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Abstract. We consider a sorting problem from railway optimization
called train classification: incoming trains are split up into their single
cars and reassembled to form new outgoing trains. Trains are subject
to delay, which may turn a prepared sorting schedule infeasible for the
disturbed situation. The classification methods applied today deal with
this issue by completely disregarding the input order of cars, which pro-
vides robustness against any amount of disturbance but also wastes the
potential contained in the a priori knowledge about the input.

We introduce a new method that provides a feasible sorting schedule for
the expected input and allows to flexibly insert additional sorting steps
if the schedule has become infeasible after revealing the disturbed input.
By excluding disruptions that almost never occur from our consideration,
we obtain a classification process that is quicker than the current railway
practice but still provides robustness against realistic delays. In fact, our
algorithm allows flexibly trading off fast classification against high de-
grees of robustness depending on the respective need. We further explore
this flexibility in experiments on real-world traffic data, underlining our
algorithm improves on the methods currently applied in practice.

1 Introduction

An essential process in railway optimization is train classification, which refers to
the rearrangement of cars to form new trains. With increasing world-wide freight
traffic, operating freight trains efficiently becomes more and more important,
and reducing the dwell time of cars in railway yards is one of the key factors to
improve freight service profitability.

General Classification Process. Exclusively for the purpose of train classifi-
cation, there are installations of railway tracks and switches called classification
yards (see Fig. 1). Such a yard features a hump track on which inbound trains ar-
rive and their cars are decoupled to be pushed over a sloping ramp called hump
at the end of the hump track. Hence, the cars accelerate by gravity and roll
through a tree of switches by which each car can be individually guided to some
classification track. This is called a roll-in operation. In a pull-out operation an
engine pulls all the cars on some classification track back to the hump track in
order to perform a further roll-in. A pair of pull-out and roll-in operations is



called a (sorting) step, and an initial roll-in followed by a sequence of h sorting
steps is called a classification schedule of length h. The number of steps h essen-
tially determines the time required to conclude the sorting procedure. There are
` inbound trains that, concatenated in the order they arrive at the yard, form
the inbound train sequence. Moreover, there are order specifications for the m
outbound trains, and a classification schedule is called feasible if its application
to the inbound train sequence yields the correctly ordered outbound trains, each
on a separate classification track.

Robust Train Classification. Often the inbound trains are subject to delay,
so we might be faced with an unexpected inbound order of trains. In our model
all disturbances, i.e. every combination of number of delayed trains and amount
of delay for each train, that are to be covered are given by a set of scenarios S. In
this set, each scenario S ∈ S defines a permutation of the inbound train sequence
called modified instance. A schedule for the original instance is called a first-
stage solution, and it may be infeasible for the modified instance corresponding
to some scenario. In response to disturbed input, we are prepared to insert up to
k additional sorting steps after the pth step of the first-stage solution, providing
a recovered solution. A first-stage solution for which, for every scenario S ∈ S,
there is a recovered solution that is feasible w.r.t. S is called recovery robust.
Given a sequence of ` inbound trains, m order specifications of outbound trains,
and a set of scenarios S, the recovery-robust train classification problem is to
find a recovery robust, feasible first-stage solution of minimum length.

Related Work. There are many publications in the field of railway engineering
that describe different train classification methods, e.g. [7, 16, 13, 17, 5]. These
methods are strictly robust, i.e. robust w.r.t. any set of scenarios, since they apply
a predefined classification schedule that is independent of the order of railway
cars entering the classification process. The method of geometric sorting (see [7,
16, 13, 17]) minimizes the number of sorting steps for a worst case (or unknown)
input order, which is proved in [11]. The still most-commonly used method in
practice is triangular sorting [7, 16, 13, 17, 5], which is optimal for restricting
the number of roll-ins per car to three for unknown input order [11]. However,
neither method exploits the situation of a partially ordered input sequence, so
they apply more sorting steps than necessary in general.

This issue was explored in [11], which develops a classification method that
minimizes the number of sorting steps based on complete knowledge of the in-
put data. Moreover, for the problem variant of classification tracks of bounded
length, [11] shows that minimizing the number of sorting steps is an NP-hard
problem. A 2-approximation for the same setting is derived in [12], several im-
provements of which are experimentally evaluated in [10] and compared to an
exact integer programming approach, which was earlier introduced in [15]. A
related algorithmic sorting problem is considered by Dahlhaus et al. [6]. Recent
overviews of train classification can be found in [9] and [8].

Since changes during the process of scheduling are time consuming, a certain
amount of robustness is crucial for classification methods to work in practice.
Providing strict robustness, however, wastes a lot of potential to disruption sce-



narios that almost never occur in practice. As described above w.r.t. train clas-
sification, this dilemma is tackled by the concept of recoverable robustness [14]
by regarding realistic scenarios of delay and providing optimal robust solutions
w.r.t. a limited amount of recovery in case of disturbance. This concept is applied
to several railway-related optimization problems such as rolling stock schedul-
ing [1] or timetabling [3, 4]. A first and—to the best of our knowledge—only
attempt to study this method for train classification is made by Cicerone et.
al [2] for a single inbound and outbound train. (Their results are summarized
in [3].) Besides the situations of strict robustness and complete recomputation
from scratch, which are more of theoretical interest, they consider a recovery
action that allows completely changing the classification instruction for one set
of cars that have the same instruction. The most relevant scenarios in [2] are
one additional car in the input and one car occurring at a different position
than expected. The latter corresponds to our problem setting for the special
case of trains consisting of single cars with a delay scenario of up to one train.
We generalize this setting to scenarios with more delays (mainly Sect. 4) and
the problem setting with complex trains. Besides, [2] deals with the scenario of
a single classification track becoming unavailable before the classification starts.
In this paper we focus on the most relevant reason for disruptions, which are
delayed trains.

Our Contribution. For the mentioned recovery action of adding up to k sort-
ing steps after an offset of p steps, we first introduce a generic algorithm in
Sect. 3. We prove that, for every constant k ≥ 1, finding a robust schedule of
minimum length is an NP-complete problem for general sets of scenarios. For the
practically relevant scenario of delaying up to j trains by an arbitrary amount
each, the problem can be solved in polynomial time (see Sect. 4). Furthermore,
we evaluate our new algorithm on real-world traffic data for various parameter
values k, p, and j. It turns out that, on the one hand, our algorithm yields very
short schedules while providing a fair degree of robustness. On the other hand, it
is capable of providing highly robust schedules that still improve on the current
classification practice, emphasizing the flexibility of our approach to modulate
between these conflicting objectives.

2 Encoding Classification Schedules

In addition to the concepts of Sect. 1, we introduce some futher notation required
for representing and deriving classification schedules.

Terminology and Notation. Corresponding to the notation of [11], we rep-
resent every car τ by a positive integer τ ∈ IN and a train T by a sequence of cars
T = (τ1, . . . , τk), where k is called the length of T . There are ` inbound trains
T1, . . . , T`, whose concatenation we assume to be a permutation of (1, . . . , n), and
n is called the volume of cars. There are m outbound trains of respective length
ni, i = 1, . . . ,m, and we assume the specification of the first outbound train is
(1, . . . , n1), the second (n1+1, . . . , n1+n2), etc. In contrast to the expected order
of inbound trains, there is no order implied for the outbound trains.
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Fig. 1. Classification yard (left). Classification process for h=2, n=7, and m=2: initial
roll-in (2nd picture), first step (3rd), second step (4th); in both steps, the rightmost
occupied track is pulled out. Corresponding schedule encoding (right).

Regardless of which are their outbound trains, all cars are sorted simulta-
neously on the same set of classification tracks, called the sorting tracks. Their
lengths and available number are unrestricted, and the number actually used
corresponds to the number of sorting steps, where the track pulled in the kth
step is referred to by θk, k = 0, . . . , h − 1. The cars are finally collected on a
separate track for each outbound train, which are called destination tracks.

Schedule Representation. We will refer to the binary representation of a
decimal integer j ≥ 0 by [j]2. Given any bitstring b = bh−1 . . . b0 of length h, let

num(b) denote the integer number represented by b, i.e., num(b) =
∑h−1
i=0 2ibi.

For two bitstrings b1, b2 we define b1 < b2 iff num(b1) < num(b2). We represent
classification schedules of length h by assignments of cars to bitstrings of length
h [11]: bj = bjh−1 . . . b

j
0 encodes the journey of the jth car with bjk = 1 iff it visits

θk pulled out in the kth step. After such a pull-out, the car is sent to θ` with
` = min{i|k < i < h, bji = 1}; if bji = 0 for all i > k, it goes to the destination
track of its outbound train. The n bitstrings b1, . . . , bn form an (n×h)-matrix,
and b0, . . . , bh−1 denote its columns from “right” to “left”.

In order to derive a feasible schedule B of length h, two cars τ and τ+1 of the
same outgoing train must be assigned bitstrings bτ ≤ bτ+1. If these cars occur in
reversed order in the inbound sequence, we require bτ < bτ+1; then, the pair β =
(τ, τ+1) is called a break. If bτ and bτ+1 occur in different outbound trains, there
is no constraint between the two cars. As a result the length of a classification
schedule depends on the maximum number of breaks of all outbound trains [12].
Figure 1 shows an example classification process and the corresponding encoding
with four steps and tracks, where the rightmost track presents θ0 in the notation
above: cars 1 and 2 arrive in reversed order, so b1 < b2, whereas cars 2 and 3
arrive in correct order and have the same bitstring. Note that b7 > b6 is fine
though cars 6 and 7 arrive in correct order, and there is no constraint between
b4 and b5 since the fourth and fifth car belong to different outbound trains.

3 Recovery through Additional Sorting Steps

In this section we investigate the recovery strategy of inserting a limited number
of additional sorting steps to a first-stage schedule when a scenario occurs.



Further Notation. A pair of consecutive cars β = (τ, τ+1) is called original
break if β is a break for the expected order of inbound trains. Given some S ∈ S,
we call β induced by S if β is a break in the modified instance corresponding to
S. If β is not an original break but induced by any S ∈ S, β is called a potential
break. W.l.o.g., we assume that every pair β = (τ, τ+1), τ ∈ {1, . . . , n − 1}, of
successive cars is either an original or a potential break: for any problem instance
with β not being a break, car τ+1 can be ignored while deriving a schedule and
assigned the same bitstring as τ in the final solution. For any first-stage solution
B, a break β = (τ, τ+1) is called unresolved w.r.t. S if β is induced by S and
bτ = bτ+1. For any scenario S ∈ S, XS denotes the set of potential breaks induced
by S. Note that this setXS is uniquely defined for every scenario S ∈ S, but there
may be different scenarios S 6= S′ with XS = XS′ . We will repeatedly regard
sets of potential breaks without considering the actual underlying scenario. In
particular, we will often describe sets of scenarios (e.g. as a parameter in problem
definitions) implicitly by providing the set of induced breaks of every scenario.
Let T1, . . . , T` be a sequence of ` inbound trains with n cars, and let X be the set
of all original and potential breaks. For any pair of cars τ1, τ2, 1 ≤ τ1 < τ2 ≤ n,
we define X(τ1,τ2) as the set of all original and potential breaks occurring between
τ1 and τ2, i.e., X(τ1,τ2) = X ∩ {(τ1, τ1+1), (τ1+1, τ1+2), . . . (τ2 − 1, τ2)}.
Recovery Model. In many yards, there are certain classification tracks re-
served for the sorting procedure considered here, while other tracks are used
for different sorting activities. The inital roll-in to the reserved tracks is then
scattered over the day, and, when the last train arrives, the other activities are
stopped and the first pull-out performed. At this point a scenario is revealed for
which the original schedule may be infeasible. With the recovery action of insert-
ing up to k additional sorting steps to the first stage solution, we seek to obtain
a feasible schedule for the modified instance. Distributing the recovered solution,
i.e. the changed schedule, to all people involved in the operation takes some time
depending on the available communication channels. For these reasons, inserting
additional sorting steps is only allowed after an offset of p steps.

In terms of classification schedules, which present solutions to our optimiza-
tion problem, this means the following: given two parameters p ≥ 0 and k ≥ 0
and a first-stage solution schedule B of length h, B is to be recovered by in-
serting up to k additional columns with indices greater than p. This concept is
formalized in the following definition.

Definition 1. Let B = (bh−1, . . . , b0) and B′ = (b′h−1+j , . . . , b
′
0) be two classifi-

cation schedules for n cars of length h and h+j, j ≥ 0, respectively. Let further
p ≥ 0 and k ≥ 0. The schedule B′ is called a (p, k)-extension of B if j ≤ k,
bi = b′i for all 0 ≤ i < p and bi−j = b′i for all p+j−1 ≤ i ≤ h+j−1.

Note that in the definition above the additional columns are all added between
the (p−1)th and pth step of the original schedule. It can be shown easily that,
if inserting k columns at the ith position yields a feasible recovered schedule,
inserting these k columns at the (i−1)th position instead also yields a feasible
schedule. Hence, inserting at the “right-most” allowed position always presents



the most powerful recovery. The notion of (p, k)-extensions yields a natural con-
cept of recoverable robustness as stated in the following definition.

Definition 2. Let T1, . . . , T` be a sequence of ` inbound trains and S a set of
scenarios with XS denoting the corresponding induced set of breaks for every
S ∈ S. A classification schedule B is called (p, k)-recovery robust if, for every
scenario S ∈ S, there is a (p, k)-extension of B that is feasible w.r.t. S.

Most likely, no delay occurs and the inbound trains arrive in the expected
order, in which case we usually do not want to apply any recovery for organiza-
tional reasons. For our objective this means we look for feasible (p, k)-recovery
robust classification schedules of minimum length.

In order to specify when a given schedule is (p, k)-recovery robust for a given
set of scenarios, we introduce the notion of a block of a schedule. A block basically
is a maximal set of bitstrings representing integers between two powers of two.

Definition 3. Let B be a schedule of length h for an inbound train sequence of
n cars, and p ≥ 1. For any bitstring bj of B, bjh−1...b

j
p is called the leading part

of bj, denoted by bj>p, and bjp−1 . . . b
j
0 the trailing part of B, denoted by bj<p. A

subset of λ consecutive bitstrings bj , . . . , bj+λ−1 of B is called a block of B if
their leading parts satisfy bj−1

>p < bj>p, bj>p = bj+x>p for all 1 ≤ x ≤ λ − 1, and

bj+λ−1
>p < bj+λ>p , while λ is called the size of the block. Furthermore, the jth car

of the inbound train sequence is called the head of the block.

The following lemma states the necessary and sufficient conditions for the
existence of (p, k)-extensions. The recovery is performed independently for every
block, where unresolved breaks are successively fixed by raising the bitstring of
the second car of the break and all cars following it up to the end of the block.

Lemma 1. Let T1, . . . , T` be a sequence of ` inbound trains, B a feasible classifi-
cation schedule, S a scenario, and p, k ≥ 0. Then, there exists a (p, k)-extension
of B that is feasible for S iff the number of unresolved breaks w.r.t. S does not
exceed 2k − 1 for any block of B.

General Algorithm. Applying the observations of the previous section, we
introduce a generic algorithm for computing (p, k)-recovery robust train classifi-
cation schedules. Basically, the algorithms successively grows the size of a block
to its maximum size. The maximum size of a block is determined by two factors:
First, a schedule B assigns at most 2p different bitstrings to the trailing part
of cars in the same block, i.e., at most 2p − 1 breaks can be resolved. Secondly,
the number of unresolved breaks in a block is limited by 2k − 1 potential breaks
induced by one scenario. We formalize the second condition in the following way.

Definition 4. Let T1, . . . , T` be a sequence of ` inbound trains with a total of
n cars, τ1, τ2 ∈ {1, . . . , n} two cars, and k ≥ 0. Given a set of scenarios S,
a set of breaks X ′ ⊆ X(τ1,τ2) is called k-recoverable according to X(τ1,τ2) if

|X ′ ∩XS | ≤ 2k − 1 holds for all S ∈ S.



Algorithm 1 k-recovery robust train classification

Data: number of cars n, set of original breaks Xorg, set of scenarios S, k, p ≥ 0
Result: k-recovery robust classification schedule B

1 Put i = 0, τi = 1, τmax = 0, X = X ′ = ∅
2 while τi ≤ n do
3 while τmax < τi + 2p + |X ′| and τi + 2p + |X ′| ≤ n do
4 Set τmax = τi + 2p + |X ′|
5 Set X = X(τi,τmax) ∩ (∪S∈SXS)
6 Compute a maximum k-recoverable set of breaks X ′ ⊆ X
7 end
8 Set τmax = τi+1 = min(τi + 2p + |X ′|, n+1)
9 Compute subschedule of length p for τi, . . . , τi+1 − 1 feasible w.r.t. X(τi,τi+1−1)\X ′

10 Set i = i+1

11 end
12 Set h′ = dlog2 i− 1e
13 for j = 0, . . . , i− 1 do
14 Set bτp+h′−1 . . . b

τ
p = [j]2 for all τj ≤ τ ≤ τj+1 − 1

15 end
16 return B

Algorithm 1 determines the maximum size of a block by repeatedly solving
the problem of finding a maximum k-recoverable break set and thus constructs
an optimal (p, k)-recovery robust schedule.

Theorem 1. For any p ≥ 0 and k ≥ 0, Alg. 1 computes an optimal (p, k)-
recovery robust train classification schedule.

In Alg. 1 the step of computing a maximum k-recoverable break set in line 6
is not specified. One way of solving this problem is integer programming. As we
will show in the following, there is in general no polynomial time algorithm to
solve this problem unless P = NP.

Computational Complexity. In this section we assume w.l.o.g. that we are
looking for a maximum k-recoverable break set for the cars 1, . . . , n, i.e., let S be
a set of scenarios, find a maximum k-recoverable break set X ′ of X = ∪S∈SXS .
By a reduction from the independent set problem, the decision version of this
problem is strongly NP-hard for k = 1. A different reduction from 2kSAT leads
to the NP-completeness for any constant k ≥ 2.

Theorem 2. Let T1, . . . , T` be a sequence of ` inbound trains, S a set of scenar-
ios, and K ≥ 0. For any constant k ≥ 1, it is strongly NP-complete to decide
whether there exists a k-recoverable break set of size K.

This theorem not only states that Alg. 1 will only run in polynomial time if
P = NP but also enable us to prove the NP-completeness of the (p, k)-recovery
robust classification problem.



Corollary 1. Let T1, . . . , T` be a sequence of ` inbound trains, S a set of scenar-
ios, h, p ≥ 0, and k ≥ 1 const. Deciding whether there is a feasible (p, k)-recovery
robust classification schedule of length at most h is an NP-complete problem.

Infeasible Initial Solutions. In our model the first-stage solution is a feasible
classification schedule for the original order of trains. A special case of this setting
is to allow recovery even in case of no disturbance. In this case the original breaks
can be modeled by a scenario Sorg with XSorg = Xorg and no original breaks are
there, i.e., we assume that the cars arrive in perfect order.

4 Limited Number of Delayed Trains

As mentioned before, providing strict robustness wastes a lot of potential to
extreme scenarios that rarely occur. For this reason we introduce a simple yet
general class of scenarios in this section.

Scenario Model. Given some some parameter j, up to j trains are delayed
each by an arbitrary amount: let Θ = T1, . . . , T` be an inbound train sequence
and Θσ = Tσ−1(1), . . . , Tσ−1(`) be an order of trains induced by some permutation
σ : [`]→ [`]. Then, a sequence Θ̄ = Tσ̄−1(1), . . . , Tσ̄−1(`), where σ̄ is some permu-
tation, is called an (α, k)-delayed sequence of Θσ if σ(α) < k and the following
conditions hold: σ̄(x) = σ(x) if σ(x) < σ(α) or σ(x) > k, σ̄(x) = σ(x) − 1 for
σ(α) < σ(x) < k, and σ̄(α) = k. Less formally, train Tα is delayed from the
σ(α)th to the kth position. The set of scenarios Sj , 0 ≤ j ≤ `, is now defined
to contain a scenario S (inducing some sequence ΘS) iff there is a sequence
Θ0, . . . , Θj of train sequences Θi such that Θ0 = Θ, Θi is an (αi, ki)-delayed se-
quence of Θi−1 for all i = 1, . . . , j, and Θj = ΘS . Every train Tαi will furthermore
be called to be delayed by S.

Dominating Set of Scenarios. We will see in Thrm. 3 that our considera-
tions can be restricted to the dominating subset S̄j ⊆ Sj of scenarios defined
as follows: a scenario S is a member of S̄j iff there is a sequence Θ0, . . . , Θj of
train sequences Θi such that Θ0 = Θ, Θi is an (αi, `)-delayed sequence of Θi−1

for all i = 1, . . . , j, αi < αi−1 for all i = 1, . . . , j, and Θj = ΘS . In other words,
if two trains are delayed by S ∈ S̄j , they swap their relative order and arrive
later than all punctual trains. Note that for uniquely defining a scenario S ∈ S̄j
it suffices to list the j delayed trains since the order and amount of their delay
is determined by the definition of S̄j .

Theorem 3. Given any p, k, j ≥ 0, let B be a feasible (p, k)-recovery robust
schedule for S̄j. Then, B is a feasible (p, k)-recovery robust schedule for Sj.

Any potential break (τ, τ+1) can only be induced by S if the train containing τ is
delayed, but also the converse implication holds for S̄j as stated in the following
lemma.

Lemma 2. Let T1, . . . , T` be a sequence of inbound trains and S ∈ S̄j some
scenario. For any potential break β = (τ, τ +1) with τ ∈ Tx, x ∈ {1, . . . , `},
β ∈ XS iff Tx is delayed by S.



Algorithm 2 Max. k-Recoverable Set of Breaks for Sj with Unique Cars

Input: Parameters j, k ∈ N and sets of induced breaks X1, . . . , X`
Output: Maximum recoverable set of breaks

1 Descendingly sort X1, . . . , X` such that |Xi1 | ≥ |Xi2 | ≥ . . . ≥ |Xi` |
2 Put α := max{it : |Xit | = |Xi1 |}
3 while

∑j
t=1 |Xit | ≥ 2k do

4 Remove an arbitrary break from Xiα
5 Put α := max{it : |Xit | = |Xi1 |}
6 end

7 return
⋃`
i=1Xi

As an immediate consequence, the set of potential breaks XS of any scenario
S ∈ S̄j can be partitioned into disjoint subsets w.r.t. the respective delayed
train causing the break, a fact which is applied in the algorithm of the following
section. We will call the set Xi := {(τ, τ+1)|τ ∈ Ti,∃y > i : τ+1 ∈ Ty} the set
of breaks induced by train Ti.

Maximum Recoverable Sets of Breaks. For S̄j a maximum recoverable set
of breaks is computed with Alg. 2: we repeatedly resolve potential breaks of the
train that induces the highest number of unresolved breaks until the worst case
scenario does not exceed the recovery capability given through the parameter k.
Correctness, optimality, and the running time of Alg. 2 are summarized in the
following theorem.

Theorem 4. Given a set of potential breaks X for some classification instance
with inbound trains T1, . . . , T`, a maximum k-recoverable set of breaks X ′ ⊆ X
w.r.t. S̄j can be computed in polynomial time.

As an immediate consequence of Thrm. 4, the problem of train classification
can be solved in polynomial time by combining Alg. 2 into Alg. 1. The resulting
algorithm is implemented in the following section and tested for a number of
real-world classification instances.

Experimental Evaluation. For the evaluation of the algorithm just described,
we took the five real-world instances used in [10], which unfortunately are the
only real-world instances available to us. They correspond to five days of traffic
in the Swiss classification yard Lausanne Triage, with volumes ranging from 310
to 486, numbers of inbound trains between 44 and 49, outbound trains between
24 and 27, and numbers of breaks between 24 and 28. In order to obtain unique
types of cars, we converted all cars of the same type between two consecutive
original breaks to distinct types ascending in the order the cars appear between
the breaks. The algorithm was implemented in C++, compiled with GNU g++-
4.4, and run on an 1.8 GHz Intel Core Duo CPU with 2 GB main memory.

Essentially, through adjusting the parameters p, k, and j, the algorithm al-
lows flexibly trading off shortest schedules against the other extreme of strict
robustness. Given some train classification instance, let h denote the length of
an optimal non-robust schedule and h̄ the length of an optimal strictly robust



schedule. The values h and h̄ present the lower and upper bounds for the length
resulting from any combination of j, k, and p. Yet, as explained in Sect. 1 (Re-
lated Work), h̄ may be exceeded by the geometric method, i.e. an optimal strictly
robust schedule disregarding presorted inbound trains, and even longer schedules
than this are obtained by triangular sorting.

Table 1. Optimal length values for Sj with (p, k)-extensions for the five traffic in-
stances: the values for the triangular and geometric method are given in the first and
second column, resp., h̄ and h in the third and fourth column, resp. Omitted entries
represent no meaningful choice of p.

k t g 0 0 1 2 3 4
p r e 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 1 2
j i o 1 0 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 3 4 7 8 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 ≥ 1 13 ≥ 14

inst-1 11 6 5 2 2 4 3 4 3 5 4 5 4 5 2 3 2 3 3 4 2 3 3 4 3 4 5 4 5 2 3 2 3 3 3 2 3 3 3 3 4 3 3 3 4 4 2 2 2
inst-2 8 5 5 3 3 4 3 4 3 4 3 5 5 3 3 3 3 3 3 3 3 3 4 3 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3
inst-3 8 5 5 2 2 4 2 4 3 4 3 4 5 2 3 2 2 2 3 2 3 3 4 3 3 4 4 2 3 2 2 2 3 2 2 2 3 3 3 3 3 4 2 2 2
inst-4 10 6 5 2 2 4 2 4 3 4 3 5 5 2 3 2 2 2 3 2 3 3 4 3 3 4 5 2 2 2 2 2 3 2 2 2 3 3 3 3 3 4 2 2 3
inst-5 9 6 5 2 2 4 3 4 3 4 3 5 5 2 3 2 3 3 3 2 3 3 4 3 3 4 4 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 4 2 2 2

Table 1 summarizes the computed length of an optimal recovery robust sched-
ule according to the different parameters p, k and j. As lower and upper bounds
for those length inst-2 requires h= 3, while all other instances yield h= 2 and
h̄ = 5 for all instances. The geometric method requires h = 6 for three of the
instances, and the triangular method even between eight (int-2 and inst-3) and
eleven steps (inst-1), which shows that ignoring presorted input wastes a lot of
potential for improvement.

If only small amounts of recovery action (k = 1) are allowed, for j = 1 the
schedule length does not exceed h for inst-1 and inst-5 with p = 0, for inst-3
and inst-4 with p ≤ 1, and for inst-2 even for p ≤ 3, so yet for lowest degrees of
recovery we obtain some robustness without increasing the length beyond that
of an optimal non-robust schedule. Raising the degree of disturbance to j ≥ 2,
we still obtain a length h = 4 < h̄ if the value of p is increased to p = 1 for inst-1,
to p = 2 for inst-2, inst-4, and inst-5, and even to p = 3 for inst-3. These values
are significantly smaller than those for the strictly robust methods of geometric
or even triangular sorting.

The degree of robustness grows rapidly with increasing degrees of recovery,
and for k = 4 with p ≤ h—except for inst-4 with p = 2—we can allow any
number of delayed trains and still achieve the length h of an optimal robust
schedule. Between these extremes, Tab. 1 shows how far the value of p can be
raised for k = 2 and arbitrarily high amounts of delay j ≥ 4: most instances
allow p = 1 to obtain h = 3, and h = 4 can be achieved even for p = 4 for three
out of five instances. For k = 3, Fig. 2 (left) summarizes the values of inst-1: a
schedule of length 3 with a recovery action starting after the third sorting step
suffices to cope with a delay of up to six trains and p = 1 allows h ≤ 3 even
for any disturbance value j. Similarly, for a fixed value of p = 2, Fig. 2 (center)
shows the rapid growth of robustness: except for inst-2, k must be raised rather
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Fig. 2. left: optimal schedule lengths h of inst-1 for k = 3; center: highest possible
values of k to achieve a length of h for p = 2; right: smallest possible values of p to
achieve a length of h for k = 2;

quickly between j = 1 and j = 3 to achieve a length of h, whereas the required
value of k does not exceed four for higher disturbances j ≥ 6. Conversely, Fig. 2
(right) fixes k = 2 and shows the maximum value of p that allows a length of
h: j = 1 still allows p = h for all instances, but, except for inst-2, this length h
cannot be achieved for any choice of p for high amounts of delay j ≥ 4. Hence,
higher values of k contribute much more to the potential of recovery than low
values of p. Summarizing, through adjusting the recovery parameters k and p,
our algorithm presents a tool to flexibly trade off between fast classification
and robust schedules and, even for high degrees of robustness, we achieve much
shorter schedules than the triangular method currently applied in practice.

5 Conclusion

We have developed a practically applicable algorithm for deriving robust train
classification schedules of minimum length. In contrast to [2], we regard multiple
inbound and outbound trains, which allows integrating the most relevant distur-
bance in form of delayed trains. We have introduced the natural recovery action
of (p, k)-extensions, for which we proved that the problem is NP-complete for
every constant k ≥ 1. Nevertheless, for the simple yet quite genral set of sce-
narios Sj , we have shown our generic algorithm of Sect. 3 can be implemented
in polynomial time by solving the subproblem of calculating a maximum recov-
erable set of breaks efficiently. The experimental study of Sect. 4 indicates that
the resulting algorithm improves on the current classification practice as it yields
shorter schedules and still allows high degrees of robustness. Its flexibility fur-
ther allows balancing between strictly robust and optimal non-robust schedules
and raises potential for increased traffic throughput in classification yards.

Future Work. Further practical restrictions, such as a limited number of clas-
sification tracks (see [15]), are desirable to be considered in the context of ro-
bustness. In a practical settings where the actual sorting is started (through the
first pull-out) before all inbound trains have arrived, the online version of the
problem becomes relevant. Moreover, the number of cars rolled in presents a sec-



ondary objective, which can be additionally minimized for a minimum length.
Finally, making the order of inbound trains part of the optimization yields dif-
ferent robust optimization problems.
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for recoverable robustness problems. In: ATMOS-08. IBFI, Schloss Dagstuhl (2008)

5. Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput:
The case of multistage triangular sorting. Transp. Res. 17A(2), 95–106 (1983)

6. Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial prob-
lems related to train marshalling. In: AWOCA-00. pp. 7–16 (2000)
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