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t. The knapsa
k problem is one of the basi
 problems in 
om-binatorial optimization. In real-world appli
ations it is often part of amore 
omplex problem. Examples are ma
hine 
apa
ities in produ
tionplanning or bandwidth restri
tions in tele
ommuni
ation network de-sign. Due to unpredi
table future settings or erroneous data, parametersof su
h a subproblem are subje
t to un
ertainties.In high risk situations a robust approa
h should be 
hosen to deal withthese un
ertainties. Unfortunately, 
lassi
al robust optimization outputssolutions with little pro�t by prohibiting any adaption of the solutionwhen the a
tual realization of the un
ertain parameters is known. Thisignores the fa
t that in most settings minor 
hanges to a previouslydetermined solution are possible. To over
ome these drawba
ks we allowa limited re
overy of a previously �xed item set as soon as the data areknown by deleting at most k items and adding up to ℓ new items.We 
onsider the 
omplexity status of this re
overable robust knapsa
kproblem and extend the 
lassi
al 
on
ept of 
over inequalities to ob-tain stronger polyhedral des
riptions. Finally, we present two extensive
omputational studies to investigate the in�uen
e of parameters k and ℓto the obje
tive and evaluate the e�e
tiveness of our new 
lass of validinequalities.1 Introdu
tionAn instan
e of the knapsa
k problem (KP) 
onsists of an item set N = {1, . . . , n}with pro�ts pj and positive weights wj for all items j ∈ N , and a 
apa
ity c. Thevalues pj , wj , and c are taken as integers. The obje
tive of su
h an instan
e isto sele
t a subset X of these items su
h that the total pro�t of X is maximizedand the total weight does not ex
eed c. Despite its simple stru
ture the problemis known to be weakly NP-hard [16℄ but solvable via dynami
 programmingin pseudo-polynomial time [5℄. Di�erent bran
h-and-
ut algorithms are used tosolve this problem in pra
ti
e. A detailed introdu
tion to the knapsa
k problemand its variations 
an be found in Martello and Toth [20℄ and Kellerer et al. [17℄.This work was supported by the Federal Ministry of Edu
ation and Resear
h(BMBF grant 03MS616A, proje
t ROBUKOM - Robust Communi
ation Networks,www.robukom.de), and the DFG Resear
h Center Matheon Mathemati
s for keyte
hnologies.



In Yu [23℄ a robust version of the knapsa
k problem is de�ned by introdu
ingun
ertainty in the pro�t values: Let S be a set of s
enarios, ea
h s
enario Sdetermining a pro�t fun
tion pS : N → N. The robust knapsa
k problem is to�nd a set of items maximizing the minimum optimal pro�t over all s
enariossu
h that the total weight does not ex
eed the 
apa
ity. By a redu
tion fromthe set 
overing problem, Yu showed that for dis
rete s
enarios sets with anunbounded number of s
enarios the de
ision version of the problem is strongly
NP-
omplete. As mentioned by Aissi et al. [2℄ this proof in
ludes the result thatthe optimization version is not f -approximable for any fun
tion f : N → (1,∞).For a dis
rete s
enario set with a 
onstant number of s
enarios the problemis weakly NP-
omplete, solvable in pseudo-polynomial time [14,23℄ and thereexists an FPTAS [2℄. Iida [13℄ provided a 
omputational study on the robustknapsa
k problem with dis
rete s
enarios to derive upper and lower bounds forthe pro�t. Re
ently, Klopfenstein and Na
e [18℄ introdu
ed robust knapsa
kswith un
ertainty based on the approa
h of Bertsimas and Sim [6,7℄.Due to the already mentioned drawba
ks of robustness, several authors, e.g.,Lieb
hen et al. [19℄, extended the robust approa
h by means of re
overy. Thisnew 
on
ept is a robust version of sto
hasti
 programming with re
ourse andhas been su

essfully applied to several railway appli
ations like platforming ortimetabling [10℄. This work is part of our investigations to apply re
overablerobustness to 
ommuni
ation networks.Model and Notation. We introdu
e for the �rst time a re
overable robust versionof the knapsa
k problem, in whi
h the weights as well as the pro�ts are subje
tto un
ertainties. Those un
ertainties are given via a set of s
enarios. As in therobust setting a subset of items is 
hosen in a �rst stage su
h that its �rst stageweight does not ex
eed the �rst stage 
apa
ity. Yet, in the se
ond stage, i.e.,when a s
enario is revealed and the pro�ts and weights are known, k items maybe removed from the �rst stage solution and ℓ items may be added. The newsubset must satisfy the s
enario 
apa
ity restri
tion cS a

ording to the weightsof s
enario S. The obje
tive is to �nd a �rst stage solution with maximumtotal pro�t. The total pro�t is the sum of the �rst stage pro�t and the minimumoptimum s
enario pro�t. By varying k and ℓ the gain of re
overy 
an be analyzed.De�nitions 1 and 2 give formal des
riptions.De�nition 1 ((k, ℓ)-Re
overable Robust KP ((k, ℓ)-rrKP)) Let c0 ∈ N bethe �rst stage 
apa
ity, N = {1, . . . , n} be a set of items, p0j the �rst stagepro�t and w0

j the �rst stage weight of ea
h item j ∈ N . Ea
h s
enario S of agiven set of s
enarios S de�nes a pro�t fun
tion pS : N → N, a weight fun
tion
wS : N → N and a 
apa
ity cS ∈ N. Furthermore, the parameter k ∈ N limits thenumber of deletable items from a given set and the parameter ℓ ∈ N the numberof new items 
ontained in a new set. For a given subset X ⊆ N the re
overy set
X

(k,ℓ)
X in
ludes all subsets of N whi
h 
ontain at most ℓ additional elements andfail to 
ontain at most k elements of X, i.e.,

X
(k,ℓ)
X = {X ′ ⊆ N : |X\X ′| ≤ k and |X ′\X | ≤ ℓ}.



With XS for S ∈ S we denote all subsets of X ′ ⊆ N that satisfy the s
enarioweight 
onstraint ∑

i∈X′ wS
i ≤ cS . A feasible �rst stage solution of the (k, ℓ)-re
overable robust knapsa
k problem is a subset X ⊆ N whi
h satis�es the �rststage weight 
onstraint ∑

i∈X w0
i ≤ c0 and X

(k,ℓ)
X ∩ XS 6= ∅ for all S ∈ S. Anoptimal solution X∗ ⊆ N of the (k, ℓ)-re
overable robust knapsa
k problem is afeasible solution with maximum total pro�t. The total pro�t p(X) of a feasiblesolution X is de�ned as

p(X) =
∑

i∈X
p0i +minS∈S max

XS∈X
(k,ℓ)
X

∩XS

∑

i∈XS
pSi .De�nition 2 Given k and ℓ, the gain of re
overy of a (k, ℓ)-Re
overable RobustKnapsa
k instan
e is the per
entual in
rease of the optimal solution value of

(k, ℓ)-rrKP instan
e w.r.t. the optimal solution value of (0, 0)-rrKP instan
e.In a dis
rete s
enario set SD every s
enario is expli
itly given with its weightfun
tion wS : N → N, its pro�t fun
tion pS : N → N and its 
apa
ity cS . Thefollowing integer program models the (k, ℓ)-re
overable robust knapsa
k problem
max

∑

i∈N
p0ixi + ω (1)

s.t.
∑

i∈N
w0

i xi ≤ c0 (2)
∑

i∈N
wS

i x
S
i ≤ cS ∀S ∈ SD (3)

xS
i − xi − ySi ≤ 0 ∀S ∈ SD, i ∈ N (4)

xi − xS
i − zSi ≤ 0 ∀S ∈ SD, i ∈ N (5)

∑

i∈N
ySi ≤ ℓ ∀S ∈ SD (6)

∑

i∈N
zSi ≤ k ∀S ∈ SD (7)

ω −
∑

i∈N
pSi x

S
i ≤ 0 ∀S ∈ SD (8)

ω ∈ Q+, xi, x
S
i , y

S
i , z

S
i ∈ {0, 1} ∀S ∈ SD, i ∈ N (9)The variable ve
tor x represents the �rst stage solution, xS the solution taken ins
enario S ∈ SD, ySi determines if item i is added in S and zSi if item i is removedfrom x in S. Inequalities (4)-(7) guarantee that xS is a feasible re
overy for the�rst stage solution x and (2) and (3) that the weight 
onstraints are obeyed. Thelast inequality (8) in 
ombination with the obje
tive fun
tion models the totalpro�t

max
∑

i∈N
p0ixi +minS∈SD

max
∑

i∈N
pSi x

S
i .The minimum s
enario pro�t, i.e., minS∈SD

max
∑

i∈N pSi x
S
i , is 
aptured in thevariable ω. Clearly, the size of the program depends on the number of s
enarios.Through out the paper we will use the following notation: Given a weight fun
-tion f : N → N, an item set X ⊆ N and an integer r, we de�ne f(X) :=

∑

i∈X f(i), the weight of the r heaviest items f(max, X, r) := maxK⊆X |K|≤r f(K)and the weight of the r lightest items f(min, X, r) := minK⊆X, |K|≥r f(K).



Results. The 
ontribution is twofold. On the one hand, we introdu
e and analyzethe gain of re
overy for the (robust) knapsa
k problem. Experiments show thatan additional gain of up to 45% 
ompared to the pro�t of a robust solution 
an bea
hieved by allowing the removal and addition of items. On the other hand, weinvestigate the 
omputational 
omplexity of the problem in theory and pra
ti
e.We report on the hardness and (in)approximability of the problem. To enhan
ethe solving pro
ess, we study the polytope des
ribed by the �rst stage variables.We show that (i) a generalization of the well-known 
over inequalities provides analternative formulation, (ii) these inequalities 
an be strengthened in a novel way(
ompared to the 
lassi
al knapsa
k problem), and (iii) the integrated separationof the strengthened inequalities is signi�
antly better than the separate-and-extend pro
edure.Outline. In Se
t. 2, we analyze the 
omplexity status of the (k, ℓ)-rrKP. Next,in Se
t. 3, we generalize the 
lassi
al 
on
ept of (extended) 
overs, whereas itsseparation is the topi
 of Se
t. 4. The experimental analysis 
an be found inSe
t. 5. We 
lose with 
on
lusions in Se
t. 6.2 Complexity of the (k, ℓ)-rrKPWe start with an analysis of the 
omplexity status of the (k, ℓ)-rrKP for dis
retes
enarios and thus 
onsider its 
anoni
al de
ision version. If su
h an instan
e Iis a yes-instan
e, there exist a set X ⊆ N and sets XS ⊆ N for all S ∈ SD, su
hthat X is a feasible �rst stage solution, XS ∈ X
(k,ℓ)
X ∩XS and p(X) =

∑

i∈X p0i +

minS∈S

∑

j∈XS pSj ≥ K. Sin
e the feasibility of X and XS ∈ X
(k,ℓ)
X ∩ XS 
anbe tested in polynomial time, the de
ision version of the (k, ℓ)-rrKP problemwith dis
rete s
enarios is in NP. Yet, there will be no polynomial 
erti�
ateto test for a given subset X ⊆ N without any further information whether X
an be extended to a feasible solution with a total pro�t p(X) ≥ K, unless

P = NP. This results from a redu
tion from the knapsa
k problem. However,in the spe
ial 
ase that k and ℓ are 
onstant, the re
overy set X
(k,ℓ)
X 
ontainsa 
onstant number of solutions for any X ⊆ N . Then the total pro�t 
an be
omputed by enumeration.Sin
e the knapsa
k problem is a spe
ial 
ase of the (k, ℓ)-rrKP, the (k, ℓ)-rrKPremains at least weakly NP-
omplete for one s
enario. Next, we report on twofurther 
omplexity results (proofs 
an be found in Büsing et al. [8℄).Theorem 3 The (k, ℓ)-rrKP is strongly NP-
omplete for unbounded sets of dis-
rete s
enarios even if either p0 = 0 or pS = 0 for all S ∈ SD holds.Note, a lower bound on the approximation ratio of (ℓ + 1)/ℓ 
an be obtainedwhi
h implies that any (k, 0)-rrKP is inapproximable, unless P = NP. Further,the (k, ℓ)-rrKP 
an be solved in pseudo-polynomial time for a bounded numberof s
enarios by extending the dynami
 programming approa
h of Yu [23℄. See [8℄.



3 Extended Cover-InequalitiesAs pointed out by Crowder et al. [9℄ one motivation for studying the polytope ofthe knapsa
k problem is that valid inequalities 
an be used as 
utting planes forgeneral 0-1 linear integer programs (ILP). The idea is to 
onsider ea
h individual
onstraint of a 0-1 ILP as a 0-1 knapsa
k 
onstraint. Several 
lasses of inequalitiesare known for the knapsa
k polytope, su
h as the lifted 
over inequalities ofBalas [3℄ and Wolsey [22℄, or the weight inequalities of Weismantel [21℄. For the
lass of (k, ℓ)-rrKP problems we will fo
us on extended 
over inequalities whi
hhave been shown to be quite e�
ient in solving knapsa
k instan
es by Kaparisand Let
hford [15℄.For a given (k, ℓ)-rrKP instan
e the (k, ℓ)-re
overable robust knapsa
k polytope
KD(k) of a dis
rete s
enario set SD is the 
onvex hull over all valid �rst stagesolutions, i.e.,
KD(k) : = conv

{

x ∈ {0, 1}n :
∑

i∈N

w0
i xi ≤ c0and min

T⊆N

|T |≤k

∑

i∈N\T

wS
i xi ≤ cS ∀S ∈ S

}

.Note that ℓ does not play a role in the feasibility of a �rst stage solution. Thepolytope KD(k) has full dimension if and only if w0
i ≤ c0 for all i ∈ N (and

wS
i ≤ cS for all S ∈ S if k = 0). We will now extend the well-known 
on
epts of
overs to de�ne feasible inequalities for the KD(k) polytope. In 
ontrast to thedeterministi
 
ase, su
h a 
over already takes the re
overy a
tion into a

ount.De�nition 4 A set C ⊆ N is 
alled an rrKP 
over if either w0(C) ≥ c0 + 1 orthere exists S ∈ SD with wS(C) − wS(max, C, k) ≥ cS + 1. An rrKP 
over C isminimal if it satis�es w0(C)−w0(min, C, 1) ≤ c0 and wS(C)−wS(max, C, k)−

wS(min, C, 1) ≤ cS for all S ∈ SD. An rrKP 
over de�nes the following 
overinequality
x(C) ≤ |C| − 1. (10)Theorem 5 Let x be a 0-1 point. Then x ∈ KD(k) if and only if x satis�es allminimal 
over inequalities.Proof. Let Tx := {i ∈ N | xi = 1} be the support of x, whi
h satis�es all minimal
over inequalities. Let us further assume that x is infeasible. Then Tx is an rrKP
over by de�nition. In a last step we modify Tx to be
ome a minimal rrKP 
over.For this reason we repeatedly remove an item i ∈ Tx with i = argmini∈Tx

w0
i if

w0(Tx) ≥ c0+1 or i = argmini∈Tx
wS

i if wS(Tx)−wS(max, Tx, k) ≥ cS+1, untilthe remaining set T ′
x is a minimal rrKP 
over. Thus, x violates the (minimum)
over inequality de�ned by T ′

x.Conversely, a feasible point not satisfying all minimum 
over inequalities eitherviolates the �rst stage 
apa
ity 
onstrained or does not 
ontain a feasible re
overyfor one s
enario. This is a 
ontradi
tion to its feasibility. ⊓⊔



The 
on
ept of 
overs 
an be extended to strengthen the 
over inequalities ina similar fashion as for the knapsa
k polytope. A 
anoni
al way to de�ne anextension is by adding all items whose weight is greater than or equal to thehighest not re
overed item in an rrKP 
over C. More formally, let C be an rrKP
over and S a s
enario su
h that the s
enario weight inequality is violated by C.A 
anoni
al extension E
S
(C) is given by

E
S
(C) =

{

i ∈ N : wS
i ≥ wS(max, C, k + 1)− wS(max, C, k)

}

∪C. (11)Yet, it even su�
es for an item to be added to C if its weights ex
eeds (i) theresidual 
apa
ity a

ording to the weights of the �rst |C| − k− 1 lowest-weight-items and (ii) the weight of the k + 2 highest-weight-item in C.De�nition 6 Let C be an rrKP 
over for s
enario S. An extension ES(C) of
C a

ording to S is de�ned by

ES(C) = C ∪

{

i ∈ N :
wS

i ≥ cS − wS(C) + wS(max, C, k + 1) + 1,
wS

i ≥ wS(max, C, k + 2)− wS(max, C, k + 1)

}and determines the rrKP extended 
over inequality
x(ES(C)) ≤ |C| − 1 (12)RrKP extended 
over inequalities are valid for KD(k), as it 
an be shown byapplying 
arefully the 
orresponding de�nitions.For the deterministi
 knapsa
k problem the set of inequalities obtained by ex-tending minimal 
overs is independent of the extension method: Let C be aminimal 
over and jmax = argmaxj∈C w(C) and imin = argmini∈E(C)\E(C) w(i).Hen
e, C′ = C ∪ {imin}\{jmax} is a minimal 
over with |C′| = |C| and E(C′) =

E(C). Yet, for the re
overable robust knapsa
k problem this is not the 
ase:Example 7 Consider an instan
e with 6 items, two s
enarios and k = 1. S
e-nario Sa sets weights {2, 2, 3, 4, 8, 9} and s
enario Sb sets weights {10, 1, 5, 2, 1, 0}to the items 1, . . . , 6. The s
enario 
apa
ity is 6 for Sa and 3 for Sb respe
-tively. Then the set C = {1, 2, 4, 5} is a minimal 
over. If we extend C bythe se
ond method a

ording to s
enario Sa, ESa(C) = {1, 2, 3, 4, 5, 6} with
wSa(3) < wSa(4). But the set C′ = {1, 2, 3, 5} is not a minimal 
over, sin
e
wSb(C′) − wSb(max, C′, 1) − wSb(min, C′, 1) > 3. Also no other minimal 
overindu
es a 
anoni
al extended 
over inequality as strong as the one from ESa(C).4 Separation algorithmsTo experimentally evaluate the 
over inequalities we study the separation prob-lem for rrKP extended 
overs. The separation problem is to �nd an inequality,



that is violated by a given non-integer point, or prove that non exists. In our
ase, we are interested in �nding a violated rrKP extended 
over inequality fora given fra
tional solution x∗ ∈ [0, 1]n. Sin
e the de�nition of a 
over is basedon a single s
enario or the �rst stage weight set, we 
an 
onsider ea
h s
enario
S ∈ SD and the �rst stage separately. For simpli
ity we drop the S supers
riptand assume k = 0 in the 
ase of the �rst stage weight 
onstraint.Our approa
h uses integer programming [11℄ and is based on the following ob-servation: In order to �nd a violated extended 
over inequality, it su�
es todetermine the items whi
h are part of the 
over and not re
overed. We 
all thoseitems the 
ore of the 
over. All other items ex
eeding the maximum item weightin the 
ore of the 
over, 
an be added to form, possibly, an extended rrKP 
over.This is the 
ase, if more than k items are added to the 
ore. Although thoseextra items are �xed as soon as the 
ore of a 
over is known, we introdu
e aninteger program to determine both sets for two reasons: (i) the number of ad-ditional items is 
ru
ial for the dete
tion of an rrKP 
over, and (ii) even fordeterministi
 knapsa
k instan
es a fra
tional point x∗ may not violate any 
overinequality but an extended 
over inequality.In oder to model the separation problem we introdu
e two di�erent binary vari-ables yi and zi for ea
h item i ∈ N . The variable yi determines whether item iis part of the 
ore of the 
over. A 
over has to satisfy ∑

i∈N wiyi ≥ c + 1. Anitem is re
overed or in the extension (zi = 1), if its weight ex
eeds the weight ofevery item in the 
ore. Note, that if an item with a su�
iently large weight isadded to the re
overy or the extension, all items with larger weights may also beadded to the extension as they are ex
hangeable with the �rst one. To e�
ientlyimplement this 
ondition, we group the items a

ording to their weights: Let
0 ≤ wi1 < wi2 < . . . < wiθ ≤ c be an ordering of all di�erent item weights o

ur-ring in the s
enario and T := {1, . . . , θ}. We de�ne N(t) := {j ∈ N : wj = wit}for all t ∈ T . Then zi ≤ zj is valid for all i ∈ N(t), j ∈ N(t+1), t = 1, . . . , θ− 1.Hen
e, we obtain the following ILP
max

∑

j∈N
(x∗

j − 1)yj+
∑

j∈N
x∗
jzj − k (13)

s.t.
∑

j∈N
wjyj ≥ c+ 1 (14)

yj + zj ≤ 1 ∀j ∈ N (15)
zi − zj ≤ 0 ∀i ∈ N(t), j ∈ N(t+ 1), t ∈ T (16)
yj , zj ∈ {0, 1} ∀j ∈ N. (17)An optimal solution de�nes a violated rrKP extended 
over inequality, if andonly if the obje
tive value is greater than −1. Note that in this 
ase more than

k items are added to the 
ore of the 
over.To speed up the solving of (13)-(17), several prepro
essing rules 
an be appliedto redu
e the number of variables and 
onstraints. In addition, it su�
es to �nda (non-optimal) feasible solution with obje
tive value > −1. Found (extended)
overs 
an be extended further greedily.



Based on this integer formulation and dynami
 programming we �nally introdu
ea pseudo-polynomial algorithm to solve the separation problem for the extended
over inequalities. We de�ne U = ∪n
i=1{wi} and D =

∑n

i=1 wi. For all t =
1, . . . , n, d = 0, . . . , D and ω ∈ U we solve the problem to �nd a part of the 
oreof a 
over and added items within the set {1, . . . , t} su
h that the violation of x∗is maximized, the weight of the 
ore equals d, their maximum weight is below ωand the weight of all items added in the extension are greater or equal than ω.More formally we 
onsider the following fun
tion

fω(t, d) = max

t
∑

i=1

(x∗
i − 1)yi +

t
∑

i=1

x∗
i zi

t
∑

i=1

wiyi = d

yi + zi ≤ 1 ∀i = 1, . . . , t

zi = 0 ∀i : wi < ω

yi = 0 ∀i : wi > ω

yi, zi ∈ {0, 1} ∀i = 1, . . . , t.The optimal solution to the separation problem is given by
max
ω∈U

d≥c+1

fω(n, d),The fun
tion fω(1, d) 
an easily be solved via three 
ase distin
tions: (Case 1) if
w1 = d and ω > d, then fω(1, d) = (x∗

1 − 1); (Case 2) if d = 0 and w1 ≥ ω, then
fω(1, d) = x∗

1; (Case 3) otherwise, fω(1, d) = −∞.For all other 
ombinations of t ≥ 2, d = 0, . . . , D and ω ∈ U , the general re
ursiveformula referring to the three 
ases above holds
fω(t, d) = max{fω(t− 1, d),

fω(t− 1, d− wt) + (x∗
t − 1) if wt ≤ ω,

fω(t− 1, d) + x∗
t if wt ≥ ω}.In other words we de
ide, whether t is not in the 
ore and not added to theextension, is part of the 
ore of the 
over or is added to the extension takinginto a

ount the weight bound imposed by ω. Obviously we 
an 
onstru
t via anoptimal solution of fω(t− 1, d), fω(t− 1, d− wt), and fω(t− 1, d) three feasiblesolutions for fω(t, d). Note that the re
ursion formula is valid, sin
e otherwisewe obtain a 
ontradi
tion to the optimality of fω(1, d′). The run-time of thisapproa
h is in O(D · n2), sin
e |U | ≤ n.



5 Computational ExperimentsIn this se
tion we present 
omputational results on the rrKP. First, we investi-gate the gain of re
overy, i. e., the relative in
rease in the obje
tive value of anoptimal solution obtained by allowing re
overy 
ompared to the optimal valuewithout re
overy. Se
ond, we study 
omputationally the �rst 
losure of the re-laxed re
overable robust knapsa
k problem with respe
t to the 
lass of rrKPextended 
over inequalities and di�erent parameter settings.Problem Instan
es. The 
onsidered rrKP instan
es are slight modi�
ations ofmulti-dimensional knapsa
k instan
es taken from the ORLIB [4℄ 
reated by Chuand Beasley. The ORLIB provides instan
es with three di�erent knapsa
k tight-ness ratios, where from we sele
ted all instan
es with a medium tightness ratioof 0.5 for all 
ombinations of n and m, where n ∈ {100, 250, 500} denotes thenumber of items and m ∈ {5, 10, 30} the number of 
onstraints. This yields 90instan
es. For ea
h rrKP instan
e, the �rst knapsa
k is treated as �rst stage
onstraint, and ea
h remaining knapsa
k as individual dis
rete s
enario. Forea
h item, the pro�t of the 
orresponding multi-dimensional knapsa
k instan
eis s
aled by 0.7 and used as �rst stage pro�t. The s
enario pro�ts are also de-termined by s
aling these values but the s
aling fa
tor is uniformly randomgenerated in [0.2, 0.4]. In order to analyze the impa
t of the re
overy parame-ters k and ℓ, we 
hose them as fra
tion of the number of items, e. g., k = 0.25means that 25% of the total set of items may be removed in ea
h s
enario. All
ombinations of k, ℓ ∈ {0%, 1%, 5%, 10%, 25%, 50%, 100%} are tested.Setting. We implemented the ILP formulation (1)-(9) of the re
overable robustknapsa
k problem in C++ using SCIP 1.2.0 [1℄ as bran
h-and-
ut frameworkand IBM ILOG CPLEX 12.1 as underlying LP solver. The dis
ussed validinequalities are separated using the 
allba
k fun
tionality. In our �rst study
on
erning the gain of re
overy the separator is irrelevant.The 
omputations were 
arried out on a Linux ma
hine with 2.93 GHz IntelXeon W3540 CPU and 12 GB RAM. A time limit of 1 hour was set for solvingea
h problem instan
e. All other solver settings were left at their defaults.5.1 Gain of re
overyIn our �rst 
omputational study we investigate the gain of re
overy. Thereforewe limit the allowed re
overy by the parameters k and ℓ where k (ℓ) determineshow many items 
hosen (not 
hosen) in the �rst stage may be removed (added)in the s
enario. The setting k = ℓ = 0 is the standard robust setting whi
h isequivalent to the 
lassi
al multi-dimensional knapsa
k problem. For given valuesof k and ℓ we 
ompare the obje
tive value of the optimal solution (resp. best
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(g) 29 s
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(i) 29 s
enarios, 500 itemsFig. 1. Gain of re
overy for sele
ted values of k and ℓ. Averages are shown for #s
e-narios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = ℓ = 0.known solution within the time limit as the a
hieved optimality gaps are verysmall) with the k = ℓ = 0 setting to evaluate the gain of re
overy.Figure 1 visualizes the results of our study for sele
ted values of k and ℓ. Onlyaverages of the normalized values are shown for groups of 10 instan
es with thesame number of items n and the same number of s
enarios m. All values arenormalized to the 
orresponding k = ℓ = 0 setting. Details 
an be found inTable 1.Fixing the number of items we observe a rise in the gain of re
overy when thenumber of s
enarios in
reases (e. g., 
ompare Fig. 1(a), 1(d), and 1(g)). This 
anbe explained as the non-re
overy solution of these instan
es is more 
onservativedue to the higher number of s
enarios. Therefore re
overy allows a larger gain.Considering 4 (9, 29) s
enarios an additional gain of 26% (31%, 45%) 
omparedto the k = ℓ = 0 setting 
an be a
hieved. Unfortunately, �xing the number ofs
enarios and varying the number of items does not give us a 
lear 
orrelation.



#s
enarios 4 9 29#items 100 250 500 100 250 500 100 250 500
k ℓ0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000.01 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.020.05 1.02 1.01 1.01 1.06 1.05 1.03 1.09 1.10 1.110.10 1.03 1.01 1.01 1.10 1.07 1.04 1.15 1.17 1.190.25 1.03 1.01 1.01 1.15 1.07 1.04 1.25 1.28 1.320.50 1.03 1.01 1.01 1.15 1.07 1.04 1.28 1.31 1.361.00 1.03 1.01 1.01 1.15 1.07 1.04 1.29 1.31 1.360.01 0.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.020.01 1.02 1.03 1.02 1.04 1.04 1.03 1.04 1.05 1.050.05 1.04 1.03 1.02 1.09 1.07 1.05 1.11 1.13 1.130.10 1.04 1.03 1.02 1.12 1.09 1.06 1.17 1.19 1.210.25 1.04 1.03 1.02 1.17 1.09 1.06 1.26 1.30 1.340.50 1.04 1.03 1.02 1.17 1.09 1.06 1.29 1.32 1.371.00 1.04 1.03 1.02 1.17 1.09 1.06 1.29 1.33 1.370.05 0.00 1.08 1.08 1.08 1.09 1.09 1.07 1.10 1.11 1.120.01 1.09 1.09 1.08 1.11 1.10 1.08 1.12 1.13 1.140.05 1.10 1.09 1.08 1.15 1.12 1.10 1.18 1.19 1.210.10 1.10 1.09 1.08 1.18 1.13 1.10 1.23 1.25 1.280.25 1.10 1.09 1.08 1.21 1.14 1.10 1.30 1.34 1.380.50 1.10 1.09 1.08 1.21 1.14 1.10 1.32 1.35 1.401.00 1.10 1.09 1.08 1.21 1.14 1.10 1.32 1.35 1.400.10 0.00 1.13 1.13 1.14 1.15 1.14 1.12 1.15 1.17 1.200.01 1.14 1.14 1.14 1.16 1.15 1.13 1.17 1.19 1.220.05 1.15 1.14 1.14 1.20 1.17 1.14 1.22 1.25 1.280.10 1.15 1.14 1.14 1.23 1.18 1.15 1.27 1.29 1.330.25 1.15 1.14 1.14 1.25 1.18 1.15 1.33 1.37 1.410.50 1.15 1.14 1.14 1.25 1.18 1.15 1.34 1.37 1.421.00 1.15 1.14 1.14 1.25 1.18 1.15 1.34 1.37 1.420.25 0.00 1.20 1.20 1.21 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.22 1.23 1.22 1.19 1.19 1.25 1.310.05 1.23 1.22 1.23 1.27 1.24 1.21 1.25 1.30 1.360.10 1.23 1.22 1.23 1.29 1.24 1.21 1.31 1.35 1.410.25 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.440.50 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.441.00 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.440.50 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.23 1.24 1.22 1.19 1.19 1.25 1.310.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.30 1.370.10 1.25 1.24 1.26 1.30 1.26 1.23 1.31 1.35 1.410.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.450.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.290.01 1.21 1.21 1.23 1.23 1.22 1.19 1.19 1.25 1.310.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.31 1.370.10 1.25 1.24 1.26 1.30 1.26 1.23 1.31 1.35 1.410.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.450.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.451.00 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45Table 1. Gain of re
overy for sele
ted values of k and ℓ. Averages are shown for#s
enarios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = ℓ = 0.



Fig. 2. Integrality Gap 
losed (%) by separating violated valid inequalities for rrKPFor the 100 (250, 500) item instan
es we 
an a
hieve an additional gain up to36% (39%, 45%). Next, we observe that in
reasing the parameter k, i. e., allowingmore items to be removed in ea
h s
enario, 
learly leads to an in
rease in thegain of re
overy. This is plausible as large items violating a s
enario knapsa
k
onstraint may more likely be removed. Finally, we note that the impa
t ofin
reasing ℓ grows with the number of s
enarios.In summary, allowing re
overy yields a gain of up to 45%. Even a more restri
tedsetting as k = ℓ = 0.1 gives a gain of re
overy in the range from 15% to 33%.5.2 First rrKP extended 
over 
losureIn the following we present the results of our se
ond experiment where we inves-tigate the e�e
tiveness of rrKP extended 
over inequalities. Therefore, we imple-mented the ILP formulation (13)-(17) of the 
orresponding separation problemto separate violated rrKP extended 
over inequalities exa
tly (but still with anoverall 1 hour time limit per instan
e). Whenever our separator is 
alled the �rststage knapsa
k is 
he
ked. If no violated extended 
over is found, all s
enariosare tested beginning with the last s
enario whi
h provided a violated 
ut, untila violation is determined. This inequality is then added to the LP and the sepa-ration round is aborted. Only the root node of the re
overable robust knapsa
kproblem is solved in this study. We 
onsider four settings whi
h di�er by theinteger program solved (i.e., whether the 
anoni
al extension is integrated ornot) and how the solution is strengthened in a post pro
essing step (i.e., itemswith x∗
j = 0 are not ne
essarily sele
ted in the separation ILP): (i) standard ILPsolver, (ii) 
over inequalities with 
anoni
al greedy extension, (iii) extended 
overinequalities with 
anoni
al greedy extension, and (iv) extended 
over inequalitieswith advan
ed greedy extension.



In Figure 2 the average gap 
losed is shown for sele
ted values of k (violatedrrKP extended 
over inequalities do not depend on ℓ) and settings (ii) to (iv)w. r. t. setting (i). Details of the reported results 
an be found in [8℄.The results for setting (ii) are in line with those for the 
lassi
al knapsa
k prob-lem [12℄. We observe the separation of violated extended 
over inequalities always
loses the integrality gap more than 
overs only. The strengthening of the 
anon-i
al extension (11) (setting (ii)) to the advan
ed extension given in De�nition 6(setting (iv)) does not have a strong impa
t on the gap 
losed, e. g., 8.0% (iv)
ompared to 7.9% (iii) on average for k = 25%.Fo
using on the results for the 
anoni
al extension (setting (ii)), we observethat the geometri
 mean of the integrality gap 
losed lies in the range from1.5% (k = 5%) to 10.3% (k = 50%). Considering all instan
es with 4 (9, 29)s
enarios it ranges from 0.1% (0.1%, 0.8%) to 8.6% (10.2%, 23.9%). This suggeststhat an in
rease in the number of s
enarios may result in a larger gap 
losed.Unfortunately, there is no 
lear dependen
y. Considering all instan
es with 100(250, 500) items the integrality gap 
losed ranges from 0.8% (1.3%, 0.1%) to13.3% (16.0%, 23.9%). Again, there is no 
lear trend when �xing k or m.In summary, this study shows that by adding violated rrKP extended 
overinequalities the integrality gap is always lowered. The best a
hievement has beena gap 
losed by 23.9%. In setting (ii) (setting (iii)) the gap 
ould be 
losed bymore than 5% in 35% (55%) of all instan
es. In addition, the overall 
omputationtime spent for one setting of this study was less than half an hour. Hen
e, theseparation of violated rrKP extended 
over 
uts has a high potential to tightenthe linear relaxation of the re
overable robust knapsa
k problem and to speed-upthe solving pro
ess signi�
antly.6 Con
lusionIn this paper, we 
onsidered the re
overable robust knapsa
k problem with dis-
rete s
enarios. For a �xed number of dis
rete s
enarios (k, ℓ)-rrKP is weakly
NP-
omplete. If the number of dis
rete s
enarios is part of the input, the prob-lem is stronglyNP-
omplete. We introdu
ed the 
lass of rrKP 
over inequalitiesgeneralizing its well-known 
ounterpart for the knapsa
k problem. In addition toa 
anoni
al extension we presented a stronger extension exploiting the s
enario-based stru
ture of the problem. This se
ond extension is still stronger if restri
tedto the robust knapsa
k polytope.Computational experiments on several thousand individual test runs have shownthat a gain of up to 45% in the obje
tive 
an be a
hieved by re
overy. Further,
omputations are sped up by separating either 
anoni
al extended 
over inequal-ities or strengthened 
anoni
al extended 
over inequalities.In future work, alternative separation algorithms (e. g. heuristi
s) should be 
on-sidered. The strength of the valid inequalities should be polyhedrally investigatedas well.
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