of graphs on which the PCN problems

remain difficult. In this section we consider two classes, grid graphs and

tree like graphs, on which at least the (s, t)-PCN1 problem is solvable in

polynomial time.
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s

t

Figure 4.1. An (s, t)-extended outtree.

The (s, t)-PCN1 on Grids. We have seen before that the (s, t)-PCN prob-

lem on grid graphs with arbitrary capacities c is NP-hard. In the case of

unit capacities we can exploit the property of an optimal solution to consist

of arc disjoint paths. Since the degree of s is at most 4 any optimal solution

consists of at most 4 different paths. Checking the feasibility of any subset

of the set of paths P with at most 4 elements is possible in polynomial time.

In that way we can compute the optimal solution by enumeration. Since

the only feature of grids we use is the constant bound on the degree of s

(respectively t), the idea extends to any class of (s, t)-PCN1 problems for

which the minimum of the degrees of s and t is a constant.

The (s, t)-PCN on Tree-Like Graphs. On trees the (s, t)-PCN problem

is trivial since there exists only one path from s to t. If we set y(p) :=

mina∈p c(a) with p ∈ P we obtain the optimal solution. A natural extension

is to consider transshipment on directed trees, which is equivalent to the

(s, t)-PCN on (s, t)-extended outtrees: A graph G = (V, A) is an (s, t)-

extended outtree if G−{s, t} is an outtree (Fig. 4.1). An outtree is a directed

tree T = (V ′, A′) with a root node r ∈ V ′ such that there is a directed path

(not necessarily in P) from r to any other node of V ′.

In an (s, t)-extended outtree G = (V, A) we denote the set of nodes inci-

dent to s by Vs, those incident to t by Vt and the child nodes of a node v by

Cv. The nodes of the outtree T = G−{s, t} can be partitioned into disjoint

sets, called level Li, according to their distance i to r. The level with largest

distance to r shall be Lk. An (s, t)-path p in an (s, t)-extended outtree G is
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uniquely defined by a pair of nodes (a, b) with a ∈ Vs and b ∈ Vt, thus we

will denote this path by [a, b].

W.l.o.g. we assume for the remainder of this section that every arc is

traversed by at least one path of P. Therefore, t has to be connected to all

leaves. Further, we can assume that only leaves are connected to t. In case

some other node is connected to t, we add a dummy leaf as a child of this

node in which we switch the connection to t. The path set is adjusted in

the obvious way. Similarly we avoid v ∈ Vs ∩ Vt by adding a dummy node

after v and changing the path set. Solving the problem on this new graph is

apparently equivalent to solving the original problem. Therefore, we tacitly

assume those two conditions in the remainder.

Theorem 4.1. The (s, t)-PCN1 problem on (s, t)-extended outtrees is solv-

able in polynomial time.

Proof. The polynomial running time of Algorithm 1 is obvious. To prove

Theorem 4.1 it remains to show feasibility and optimality of the path set P∗

returned by Algorithm 1. The feasibility is immediate from the construction

once its correctness is established. For the latter it suffices to note that when

the algorithm is in one of the two cases Postponed and Fixed the set P ′

contains the path required in the algorithm. For the Fixed case this is again

immediate from construction. For Postponed, because G is an outtree, in

any feasible set of paths a node v ∈ T can be used by at most one path

that entered the tree on a higher level than v. When the Postponed case

is invoked for some node v, only paths entering on higher or equal levels

were chosen so far. By induction we can assume this prior chosen path set

to be feasible. As the paths in P ′ containing (s, v) use at least two different

children of v, not all of them can be in conflict with the prior chosen set of

paths.

For the optimality we have to show that the set of arcs in A∗ blocks all

paths in P. To this end observe: Every path p ∈ P starts with an arc of

the form a = (s, v). In case a ∈ A∗, we are done. In case a /∈ A∗, consider

the step when the algorithm scanned node v. Either p ∈ P ′ at this time or

not. In the latter case, p was removed when a node v′ on a higher level was

scanned and the Fix case occurred. In this situation the algorithm added an

arc (v′, u) ∈ p to A′, i.e., A∗. Thus A∗ blocks p. In the other case, namely,

p ∈ P ′ when v was scanned, we have Φ(v) = 1, because for Φ(v) > 1 the arc
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Algorithm 1: (s, t)-PCN1 on (s, t)-extended outtrees

Data: (s, t)-extended outtree G = (V, A) with root r,

P ⊆ {[a, b]| a ∈ Vs, b ∈ Vt} set of paths in G

Result: optimal solution P∗ of the (s, t)-PCN1 instance, optimal

solution A∗ of the dual (s, t)-PCN1 instance

k = maximum distance of node v ∈ V \ s, t to root r

A′ = ∅ a stack

P ′ = P a set

i = k − 1 an integer

while i ≥ 0 do

forall a = (s, v), v ∈ Li do

Φ(v) = {u ∈ Cv | ∃p ∈ P ′,(s, v) ∈ p and (v, u) ∈ p}

case |Φ(v)| = 0 (Void)
do nothing

case |Φ(v)| = 1 (Fix)
do add (v, u) with u ∈ Φ(v) to A′

do for all p ∈ P ′ with (v, u) ∈ p, (s, v) /∈ p remove p from P ′

case |Φ(v)| > 1 (Postpone)
do add (s, v) to A′

decrease i by 1

do set A∗ = A′

while A′ 6= ∅ do

a = pop(A′)

case a = (s, v) for some v ∈ V (T ) (Postponed)
do add one p ∈ P ′ with a ∈ p to P∗

do remove all paths from P∗ in conflict with p

case a = (v, w) ∈ A(T ) (Fixed)
do add one p ∈ P ′ with (s, v), a ∈ p to P∗

do remove all paths from P∗ in conflict with p

return P∗, A∗

a = (s, v) itself is in A∗. Yet, if Φ(v) = 1 when v is scanned, then the arc

(v, u) that follows (s, v) on p is added to to A∗. �

A detailed proof can be found in [10].
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5. Conclusion

We consider a basic subproblem in line planning. Calculating the max-

imum capacity of a line plan contains the problem of finding a maximum

path constrained network flow. We extensively explore the complexity and

inapproximability of this problem and its dual, including results for grids,

graphs of bounded treewidth and other special classes. For some classes we

provide polynomial-time algorithms.
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