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In Yu [23℄ a robust version of the knapsak problem is de�ned by introduingunertainty in the pro�t values: Let S be a set of senarios, eah senario Sdetermining a pro�t funtion pS : N → N. The robust knapsak problem is to�nd a set of items maximizing the minimum optimal pro�t over all senariossuh that the total weight does not exeed the apaity. By a redution fromthe set overing problem, Yu showed that for disrete senarios sets with anunbounded number of senarios the deision version of the problem is strongly
NP-omplete. As mentioned by Aissi et al. [2℄ this proof inludes the result thatthe optimization version is not f -approximable for any funtion f : N → (1,∞).For a disrete senario set with a onstant number of senarios the problemis weakly NP-omplete, solvable in pseudo-polynomial time [14,23℄ and thereexists an FPTAS [2℄. Iida [13℄ provided a omputational study on the robustknapsak problem with disrete senarios to derive upper and lower bounds forthe pro�t. Reently, Klopfenstein and Nae [18℄ introdued robust knapsakswith unertainty based on the approah of Bertsimas and Sim [6,7℄.Due to the already mentioned drawbaks of robustness, several authors, e.g.,Liebhen et al. [19℄, extended the robust approah by means of reovery. Thisnew onept is a robust version of stohasti programming with reourse andhas been suessfully applied to several railway appliations like platforming ortimetabling [10℄. This work is part of our investigations to apply reoverablerobustness to ommuniation networks.Model and Notation. We introdue for the �rst time a reoverable robust versionof the knapsak problem, in whih the weights as well as the pro�ts are subjetto unertainties. Those unertainties are given via a set of senarios. As in therobust setting a subset of items is hosen in a �rst stage suh that its �rst stageweight does not exeed the �rst stage apaity. Yet, in the seond stage, i.e.,when a senario is revealed and the pro�ts and weights are known, k items maybe removed from the �rst stage solution and ℓ items may be added. The newsubset must satisfy the senario apaity restrition cS aording to the weightsof senario S. The objetive is to �nd a �rst stage solution with maximumtotal pro�t. The total pro�t is the sum of the �rst stage pro�t and the minimumoptimum senario pro�t. By varying k and ℓ the gain of reovery an be analyzed.De�nitions 1 and 2 give formal desriptions.De�nition 1 ((k, ℓ)-Reoverable Robust KP ((k, ℓ)-rrKP)) Let c0 ∈ N bethe �rst stage apaity, N = {1, . . . , n} be a set of items, p0j the �rst stagepro�t and w0

j the �rst stage weight of eah item j ∈ N . Eah senario S of agiven set of senarios S de�nes a pro�t funtion pS : N → N, a weight funtion
wS : N → N and a apaity cS ∈ N. Furthermore, the parameter k ∈ N limits thenumber of deletable items from a given set and the parameter ℓ ∈ N the numberof new items ontained in a new set. For a given subset X ⊆ N the reovery set
X

(k,ℓ)
X inludes all subsets of N whih ontain at most ℓ additional elements andfail to ontain at most k elements of X, i.e.,

X
(k,ℓ)
X = {X ′ ⊆ N : |X\X ′| ≤ k and |X ′\X | ≤ ℓ}.



With XS for S ∈ S we denote all subsets of X ′ ⊆ N that satisfy the senarioweight onstraint ∑

i∈X′ wS
i ≤ cS . A feasible �rst stage solution of the (k, ℓ)-reoverable robust knapsak problem is a subset X ⊆ N whih satis�es the �rststage weight onstraint ∑

i∈X w0
i ≤ c0 and X

(k,ℓ)
X ∩ XS 6= ∅ for all S ∈ S. Anoptimal solution X∗ ⊆ N of the (k, ℓ)-reoverable robust knapsak problem is afeasible solution with maximum total pro�t. The total pro�t p(X) of a feasiblesolution X is de�ned as

p(X) =
∑

i∈X
p0i +minS∈S max

XS∈X
(k,ℓ)
X

∩XS

∑

i∈XS
pSi .De�nition 2 Given k and ℓ, the gain of reovery of a (k, ℓ)-Reoverable RobustKnapsak instane is the perentual inrease of the optimal solution value of

(k, ℓ)-rrKP instane w.r.t. the optimal solution value of (0, 0)-rrKP instane.In a disrete senario set SD every senario is expliitly given with its weightfuntion wS : N → N, its pro�t funtion pS : N → N and its apaity cS . Thefollowing integer program models the (k, ℓ)-reoverable robust knapsak problem
max

∑

i∈N
p0ixi + ω (1)

s.t.
∑

i∈N
w0

i xi ≤ c0 (2)
∑

i∈N
wS

i x
S
i ≤ cS ∀S ∈ SD (3)

xS
i − xi − ySi ≤ 0 ∀S ∈ SD, i ∈ N (4)

xi − xS
i − zSi ≤ 0 ∀S ∈ SD, i ∈ N (5)

∑

i∈N
ySi ≤ ℓ ∀S ∈ SD (6)

∑

i∈N
zSi ≤ k ∀S ∈ SD (7)

ω −
∑

i∈N
pSi x

S
i ≤ 0 ∀S ∈ SD (8)

ω ∈ Q+, xi, x
S
i , y

S
i , z

S
i ∈ {0, 1} ∀S ∈ SD, i ∈ N (9)The variable vetor x represents the �rst stage solution, xS the solution taken insenario S ∈ SD, ySi determines if item i is added in S and zSi if item i is removedfrom x in S. Inequalities (4)-(7) guarantee that xS is a feasible reovery for the�rst stage solution x and (2) and (3) that the weight onstraints are obeyed. Thelast inequality (8) in ombination with the objetive funtion models the totalpro�t

max
∑

i∈N
p0ixi +minS∈SD

max
∑

i∈N
pSi x

S
i .The minimum senario pro�t, i.e., minS∈SD

max
∑

i∈N pSi x
S
i , is aptured in thevariable ω. Clearly, the size of the program depends on the number of senarios.Through out the paper we will use the following notation: Given a weight fun-tion f : N → N, an item set X ⊆ N and an integer r, we de�ne f(X) :=

∑

i∈X f(i), the weight of the r heaviest items f(max, X, r) := maxK⊆X |K|≤r f(K)and the weight of the r lightest items f(min, X, r) := minK⊆X, |K|≥r f(K).



Results. The ontribution is twofold. On the one hand, we introdue and analyzethe gain of reovery for the (robust) knapsak problem. Experiments show thatan additional gain of up to 45% ompared to the pro�t of a robust solution an beahieved by allowing the removal and addition of items. On the other hand, weinvestigate the omputational omplexity of the problem in theory and pratie.We report on the hardness and (in)approximability of the problem. To enhanethe solving proess, we study the polytope desribed by the �rst stage variables.We show that (i) a generalization of the well-known over inequalities provides analternative formulation, (ii) these inequalities an be strengthened in a novel way(ompared to the lassial knapsak problem), and (iii) the integrated separationof the strengthened inequalities is signi�antly better than the separate-and-extend proedure.Outline. In Set. 2, we analyze the omplexity status of the (k, ℓ)-rrKP. Next,in Set. 3, we generalize the lassial onept of (extended) overs, whereas itsseparation is the topi of Set. 4. The experimental analysis an be found inSet. 5. We lose with onlusions in Set. 6.2 Complexity of the (k, ℓ)-rrKPWe start with an analysis of the omplexity status of the (k, ℓ)-rrKP for disretesenarios and thus onsider its anonial deision version. If suh an instane Iis a yes-instane, there exist a set X ⊆ N and sets XS ⊆ N for all S ∈ SD, suhthat X is a feasible �rst stage solution, XS ∈ X
(k,ℓ)
X ∩XS and p(X) =

∑

i∈X p0i +

minS∈S

∑

j∈XS pSj ≥ K. Sine the feasibility of X and XS ∈ X
(k,ℓ)
X ∩ XS anbe tested in polynomial time, the deision version of the (k, ℓ)-rrKP problemwith disrete senarios is in NP. Yet, there will be no polynomial erti�ateto test for a given subset X ⊆ N without any further information whether Xan be extended to a feasible solution with a total pro�t p(X) ≥ K, unless

P = NP. This results from a redution from the knapsak problem. However,in the speial ase that k and ℓ are onstant, the reovery set X
(k,ℓ)
X ontainsa onstant number of solutions for any X ⊆ N . Then the total pro�t an beomputed by enumeration.Sine the knapsak problem is a speial ase of the (k, ℓ)-rrKP, the (k, ℓ)-rrKPremains at least weakly NP-omplete for one senario. Next, we report on twofurther omplexity results (proofs an be found in Büsing et al. [8℄).Theorem 3 The (k, ℓ)-rrKP is strongly NP-omplete for unbounded sets of dis-rete senarios even if either p0 = 0 or pS = 0 for all S ∈ SD holds.Note, a lower bound on the approximation ratio of (ℓ + 1)/ℓ an be obtainedwhih implies that any (k, 0)-rrKP is inapproximable, unless P = NP. Further,the (k, ℓ)-rrKP an be solved in pseudo-polynomial time for a bounded numberof senarios by extending the dynami programming approah of Yu [23℄. See [8℄.



3 Extended Cover-InequalitiesAs pointed out by Crowder et al. [9℄ one motivation for studying the polytope ofthe knapsak problem is that valid inequalities an be used as utting planes forgeneral 0-1 linear integer programs (ILP). The idea is to onsider eah individualonstraint of a 0-1 ILP as a 0-1 knapsak onstraint. Several lasses of inequalitiesare known for the knapsak polytope, suh as the lifted over inequalities ofBalas [3℄ and Wolsey [22℄, or the weight inequalities of Weismantel [21℄. For thelass of (k, ℓ)-rrKP problems we will fous on extended over inequalities whihhave been shown to be quite e�ient in solving knapsak instanes by Kaparisand Lethford [15℄.For a given (k, ℓ)-rrKP instane the (k, ℓ)-reoverable robust knapsak polytope
KD(k) of a disrete senario set SD is the onvex hull over all valid �rst stagesolutions, i.e.,
KD(k) : = conv

{

x ∈ {0, 1}n :
∑

i∈N

w0
i xi ≤ c0and min

T⊆N

|T |≤k

∑

i∈N\T

wS
i xi ≤ cS ∀S ∈ S

}

.Note that ℓ does not play a role in the feasibility of a �rst stage solution. Thepolytope KD(k) has full dimension if and only if w0
i ≤ c0 for all i ∈ N (and

wS
i ≤ cS for all S ∈ S if k = 0). We will now extend the well-known onepts ofovers to de�ne feasible inequalities for the KD(k) polytope. In ontrast to thedeterministi ase, suh a over already takes the reovery ation into aount.De�nition 4 A set C ⊆ N is alled an rrKP over if either w0(C) ≥ c0 + 1 orthere exists S ∈ SD with wS(C) − wS(max, C, k) ≥ cS + 1. An rrKP over C isminimal if it satis�es w0(C)−w0(min, C, 1) ≤ c0 and wS(C)−wS(max, C, k)−

wS(min, C, 1) ≤ cS for all S ∈ SD. An rrKP over de�nes the following overinequality
x(C) ≤ |C| − 1. (10)Theorem 5 Let x be a 0-1 point. Then x ∈ KD(k) if and only if x satis�es allminimal over inequalities.Proof. Let Tx := {i ∈ N | xi = 1} be the support of x, whih satis�es all minimalover inequalities. Let us further assume that x is infeasible. Then Tx is an rrKPover by de�nition. In a last step we modify Tx to beome a minimal rrKP over.For this reason we repeatedly remove an item i ∈ Tx with i = argmini∈Tx

w0
i if

w0(Tx) ≥ c0+1 or i = argmini∈Tx
wS

i if wS(Tx)−wS(max, Tx, k) ≥ cS+1, untilthe remaining set T ′
x is a minimal rrKP over. Thus, x violates the (minimum)over inequality de�ned by T ′

x.Conversely, a feasible point not satisfying all minimum over inequalities eitherviolates the �rst stage apaity onstrained or does not ontain a feasible reoveryfor one senario. This is a ontradition to its feasibility. ⊓⊔



The onept of overs an be extended to strengthen the over inequalities ina similar fashion as for the knapsak polytope. A anonial way to de�ne anextension is by adding all items whose weight is greater than or equal to thehighest not reovered item in an rrKP over C. More formally, let C be an rrKPover and S a senario suh that the senario weight inequality is violated by C.A anonial extension E
S
(C) is given by

E
S
(C) =

{

i ∈ N : wS
i ≥ wS(max, C, k + 1)− wS(max, C, k)

}

∪C. (11)Yet, it even su�es for an item to be added to C if its weights exeeds (i) theresidual apaity aording to the weights of the �rst |C| − k− 1 lowest-weight-items and (ii) the weight of the k + 2 highest-weight-item in C.De�nition 6 Let C be an rrKP over for senario S. An extension ES(C) of
C aording to S is de�ned by

ES(C) = C ∪

{

i ∈ N :
wS

i ≥ cS − wS(C) + wS(max, C, k + 1) + 1,
wS

i ≥ wS(max, C, k + 2)− wS(max, C, k + 1)

}and determines the rrKP extended over inequality
x(ES(C)) ≤ |C| − 1 (12)RrKP extended over inequalities are valid for KD(k), as it an be shown byapplying arefully the orresponding de�nitions.For the deterministi knapsak problem the set of inequalities obtained by ex-tending minimal overs is independent of the extension method: Let C be aminimal over and jmax = argmaxj∈C w(C) and imin = argmini∈E(C)\E(C) w(i).Hene, C′ = C ∪ {imin}\{jmax} is a minimal over with |C′| = |C| and E(C′) =

E(C). Yet, for the reoverable robust knapsak problem this is not the ase:Example 7 Consider an instane with 6 items, two senarios and k = 1. Se-nario Sa sets weights {2, 2, 3, 4, 8, 9} and senario Sb sets weights {10, 1, 5, 2, 1, 0}to the items 1, . . . , 6. The senario apaity is 6 for Sa and 3 for Sb respe-tively. Then the set C = {1, 2, 4, 5} is a minimal over. If we extend C bythe seond method aording to senario Sa, ESa(C) = {1, 2, 3, 4, 5, 6} with
wSa(3) < wSa(4). But the set C′ = {1, 2, 3, 5} is not a minimal over, sine
wSb(C′) − wSb(max, C′, 1) − wSb(min, C′, 1) > 3. Also no other minimal overindues a anonial extended over inequality as strong as the one from ESa(C).4 Separation algorithmsTo experimentally evaluate the over inequalities we study the separation prob-lem for rrKP extended overs. The separation problem is to �nd an inequality,



that is violated by a given non-integer point, or prove that non exists. In ourase, we are interested in �nding a violated rrKP extended over inequality fora given frational solution x∗ ∈ [0, 1]n. Sine the de�nition of a over is basedon a single senario or the �rst stage weight set, we an onsider eah senario
S ∈ SD and the �rst stage separately. For simpliity we drop the S supersriptand assume k = 0 in the ase of the �rst stage weight onstraint.Our approah uses integer programming [11℄ and is based on the following ob-servation: In order to �nd a violated extended over inequality, it su�es todetermine the items whih are part of the over and not reovered. We all thoseitems the ore of the over. All other items exeeding the maximum item weightin the ore of the over, an be added to form, possibly, an extended rrKP over.This is the ase, if more than k items are added to the ore. Although thoseextra items are �xed as soon as the ore of a over is known, we introdue aninteger program to determine both sets for two reasons: (i) the number of ad-ditional items is ruial for the detetion of an rrKP over, and (ii) even fordeterministi knapsak instanes a frational point x∗ may not violate any overinequality but an extended over inequality.In oder to model the separation problem we introdue two di�erent binary vari-ables yi and zi for eah item i ∈ N . The variable yi determines whether item iis part of the ore of the over. A over has to satisfy ∑

i∈N wiyi ≥ c + 1. Anitem is reovered or in the extension (zi = 1), if its weight exeeds the weight ofevery item in the ore. Note, that if an item with a su�iently large weight isadded to the reovery or the extension, all items with larger weights may also beadded to the extension as they are exhangeable with the �rst one. To e�ientlyimplement this ondition, we group the items aording to their weights: Let
0 ≤ wi1 < wi2 < . . . < wiθ ≤ c be an ordering of all di�erent item weights our-ring in the senario and T := {1, . . . , θ}. We de�ne N(t) := {j ∈ N : wj = wit}for all t ∈ T . Then zi ≤ zj is valid for all i ∈ N(t), j ∈ N(t+1), t = 1, . . . , θ− 1.Hene, we obtain the following ILP
max

∑

j∈N
(x∗

j − 1)yj+
∑

j∈N
x∗
jzj − k (13)

s.t.
∑

j∈N
wjyj ≥ c+ 1 (14)

yj + zj ≤ 1 ∀j ∈ N (15)
zi − zj ≤ 0 ∀i ∈ N(t), j ∈ N(t+ 1), t ∈ T (16)
yj , zj ∈ {0, 1} ∀j ∈ N. (17)An optimal solution de�nes a violated rrKP extended over inequality, if andonly if the objetive value is greater than −1. Note that in this ase more than

k items are added to the ore of the over.To speed up the solving of (13)-(17), several preproessing rules an be appliedto redue the number of variables and onstraints. In addition, it su�es to �nda (non-optimal) feasible solution with objetive value > −1. Found (extended)overs an be extended further greedily.



Based on this integer formulation and dynami programming we �nally introduea pseudo-polynomial algorithm to solve the separation problem for the extendedover inequalities. We de�ne U = ∪n
i=1{wi} and D =

∑n

i=1 wi. For all t =
1, . . . , n, d = 0, . . . , D and ω ∈ U we solve the problem to �nd a part of the oreof a over and added items within the set {1, . . . , t} suh that the violation of x∗is maximized, the weight of the ore equals d, their maximum weight is below ωand the weight of all items added in the extension are greater or equal than ω.More formally we onsider the following funtion

fω(t, d) = max

t
∑

i=1

(x∗
i − 1)yi +

t
∑

i=1

x∗
i zi

t
∑

i=1

wiyi = d

yi + zi ≤ 1 ∀i = 1, . . . , t

zi = 0 ∀i : wi < ω

yi = 0 ∀i : wi > ω

yi, zi ∈ {0, 1} ∀i = 1, . . . , t.The optimal solution to the separation problem is given by
max
ω∈U

d≥c+1

fω(n, d),The funtion fω(1, d) an easily be solved via three ase distintions: (Case 1) if
w1 = d and ω > d, then fω(1, d) = (x∗

1 − 1); (Case 2) if d = 0 and w1 ≥ ω, then
fω(1, d) = x∗

1; (Case 3) otherwise, fω(1, d) = −∞.For all other ombinations of t ≥ 2, d = 0, . . . , D and ω ∈ U , the general reursiveformula referring to the three ases above holds
fω(t, d) = max{fω(t− 1, d),

fω(t− 1, d− wt) + (x∗
t − 1) if wt ≤ ω,

fω(t− 1, d) + x∗
t if wt ≥ ω}.In other words we deide, whether t is not in the ore and not added to theextension, is part of the ore of the over or is added to the extension takinginto aount the weight bound imposed by ω. Obviously we an onstrut via anoptimal solution of fω(t− 1, d), fω(t− 1, d− wt), and fω(t− 1, d) three feasiblesolutions for fω(t, d). Note that the reursion formula is valid, sine otherwisewe obtain a ontradition to the optimality of fω(1, d′). The run-time of thisapproah is in O(D · n2), sine |U | ≤ n.



5 Computational ExperimentsIn this setion we present omputational results on the rrKP. First, we investi-gate the gain of reovery, i. e., the relative inrease in the objetive value of anoptimal solution obtained by allowing reovery ompared to the optimal valuewithout reovery. Seond, we study omputationally the �rst losure of the re-laxed reoverable robust knapsak problem with respet to the lass of rrKPextended over inequalities and di�erent parameter settings.Problem Instanes. The onsidered rrKP instanes are slight modi�ations ofmulti-dimensional knapsak instanes taken from the ORLIB [4℄ reated by Chuand Beasley. The ORLIB provides instanes with three di�erent knapsak tight-ness ratios, where from we seleted all instanes with a medium tightness ratioof 0.5 for all ombinations of n and m, where n ∈ {100, 250, 500} denotes thenumber of items and m ∈ {5, 10, 30} the number of onstraints. This yields 90instanes. For eah rrKP instane, the �rst knapsak is treated as �rst stageonstraint, and eah remaining knapsak as individual disrete senario. Foreah item, the pro�t of the orresponding multi-dimensional knapsak instaneis saled by 0.7 and used as �rst stage pro�t. The senario pro�ts are also de-termined by saling these values but the saling fator is uniformly randomgenerated in [0.2, 0.4]. In order to analyze the impat of the reovery parame-ters k and ℓ, we hose them as fration of the number of items, e. g., k = 0.25means that 25% of the total set of items may be removed in eah senario. Allombinations of k, ℓ ∈ {0%, 1%, 5%, 10%, 25%, 50%, 100%} are tested.Setting. We implemented the ILP formulation (1)-(9) of the reoverable robustknapsak problem in C++ using SCIP 1.2.0 [1℄ as branh-and-ut frameworkand IBM ILOG CPLEX 12.1 as underlying LP solver. The disussed validinequalities are separated using the allbak funtionality. In our �rst studyonerning the gain of reovery the separator is irrelevant.The omputations were arried out on a Linux mahine with 2.93 GHz IntelXeon W3540 CPU and 12 GB RAM. A time limit of 1 hour was set for solvingeah problem instane. All other solver settings were left at their defaults.5.1 Gain of reoveryIn our �rst omputational study we investigate the gain of reovery. Thereforewe limit the allowed reovery by the parameters k and ℓ where k (ℓ) determineshow many items hosen (not hosen) in the �rst stage may be removed (added)in the senario. The setting k = ℓ = 0 is the standard robust setting whih isequivalent to the lassial multi-dimensional knapsak problem. For given valuesof k and ℓ we ompare the objetive value of the optimal solution (resp. best



 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

 1

 1.1

 1.2

 1.3

 1.4

 1.5

k (%)
l (%)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

(a) 4 senarios, 100 items  0
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(b) 4 senarios, 250 items  0
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() 4 senarios, 500 items
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(d) 9 senarios, 100 items  0
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(e) 9 senarios, 250 items  0
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(f) 9 senarios, 500 items
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(g) 29 senarios, 100 items  0
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(h) 29 senarios, 250 items  0
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(i) 29 senarios, 500 itemsFig. 1. Gain of reovery for seleted values of k and ℓ. Averages are shown for #se-narios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = ℓ = 0.known solution within the time limit as the ahieved optimality gaps are verysmall) with the k = ℓ = 0 setting to evaluate the gain of reovery.Figure 1 visualizes the results of our study for seleted values of k and ℓ. Onlyaverages of the normalized values are shown for groups of 10 instanes with thesame number of items n and the same number of senarios m. All values arenormalized to the orresponding k = ℓ = 0 setting. Details an be found inTable 1.Fixing the number of items we observe a rise in the gain of reovery when thenumber of senarios inreases (e. g., ompare Fig. 1(a), 1(d), and 1(g)). This anbe explained as the non-reovery solution of these instanes is more onservativedue to the higher number of senarios. Therefore reovery allows a larger gain.Considering 4 (9, 29) senarios an additional gain of 26% (31%, 45%) omparedto the k = ℓ = 0 setting an be ahieved. Unfortunately, �xing the number ofsenarios and varying the number of items does not give us a lear orrelation.



#senarios 4 9 29#items 100 250 500 100 250 500 100 250 500
k ℓ0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000.01 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.020.05 1.02 1.01 1.01 1.06 1.05 1.03 1.09 1.10 1.110.10 1.03 1.01 1.01 1.10 1.07 1.04 1.15 1.17 1.190.25 1.03 1.01 1.01 1.15 1.07 1.04 1.25 1.28 1.320.50 1.03 1.01 1.01 1.15 1.07 1.04 1.28 1.31 1.361.00 1.03 1.01 1.01 1.15 1.07 1.04 1.29 1.31 1.360.01 0.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.020.01 1.02 1.03 1.02 1.04 1.04 1.03 1.04 1.05 1.050.05 1.04 1.03 1.02 1.09 1.07 1.05 1.11 1.13 1.130.10 1.04 1.03 1.02 1.12 1.09 1.06 1.17 1.19 1.210.25 1.04 1.03 1.02 1.17 1.09 1.06 1.26 1.30 1.340.50 1.04 1.03 1.02 1.17 1.09 1.06 1.29 1.32 1.371.00 1.04 1.03 1.02 1.17 1.09 1.06 1.29 1.33 1.370.05 0.00 1.08 1.08 1.08 1.09 1.09 1.07 1.10 1.11 1.120.01 1.09 1.09 1.08 1.11 1.10 1.08 1.12 1.13 1.140.05 1.10 1.09 1.08 1.15 1.12 1.10 1.18 1.19 1.210.10 1.10 1.09 1.08 1.18 1.13 1.10 1.23 1.25 1.280.25 1.10 1.09 1.08 1.21 1.14 1.10 1.30 1.34 1.380.50 1.10 1.09 1.08 1.21 1.14 1.10 1.32 1.35 1.401.00 1.10 1.09 1.08 1.21 1.14 1.10 1.32 1.35 1.400.10 0.00 1.13 1.13 1.14 1.15 1.14 1.12 1.15 1.17 1.200.01 1.14 1.14 1.14 1.16 1.15 1.13 1.17 1.19 1.220.05 1.15 1.14 1.14 1.20 1.17 1.14 1.22 1.25 1.280.10 1.15 1.14 1.14 1.23 1.18 1.15 1.27 1.29 1.330.25 1.15 1.14 1.14 1.25 1.18 1.15 1.33 1.37 1.410.50 1.15 1.14 1.14 1.25 1.18 1.15 1.34 1.37 1.421.00 1.15 1.14 1.14 1.25 1.18 1.15 1.34 1.37 1.420.25 0.00 1.20 1.20 1.21 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.22 1.23 1.22 1.19 1.19 1.25 1.310.05 1.23 1.22 1.23 1.27 1.24 1.21 1.25 1.30 1.360.10 1.23 1.22 1.23 1.29 1.24 1.21 1.31 1.35 1.410.25 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.440.50 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.441.00 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.440.50 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.23 1.24 1.22 1.19 1.19 1.25 1.310.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.30 1.370.10 1.25 1.24 1.26 1.30 1.26 1.23 1.31 1.35 1.410.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.450.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.23 1.23 1.22 1.19 1.19 1.25 1.310.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.31 1.370.10 1.25 1.24 1.26 1.30 1.26 1.23 1.31 1.35 1.410.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.450.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45Table 1. Gain of reovery for seleted values of k and ℓ. Averages are shown for#senarios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = ℓ = 0.



Fig. 2. Integrality Gap losed (%) by separating violated valid inequalities for rrKPFor the 100 (250, 500) item instanes we an ahieve an additional gain up to36% (39%, 45%). Next, we observe that inreasing the parameter k, i. e., allowingmore items to be removed in eah senario, learly leads to an inrease in thegain of reovery. This is plausible as large items violating a senario knapsakonstraint may more likely be removed. Finally, we note that the impat ofinreasing ℓ grows with the number of senarios.In summary, allowing reovery yields a gain of up to 45%. Even a more restritedsetting as k = ℓ = 0.1 gives a gain of reovery in the range from 15% to 33%.5.2 First rrKP extended over losureIn the following we present the results of our seond experiment where we inves-tigate the e�etiveness of rrKP extended over inequalities. Therefore, we imple-mented the ILP formulation (13)-(17) of the orresponding separation problemto separate violated rrKP extended over inequalities exatly (but still with anoverall 1 hour time limit per instane). Whenever our separator is alled the �rststage knapsak is heked. If no violated extended over is found, all senariosare tested beginning with the last senario whih provided a violated ut, untila violation is determined. This inequality is then added to the LP and the sepa-ration round is aborted. Only the root node of the reoverable robust knapsakproblem is solved in this study. We onsider four settings whih di�er by theinteger program solved (i.e., whether the anonial extension is integrated ornot) and how the solution is strengthened in a post proessing step (i.e., itemswith x∗
j = 0 are not neessarily seleted in the separation ILP): (i) standard ILPsolver, (ii) over inequalities with anonial greedy extension, (iii) extended overinequalities with anonial greedy extension, and (iv) extended over inequalitieswith advaned greedy extension.



In Figure 2 the average gap losed is shown for seleted values of k (violatedrrKP extended over inequalities do not depend on ℓ) and settings (ii) to (iv)w. r. t. setting (i). Details of the reported results an be found in [8℄.The results for setting (ii) are in line with those for the lassial knapsak prob-lem [12℄. We observe the separation of violated extended over inequalities alwaysloses the integrality gap more than overs only. The strengthening of the anon-ial extension (11) (setting (ii)) to the advaned extension given in De�nition 6(setting (iv)) does not have a strong impat on the gap losed, e. g., 8.0% (iv)ompared to 7.9% (iii) on average for k = 25%.Fousing on the results for the anonial extension (setting (ii)), we observethat the geometri mean of the integrality gap losed lies in the range from1.5% (k = 5%) to 10.3% (k = 50%). Considering all instanes with 4 (9, 29)senarios it ranges from 0.1% (0.1%, 0.8%) to 8.6% (10.2%, 23.9%). This suggeststhat an inrease in the number of senarios may result in a larger gap losed.Unfortunately, there is no lear dependeny. Considering all instanes with 100(250, 500) items the integrality gap losed ranges from 0.8% (1.3%, 0.1%) to13.3% (16.0%, 23.9%). Again, there is no lear trend when �xing k or m.In summary, this study shows that by adding violated rrKP extended overinequalities the integrality gap is always lowered. The best ahievement has beena gap losed by 23.9%. In setting (ii) (setting (iii)) the gap ould be losed bymore than 5% in 35% (55%) of all instanes. In addition, the overall omputationtime spent for one setting of this study was less than half an hour. Hene, theseparation of violated rrKP extended over uts has a high potential to tightenthe linear relaxation of the reoverable robust knapsak problem and to speed-upthe solving proess signi�antly.6 ConlusionIn this paper, we onsidered the reoverable robust knapsak problem with dis-rete senarios. For a �xed number of disrete senarios (k, ℓ)-rrKP is weakly
NP-omplete. If the number of disrete senarios is part of the input, the prob-lem is stronglyNP-omplete. We introdued the lass of rrKP over inequalitiesgeneralizing its well-known ounterpart for the knapsak problem. In addition toa anonial extension we presented a stronger extension exploiting the senario-based struture of the problem. This seond extension is still stronger if restritedto the robust knapsak polytope.Computational experiments on several thousand individual test runs have shownthat a gain of up to 45% in the objetive an be ahieved by reovery. Further,omputations are sped up by separating either anonial extended over inequal-ities or strengthened anonial extended over inequalities.In future work, alternative separation algorithms (e. g. heuristis) should be on-sidered. The strength of the valid inequalities should be polyhedrally investigatedas well.
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