Recoverable Robust Knapsacks:
the Discrete Scenario Case

Christina Biising!, Arie M. C. A. Koster?, and Manuel Kutschka?

! Technische Universitit Berlin, Institut fiir Mathematik, Strafe des 17. Juni 136,
D-10623 Berlin, Germany, cbuesing@math.tu-berlin.de
2 RWTH Aachen University, Lehrstuhl II fiir Mathematik, Wiillnerstr. 5b, D-52062
Aachen, Germany, {koster ,kutschka}@math2.rwth-aachen.de

Abstract. The knapsack problem is one of the basic problems in com-
binatorial optimization. In real-world applications it is often part of a
more complex problem. Examples are machine capacities in production
planning or bandwidth restrictions in telecommunication network de-
sign. Due to unpredictable future settings or erroneous data, parameters
of such a subproblem are subject to uncertainties.

In high risk situations a robust approach should be chosen to deal with
these uncertainties. Unfortunately, classical robust optimization outputs
solutions with little profit by prohibiting any adaption of the solution
when the actual realization of the uncertain parameters is known. This
ignores the fact that in most settings minor changes to a previously
determined solution are possible. To overcome these drawbacks we allow
a limited recovery of a previously fixed item set as soon as the data are
known by deleting at most k items and adding up to ¢ new items.

We consider the complexity status of this recoverable robust knapsack
problem and extend the classical concept of cover inequalities to ob-
tain stronger polyhedral descriptions. Finally, we present two extensive
computational studies to investigate the influence of parameters k and /
to the objective and evaluate the effectiveness of our new class of valid
inequalities.

1 Introduction

An instance of the knapsack problem (KP) consists of an item set N = {1,...,n}
with profits p; and positive weights w; for all items j € N, and a capacity c. The
values pj;, wj, and c are taken as integers. The objective of such an instance is
to select a subset X of these items such that the total profit of X is maximized
and the total weight does not exceed c. Despite its simple structure the problem
is known to be weakly NP-hard [16] but solvable via dynamic programming
in pseudo-polynomial time [5]. Different branch-and-cut algorithms are used to
solve this problem in practice. A detailed introduction to the knapsack problem
and its variations can be found in Martello and Toth [20] and Kellerer et al. [17].

This work was supported by the Federal Ministry of Education and Research
(BMBF grant 03MS616A, project ROBUKOM - Robust Communication Networks,
www.robukom.de), and the DFG Research Center MATHEON Mathematics for key
technologies.

In Yu [23] a robust version of the knapsack problem is defined by introducing
uncertainty in the profit values: Let S be a set of scenarios, each scenario S
determining a profit function p® : N — N. The robust knapsack problem is to
find a set of items maximizing the minimum optimal profit over all scenarios
such that the total weight does not exceed the capacity. By a reduction from
the set covering problem, Yu showed that for discrete scenarios sets with an
unbounded number of scenarios the decision version of the problem is strongly
NP-complete. As mentioned by Aissi et al. [2] this proof includes the result that
the optimization version is not f-approximable for any function f : N — (1, 00).
For a discrete scenario set with a constant number of scenarios the problem
is weakly NP-complete, solvable in pseudo-polynomial time [14,23] and there
exists an FPTAS [2]. lida [13] provided a computational study on the robust
knapsack problem with discrete scenarios to derive upper and lower bounds for
the profit. Recently, Klopfenstein and Nace [18] introduced robust knapsacks
with uncertainty based on the approach of Bertsimas and Sim [6,7].

Due to the already mentioned drawbacks of robustness, several authors, e.g.,
Liebchen et al. [19], extended the robust approach by means of recovery. This
new concept is a robust version of stochastic programming with recourse and
has been successfully applied to several railway applications like platforming or
timetabling [10]. This work is part of our investigations to apply recoverable
robustness to communication networks.

Model and Notation. We introduce for the first time a recoverable robust version
of the knapsack problem, in which the weights as well as the profits are subject
to uncertainties. Those uncertainties are given via a set of scenarios. As in the
robust setting a subset of items is chosen in a first stage such that its first stage
weight does not exceed the first stage capacity. Yet, in the second stage, i.e.,
when a scenario is revealed and the profits and weights are known, k items may
be removed from the first stage solution and ¢ items may be added. The new
subset must satisfy the scenario capacity restriction ¢® according to the weights
of scenario S. The objective is to find a first stage solution with maximum
total profit. The total profit is the sum of the first stage profit and the minimum
optimum scenario profit. By varying k and ¢ the gain of recovery can be analyzed.
Definitions 1 and 2 give formal descriptions.

Definition 1 ((k,¢)-Recoverable Robust KP ((k,()-rtKP)) Let ¢° € N be
the first stage capacity, N = {1,...,n} be a set of items, p?— the first stage
profit and w? the first stage weight of each item j € N. Each scenario S of a
given set of scenarios S defines a profit function p® : N — N, a weight function
w® : N — N and a capacity ¢ € N. Furthermore, the parameter k € N limits the
number of deletable items from a given set and the parameter £ € N the number
of new items contained in a new set. For a given subset X C N the recovery set
X)((k’é) includes all subsets of N which contain at most £ additional elements and
fail to contain at most k elements of X, i.e.,

Ae = XS N [X\X'| <k and | X'\X| <).

With X° for S € S we denote all subsets of X' C N that satisfy the scenario
weight constraint Y, v, wf < ¢¥. A feasible first stage solution of the (k,()-
recoverable robust knapsack problem is a subset X C N which satisfies the first
stage weight constraint >,y w) < ¢ and X)((k’z) NXS % forall S€S. An
optimal solution X* C N of the (k,{)-recoverable robust knapsack problem is a
feasible solution with maximum total profit. The total profit p(X) of a feasible
solution X is defined as

- 0 . S
p(X) = E ex Pi + minges MaX s (kx5 E jexs Pi-

Definition 2 Given k and ¢, the gain of recovery of a (k, {)-Recoverable Robust
Knapsack instance is the percentual increase of the optimal solution value of
(k,£)-rrKP instance w.r.t. the optimal solution value of (0,0)-rrKP instance.

In a discrete scenario set Sp every scenario is explicitly given with its weight
function w® : N — N, its profit function p® : N — N and its capacity ¢°. The
following integer program models the (k, ¢)-recoverable robust knapsack problem

max ZieNp?:Ei +w (1)
s.t Z_GN w; T, < & (2)
ZieN w? < & VS e Sp (3)
xz—xz—yf < 0 VS eSp,ieN (4)
x; —xf — 25 < 0 VS eSp,ieN (5)
s
<
Do < ¢ VSeSp (6)
Do < k VS € Sp (7)
W_Z-GNP;S 7 < 0 VS e Sp (8)
weEQy, 27 y7 20 € {0,1} VSe€Sp,ieN (9)

The variable vector z represents the first stage solution, z° the solution taken in
scenario S € Sp, y; determines if item i is added in S and z? if item 7 is removed
from z in S. Inequalities (4)-(7) guarantee that 2 is a feasible recovery for the
first stage solution x and (2) and (3) that the weight constraints are obeyed. The
last inequality (8) in combination with the objective function models the total

profit

0 . S,..S
max E S, -+ min max E e
iENpZ i SeSp iesz [

The minimum scenario profit, i.e., minges, max EieNpisxf, is captured in the

variable w. Clearly, the size of the program depends on the number of scenarios.

Through out the paper we will use the following notation: Given a weight func-
tion f : N — N, an item set X C N and an integer r, we define f(X) :=
> icx f(i), the weight of the r heaviest items f(max, X, r) := maxgcx |x|<r f(K)
and the weight of the r lightest items f(min, X,r) := mingcx, x> f(K).

Results. The contribution is twofold. On the one hand, we introduce and analyze
the gain of recovery for the (robust) knapsack problem. Experiments show that
an additional gain of up to 45% compared to the profit of a robust solution can be
achieved by allowing the removal and addition of items. On the other hand, we
investigate the computational complexity of the problem in theory and practice.
We report on the hardness and (in)approximability of the problem. To enhance
the solving process, we study the polytope described by the first stage variables.
We show that (i) a generalization of the well-known cover inequalities provides an
alternative formulation, (ii) these inequalities can be strengthened in a novel way
(compared to the classical knapsack problem), and (iii) the integrated separation
of the strengthened inequalities is significantly better than the separate-and-
extend procedure.

Outline. In Sect. 2, we analyze the complexity status of the (k,£)-rrKP. Next,
in Sect. 3, we generalize the classical concept of (extended) covers, whereas its
separation is the topic of Sect. 4. The experimental analysis can be found in
Sect. 5. We close with conclusions in Sect. 6.

2 Complexity of the (k, £)-rrKP

We start with an analysis of the complexity status of the (k, £)-rrKP for discrete
scenarios and thus consider its canonical decision version. If such an instance I
is a yes-instance, there exist a set X C N and sets XS C N forall S € Sp,such
that X is a feasible first stage solution, X € X)((k’e) NXS and p(X) = Y ,cx P) +

minges Y, o xs P; > K. Since the feasibility of X and X* X)((k’é) N X% can
be tested in polynomial time, the decision version of the (k,¢)-rrKP problem
with discrete scenarios is in NP. Yet, there will be no polynomial certificate
to test for a given subset X C N without any further information whether X
can be extended to a feasible solution with a total profit p(X) > K, unless
P = NP. This results from a reduction from the knapsack problem. However,
in the special case that k and ¢ are constant, the recovery set X)((k’z) contains
a constant number of solutions for any X C N. Then the total profit can be
computed by enumeration.

Since the knapsack problem is a special case of the (k, ¢)-rrKP, the (k, ()-rrKP
remains at least weakly NP-complete for one scenario. Next, we report on two
further complexity results (proofs can be found in Biising et al. [§]).

Theorem 3 The (k,0)-rrKP is strongly NP-complete for unbounded sets of dis-
crete scenarios even if either p° = 0 or p® = 0 for all S € Sp holds.

Note, a lower bound on the approximation ratio of (¢ 4+ 1)/¢ can be obtained
which implies that any (k,0)-rrKP is inapproximable, unless P = NP. Further,
the (k, £)-rrKP can be solved in pseudo-polynomial time for a bounded number
of scenarios by extending the dynamic programming approach of Yu [23]. See [§].

3 Extended Cover-Inequalities

As pointed out by Crowder et al. [9] one motivation for studying the polytope of
the knapsack problem is that valid inequalities can be used as cutting planes for
general 0-1 linear integer programs (ILP). The idea is to consider each individual
constraint of a 0-1 ILP as a 0-1 knapsack constraint. Several classes of inequalities
are known for the knapsack polytope, such as the lifted cover inequalities of
Balas [3] and Wolsey [22], or the weight inequalities of Weismantel [21]. For the
class of (k, £)-rrKP problems we will focus on extended cover inequalities which
have been shown to be quite efficient in solving knapsack instances by Kaparis
and Letchford [15].

For a given (k,¢)-rrKP instance the (k,¢)-recoverable robust knapsack polytope
Kp(k) of a discrete scenario set Sp is the convex hull over all valid first stage
solutions, i.e.,

R n. 0. 0 ; S, S
ICD(k).—conV{xe{O,l} .Zwixlgcand min Z wyz; < c¢ VSES}.

iEN ITI<k € N\T

Note that ¢ does not play a role in the feasibility of a first stage solution. The
polytope Kp(k) has full dimension if and only if w? < ¢® for all i € N (and
wis <c“forallSeSifk= 0). We will now extend the well-known concepts of
covers to define feasible inequalities for the Kp(k) polytope. In contrast to the

deterministic case, such a cover already takes the recovery action into account.

Definition 4 A set C C N is called an rrKP cover if either w®(C) > +1 or
there exists S € Sp with w(C) — w® (max, C, k) > ¢® + 1. An rrKP cover C is
minimal if it satisfies w®(C) — w®(min, C, 1) < ¢ and w¥(C) — w®(max, C, k) —
w(min, C,1) < ¢ for all S € Sp. An rrKP cover defines the following cover
inequality

#(C) <€) - 1. (10)

Theorem 5 Let x be a 0-1 point. Then x € Kp(k) if and only if x satisfies all
minimal cover inequalities.

Proof. Let T, := {i € N | z; = 1} be the support of x, which satisfies all minimal
cover inequalities. Let us further assume that x is infeasible. Then T}, is an rrKP
cover by definition. In a last step we modify T, to become a minimal rrKP cover.
For this reason we repeatedly remove an item i € T, with i = argmin;ep, w? if
w?(Ty) > 41 or i = argminger, wy if w(T}) —w”(max, Ty, k) > ¢ +1, until
the remaining set 77, is a minimal rtKP cover. Thus, z violates the (minimum)
cover inequality defined by 7.

Conversely, a feasible point not satisfying all minimum cover inequalities either
violates the first stage capacity constrained or does not contain a feasible recovery
for one scenario. This is a contradiction to its feasibility. O

The concept of covers can be extended to strengthen the cover inequalities in
a similar fashion as for the knapsack polytope. A canonical way to define an
extension is by adding all items whose weight is greater than or equal to the
highest not recovered item in an rrKP cover C. More formally, let C' be an rrKP
cover and S a scenario such that the scenario weight inequality is violated by C.

—S
A canonical extension E (C) is given by

EY(C)={ie N:w® > wS(max,C,k+ 1) —w¥(max, C, k) UC. (1)

Yet, it even suffices for an item to be added to C if its weights exceeds (i) the

residual capacity according to the weights of the first |C| — k — 1 lowest-weight-
items and (ii) the weight of the k + 2 highest-weight-item in C.

Definition 6 Let C be an rrKP cover for scenario S. An extension E°(C) of
C according to S is defined by

5> .S _ S s
S . ~wy >c¢® —w?(C) +w”(max,C, k+1) +1,
E (C)_CU{ZEN' w? > w? (max, C, k + 2) — w”¥(max, C, k + 1)

and determines the rrKP extended cover inequality

2(BS(0) <|C| - 1 (12)

RrKP extended cover inequalities are valid for Kp(k), as it can be shown by
applying carefully the corresponding definitions.

For the deterministic knapsack problem the set of inequalities obtained by ex-
tending minimal covers is independent of the extension method: Let C' be a
minimal cover and jmax = arg maxjec w(C) and imin = arg minieE(C)\E(C) w().
Hence, C" = C'U {imin}\{Jmax} is a minimal cover with |C"| = |C| and E(C) =
E(C). Yet, for the recoverable robust knapsack problem this is not the case:

Example 7 Consider an instance with 6 items, two scenarios and k = 1. Sce-
nario S, sets weights {2,2,3,4,8,9} and scenario Sy sets weights {10,1,5,2,1,0}
to the items 1,...,6. The scenario capacity is 6 for S, and 3 for S, respec-
tively. Then the set C = {1,2,4,5} is a minimal cover. If we extend C by
the second method according to scenario S,, E%(C) = {1,2,3,4,5,6} with
w9 (3) < w9 (4). But the set C' = {1,2,3,5} is not a minimal cover, since
wS (C") — w (max, €', 1) — w (min, C’, 1) > 3. Also no other minimal cover
induces a canonical extended cover inequality as strong as the one from E5+(C).

4 Separation algorithms

To experimentally evaluate the cover inequalities we study the separation prob-
lem for rrKP extended covers. The separation problem is to find an inequality,

that is violated by a given non-integer point, or prove that non exists. In our
case, we are interested in finding a violated rrKP extended cover inequality for
a given fractional solution z* € [0, 1]™. Since the definition of a cover is based
on a single scenario or the first stage weight set, we can consider each scenario
S € Sp and the first stage separately. For simplicity we drop the S superscript
and assume k = 0 in the case of the first stage weight constraint.

Our approach uses integer programming [11] and is based on the following ob-
servation: In order to find a violated extended cover inequality, it suffices to
determine the items which are part of the cover and not recovered. We call those
items the core of the cover. All other items exceeding the maximum item weight
in the core of the cover, can be added to form, possibly, an extended rrKP cover.
This is the case, if more than k items are added to the core. Although those
extra items are fixed as soon as the core of a cover is known, we introduce an
integer program to determine both sets for two reasons: (i) the number of ad-
ditional items is crucial for the detection of an rrKP cover, and (ii) even for
deterministic knapsack instances a fractional point #* may not violate any cover
inequality but an extended cover inequality.

In oder to model the separation problem we introduce two different binary vari-
ables y; and z; for each item ¢ € N. The variable y; determines whether item i
is part of the core of the cover. A cover has to satisfy >,y wiy;i > ¢+ 1. An
item is recovered or in the extension (z; = 1), if its weight exceeds the weight of
every item in the core. Note, that if an item with a sufficiently large weight is
added to the recovery or the extension, all items with larger weights may also be
added to the extension as they are exchangeable with the first one. To efficiently
implement this condition, we group the items according to their weights: Let
0 <w; <w;, <...<w;, <cbe an ordering of all different item weights occur-
ring in the scenario and T := {1,...,0}. We define N(¢t) :={j € N : w; = w;, }
forallt € T. Then z < z;is valid for all i € N(¢), j € N(t+1),t=1,...,0—1.
Hence, we obtain the following ILP

max Y (@ =Dyt Do whz =k (13)
’yy >

s.t. Z]EN W;Y; > c+1 (14)

yj + 2j <1 VjeN (15)

2 = Zj < 0 Vie N(t),je N(t+1),teT (16)

Yjs 24 S {0,1} Vj € N. (17)

An optimal solution defines a violated rrKP extended cover inequality, if and
only if the objective value is greater than —1. Note that in this case more than
k items are added to the core of the cover.

To speed up the solving of (13)-(17), several preprocessing rules can be applied
to reduce the number of variables and constraints. In addition, it suffices to find
a (non-optimal) feasible solution with objective value > —1. Found (extended)
covers can be extended further greedily.

Based on this integer formulation and dynamic programming we finally introduce
a pseudo-polynomial algorithm to solve the separation problem for the extended
cover inequalities. We define U = U {w;} and D = > " w;. For all t =
1,...,n,d=0,...,D and w € U we solve the problem to find a part of the core
of a cover and added items within the set {1,...,t} such that the violation of z*
is maximized, the weight of the core equals d, their maximum weight is below w
and the weight of all items added in the extension are greater or equal than w.
More formally we consider the following function

t t
fult,d) = maxy (27 = yi+ Y iz
i=1 i=1

t
> wiyi=d
i=1

yi+2 <1 Vi=1,...,t
2z =0 Vi:w; <w
v, =0 Vi:w; > w
vi,z; € {0,1} Vi=1,...,t.

The optimal solution to the separation problem is given by

max f,(n,d),
d>c+1

The function f,,(1,d) can easily be solved via three case distinctions: (Case 1) if
wy =d and w > d, then f,(1,d) = (27 — 1); (Case 2) if d = 0 and wy > w, then
fu(1,d) = x7; (Case 3) otherwise, f,,(1,d) = —oc0.

For all other combinationsof t > 2, d =0,..., D and w € U, the general recursive
formula referring to the three cases above holds

fw(tad) :max{fw(t— 1ad)a
fw(t_lud_wt)‘f'(x:_l) ifwtgo.;,
folt=1,d) + o if wy > w}.

In other words we decide, whether ¢ is not in the core and not added to the
extension, is part of the core of the cover or is added to the extension taking
into account the weight bound imposed by w. Obviously we can construct via an
optimal solution of f,(t —1,d), f.(t —1,d —w;), and f,(t — 1,d) three feasible
solutions for f,(t,d). Note that the recursion formula is valid, since otherwise
we obtain a contradiction to the optimality of f,(1,d"). The run-time of this
approach is in O(D - n?), since |U| < n.

5 Computational Experiments

In this section we present computational results on the rrKP. First, we investi-
gate the gain of recovery, i.e., the relative increase in the objective value of an
optimal solution obtained by allowing recovery compared to the optimal value
without recovery. Second, we study computationally the first closure of the re-
laxed recoverable robust knapsack problem with respect to the class of rrKP
extended cover inequalities and different parameter settings.

Problem Instances. The considered rrKP instances are slight modifications of
multi-dimensional knapsack instances taken from the ORLIB [4] created by Chu
and Beasley. The ORLIB provides instances with three different knapsack tight-
ness ratios, where from we selected all instances with a medium tightness ratio
of 0.5 for all combinations of n and m, where n € {100,250,500} denotes the
number of items and m € {5,10,30} the number of constraints. This yields 90
instances. For each rrKP instance, the first knapsack is treated as first stage
constraint, and each remaining knapsack as individual discrete scenario. For
each item, the profit of the corresponding multi-dimensional knapsack instance
is scaled by 0.7 and used as first stage profit. The scenario profits are also de-
termined by scaling these values but the scaling factor is uniformly random
generated in [0.2,0.4]. In order to analyze the impact of the recovery parame-
ters k and ¢, we chose them as fraction of the number of items, e.g., k = 0.25
means that 25% of the total set of items may be removed in each scenario. All
combinations of k, ¢ € {0%, 1%, 5%, 10%, 25%, 50%, 100%} are tested.

Setting. We implemented the ILP formulation (1)-(9) of the recoverable robust
knapsack problem in C++ using SCIP 1.2.0 [1] as branch-and-cut framework
and IBM ILOG CPLEX 12.1 as underlying LP solver. The discussed valid
inequalities are separated using the callback functionality. In our first study
concerning the gain of recovery the separator is irrelevant.

The computations were carried out on a Linux machine with 2.93 GHz Intel
Xeon W3540 CPU and 12 GB RAM. A time limit of 1 hour was set for solving
each problem instance. All other solver settings were left at their defaults.

5.1 Gain of recovery

In our first computational study we investigate the gain of recovery. Therefore
we limit the allowed recovery by the parameters k and ¢ where k (¢) determines
how many items chosen (not chosen) in the first stage may be removed (added)
in the scenario. The setting k = ¢ = 0 is the standard robust setting which is
equivalent to the classical multi-dimensional knapsack problem. For given values
of k and ¢ we compare the objective value of the optimal solution (resp. best

(a) 4 scenarios, 100 items (b) 4 scenarios, 250 items (c) 4 scenarios, 500 items

(d) 9 scenarios, 100 items (e) 9 scenarios, 250 items (f) 9 scenarios, 500 items

(g) 29 scenarios, 100 items (h) 29 scenarios, 250 items (i) 29 scenarios, 500 items

Fig. 1. Gain of recovery for selected values of k and ¢. Averages are shown for #sce-
narios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = ¢ = 0.

known solution within the time limit as the achieved optimality gaps are very
small) with the k = ¢ = 0 setting to evaluate the gain of recovery.

Figure 1 visualizes the results of our study for selected values of k and ¢. Only
averages of the normalized values are shown for groups of 10 instances with the
same number of items n and the same number of scenarios m. All values are
normalized to the corresponding k¥ = ¢ = 0 setting. Details can be found in
Table 1.

Fixing the number of items we observe a rise in the gain of recovery when the
number of scenarios increases (e. g., compare Fig. 1(a), 1(d), and 1(g)). This can
be explained as the non-recovery solution of these instances is more conservative
due to the higher number of scenarios. Therefore recovery allows a larger gain.
Considering 4 (9, 29) scenarios an additional gain of 26% (31%, 45%) compared
to the k = ¢ = 0 setting can be achieved. Unfortunately, fixing the number of
scenarios and varying the number of items does not give us a clear correlation.

#scenarios 4 9 29
#items 100 250 500 100 250 500 100 250 500
k 14

0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02
0.05 1.02 1.01 1.01 1.06 1.05 1.03 1.09 1.10 1.11

0.10 1.03 1.01 1.01 1.10 1.07 1.04 1.151.17 1.19
0.25 1.03 1.01 1.01 1.151.07 1.04 1.25 1.28 1.32
0.50 1.03 1.01 1.01 1.151.07 1.04 1.28 1.31 1.36
1.00 1.03 1.01 1.01 1.151.07 1.04 1.29 1.31 1.36

0.01 0.00 1.02 1.02 1.02

1.00 1.04 1.03 1.02 17 1.09 1.06 29 1.33 1.37
0.05 0.00 1.08 1.08 1.08 1.09 1.09 1.07 1.10 1.11 1.12
0.01 1.09 1.09 1.08 1.11 1.10 1.08 1.121.13 1.14
0.05 1.10 1.09 1.08 1.151.121.10 1.18 1.19 1.21
0.10 1.10 1.09 1.08 1.18 1.13 1.10 1.23 1.25 1.28
0.25 1.10 1.09 1.08 1.21 1.14 1.10 1.30 1.34 1.38
0.50 1.10 1.09 1.08 1.21 1.14 1.10 1.32 1.35 1.40
1.00 1.10 1.09 1.08 1.21 1.141.10 1.321.351.40
0.10 0.00 1.131.13 1.14 1.151.141.12 1.151.17 1.20
0.01 1.141.141.14 1.16 1.151.13 1.17 1.19 1.22
0.05 1.151.14 1.14 1.201.17 1.14 1.22 1.25 1.28
0.10 1.151.14 1.14 1.23 1.18 1.15 1.27 1.29 1.33
0.25 1.151.14 1.14 1.251.18 1.15 1.33 1.37 1.41
0.50 1.151.14 1.14 1.251.18 1.15 1.34 1.37 1.42
1.00 1.151.14 1.14 1.251.18 1.15 1.34 1.37 1.42
0.25 0.00 1.20 1.20 1.21 1.221.20 1.18 1.17 1.22 1.29
0.01 1.21 1.21 1.22 1.23 1.22 1.19 1.19 1.25 1.31
0.05 1.23 1.22 1.23 1.27 1.24 1.21 1.25 1.30 1.36
0.10 1.23 1.22 1.23 1.291.241.21 1.311.351.41
0.25 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.44
0.50 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.44
1.00 1.23 1.22 1.23 1.30 1.25 1.21 1.36 1.39 1.44
0.50 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.29
0.01 1.21 1.21 1.23 1.24 1.22 1.19 1.19 1.25 1.31
0.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.30 1.37
0.10 1.251.24 1.26 1.30 1.26 1.23 1.31 1.35 1.41
0.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45
0.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45
1.00 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45
1.00 0.00 1.20 1.20 1.22 1.22 1.20 1.18 1.17 1.22 1.29
0.01 1.21 1.21 1.23 1.231.221.19 1.19 1.25 1.31
0.05 1.24 1.23 1.25 1.27 1.25 1.22 1.25 1.31 1.37
0.10 1.251.24 1.26 1.30 1.26 1.23 1.31 1.35 1.41
0.25 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45
0.50 1.25 1.25 1.26 1.31 1.26 1.23 1.36 1.39 1.45
1. 1

251.251.26 1.31 1.26 1.23 1.36 1.39 1.45

Table 1. Gain of recovery for selected values of k and ¢. Averages are shown for
#scenarios=4, 9, 29 and #items=100, 250, 500. All values are normalized to k = £ = 0.

M covers
ext. covers
(canonical)

M ext. covers

(advanced)
Al
1
o

0 1 5 10 25 50 100
k(%)

geom. mean gap closed (%)

Fig. 2. Integrality Gap closed (%) by separating violated valid inequalities for rrKP

For the 100 (250, 500) item instances we can achieve an additional gain up to
36% (39%, 45%). Next, we observe that increasing the parameter k, i. e., allowing
more items to be removed in each scenario, clearly leads to an increase in the
gain of recovery. This is plausible as large items violating a scenario knapsack
constraint may more likely be removed. Finally, we note that the impact of
increasing ¢ grows with the number of scenarios.

In summary, allowing recovery yields a gain of up to 45%. Even a more restricted
setting as k = ¢ = 0.1 gives a gain of recovery in the range from 15% to 33%.

5.2 First rrKP extended cover closure

In the following we present the results of our second experiment where we inves-
tigate the effectiveness of rrKP extended cover inequalities. Therefore, we imple-
mented the ILP formulation (13)-(17) of the corresponding separation problem
to separate violated rrKP extended cover inequalities exactly (but still with an
overall 1 hour time limit per instance). Whenever our separator is called the first
stage knapsack is checked. If no violated extended cover is found, all scenarios
are tested beginning with the last scenario which provided a violated cut, until
a violation is determined. This inequality is then added to the LP and the sepa-
ration round is aborted. Only the root node of the recoverable robust knapsack
problem is solved in this study. We consider four settings which differ by the
integer program solved (i.e., whether the canonical extension is integrated or
not) and how the solution is strengthened in a post processing step (i.e., items
with x% = 0 are not necessarily selected in the separation ILP): (i) standard ILP
solver, (ii) cover inequalities with canonical greedy extension, (iii) extended cover
inequalities with canonical greedy extension, and (iv) extended cover inequalities
with advanced greedy extension.

In Figure 2 the average gap closed is shown for selected values of k (violated
rrKP extended cover inequalities do not depend on ¢) and settings (ii) to (iv)
w.r.t. setting (i). Details of the reported results can be found in [§].

The results for setting (ii) are in line with those for the classical knapsack prob-
lem [12]. We observe the separation of violated extended cover inequalities always
closes the integrality gap more than covers only. The strengthening of the canon-
ical extension (11) (setting (ii)) to the advanced extension given in Definition 6
(setting (iv)) does not have a strong impact on the gap closed, e.g., 8.0% (iv)
compared to 7.9% (iii) on average for k = 25%.

Focusing on the results for the canonical extension (setting (ii)), we observe
that the geometric mean of the integrality gap closed lies in the range from
1.5% (k = 5%) to 10.3% (k = 50%). Considering all instances with 4 (9, 29)
scenarios it ranges from 0.1% (0.1%, 0.8%) to 8.6% (10.2%, 23.9%). This suggests
that an increase in the number of scenarios may result in a larger gap closed.
Unfortunately, there is no clear dependency. Considering all instances with 100
(250, 500) items the integrality gap closed ranges from 0.8% (1.3%, 0.1%) to
13.3% (16.0%, 23.9%). Again, there is no clear trend when fixing k or m.

In summary, this study shows that by adding violated rrKP extended cover
inequalities the integrality gap is always lowered. The best achievement has been
a gap closed by 23.9%. In setting (ii) (setting (iii)) the gap could be closed by
more than 5% in 35% (55%) of all instances. In addition, the overall computation
time spent for one setting of this study was less than half an hour. Hence, the
separation of violated rrKP extended cover cuts has a high potential to tighten
the linear relaxation of the recoverable robust knapsack problem and to speed-up
the solving process significantly.

6 Conclusion

In this paper, we considered the recoverable robust knapsack problem with dis-
crete scenarios. For a fixed number of discrete scenarios (k, £)-rrKP is weakly
NP-complete. If the number of discrete scenarios is part of the input, the prob-
lem is strongly NP-complete. We introduced the class of rrKP cover inequalities
generalizing its well-known counterpart for the knapsack problem. In addition to
a canonical extension we presented a stronger extension exploiting the scenario-
based structure of the problem. This second extension is still stronger if restricted
to the robust knapsack polytope.

Computational experiments on several thousand individual test runs have shown
that a gain of up to 45% in the objective can be achieved by recovery. Further,
computations are sped up by separating either canonical extended cover inequal-
ities or strengthened canonical extended cover inequalities.

In future work, alternative separation algorithms (e. g. heuristics) should be con-
sidered. The strength of the valid inequalities should be polyhedrally investigated
as well.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.

T. Achterberg. SCIP: solving constraint integer programs. Math. Prog. Comp.,
1(1):1-42, 2009.

H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret ver-
sions of some combinatorial optimization problems: a survey. 2007. http:
//hal.archives-ouvertes.fr/docs/00/15/86/52/PDF/AN7TLAMSADE_1-32.pdf.

E. Balas. Facets of the knapsack polytope. Math. Prog., 8:146-164, 1975.

J.E. Beasley. OR-Library: distributing test problems by electronic mail. J. of the
OR Society, 41:1069-1072, 1990. http://people.brunel.ac.uk/ mastjjb/jeb/.
R. Bellman. Notes on the theory of dynamic programming iv - maximization over
discrete sets. Naval Research Logistics Quarterly, 3:67-70, 1956.

D. Bertimas and M. Sim. Robust discrete optimization and network flows. Math.
Prog., Series B, 98:49-71, 2003.

D. Bertimas and M. Sim. The Price of Robustness. Oper. Res., 52:35-53, 2004.
C. Biising and A.M.C.A. Koster and M. Kutschka. Recoverable Robust Knapsacks:
the Discrete Scenario Case. Technical Report 018-2010, TU Berlin, 2010. http:
//www.math.tu-berlin.de/coga/publications/techreports/2010/.

H. Crowder, E. Johnson, and M. Padberg. Large-scale zero-one linear programming
problems. Oper. Res., 31:803-834, 1983.

S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck,
and A. Schébel. Recoverable robustness in shunting and timetabling. Robust and
Online Large-Scale Optimization, vol. 5868 of LNCS, 28-60. Springer, Berlin, 2009.
M. Fischetti, A. Lodi, and D. Salvagnin. Just MIP it! Annals of Information
Systems 10, 39-70, 2009.

V. Gabrel and M. Minoux. A scheme for exact separation of extended cover in-
equalities and application to multidimensional knapsack problems. OR Letters,
30:252-264, 2002.

H. Tida. A note on the max-min 0-1 knapsack problem. J. of Comb. Opt., 3:89-94,
1999.

R. Kalai and D. Vanderpooten. Lexicographic a-robust knapsack problems: com-
plexity results. IEEE International Conference on Services Systems and Service
Managment, 1103 — 1107, 2006.

K. Kaparis and A. Letchford. Separation algorithms for 0-1 knapsack polytopes.
Math. Prog., 124(1-2):69-91, 2010.

R. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 85-103, 1972.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

0. Klopfenstein and D. Nace. Valid inequalities for a robust knapsack polyhedron -
Application to the robust bandwidth packing problem. Networks, to appear (2010).
C. Liebchen, M. E. Liibbecke, R. H. M&hring, and S. Stiller. The concept of recov-
erable robustness, linear programming recovery, and railway applications. Robust
and Online Large-Scale Optimization, vol. 5868 of LNCS, 1-27. Springer, 2009.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. Wiley, 1990.

R. Weismantel. On the 0-1 knapsack polytope. Math. Prog., 77:49-68, 1997.

L. Wolsey. Faces for a linear inequality in 0-1 variables. Math. Prog., 8:165-178,
1975.

G. Yu. On the max-min 0-1 knapsack problem with robust optimization applica-
tions. Oper. Res., 44:407-415, 1996.

