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Abstract

In multicriteria optimization, a compromise solution is a feasible solution whose

cost vector minimizes the distance to the ideal point w.r.t. a given norm. The coor-

dinates of the ideal point are given by the optimal values for the single optimization

problem for each criterion.

We show that the concept of compromise solutions fits nicely into the existing

notion of Pareto optimality: For a huge class of norms, every compromise solution

is Pareto optimal, and under certain conditions on the norm all Pareto optimal so-

lution are also a compromise solution, for an appropriate weighting of the criteria.

Furthermore, under similar conditions on the norm, the existence of an FPTAS for

compromise solutions guarantees the approximability of the Pareto set.

These general results are completed by applications to classical combinatorial

optimization problems. In particular, we study approximation algorithms for the

multicriteria shortest path problem and the multicriteria minimum spanning tree

problem. On the one hand, we derive approximation schemes for both problems, on

the other hand we show that for the latter problem simple approaches like local search

and greedy techniques do not guarantee good approximation factors.

Keywords: Multicriteria Combinatorial Optimization, Compromise Solutions, Pareto

Optimality, Approximation

1 Introduction

1.1 Motivation

In multicriteria optimization, the probably most popular solution concept is that of Pareto

optimality. Loosely speaking, a feasible solution is Pareto optimal if there is no other

solution that is strictly better in one objective without being worse in another. This

concept, however, has the drawback that in general a lot of solutions have this property.

It might even be that all solutions are Pareto optimal, resulting in an exponential size of

the Pareto set.
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One way to choose a single, in some sense optimal solution is scalarization, where the

(possibly weighted) sum of all objectives is maximized (or minimized). Since the criteria

are merged into one objective function, scalarization yields a single optimal solution.

This solution is also guaranteed to be Pareto optimal. The concept solves the problem of

choosing a single solution from a huge set of candidates, but it has a disadvantage as well:

The optimum of the scalarization can be very unbalanced, even if very balanced solutions

with an only slightly worse scalarization value exist. This was also observed by Chen et

al. [3] in a computational study.

The two aspects discussed above motivate the concept of compromise solutions, intro-

duced by Yu [8] in 1973. It yields a single solution which is, in most cases, Pareto optimal,

and also guarantees a certain balancing of the objectives. The idea is to find a solution

that minimizes the distance to the ideal point, which is the point in the objective space

obtained by optimizing each objective individually. The distance between a solution and

the ideal point can be measured by any norm in Rk (where k is the number of criteria).

1.2 Definitions and Notations

A multicriteria optimization problem is given by a set of feasible solutions X and a

vector of k objective functions (f1, . . . , fk). For simplicity we restrict to maximization

problems. All the definitions can be transferred to minimization problems, however, and

also the results carry over. The intuition behind this is that the multicriteria optimization

problem, no matter whether it is a minimization or maximization problem, is turned into

a single-objective minimization problem – we minimize the distance to the ideal point.

For y, y′ ∈ Rk, we write y ≤ y′ if yi ≤ y′i for all i = 1, . . . , k, and y < y′ if yi < y′i for

all i = 1, . . . , k. By 1 we denote the vector of ones of corresponding size, and [k] denotes

the set {1, 2, . . . , k}.
In the context of compromise solutions, we identify a solution with its cost vector,

and therefore define the set of all feasible cost vectors as

Y := {(f1(x), . . . , fk(x)) : x ∈ X} .

The set of cost vectors that correspond to Pareto optimal solutions (i.e. the set of

non-dominated cost vectors) is

YP := {y ∈ Y : @y′ ∈ Y such that y′ ≥ y and y′j > yj for some j ∈ [k]} .

From now on, we will mainly restrict our attention to elements in Y and implicitly assume

that we can always reconstruct the corresponding solution in X .

Assumptions: We consider integral problems, therefore we can assume w.l.o.g. that all

cost vectors are integral, i.e. Y ⊆ Zk. We also assume, similar to the assumptions by

Papadimitriou and Yannakakis in [5], that the costs are bounded by |yi| ≤ 2π(|I|) for all
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y ∈ Y and all i ∈ [k], where π is some polynomial and |I| is the encoding length of the

input. This is no restriction to any of the classical combinatorial optimization problems,

where the objective is the sum of the values of individual elements. We will later denote

this bound by M . The assumption M = 2π(|I|) means that M has an encoding length

which is polynomial in the input.

We now define the central notions of this paper.

Definition 1.1 (Ideal Point). For a multicriteria maximization problem with set of cost

vectors Y ⊆ Zk, the ideal point y∗ ∈ Zk is defined by

y∗j = max
y∈Y

yj .

Definition 1.2 (Compromise Solution). For a multicriteria maximization problem with

set of cost vectors Y ⊆ Zk and ideal point y∗ ∈ Zk, a compromise solution w.r.t. to a

norm ‖·‖ on Rk is a vector ycs ∈ Y with

‖y∗ − ycs‖ = min
y∈Y
‖y∗ − y‖ .

1.3 Considered Norms

In this paper, we discuss two different families of norms, both parametrized by some

number p ∈ [1,∞]. The first one is the standard `p-norm:

‖y‖p :=

(
k∑
i=1

ypi

)1/p

for p ∈ [1,∞),

‖y‖∞ := max
i=1,...,k

yi .

Since computing compromise solutions w.r.t. this norm in general involves arbitrary ex-

ponents, leading to computational and possibly numerical problems, we also consider a

parametrized sum of the `1- and the `∞-norm:

|||y|||p := ‖y‖∞ +
1

p
‖y‖1 for p ∈ [1,∞),

|||y|||∞ := ‖y‖∞ .

We call this norm the cornered p-norm due to the shape of its unit spheres. This family

of norms has also been considered by Gearhardt [4], and a similar one by Steuer and

Choo [7].

We also consider weighted versions of norms: For any norm ‖·‖ on Rk and any λ ∈ Rk

with λ ≥ 0, λ 6= 0, set

‖(y1, . . . , yk)‖λ := ‖(λ1y1, . . . , λkyk)‖ .
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On the one hand, the weights can be used by a decision maker to reflect the importance

of the criteria or to scale them in order to get similar magnitudes in all of them. On the

other hand, we will use varying weights to get all Pareto optimal solution as compromise

solutions.

1.4 Basic Properties

In a given multicriteria maximization problem, for λ ∈ Rk
≥0 \ {0} and p ∈ [1,∞], let us

denote by CS`(λ, p) and CSc(λ, p) the set of all compromise solutions w.r.t. ‖·‖λp and ||| · |||λp ,

respectively. Except from degenerated instances, these sets will consist of a single element,

because finding a compromise solution is in fact a single-objective optimization problem,

and the distance to the ideal point induces a total ordering on the set of feasible solutions.

Further, denote by CS`(p) and CSc(p) the set of all compromise solutions w.r.t. ‖·‖λ and

||| · |||λ for any feasible weight vector, i.e.

CS`(p) =
⋃

λ∈Rk≥0\{0}

CS`(λ, p) , CSc(p) =
⋃

λ∈Rk≥0\{0}

CSc(λ, p) .

We use CS(λ, p) and CS(p) in statements that hold for both norms.

Gearhardt [4] considered compromise solutions for the norms defined above in 1979,

and observed several interesting properties. We will only point out two of them, which

are of particular interest to us.

(i) For p ∈ [1,∞), all compromise solutions are Pareto optimal, i.e.

CS(p) ⊆ YP .

(ii) If YP is bounded, the distance between CS(p) and YP tends to 0 as p approaches

infinity:

sup
y∈YP

dist∞(y,CS(p)) −−−→
p→∞

0 , where dist∞(y,A) = inf
y′∈A

∥∥y − y′∥∥∞ .

Since in our case all cost vectors are integral, YP has only finitely many elements if it

is bounded. Consequently, it follows from (ii) that there is a finite number p such that

CS(p) = YP , i.e. if the norm parameter is chosen sufficiently large, any Pareto optimal

solution is also a compromise solution, for an appropriate choice of the weight vector λ.

Structure of the paper. In Section 2 we will investigate which value of p suffices

for equality of the Pareto set and the set of all compromise solutions. In Section 3

we show that, for sufficiently large but finite p, an FPTAS for compromise solutions

suffices to find an ε-approximation of the Pareto set. We then turn to some results on

approximating compromise solutions: In 4.1 we prove that scalarization always yields
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a constant factor approximation; in 4.2 we extend a result by Aissi et al. [2] on min-

max regret robust optimization to show the existence of approximation schemes for the

compromise solutions of the multicriteria minimum spanning tree problem (M-MST) and

the multicriteria shortest path problem (M-SP); finally in 4.3 we analyze some local search

and greedy algorithms for M-MST.

2 How to Choose the Norm Parameter

In this section, we study the size of the norm parameter that is necessary such that all

Pareto optimal solutions are compromise solutions. We show that under the assumed

bound M = 2π(|I|) on the cost vectors the parameter can be chosen such that it has

polynomial encoding length.

Theorem 2.1. Let Y ⊆ Zk ∩ [−M,M ]k be the cost vector set of a multicriteria maxi-

mization problem. Then YP = CS`(p) for any p ∈ (log k/log(1+ 1
2M

),∞), and YP = CSc(p)

for any p ∈ (2kM,∞).

Proof. We first prove the statement for the cornered norm. Let y∗ be the ideal point, and

let y ∈ YP . We will choose a weight vector λ(y) ∈ Rk
≥0 \{0} such that CSc(λ(y), p) = {y}

for p > 2kM .

Case 1: y < y∗. Then we choose λ(y) such that the maximum maxi{λi(y)(y∗i − yi)} is

obtained in all components at the same time, i.e.

λi(y)(y∗i − yi) = C ∀i ∈ [k]

for some constant C. For reasons of simplicity, we choose C = 1 and get

λi(y) =
1

y∗i − yi
.

Intuitively, this means that y is the “bottom-left corner” of a ball around y∗ w.r.t. ||| · |||λ(y)p .

Now let y′ ∈ Y with y′ 6= y. Since y ∈ YP , there exists j ∈ [k] with yj > y′j . Integrality

implies that yj ≥ y′j + 1. We get

yj − y′j ≥ 1 , (2.1)

y′i − yi ≤ 2M ∀i 6= j . (2.2)

We want to show that |||y∗ − y|||λ(y)p < |||y∗ − y′|||λ(y)p for p > 2kM , i.e.

max
i
{λi(y)(y∗i − yi)︸ ︷︷ ︸

=1

}+
1

p
· λ(y)T(y∗ − y)︸ ︷︷ ︸

=k

< max
i
{λi(y)(y∗i − y′i)}+

1

p
· λ(y)T(y∗ − y′)︸ ︷︷ ︸

(∗)

.

(2.3)

We have

y∗j − y′j
y∗j − yj

=
y∗j − yj + yj − y′j

y∗j − yj
= 1 +

yj − y′j
y∗j − yj

≥ 1 +
1

y∗j − yj
≥ 1 +

1

2M
,
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thus we can bound (∗) as follows:

(∗) = max
i

{
y∗i − y′i
y∗i − yi

}
︸ ︷︷ ︸

≥1+ 1
2M

+
1

p

∑
i

y∗i − y′i
y∗i − yi︸ ︷︷ ︸
≥0

≥ 1 +
1

2M
.

It follows that (2.3) is fulfilled if

1 +
k

p
< 1 +

1

2M
⇔ p > 2kM .

Case 2: ∃j : yj = y∗j . Let J := {j ∈ [k] : yj = y∗j }. The idea is to choose big values λj

for all j ∈ J . Then only solutions y′ with y′j = y∗j for all j ∈ J are competitive to y. In

particular, we set

λj(y) =

k + 1 if j ∈ J ,
1

y∗j−yj
otherwise .

We have

|||y∗ − y|||λ(y)p = max
i/∈J
{λi(y)(y∗i − yi)︸ ︷︷ ︸

=1

}+
1

p
·
∑
i/∈J

λi(y)(y∗i − yi)︸ ︷︷ ︸
=1

= 1 +
1

p
(k − |J |) < 1 +

k

p
≤ 1 + k .

Let y′ ∈ Y \ {y}.
Case 2.1: ∃j ∈ J : y′j 6= y∗j . Then y′j ≤ y∗j − 1 and hence

|||y∗ − y′|||λ(y)p ≥ λj(y)(y∗j − y′j) +
1

p
· λj(y)(y∗j − yj)

≥ λj(y) · (1 +
1

p
)

> k + 1

> |||y∗ − y|||λ(y)p .

Case 2.2: ∀j ∈ J : y′j = y∗j . Similar calculations as in Case 1 show that

|||y∗ − y|||λ(y)p < |||y∗ − y′|||λ(y)p if p > 2kM .

These considerations show that it suffices to choose p > 2kM in order to obtain

YP = CSc(p).

We now turn to the `p-norm. For a given y ∈ YP , y < y∗, set the weight vector λ(y)

as before:

λi(y) :=
1

y∗i − yi
.

Then (
‖y∗ − y‖λ(y)p

)p
=

k∑
i=1

(
y∗i − yi
y∗i − yi

)p
= k .
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For any y′ ∈ YP , y′ 6= y, as above we have some j with y′j ≤ yj − 1. It follows that

(∥∥y∗ − y′∥∥λ(y)
p

)p
=

(
y∗j − y′j
y∗j − yj︸ ︷︷ ︸
≥1+ 1

2M

)p
+
∑
i∈[k]
i 6=j

(
y∗i − y′i
y∗i − yi︸ ︷︷ ︸
≥0

)p
≥
(

1 +
1

2M

)p
,

so

‖y∗ − y‖λ(y)p <
∥∥y∗ − y′∥∥λ(y)

p
if k <

(
1 +

1

2M

)p
⇔ p >

log k

log
(
1 + 1

2M

) .
If J := {j : yj = y∗j } 6= ∅, then we set λj(y) = k for all j ∈ J .

If y′j = y∗j for all j ∈ J , the calculations from above hold and ‖y∗ − y‖λ(y)p <

‖y∗ − y′‖λ(y)p for p > log k

log(1+ 1
2M )

. Otherwise there is some j ∈ J : y′j ≤ y∗j − 1 and

thus (∥∥y∗ − y′∥∥λ(y)
p

)p
≥
(
λj(y) · (y∗j − y′j)

)p ≥ λj(y)p ≥ k ,

while (∥∥y∗ − y′∥∥λ(y)
p

)p
= k − |J | < k

and hence

‖y∗ − y‖λ(y)p <
∥∥y∗ − y′∥∥λ(y)

p
.

This completes the proof.

Remark. The case yj = y∗j for some j never occurs, if instead of y∗ we use y∗+ ε ·1 for

some ε > 0. This is a fairly common approach.

To maintain integrality, we have to choose ε ≥ 1. A smaller value, such as ε = 1/K,

can be modeled by scaling all cost vectors by K and setting ε = 1.

Conclusion. Since we assume |yi| ≤ 2π(|I|), Theorem 2.1 shows that for both norms,

p can be chosen such that it has an encoding length polynomial in |I|, and still all non-

dominated solutions are compromise solutions for an appropriate weight vector. Also the

weights we choose have a polynomial encoding.

3 Approximation of the Pareto Set

In this section, we will establish a connection between the approximability of compromise

solutions and the approximability of the Pareto set. Since we deal with approximation

factors here, we restrict to non-negative cost vectors, i.e. we assume Y ⊆ Nk (where N

includes the zero).

The approximation of the Pareto set is defined as follows:
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Definition 3.1 (ε-approximate Pareto Set). For a multicriteria maximization problem

with cost vector set Y ⊆ Nk and Pareto set YP , an ε-approximate Pareto set is a set

YεP ⊆ Y such that for all y ∈ YP there is some y′ ∈ YεP with y′ ≥ 1
1+ε · y.

A fully polynomial time approximation scheme (FPTAS) for the Pareto set is an

algorithm that, for any ε > 0, computes an ε-approximate Pareto set in time polynomial

in the encoding size of the input and 1/ε.

In 2000, Papadimitriou and Yannakakis [5] showed that there is an FPTAS for the

Pareto set if and only if the Gap problem is solvable in polynomial time:

Definition 3.2 (Gap Problem). For a multicriteria maximization problem with cost

vector set Y ⊆ Nk, the Gap problem is the following: Given a vector y ∈ Rk and a

number ε > 0, either return y′ ∈ Y with y′ ≥ y, or decide that there is no y′′ ∈ Y such

that y′′ ≥ (1 + ε)y.

We show that, for sufficiently large values of p, an FPTAS for compromise solutions

enables us to solve the Gap problem. Thus, if we can approximate compromise solutions,

we can also approximate the Pareto set. The notion of approximation algorithms for

compromise solutions is used in the classical sense, i.e. the approximation factor refers

to the objective value, which is in our case the distance to the ideal point. It does not

refer to the actual costs of a solution in the different criteria, as it is the case for the

approximation of the Pareto set.

Theorem 3.3. Let Y ⊆ Nk ∩ [0,M ]k be the cost vector set of a multicriteria maxi-

mization problem. If for all λ ∈ Rk
≥0 \ {0} there is an FPTAS for CS`(λ, p) for some

p > M log k/ε log(1+ 1
M

) or an FPTAS for CSc(λ, p) for some p > kM2

ε , then the Gap prob-

lem is solvable in polynomial time.

Proof. Again, we consider the case of the cornered norm first. Let y∗ be the ideal point.

By valλp(y) we denote the value of y in the problem CSc(λ, p), i.e.

valλp(y) := |||y∗ − y|||λp .

For y ∈ Rk, 0 ≤ y ≤ y∗, define the corresponding weight λ(y) by

λi(y) =


k + 1 if yi = y∗i ,

0 if yi = 0 ,

1/y∗i−yi otherwise .

With these slightly modified weights all considerations in Section 2 still hold. By choosing

λi(y) = 0 if yi = 0 we simply restrict to those dimensions where y has a positive (and

thus relevant) component.
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Let y ∈ Rk
≥0 and ε > 0 be given as input to Gap, and suppose we have an FPTAS for

CSc(λ(y), p) for some p > kM2

ε . W.l.o.g. y < y∗, otherwise the answer to Gap is obviously

negative:

∃j : yj ≥ y∗j ⇒ @y′ ∈ Y : y′j ≥ (1 + ε)yj > y∗j ⇒ @y′ ∈ Y : y′ ≥ (1 + ε)y .

We also assume y 6= 0, since otherwise Gap reduces to finding a feasible solution:

∃y′ ∈ Y : y′ ≥ y = 0 ⇔ Y 6= ∅ .

Finally, w.l.o.g. we assume that ε < 1/yi for all i.

We want to compute a (1 + ε′)-approximate solution to CS(λ(y), p) for some ε′ that

depends on ε and M (the bound on the objective values) such that we can answer Gap.

We first consider the case where y is integral. This is a restriction, since for the

result from [5] we need arbitrary y ∈ Qk. However, we can modify the considerations in

such a way that they work for fractional y as well. We present these modifications after

establishing the case y ∈ Zk.

Positive Case. Suppose we find y′ ∈ Y with val
λ(y)
p (y′) ≤ val

λ(y)
p (y). Then by the

considerations from Section 2 it follows that y′ ≥ y, so y′ is a positive answer to Gap.

Negative Case. Let y′ be a (1 + ε′)-approximation to CS(λ(y), p) with val
λ(y)
p (y′) >

val
λ(y)
p (y). Set α := 1 + ε′. Then we know

@y′′ ∈ Y : |||y∗ − y′′|||λ(y)p ≤ 1

α
|||y∗ − y|||λ(y)p =: r . (3.1)

Set ỹ := y∗ − 1
α(y∗ − y). The distance between ỹ and y∗ w.r.t. ||| · |||λ(y)p is r:

|||y∗ − ỹ|||λ(y)p =
1

α
|||y∗ − y|||λ(y)p = r .

Also, the maximum in the norm is obtained in all i ∈ I := {i ∈ [k] : yi > 0} at the same

time:

λi(y)(y∗i − ỹi) =
1

α
· y
∗
i − yi
y∗i − yi

=
1

α
∀ i ∈ I .

Intuitively, ỹ is the “bottom-left corner” of the ball around y∗ with radius r. By (3.1)

that ball contains no solution (see Figure 3.1).

Since the ball w.r.t ||| · |||λ(y)∞ with corner ỹ is contained in the ball w.r.t ||| · |||λ(y)p with

the same corner, it follows that

@y′′ ∈ Y : |||y∗ − y′′|||λ(y)∞ ≤ |||y∗ − ỹ|||λ(y)∞

= max
i

{
λi(y)(y∗i − (y∗i −

1

α
(y∗i − yi)))

}
=

1

α
max
i
{λi(y)(y∗i − yi)}

=
1

α
|||y∗ − y|||λ(y)∞ . (3.2)
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y1

y2 no sol’n here (p =∞)

no sol’n here (p <∞)

y

ỹ

y∗

(1− 1
α)(y∗1 − y1)

1
α(y∗1 − y1)

Figure 3.1: Approximation of the compromise solution

We want to have a guarantee that there is no y′′ ∈ Y with y′′ ≥ (1 + ε)y, i.e.

@y′′ ∈ Y : y′′i ≥ (1 + ε)yi ∀i = 1, . . . , k

⇔ ∀y′′ ∈ Y ∃i ∈ {1, . . . , k} : y′′i < (1 + ε)yi . (3.3)

Now (3.2) is equivalent to

∀y′′ ∈ Y : max
i
{λi(y)(y∗i − y′′i )} > 1

α
max
i
{λi(y)(y∗i − yi)} =

1

α

⇔ ∀y′′ ∈ Y ∃i ∈ I : λi(y)(y∗i − y′′i ) >
1

α

⇔ ∀y′′ ∈ Y ∃i ∈ I : y∗i − y′′i >
1

α
(y∗i − yi)

⇔ ∀y′′ ∈ Y ∃i ∈ I : y′′i < y∗i −
1

α
(y∗i − yi) = ỹi . (3.4)

Consequently, if we can choose α such that ỹi ≤ (1 + ε)yi, this would give us (3.3).

We need this inequality for all i ∈ I, since the index whose existence is guaranteed by

(3.4) might vary with y′′.

For i ∈ I we have

ỹi = y∗i −
1

α
(y∗i − yi) ≤ (1 + ε)yi (3.5)

⇔ y∗i − yi − εyi ≤
1

α
(y∗i − yi)

⇔ α ≤ y∗i − yi
y∗i − yi − εyi

since y∗i ≥ yi + 1 and ε <
1

yi
. (3.6)

Since yi ≥ 1 for i ∈ I, we have

y∗i − yi − εyi
y∗i − yi

= 1− εyi
y∗i − yi

≤ 1− ε

M
, (3.7)
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so choosing

α =
1

1− ε/M

will do. Consequently, with ε′ = 1 − α = 1 − 1
1−ε/M , a (1 + ε′)-approximation algorithm

solves the Gap-Problem for the given ε.

We now turn to the fractional case: If y /∈ Zk, we consider byc instead. The negative

case then still works as above:

If for the computed (1 + ε′)-approximate solution to CS(λ(byc), p), denoted by y′,

it holds that val
λ(byc)
p (y′) > val

λ(byc)
p (byc), then because byc ∈ Zk it follows from the

considerations above that

∀y′′ ∈ Y ∃i ∈ [k] : y′′i < (1 + ε) byic ≤ (1 + ε)yi ,

so Gap can be answered negatively.

However, if the contrary is the case, i.e. val
λ(byc)
p (y′) ≤ val

λ(byc)
p (byc), it does not

follow immediately that y′ ≥ y, but only y′ ≥ byc. If y′ ≥ y holds, we can return y′ as a

positive answer to Gap. Otherwise we need a guarantee that also in this case the answer

is negative.

So consider the case y′ � y, i.e. y′j < yj for some j. Since y′ ∈ Zk, it follows that

y′j = byjc for this j. Set y := y∗ − C(y∗ − byc) with C < 1 such that |||y∗ − y|||λ(y)p =

|||y∗ − y′|||λ(y)p . (Then y is the “bottom-left corner” of the ball w.r.t. ||| · |||λ(byc)p around y∗

that touches y′, see Figure 3.2.)

y1

y2

no sol’n here

byc

y

ỹ

y∗

y

y′

≤ 1
β

(for p ≥ βkM)

Figure 3.2: Approximation of the compromise solution

If we slightly modify the considerations in Section 2, it is easy to see that if we choose

p ≥ βkM for some β > 1, then yi ≤ y′i + 1
β for all i ∈ [k]: We simply replace (2.1) by

yj − y′j ≥ 1
β . Note that we get rid of the 2 in (2.2) because we assume non-negative costs.
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With this, we can bound C from below. Recall that y′j = byjc for some j. Then for

this j,

C =
y∗j − yj
y∗j − byjc

≥
y∗j − y′j − 1

β

y∗j − byjc
=
y∗j − byjc − 1

β

y∗j − byjc
= 1− 1

β(y∗j − byjc)
≥ 1− 1

β
.

As above, we know

∀y′′ ∈ Y ∃i ∈ I : y′′i < ỹi := y∗i −
1

α
(y∗i − yi)

= y∗i −
1

α
(y∗i − (y∗i − C(y∗i − byic)))

= y∗i −
C

α
(y∗i − byic)

≤ y∗i −
C

α
(y∗i − yi)

≤ y∗i −
1− 1/β

α
(y∗i − yi) .

Thus we now need to choose α such that y∗i −
1−1/β
α (y∗i − yi) ≤ (1 + ε)yi for all i ∈ I.

Inserting the term (1−1/β) into the calculations (3.5–3.7), we see that it suffices to choose

α =
1− 1/β

1− ε/M
.

As an approximation factor, α has to be greater than 1, i.e.

1− 1

β
> 1− ε

M
⇒ β >

M

ε
.

Thus we have to choose p > kM2

ε , as claimed in the theorem.

All the arguments above also work if we consider the `p-norm instead of the cornered

norm. The analogon of equation (3.2) is established as follows: First observe that if λ

has kλ non-zero components, then

‖x‖λ∞ ≤ ‖x‖
λ
p ≤ k

1
p

λ · ‖x‖
λ
∞ . (3.8)

Secondly, since y is at the corner of a ball around y∗ w.r.t. ‖·‖λ(y)∞ , it holds that

‖y∗ − y‖λp =

(∑
i

(
λi(y

∗
i − yi)

)p) 1
p

=

(
kλ ·max

i
{
(
λi(y

∗
i − yi)

)p}) 1
p

= k
1
p

λ · ‖y
∗ − y‖λ∞ .

(3.9)

We know that there is no y′′ ∈ Y with ‖y∗ − y′′‖λ(y)p ≤ 1
α ‖y

∗ − y‖λ(y)p , and hence

∀y′′ ∈ Y :
∥∥y∗ − y′′∥∥λ(y)

p
>

1

α
‖y∗ − y‖λ(y)p (3.10)

⇒ ∀y′′ ∈ Y :
∥∥y∗ − y′′∥∥λ(y)∞

(3.8)

≥ 1

k
1
p

·
∥∥y∗ − y′′∥∥λ(y)

p

(3.10)
>

1

k
1
p

· 1

α
· ‖y∗ − y‖λ(y)p

(3.9)
=

1

k
1
p

· 1

α
· k

1
p ‖y∗ − y‖λ(y)p

=
1

α
‖y∗ − y‖λ(y)p . (3.11)
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Equation (3.11) is the analogon to (3.2), the following calculations are similar to the case

above.

To be able to solve the Gap problem also for fractional input y, we have to scale p by

a factor of β > M
ε again, so we need p > M log k

ε log(1+ 1
M

)
∈ O

(
M2 log k

ε

)
. The calculations are

the same as before.

Remark. As in Section 2, in both cases the norm parameter can be chosen such that

its encoding length is polynomial in the size of the input.

4 Approximation of CS – Positive and Negative Results

In this section we present some results on the approximation of compromise solutions.

4.1 Trivial Constant Factor Approximation Through Scalarization

As pointed out in the introduction, one way to get a single Pareto optimal solution is

scalarization, i.e. maximizing the weighted sum of all criteria. The scalarization that

corresponds to CS(λ, p) is maxx∈X λ
Tx. It turns out that this yields a constant factor

approximation to CS(λ, p).

Theorem 4.1. Let Y ⊆ Nk be the cost vector set of a multicriteria maximization problem.

For finite p and any k, the scalarization maxy∈Y λ
Ty yields

• a k+kp
k+p -approximation to CSc(λ, p),

• a k
1− 1

p -approximation to CS`(λ, p),

• a k-approximation to CSc(λ,∞) = CS`(λ,∞),

in polynomial time if the single-objective problem is efficiently solvable.

Remark. The approximation factor can be bounded by min{k, p+ 1} for the cornered

norm, and by k for the `p-norm. Since the number of criteria k is usually assumed to be

constant, this result gives a constant factor approximation.

Proof. Let ys be the optimum of the scalarization and let ycs be the compromise solution

w.r.t. λ and p. We further define

ỹ := argmin
{
|||y∗ − y|||λp : y ∈ Rk, λTy ≤ λTys

}
.

Note that ỹ is not necessarily in Y. Since Y ⊆ {y ∈ Rk : λTy ≤ λTys}, we know that

val(ycs) ≥ val(ỹ). We also know that ỹ is at the corner of a ball around y∗ w.r.t. ||| · |||λp
(cf. Fig. 4.1) and thus (with λTỹ = λTys)

λi(y
∗
i − ỹi) = C =

1

k
· λT(y∗ − ys) ∀ i ∈ [k] .
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y2

y1

y∗

ysλTy ≤ λTys

ycs
ỹ

Figure 4.1: Approximation ratio of scalarization

We get

|||y∗ − ycs|||λp ≥ |||y∗ − ỹ|||λp

= max
i
{λi(y∗i − ỹi)}+

1

p
·
∑
i

λi(y
∗
i − ỹi)

=

(
1 +

k

p

)
C

=
1

k
·
(

1 +
k

p

)
λT(y∗ − ys) .

On the other hand,

|||y∗ − ys|||λp = max
i
{λi(y∗i − ysi )}+

1

p
·
∑
i

λi(y
∗
i − ysi )

≤
(

1 +
1

p

)
λT(y∗ − ys) .

Thus,
|||y∗ − ys|||λp
|||y∗ − ycs|||λp

≤
k · (1 + 1

p)

1 + k
p

=
k + kp

k + p
.

This proves the claimed result for CSc(λ, p) with p <∞.

We get the result for p = ∞ if we simply leave out the sum term of the norm in all

the calculations above. Note that ||| · |||∞ = ‖·‖∞, so we are left to show the result for the

`p-norm for finite p. Using the notations from above we get

‖y∗ − ycs‖λp ≥ ‖y
∗ − ỹ‖λp

=

(
k∑
i=1

(
λi(y

∗
i − ỹi)

)p) 1
p

= k
1
p · C

= k
1
p
−1 · λT(y∗ − ys) .
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On the other hand,

‖y∗ − ys‖λp ≤ k
1
p ‖y∗ − ys‖λ1 = λT(y∗ − ys) .

Thus,

‖y∗ − ys‖λp
‖y∗ − ycs‖λp

≤ k1−
1
p .

This completes the proof.

4.2 From Pseudopolynomial Algorithms to Approximation Schemes

Multicriteria optimization and in particular the concept of compromise solutions is closely

related to robust optimization. If each criterion is considered as one scenario in the robust

setting, then a compromise solution w.r.t. ||| · |||∞ is exactly the same as a min-max regret

robust solution.

Let OPT denote the minimal distance of a feasible solution to the ideal point. For min-

max regret robust problems, Aissi et al. [1] show that if we can compute lower and upper

bounds L and U on OPT in polynomial time, where U ≤ q(|I|)L for some polynomial q

of the encoding length of the instance |I|, and if there is an algorithm for the min-max

regret robust problem that runs in time polynomial in |I| and the upper bound U , then

there is an FPTAS for the min-max regret robust problem.

In this section we show that this result extends to CS(λ, p) for p ∈ [1,∞) if the distance

is measured in the cornered norm. For the `p-norm we get a (4 + ε)-approximation. The

pseudopolynomial algorithms from [1] for the shortest path problem and the minimum

spanning tree problem work for CS(λ, p) as well, resulting in FPTAS for these problems

(for the cornered norm, resp. (4 + ε)-approximation algorithms for the `p-norm).

4.2.1 The General Results

Notation. For a multicriteria maximization problem P denote by CSP(p) the problem

of finding a compromise solution for P. For simplicity, we consider the unweighted case,

i.e. λ = 1, but all arguments carry over to the weighted case.

The results in this section only hold for binary combinatorial optimization problems,

which include classical problems such as the shortest path and the minimum spanning

tree problem, but not general integer problems, e.g. the minimum cost flow problem.

Instead of the set Y of cost vectors, we now consider the space X of feasible solu-

tions. Its dimension is denoted by n, and because we restrict to binary problems we have

X ⊆ {0, 1}n. The cost for element i in criterion j is cji, hence the cost of a solution x ∈ X
w.r.t. criterion j is cTj x.

Theorem 4.2. Let P be a multicriteria maximization problem and p ∈ [1,∞). If
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(i) for any instance I of CSPc (p), a lower and an upper bound L and U on the optimal

value of I can be computed in time π1(|I|), such that U ≤ π2(|I|)L, where π1 and

π2 are non-decreasing polynomials,

(ii) and there exists an algorithm that finds for any instance I an optimal solution in

time π3(|I|, U), where π3 is a non-decreasing polynomial,

then there is an FPTAS for CSPc (p).

Proof. The result in [1] is proven by applying the given algorithm to an instance I with

modified cost coefficients. We modify their proof slightly: As in [1], let t ≤ n be an

upper bound on the size (i.e. the number of non-zero entries) of any feasible solution. Set

ε′ := ε
1+k/p and let cji :=

⌊
2tcji
ε′L

⌋
be the cost coefficients of the modified instance I. Let

x∗ and x∗ be optimal solutions to CSPc (p) for I and I, respectively, denote the respective

ideal points by y∗ and y∗ and let x(j), x(j) for j ∈ [k] be optimal solutions of P for cj and

cj .

We start with some auxiliary calculations: It holds that

ε′L

2t
· cji ≤ cji <

ε′L

2t
(cji + 1) , (4.1)

y∗j = cTj x
(j) ≥ cTj x(j) ≥

ε′L

2t
cTj x

(j) =
ε′L

2t
y∗j , (4.2)

y∗j = cTj x
(j) ≤ ε′L

2t
(cj + 1)Tx(j) ≤ ε′L

2t
cTj x

(j) +
ε′L

2
≤ ε′L

2t
y∗j +

ε′L

2
. (4.3)

With this we can bound the value of x∗ w.r.t. the original costs c. Let valp(x) and

valp(x) denote the values of a solution x w.r.t. the original and the modified costs, re-

spectively. We get

valp(x
∗) = max

j
(y∗j − cTj x∗) +

1

p

∑
j

(y∗j − cTj x∗)

(4.1)

≤
(4.3)

max
j

(
ε′L

2t
(y∗j − cTj x∗)

)
+
ε′L

2
+

1

p

∑
j

(
ε′L

2t
(y∗j − cTj x∗) +

ε′L

2

)

=

(
1 +

k

p

)
ε′L

2
+
ε′L

2t
· valp(x

∗)

≤
(

1 +
k

p

)
ε′L

2
+
ε′L

2t
· valp(x

∗)

=

(
1 +

k

p

)
ε′L

2
+ max

j

(
ε′L

2t
(y∗j − cTj x∗)

)
+

1

p

∑
j

(
ε′L

2t
(y∗j − cTj x∗)

)
(4.1)

≤
(4.2)

(
1 +

k

p

)
ε′L

2
+ max

j

(
y∗j − cTj x∗ +

ε′L

2t
1Tx∗

)
+

1

p

∑
j

(
y∗j − cTj x∗ +

ε′L

2t
1Tx∗

)

≤
(

1 +
k

p

)
ε′L

2
+ valp(x

∗) +

(
1 +

k

p

)
ε′L

2

= εL+ valp(x
∗)

≤ (1 + ε)OPT .
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It remains to be shown that x∗ can be computed in time polynomial in |I| and 1
ε . For

this, denote by L and U the lower and upper bounds on the optimal value OPT of the

modified instance I. According to the requirements of the theorem we can compute L

and then x∗ in time

π1(|I|) + π3(|I|, U) ≤ π1(|I|) + π3(|I|, π2(|I|)L)

≤ π1(|I|) + π3(|I|, π2(|I|)OPT)

≤ π1(|I|) + π3

(
|I|, π2(|I|)

(
2t
ε′ π2(|I|) + t(1 + k

p )
))

,

where the last inequation holds because

OPT = max
j

(y∗j − cTj x∗) +
1

p

∑
j

(y∗j − cTj x∗)

≤ max
j

(y∗j − cTj x∗) +
1

p

∑
j

(y∗j − cTj x∗)

(4.1)

≤
(4.2)

max
j

(
2t

ε′L
· y∗j −

2t

ε′L
· cTj x∗ + t

)
+

1

p

∑
j

(
2t

ε′L
· y∗j −

2t

ε′L
· cTj x∗ + t

)

=
2t

ε′L
·OPT + t

(
1 +

k

p

)
≤ 2tU

ε′L
+ t

(
1 +

k

p

)
≤ 2t

ε′
· π2(|I|) + t

(
1 +

k

p

)
.

Finally note that |I| ≤ π4(|I|, log 1
ε , log k

p ) for some polynomial π4, thus the above calcu-

lations prove that the running time is indeed polynomial.

Remark. For the running time it is essential that p is fixed or at least bounded from

below by a positive constant (e.g. p ≥ 1), as the running time is only polynomial in 1
p .

Since for p → 0 the problem CSPc (p) at some point is equivalent to scalarization this is

only a minor restriction.

For the case of the `p-norm the approximation factor can not be transferred. We get

an additional factor of 4 in this case.

Theorem 4.3. Let P be a multicriteria maximization problem and p ∈ [1,∞). If

(i) for any instance I of CSP` (p), a lower and an upper bound L and U on the optimal

value of I can be computed in time π1(|I|), such that U ≤ π2(|I|)L, where π1 and

π2 are non-decreasing polynomials,

(ii) and there exists an algorithm that finds for any instance I an optimal solution in

time π3(|I|, U), where π3 is a non-decreasing polynomial,
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then there is a (4 + ε)-approximation algorithm for CSP` (p).

Proof. We use the same notations as above, but this time we set cji :=
⌊
tcji
ε′L

⌋
with

ε′ = ε/6k. We know that

ε′L

t
· cji ≤ cji <

ε′L

t
(cji + 1) , (4.4)

ε′L

t
y∗j ≤ y∗j ≤

ε′L

t
y∗j + ε′L , (4.5)

xp + yp ≤ (x+ y)p ≤ 2p−1(xp + yp) ∀ x, y ≥ 0 . (4.6)

The second inequality in (4.6) holds because f(x) = xp is a convex function. We now

bound the value of x∗ w.r.t. the original cost c.

valp(x
∗)p =

∑
j

(y∗j − cTj x∗)p

(4.4)

≤
(4.5)

∑
j

(
ε′L

t
(y∗j − cTj x∗) + ε′L

)p
(4.6)

≤ 2p−1k(ε′L)p + 2p−1
(
ε′L

t

)p∑
j

(y∗j − cTj x∗)p

≤ 2p−1k(ε′L)p + 2p−1
(
ε′L

t

)p∑
j

(y∗j − cTj x∗)p

(4.4)

≤
(4.5)

2p−1k(ε′L)p + 2p−1
(
ε′L

t

)p∑
j

(
t

ε′L
(y∗j − cTj x∗) + t

)p
= 2p−1k(ε′L)p + 2p−1

∑
j

(
(y∗j − cTj x∗) + ε′L

)p
(4.6)

≤ 2p−1k(ε′L)p + 22p−2k(ε′L)p + 22p−2
∑
j

(y∗j − cTj x∗)p

≤
(

(2
(p−1)/p + 2

(2p−2)/p)k
1/pε′OPT

)p
+
(

2
(2p−2)/pOPT

)p
(4.6)

≤
(

(2
(p−1)/p + 2

(2p−2)/p)︸ ︷︷ ︸
≤6

k
1/p︸︷︷︸
≤k

ε′OPT + 2
(2p−2)/p︸ ︷︷ ︸
≤4

OPT

)p
≤
(
(4 + ε)OPT

)p
.
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The polynomial running time of the algorithm follows as before:

OPT(I)p ≤
∑
j

(y∗j − cTj x∗)p

≤
∑
j

(
t

ε′L
(y∗j − cTj x∗) + t

)p
≤ 2p−1ktp + 2p−1

(
t

ε′L

)p
OPT(I)p

≤ 2p−1ktp + 2p−1
(
t

ε′

)p
π2(|I|)p

≤
(

2
(p−1)/pk

1/pt+ 2
(p−1)/p 6kt

ε
π2(|I|)

)p
≤
(

2kt+ 12kt · 1

ε
· π2(|I|)

)p
,

and thus

π1(|I|) + π3(|I|, U(I)) ≤ π1(|I|) + π3(|I|, π2(|I|)OPT(I))

≤ π1(|I|) + π3
(
|I|, 2kt · π2(|I|)

(
1 + 6/ε · π2(|I|)

))
.

This completes the proof.

Similarly to Proposition 1 in [1], we show that the necessary bounds U and L can be

computed if the single-objective problem is tractable:

Lemma 4.4. Let P be a problem solvable in polynomial time. Then for all p ∈ [1,∞] and

all instances I of CSP(p) (for both the cornered norm and the `p-norm) we can compute

L such that L ≤ OPT(I) ≤ kL.

Proof. Let xs be an optimal solution to the scalarization of CSP(p). By Theorem 4.1 we

know that

valp(x
s) ≤ k ·OPT(I) ≤ k · valp(x

s) ,

thus L := 1
k · valp(x

s) fulfills the claim.

4.2.2 Applications

The pseudopolynomial algorithms for the shortest path problem (SP) and the minimum

spanning tree problem (MST) presented in [1] can be used to solve CS(λ, p) as well, as

they both compute all (non-dominated) regret vectors (that obey the upper bound U),

and the compromise solution always has a non-dominated regret vector.

Note, by the way, that for SP no non-negativity of the edge weights is required. It

suffices if the weights are conservative. In [1] the triangle inequality for shortest paths is
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used to show that no relevant solutions are lost by discarding regret vectors that violate

the upper bound.1 This inequality holds for general conservative edge weights.

The result for MST uses a translation of the ideal to the origin, a transformation that

can also be applied in the context of compromise solutions.

Corollary 4.5. For P ∈ {SP,MST} and any p ∈ [1,∞) and λ ∈ Qk
≥0 \ {0}, there is an

FPTAS for CSPc (p), and a (4 + ε)-approximation algorithm for CSP` (λ, p) for any ε > 0.

4.3 Greedy and Local Search Approaches for Minimum Spanning Tree

In this section we discuss some local search and greedy approaches to find a compromise

solution for M-MST and show why they do not give better approximation ratios than the

trivial approximation through scalarization. We only consider the cornered norm here

and restrict to the unweighted case again, i.e. λ = 1. For all algorithms we first analyze

the case p =∞, and then extend the statements to p <∞.

4.3.1 Local Search

The local search neighborhood we consider is that of a simple edge swap: Out of a given

spanning tree, we remove one edge and add another one to reconnect the two resulting

connected components. This leads directly to Algorithm 1.

Algorithm 1: Local Search

Input: Graph G = (V,E), edge weights c : E → Nk

Output: Locally optimal spanning tree

1 Let T be an arbitrary spanning tree (e.g. optimize w.r.t. one of the criteria).

2 While it is possible to improve the value (in terms of CS(p)) of T by a simple edge

swap, do so.

3 Return T .

The graph in Figure 4.2 shows that this algorithm can be arbitrarily bad.

The ideal point is (1, 1). The tree with the edge set {e1, e3, e4} is a local optimum,

since its cost vector is (M,M), so its value in terms of CS(∞) is M−1, and any edge swap

results in a tree where in at least one criterion the cost is M + 1, so the value increases.

The optimal solution on the other hand consists of the edges {e2, e3, e5} and has cost

(2, 2) and a value of 1. The ratio between the value of a locally and a globally optimal

solution can thus be arbitrarily bad. Of course the local optimum discussed here is not

an optimum w.r.t. either of the criteria. However, introducing a third criterion with zero

costs on {e1, e3, e4} and small costs on {e2, e5} would make it a feasible starting solution

of Algorithm 1 without changing the objective values significantly.

1The argument is that once a regret vector of a certain path γ violates the upper bound, so will all

regret vectors of extensions of γ.
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local opt

global opt

e3

(0, 0)
e5

(1, 1)
e4

(0,M)

e1
(M, 0)

e2
(1, 1)

Figure 4.2: Counterexample for local search

To see that local search has no better approximation guarantee than scalarization also

for p <∞, choose M = p+ 2. Then

val({e1, e3, e4}) = max[(M,M)− (1, 1)] +
1

p
[(M − 1) + (M − 1)] = p+ 3 +

2

p
,

val({e2, e3, e4}) = max[(M + 1, 1)− (1, 1)] +
1

p
[(M + 1− 1) + (1− 1)]] = p+ 3 +

2

p
,

val({e1, e3, e5}) = max[(1,M + 1)− (1, 1)] + [(1− 1) + (M + 1− 1)] = p+ 3 +
2

p
,

val({e2, e3, e5}) = max[(2, 2)− (1, 1)] + [(2− 1) + (2− 1)] = 1 + 2 = 3 ,

so {e1, e3, e4} is still locally optimal, and simple calculations show that p+3+2/p
3 > 2+2p

2+p ,

where the latter is the approximation guarantee for scalarization with two criteria.

Improved Local Search. An idea to improve the performance and ensure that it

performs at least as good as the scalarization is to start the local search with a scalarization

optimum. Empirically, on complete graphs with up to 20 nodes and two (metric) criteria

this performs very well. Table 4.1 gives an overview over the performance on random

instances that were constructed as follows: For each node, two pairs of coordinates in the

square [0, 1]× [0, 1] were chosen uniformly at random. A complete graph was constructed,

where each edge has two edge weights, one for the distance of its two nodes in each of the

coordinate pairs.

We used a standard IP formulation to compute the optimum using SCIP 2.0.0 with

CPLEX 12 as an LP solver. The optimal value was then compared with the result of

the local search. In fact, the local search seems to perform better the bigger the graph

becomes. We could not assess the algorithm for greater graphs since solving the exact IP

formulation took too long for graphs with more than 19 nodes.

Although the improved local search algorithm empirically performs very well, there

are examples showing that no approximation factor better than that for scalarization can

be guaranteed. To see this, consider the graph on four nodes as depicted in Figure 4.3.
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#nodes #instances average gap

10 10000 0.680%

11 10000 0.725%

12 10000 0.771%

13 10000 0.811%

14 10000 0.869%

15 10000 0.860%

16 10000 0.909%

17 10000 0.906%

18 4610 0.921%

19 580 0.937%

Table 4.1: Performance of improved local search on random complete graphs

The ideal point for this instance is (0, 0). Scalarization yields the tree {e1, e3, e6}, the

optimal tree is {e1, e2, e6}. Of course local search might decide to exchange e3 for e2 and

terminate with the optimum. But a feasible local move is also to exchange e1 for e5,

reaching the locally optimal tree {e3, e5, e6}. For p =∞ the values are as follows:

scalarization opt = val({e1, e3, e6}) = 2M + 2 ,

local opt = val({e3, e5, e6}) = 2M ,

global opt = val({e1, e2, e6}) = M + 2 ,

⇒ local opt

global opt
−−−−→
M→∞

2 .

(0, 0)

e6

(2M, 0)e5

(0,M + 1)

e1

(M + 2, 0) e2

(2M, 0)

e4
(0,M + 1)

e3

scalarization opt

local opt

global opt

Figure 4.3: Counterexample for improved local search

For p < ∞, we modify the edge weights as depicted in Figure 4.4. Then the optimal
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trees remain the same, and we get the following values:

scalarization opt = val({e1, e3, e6}) = (1 + 1/p)(2 + 2/p)M + 2 + 2/p ,

local opt = val({e3, e5, e6}) = (1 + 1/p)(2 + 2/p)M + 1/p ,

global opt = val({e1, e2, e6}) = (1 + 1/p)(1 + 2/p)M + 2 + 3/p ,

⇒ local opt

global opt
−−−−→
M→∞

2 + 2/p

1 + 2/p
=

2p+ 2

p+ 2
=
kp+ k

p+ k
(since k = 2) .

(0, 0)

e6

((2 + 1/p)M, 0)e5

(0, (1 + 1/p)M + 1)

e1

((1 + 1/p)M + 2, 0) e2

((2 + 1/p)M, 0)

e4
(0, (1 + 1/p)M + 1)

e3

Figure 4.4: Counterexample for improved local search for finite p

In both cases, the locally optimal solution is not better than the approximation factor

which is guaranteed for the scalarization.

4.3.2 Moving along a path between two MSTs

For the bicriteria case, an idea closely related to the local search algorithm discussed above

is to move from a minimum spanning tree w.r.t. the first criterion to a minimum spanning

tree w.r.t. the second criterion by sequentially swapping edges. A similar idea has been

used for the constrained minimum spanning tree problem by Ravi and Goemans [6] in

1996. The formal description of the procedure is given in Algorithm 2.

Algorithm 2: Moving along a path between two MSTs

Input: Graph G = (V,E), edge weights c : E → N2

Output: A spanning tree

1 Compute MSTs T ′ and T ′′ w.r.t. to the two criteria.

2 Compute a sequence T ′ = T1, T2, . . . , T` = T ′′, where Ti+1 arises from Ti by a single

edge swap.

3 Out of the set {T1, . . . , T`}, return the tree with the best value.

Unfortunately, this algorithm has no constant approximation ratio. To show this, we

extend the graph from our first example as depicted in Figure 4.5. In this example, we

get from T ′ to T ′′ by a single edge swap, so the sequence of trees only consists of the two

MSTs. The value (in terms of CS(∞)) of T ′ and T ′′ is M , while that of the compromise
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solution T ∗ is 2, so again the ratio between the value of the computed solution and the

optimum is unbounded.

e3

(0, 0)

e5 (2, 2)
e4(0,M)

e1
(M, 0)

e2
(2, 2)

e6(1, 1)

T ′

T ′′

T ∗

Figure 4.5: Counterexample for the moving along a path between to MSTs

For any constant p <∞, we have

val(T ′) = val(T ′′) = max[(1,M + 1)− (1, 1)] +
1

p
· [0 +M ] = M

(
1 +

1

p

)
,

val(T ∗) = max[(3, 3)− (1, 1)] +
1

p
· [2 + 2] = 2

(
1 +

2

p

)
,

so the value of the computed solution is proportional to M , while the optimum is constant,

so the approximation ratio is arbitrarily large.

4.3.3 Greedy

Finally we consider a greedy algorithm, which is very similar to Kruskal’s algorithm for

the single-objective MST. At all times, it aims to minimize the value valp(T ) of the current

partial solution T . The value is defined as

valp(T ) := max
i∈[k]
{ci(T )− y∗i }+

1

p

∑
i∈[k]

(ci(T )− y∗i ) , where ci(T ) =
∑
e∈T

ci(e) .

Note that valp(T ) can be negative in the beginning, but in the end it corresponds to the

distance of the computed solution to the ideal point y∗. The details of the procedure are

listed in Algorithm 3.

Unfortunately also this algorithm performs arbitrarily bad. As an example for this,

consider the graph in Figure 4.6. The ideal point is (M,M,M). For M ≤ min{p, 12(p+1)}
it can be shown that the algorithm chooses only dashed edges, resulting in a solution with

value |||(2M, 2M, 2M)|||p = (1+ 3/p)2M . The tree that consists of the solid edges, however,

has a value of |||(1, 1, 1)|||p = 1 + 3/p. Therefore the greedy solution is at least a factor of

2M worse than the optimum.

For p = ∞, M can be chosen arbitrarily large, proving that the algorithm has no

constant approximation factor. For p ≥ 2 we get that the algorithm can not have an

approximation guarantee better than p+ 1 and is thus outperformed by scalarization.
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Algorithm 3: Greedy algorithm

Input: Graph G = (V,E), edge weights c : E → Nk

Output: A spanning tree

1 Set T := ∅.
2 while |T | 6= n− 1 do

3 Choose e ∈ E such that valp(T ∪ {e}) is minimal.

4 Add e to T , remove it from E.

5 Remove all e′ from E that close circles in T .

6 end

7 Return T .

(M + 1, 0, 0)

(0,M + 1, 0)

(0, 0,M + 1)

(M,M,M)

(M,M,M)

(M,M,M)

Figure 4.6: Counterexample for the greedy algorithm

For arbitrary p, consider the slightly simpler example from Figure 4.7. The ideal point

is (1, 1), and thus we get

val({e1}) = 0 ,

val({e2}) = val({e3}) = 1 ,

so the greedy algorithm will pick e1 in the first step, resulting in

val(greedy sol’n) = val({e1, e2}) = |||(0, 2)|||p = 2 + 2/p ,

val(opt sol’n) = val({e2, e3}) = |||(1, 1)|||p = 1 + 2/p .

Therefore, the greedy algorithm has no approximation ratio better than 2p+2
p+2 , which is

the same as that of the trivial approximation in the case of k = 2.

e1
(1, 1)

e2 (0, 2)
e3

(2, 0)

Figure 4.7: Counterexample for the greedy algorithm for arbitrary p
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Summing up, in general the greedy algorithm has no better approximation guarantee

than scalarization, and for large values of p it is even worse.

Conclusion. The easy approaches presented here do not lead to an approximation ratio

better than the trivial one from Section 4.1.

5 Conclusion and Open Questions

The presented concept of compromise solutions fits neatly into the existing concept of

Pareto optimality: All compromise solutions are Pareto optimal (for p < ∞), and all

Pareto optimal solutions are a compromise solution (for sufficiently large values of p).

Moreover, an FPTAS for compromise solutions (for sufficiently large values of p) gives an

FPTAS for the Pareto set.

These results show that approximating compromise solutions is at least as hard as

approximating the Pareto set. An open question is whether it is actually strictly harder.

There are examples for problems with an FPTAS for compromise solutions. However,

these algorithms essentially do something very similar to approximating the Pareto set,

only to choose an approximate compromise solution from this set in the end.

An open question is whether there is a direct algorithm (which does not approximate

the Pareto set first) for computing compromise solutions for some problem. Some easy

approaches for the minimum spanning tree problem were shown not to have the desired

approximation guarantee.
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