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Abstract In this paper, we investigate the recoverable robust krekpgeoblem,

where the uncertainty of the item weights follows the apphoaf Bertsimas and
Sim [3,4]. In contrast to the robust approach, a limited vecy action is allowed,
i.e., up tok items may be removed when the actual weights are known. Tois p
lem is motivated by the assignment of traffic nodes to antemmwireless network
planning. Starting from an exponential min-max optimiaatmodel, we derive an
integer linear programming formulation of quadratic sizea preliminary compu-
tational study, we evaluate tlgain of recovenusing realistic planning data.

1 Introduction

An important problem in the design of wireless networks esaksignment of traffic
nodes, e.g., aggregations of users, to antennas. Eacmarties a limited band-
width capacity to be partitioned among the users in the areared by the antenna.
Users, in general, do not generate a constant traffic rafgezéng on their needs in
data traffic or web browsing the requested bitrate fluctug@tes, 64 kbps, 384 kbps,
2Mbps). In the network capacity planning phase usually @mame traffic volume

is considered. However, during operation, individual aseith their actual bitrates
need to be admitted to the antenna.
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The actual bitrates are difficult to predict in advance, sihg historical data
average and peak values can be derived. It is also obsereddhall peaks occur
simultaneously. Therefore, we may assume that the bitodtady a limited number
I of users deviate from their average at the same time. Sudiwhoehs captured
by thel" -scenario set introduced by Bertsimas and Sim [3, 4].

To ensure a good quality of service for all users at any pairiinne, a robust
assignment is appropriate. Such a robust solution is sigéictime, neglecting the
possibility to reassign (a limited number of) users to othetennas, according to
the current traffic volume. Focusing on a single antennayabeast approach re-
duces to a classical knapsack problem with uncertainty énvibights. Including
the possibility to change the assignment during runtim&lgiarecoverable robust
knapsack problenirrKP): Compared to the planning phase, ugktasers can be
refused a connection at this antenna (and should be reasddiganother one).

In this paper, we study the rrKP with-scenarios. In Section 2, we describe
the problem in detail and give an overview on previous wonkthie next section,
we derive an integer linear programming formulation. Intec4, we present the
results of preliminary computational experiments on tha gérecovery using data
from wireless network planning. We close with concludingeeks in Section 5.

2 Recoverable Robust Knapsack Problem

Despite its simple structure, the knapsack problem (KP)eakly NP-hard [10] but
solvable in pseudo-polynomial time [2]. Alternativelyabich-and-cut algorithms
can be used to solve the KP. For a detailed introduction sed 1.

Yu [15] defined a robust version of the knapsack problem hyéhicing uncer-
tainty in the profit values via a discrete set of scenariossets with an unbounded
number of scenarios, the decision version of the problertramgly NP-complete
and can not be approximated, mentioned by Aissi et al. [1].tli@nother hand,
if the set contains a constant number of scenarios, the gmold only weaklyNP-
complete, solvable in pseudo-polynomial time [15] andétextists an FPTAS [1]. A
recoverable robust knapsack problem with discrete seeparinvestigated by [6].
Here, up tdk items can be removed ardtems added to a first stage solution.

Recently, Klopfenstein and Nace [12] considered robuspkaeks with uncer-
tainty in the weights based dn-scenarios [3, 4]. We will in the following extend
this model by a recovery action of deleting upktiiems.

Definition 1 (Recoverable Robust Knapsack (rrKP)).Let N be a set oh items
with profits p;, nominal (or default) weightv;,, and maximum deviatiom;,i € N.
For a given € N, the set¥r consists of all scenarioS which define a weight
functionw®: N — Ns.t.w® € [w;,w, +W] forallie Nand|{i e N:w>>w}| < T .
Fork € N and a subset C N therecovery sei%{‘ consists of all subsets &fwith at
least|X| —k elements, i.e.2¥ = {X’' C X : [X\X'| <k}. Given a knapsack capacity
ce N, the rrKP is to find a seX C N with maximum profitp(X) := ¥ ;ex pj s.t. for
every scenari® € .7 there exists a sét’ € 2;¢ with wS(X’) <c.
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Note thatk models the quality of service: fér= 0 (the robust case), every user
granted connection is connected, whereaskfern no service guarantee is given.
We now focus on a compact formulation of an rrKP instance Witbcenarios.

3 A compact ILP Formulation

In this section we present an ILP-formulation for the rrKB.tfiis end, we define
binary variables; € {0,1},i € N, denoting the items in the knapsack. Any 0-1 point
x satisfying the (exponential many) inequalities

i;v_vixwrgCaNX(zwm —mCaNX(;v_variexzwwi)) <c 1)

Xi<r i€X <k

represents a feasible solution. In the following, we chisréze the same polytope
by a linear number of constraints. First, we consider a saliipm of finding a
scenaricS € .7 that imposes the maximum weight on a chosen sukseiN. For
given parameterg € N andk € N we define thaveightof a subseX C X as

weight X, X) = ZV'\\Ii—I’p&X(.ZV_Vi-l-l z Wi).

ieX [Y|<k YnX

A maximum weight set’is a subset oK with [X¥| < " and with maximum weight.
The maximum weight set problefiMWSP) is to find for a given seX, and param-
etersI” andk, a maximum weight setg.

As the following example indicates, there is no inclusiolatien between opti-
mal solutions of an MWSP for differeifit values, i.e., in generadf ¢ XK ;.

Example 1Consider the set = {1,...,4} with nominal weightsv = {3,3,10,10}
and deviationsv= {2,2,5,5} andk = 1. For" = 1, the setsX’ = {1} andX” =
{2} are the maximum weight sets for this instance with weightX) = —8. But,
X = {83,4} is the maximum weight set with weigi¢, X) = —5 for ' = 2, whereas
the sets{1,3}, {1,4}, {2,3} and{2,4} have a weight of-8.

Yet, the MWSP can be solved in polynomial time by exploitimgar program-
ming duality. Computing a maximum weight set is formulatgdhe following ILP

g WY Z < kLo <[ 2
yemﬁﬂ{ie;w.y. Zeggiﬁﬂ{ie;(v_v. Wiyi)Z éz <k} i€;y._ } (2)

The variableg; represent the choice, whether an items in the maximum weight
setX}S, andz, whether the itennis removed due to its high weight.

Given a vectoy, (2) can be solved by its linear relaxation, since the médrig-
tally unimodular [14, Sec. 3.2]. By duality, we obtain a caunplLP reformulation:



4 Christina Busing, Arie M. C. A. Koster, and Manuel Kutsahk

max Wiy —k-u—$ v (3a)
s.t. Vi <r (3b)
Wiy —u—V <-w  VieX (3¢)

u,v >0 VieX (3d)

Yi €{0,1} VvieX (3e)

where the dual variablecorresponds t§;.x z < kandy; toz < 1 fori € X. Next,
we parametrize (3a)—(3e) by the possitlealues and denote witt{u) the value of
(3a)—(3e).

Lemma 1. For a fixed parameter ‘ulet w(u') = min{W,—w; + u'} for all i €
{1,...,n"}, X=(U) = {i € X | wi(u) < 0}, and X(u') € X\X~(U) maximizing
Yiex(u) w; (U') with | X(u')] < I. Then

Z(U) = w)+ S wiu) -k u

iexX(u) ieX=(u)

holds. Furthermore, there always exists an optimal sofutio', y*,v*) of (3a)«(3e)
with u* e U := {0} U{w :i e X}U{w +W;:ieX}.
See [5] for the omitted proof. By Lemma 1, inequality (1) izieglent to

WX +max wi(u)-x —K-u+ max y wi(u)-x ) <c. 4
i; U (iexz(u) B ieZ( )

This inequality can be transformed into the following setofistraints
%V_ViXﬁ z wi(u)->q+max%wi(u)-xi-yﬂ§c+ku YueUu
ic ieX~(u) ic
w<r YueU
ic
yi'e{0,1} VieN,VueU.

By dualizing the last part, which is totally unimodular, wietain the following ILP

max$ piX (6a)
i€

s.t. ZV_ViXi+ u>q+l'£”+%9,“§c+ku Yueu (6b)
Wt s e
min{ W, —w; + u}x — &' — " <0 VieN,YueU (6¢c)
X € {0,1}, &u " >0 VieN,vyue U (6d)

with new dual variable§" and8. The model containg(n?) variables and’(n?)
constraints depending on the number of different valueg ofi, i € N.
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Fig. 1 Gain of Recovery. For each instan¢e,andk, the gain of recovery is determined by the
objective value normalized to the corresponding case kvit0 %.

4 Computational Experiments

In this section, we present some preliminary results of agtatipnal experiments
on the gain of recovery for the rrKP with-scenarios. As test instances, we consider
a wireless network planning problem based on [8]. Given therpng instances,
rrfKP instances were generated for all 51 antennas with 121draffic nodes (ge-
ometric mean: 87). Uncertain demands are modeled as in [7].

We implemented formulation (6a)—(6d) of the rrKP in C++ @siBM ILOG
CpPLEX 12.2 [9] as MIP solver. All computations were carried out onraux ma-
chine with 2.93 GHz Intel Xeon W3540 CPU, 12 GB RAM, and a tiimgtl of one
hour per instance. All instances could be solved to optiyali

We investigate thgain of recoveryi. e., the (percentual) increase in the objective
value by allowing recovery. As values fekandl™ we consider (rounded-up) relative
values of 0%, 5%, ..., 25% of the number of traffic nodes.

Comparing all test instances, Figure 1 shows the geomeg@nmesp. maximum
gain of recovery achieved in these instances (normalizdd=t00). Further, the
added value for each vallkgs shown.

Fixing k, we observe that in geometric mean a higher gain of recosefytained
by increasing” (e.g.,.k=20%T = 5% yields 18 %, whilek =20% T = 20%
yields 30 %). By evaluating the maximum observed gain of veoy we estimate
the potential added value by recovery. It ranges from 2k% $%) to 71% k =
25%) in geometric mean with an absolute maximum of 93 %k = 25%)).

In summary, the results of our preliminary study show thatrétoverable robust
approach gives a promising added value to the robust appfoasmallk already.

5 Concluding Remarks

In this paper, we considered the recoverable robust knkgsablem (rrKP) with
I -scenarios which is a subproblem in wireless network plagonder traffic uncer-



6 Christina Busing, Arie M. C. A. Koster, and Manuel Kutsahk

tainties. In detail, we introduced a compact ILP-formulatfor this problem which
is linear in the input size. Using realistic applicatiorsed data, we presented the
results of a preliminary computational study evaluatirgyghain of recovery.

In the future, the polyhedral structure of the rrKP withscenarios should be
studied to improve the overall solving process in a branutireut approach.

Acknowledgements The authors would like to thank Alexander Engels for pravigus with
realistic network data to evaluate our optimization model.
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