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Abstract In this paper, we investigate the recoverable robust knapsack problem,
where the uncertainty of the item weights follows the approach of Bertsimas and
Sim [3, 4]. In contrast to the robust approach, a limited recovery action is allowed,
i.e., up tok items may be removed when the actual weights are known. This prob-
lem is motivated by the assignment of traffic nodes to antennas in wireless network
planning. Starting from an exponential min-max optimization model, we derive an
integer linear programming formulation of quadratic size.In a preliminary compu-
tational study, we evaluate thegain of recoveryusing realistic planning data.

1 Introduction

An important problem in the design of wireless networks is the assignment of traffic
nodes, e.g., aggregations of users, to antennas. Each antenna has a limited band-
width capacity to be partitioned among the users in the area covered by the antenna.
Users, in general, do not generate a constant traffic rate. Depending on their needs in
data traffic or web browsing the requested bitrate fluctuates(e.g., 64 kbps, 384 kbps,
2 Mbps). In the network capacity planning phase usually an average traffic volume
is considered. However, during operation, individual users with their actual bitrates
need to be admitted to the antenna.
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The actual bitrates are difficult to predict in advance, but using historical data
average and peak values can be derived. It is also observed that not all peaks occur
simultaneously. Therefore, we may assume that the bitratesof only a limited number
Γ of users deviate from their average at the same time. Such behavior is captured
by theΓ -scenario set introduced by Bertsimas and Sim [3,4].

To ensure a good quality of service for all users at any point in time, a robust
assignment is appropriate. Such a robust solution is staticover time, neglecting the
possibility to reassign (a limited number of) users to otherantennas, according to
the current traffic volume. Focusing on a single antenna, therobust approach re-
duces to a classical knapsack problem with uncertainty in the weights. Including
the possibility to change the assignment during runtime yields arecoverable robust
knapsack problem(rrKP): Compared to the planning phase, up tok users can be
refused a connection at this antenna (and should be reassigned to another one).

In this paper, we study the rrKP withΓ -scenarios. In Section 2, we describe
the problem in detail and give an overview on previous work. In the next section,
we derive an integer linear programming formulation. In Section 4, we present the
results of preliminary computational experiments on the gain of recovery using data
from wireless network planning. We close with concluding remarks in Section 5.

2 Recoverable Robust Knapsack Problem

Despite its simple structure, the knapsack problem (KP) is weaklyNP-hard [10] but
solvable in pseudo-polynomial time [2]. Alternatively, branch-and-cut algorithms
can be used to solve the KP. For a detailed introduction see [11,13].

Yu [15] defined a robust version of the knapsack problem by introducing uncer-
tainty in the profit values via a discrete set of scenarios. For sets with an unbounded
number of scenarios, the decision version of the problem is strongly NP-complete
and can not be approximated, mentioned by Aissi et al. [1]. Onthe other hand,
if the set contains a constant number of scenarios, the problem is only weaklyNP-
complete, solvable in pseudo-polynomial time [15] and there exists an FPTAS [1]. A
recoverable robust knapsack problem with discrete scenarios is investigated by [6].
Here, up tok items can be removed andℓ items added to a first stage solution.

Recently, Klopfenstein and Nace [12] considered robust knapsacks with uncer-
tainty in the weights based onΓ -scenarios [3, 4]. We will in the following extend
this model by a recovery action of deleting up tok items.

Definition 1 (Recoverable Robust Knapsack (rrKP)).Let N be a set ofn items
with profits pi , nominal (or default) weightwi , and maximum deviation ˆwi , i ∈ N.
For a givenΓ ∈ N, the setSΓ consists of all scenariosS which define a weight
functionwS : N →N s.t.wS

i ∈ [wi ,wi + ŵi ] for all i ∈ N and|{i ∈ N : wS
i > wi}| ≤Γ .

Fork∈N and a subsetX ⊆N therecovery setX k
X consists of all subsets ofX with at

least|X|−k elements, i.e.,X k
X = {X′ ⊆ X : |X\X′| ≤ k}. Given a knapsack capacity

c∈N, the rrKP is to find a setX ⊆ N with maximum profitp(X) := ∑ j∈X p j s.t. for
every scenarioS∈ SΓ there exists a setX′ ∈ X k

X with wS(X′)≤ c.
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Note thatk models the quality of service: fork= 0 (the robust case), every user
granted connection is connected, whereas fork = n no service guarantee is given.
We now focus on a compact formulation of an rrKP instance withΓ -scenarios.

3 A compact ILP Formulation

In this section we present an ILP-formulation for the rrKP. To this end, we define
binary variablesxi ∈ {0,1}, i ∈N, denoting the items in the knapsack. Any 0-1 point
x satisfying the (exponential many) inequalities

∑
i∈N

wixi + max
X̄⊆N
|X̄|≤Γ

(

∑
i∈X

ŵixi −max
Y⊆N
|Y|≤k

(

∑
i∈Y

wixi + ∑
i∈X̄∩Y

ŵi
)

)

≤ c (1)

represents a feasible solution. In the following, we characterize the same polytope
by a linear number of constraints. First, we consider a subproblem of finding a
scenarioS∈ SΓ that imposes the maximum weight on a chosen subsetX ⊆ N. For
given parametersΓ ∈ N andk∈N we define theweightof a subsetX ⊆ X as

weight(X,X) = ∑
i∈X

ŵi −max
Y⊆X
|Y|≤k

(

∑
i∈Y

wi + ∑
i∈Y∩X

ŵi

)

.

A maximum weight set XkΓ is a subset ofX with |Xk
Γ | ≤Γ and with maximum weight.

Themaximum weight set problem(MWSP) is to find for a given setX, and param-
etersΓ andk, a maximum weight setXk

Γ .
As the following example indicates, there is no inclusion relation between opti-

mal solutions of an MWSP for differentΓ values, i.e., in generalXk
Γ ( Xk

Γ+1.

Example 1.Consider the setX = {1, . . . ,4} with nominal weightsw= {3,3,10,10}
and deviations ˆw = {2,2,5,5} andk = 1. ForΓ = 1, the setsX′ = {1} andX′′ =
{2} are the maximum weight sets for this instance with weight(X′,X) = −8. But,
X̄ = {3,4} is the maximum weight set with weight(X̄,X) =−5 for Γ = 2, whereas
the sets{1,3}, {1,4}, {2,3} and{2,4} have a weight of−8.

Yet, the MWSP can be solved in polynomial time by exploiting linear program-
ming duality. Computing a maximum weight set is formulated by the following ILP

max
y∈{0,1}|X|

{

∑
i∈X

ŵiyi − max
z∈{0,1}|X|

{

∑
i∈X

(wi + ŵiyi)zi : ∑
i∈X

zi ≤ k
}

: ∑
i∈X

yi ≤ Γ
}

(2)

The variablesyi represent the choice, whether an itemi is in the maximum weight
setXk

Γ , andzi , whether the itemi is removed due to its high weight.
Given a vectory, (2) can be solved by its linear relaxation, since the matrixis to-

tally unimodular [14, Sec. 3.2]. By duality, we obtain a compact ILP reformulation:
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max ∑
i∈X

ŵiyi − k ·u−∑
i∈X

vi (3a)

s. t. ∑
i∈X

yi ≤Γ (3b)

ŵi ·yi −u− vi ≤−wi ∀i ∈ X (3c)

u,vi ≥0 ∀i ∈ X (3d)

yi ∈{0,1} ∀i ∈ X (3e)

where the dual variableu corresponds to∑i∈X zi ≤ k andvi to zi ≤ 1 for i ∈ X. Next,
we parametrize (3a)–(3e) by the possibleu-values and denote withz(u) the value of
(3a)–(3e).

Lemma 1. For a fixed parameter u′, let wi(u′) = min{ŵi ,−wi + u′} for all i ∈
{1, . . . ,n′}, X−(u′) = {i ∈ X | wi(u′) < 0}, and X(u′) ⊆ X\X−(u′) maximizing
∑i∈X(u′)wi(u′) with |X(u′)| ≤ Γ . Then

z(u′) = ∑
i∈X(u′)

wi(u
′)+ ∑

i∈X−(u′)

wi(u
′)− k ·u′

holds. Furthermore, there always exists an optimal solution (u∗,y∗,v∗) of (3a)–(3e)
with u∗ ∈U := {0}∪{wi : i ∈ X}∪{wi + ŵi : i ∈ X}.

See [5] for the omitted proof. By Lemma 1, inequality (1) is equivalent to

∑
i∈N

wixi +max
u∈U

(

∑
i∈X−(u)

wi(u) ·xi − k ·u+ max
X′⊆N
|X′ |≤Γ

∑
i∈X

wi(u) ·xi

)

≤ c. (4)

This inequality can be transformed into the following set ofconstraints

∑
i∈N

wixi + ∑
i∈X−(u)

wi(u) ·xi +max∑
i∈N

wi(u) ·xi ·y
u
i ≤ c+ ku ∀u∈U

∑
i∈N

yu
i ≤ Γ ∀u∈U

yu
i ∈ {0,1} ∀ i ∈ N, ∀u∈U.

By dualizing the last part, which is totally unimodular, we obtain the following ILP

max∑
i∈N

pixi (6a)

s. t. ∑
i∈N:
wi<u

wixi + ∑
i∈N:
wi≥u

uxi +Γ ξ u+ ∑
i∈N

θ u
i ≤c+ ku ∀u∈U (6b)

min{ŵi ,−wi +u}xi − ξ u−θ u
i ≤0 ∀i ∈ N,∀u∈U (6c)

xi ∈ {0,1}, ξ u,θ u
i ≥0 ∀i ∈ N,∀u∈U (6d)

with new dual variablesξ u andθ u
i . The model containsO(n2) variables andO(n2)

constraints depending on the number of different values ofwi , ŵi , i ∈ N.
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(a) geometric mean (b) observed maximum

Fig. 1 Gain of Recovery. For each instance,Γ ,andk, the gain of recovery is determined by the
objective value normalized to the corresponding case withk= 0%.

4 Computational Experiments

In this section, we present some preliminary results of computational experiments
on the gain of recovery for the rrKP withΓ -scenarios. As test instances, we consider
a wireless network planning problem based on [8]. Given the planning instances,
rrKP instances were generated for all 51 antennas with 15 to 221 traffic nodes (ge-
ometric mean: 87). Uncertain demands are modeled as in [7].

We implemented formulation (6a)–(6d) of the rrKP in C++ using IBM ILOG
CPLEX 12.2 [9] as MIP solver. All computations were carried out on aLinux ma-
chine with 2.93 GHz Intel Xeon W3540 CPU, 12 GB RAM, and a time limit of one
hour per instance. All instances could be solved to optimality.

We investigate thegain of recovery, i. e., the (percentual) increase in the objective
value by allowing recovery. As values fork andΓ we consider (rounded-up) relative
values of 0 %, 5 %, . . . , 25 % of the number of traffic nodes.

Comparing all test instances, Figure 1 shows the geometric mean resp. maximum
gain of recovery achieved in these instances (normalized tok = 0). Further, the
added value for each valuek is shown.

Fixing k, we observe that in geometric mean a higher gain of recovery is obtained
by increasingΓ (e. g.,k = 20%,Γ = 5% yields 18 %, whilek = 20%,Γ = 20%
yields 30 %). By evaluating the maximum observed gain of recovery, we estimate
the potential added value by recovery. It ranges from 25 % (k = 5%) to 71 % (k =
25%) in geometric mean with an absolute maximum of 93 % (Γ = k= 25%).

In summary, the results of our preliminary study show that the recoverable robust
approach gives a promising added value to the robust approach for smallk already.

5 Concluding Remarks

In this paper, we considered the recoverable robust knapsack problem (rrKP) with
Γ -scenarios which is a subproblem in wireless network planning under traffic uncer-
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tainties. In detail, we introduced a compact ILP-formulation for this problem which
is linear in the input size. Using realistic application-based data, we presented the
results of a preliminary computational study evaluating the gain of recovery.

In the future, the polyhedral structure of the rrKP withΓ -scenarios should be
studied to improve the overall solving process in a branch-and-cut approach.

Acknowledgements The authors would like to thank Alexander Engels for providing us with
realistic network data to evaluate our optimization model.
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