
RECOVERABLE ROBUST SHORTEST PATH PROBLEMSCHRISTINA BÜSINGAbstrat. In this paper we investigate two di�erent reoverable ro-bust models to deal with ost unertainties in a shortest path problem.Reoverable robustness extends the lassial onept of robustness todeal with unertainties by inorporating limited reovery ations afterthe full data are revealed. Our �rst model fouses on the ase where thereovery ations are quite restrited: after a simple path is �xed in the�rst stage, in the seond stage, after all data are revealed, any path on-taining at most k new ars may be hosen. Thus, the parameter k anbe interpreted as a mediator between robust optimization � no hangesallowed � and optimization on the �y � an arbitrary solution an behosen. Considering three lassial senario sets, whih model uner-tainties in the ost funtion, we show that this new problem is strongly
NP-hard in all these ases and is not approximable, unless P = NP.This is in ontrast to the robust shortest path problem, where, for ex-ample, an optimal solution an be omputed e�iently for interval and
Γ-senarios. For series-parallel graphs and interval senarios, we presenta polynomial time algorithm for this reoverable robust setting.In our seond model the reovery set, i.e., the set of paths seletable inthe seond stage is not limited, but deviating from the previous hoieomes at extra ost. Thus, a path hosen in the �rst stage produesrenting osts modeled as an α-fration of the senario ost. For an artaken in the seond stage the remaining ost needs to be paid in additionto some extra in�ation ost modeled by a β-fration of the senario ost,if the ar was not reserved beforehand. The omplexity status of thisproblem is similar to the robust ase. Yet, for Γ-senarios the problem isagain strongly NP-hard, but an be approximated with a min{2+β, 1

α
}fator.Keywords: unertainties; robustness; reovery; shortest path problem; NP-hardness; approximation 1. IntrodutionThe k-Dist-RR Shortest Path Problem. One major onern in trans-portation is the design and extension of infrastruture in suh a way thatit serves the predited future demands. For example, traks or tunnels areResearh supported by the Researh Training Group �Methods for Disrete Strutures�(DFG-GRK 1408) and the Berlin Mathematial Shool.1



2 CHRISTINA BÜSINGbuilt to onnet important ities, anals are onstruted to speed up thetravel time between di�erent seas or highways are built to spread the tra�volume. In this planning proess osts for reforming the infrastruture areassumed to be known or are estimated. However, in the onstrution phasethese osts may hange. For example, material osts depend on the urrentmarket prie or the onstrution time may inrease due to bad weather on-ditions, whih indues extra osts for leasing the mahinery. A goal in theplanning proess is to extend the infrastruture for as little ost as possible.Assuming a risk-averse poliy every extension is evaluated by its worst-aseost.We simplify the problem desribed above and onsider the setup of a newroad onneting two �xed ities s and t. The potential roads that may bebuilt are modeled via the set of all simple (s, t)-paths P in a given diretedgraph G = (V,A). We all osts that are given at the beginning of theplanning proess, the �rst-stage osts and denote them with c1 : A → N.The seond kind of ost, whih is unertain at the planning stage, is modeledby a set of senarios S. Eah senario S ∈ S determines a ost funtion
cS : A → N, whih represents a potential realization of the market pries.We assume that after the road is hosen, a senario from the set S is revealedand determines the ost in the onstrution phase. An (s, t)-path p generatesthe �rst-stage ost c1(p) = ∑

a∈p c
1(a) and in eah senario the senario ost

cS(p) =
∑

a∈p c
S(a). Choosing a path with minimum �rst-stage ost andminimum maximal senario ost orresponds to the problem of �nding anoptimal robust path.However, in the onstrution phase minor hanges of the previously plannedroad are in general possible. For example, if in the ase of building a tunnela layer of granite turns up, small detours through permeable rok save ostand are realizable with little e�ort. Or if the ground beomes swamp land,irumventing this area seems wise. We inlude this possibility of takingsmall detours by allowing us to take an (s, t)-path pS as soon as a senario

S is revealed, whih uses up to k new ars ompared to the path hosen inthe �rst stage. We all this new problem the k-distane reoverable robustshortest path problem and de�ne it more formally in the following.De�nition 1 (k-Distane Reoverable Robust (k-Dist-RR) Shortest PathProblem). Let G = (V,A) be a direted graph with a set of verties V and aset of ars A, and let s and t be two designated verties in V . Let c1 : A → Nbe a �rst-stage ost funtion, S be a set of senarios, where eah senario
S de�nes a senario ost funtion cS : A → N, and k ∈ N be a reoveryparameter. We denote by P the set of all simple (s, t)-paths in G. The



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 3reovery Pk
p of an (s, t)-path p onsists of all (s, t)-paths p′ with |p′\p| ≤ k,and the reovery ost cRR(p) is determined by

cRR(p) = max
S∈S

min
p′∈Pk

p

∑

a∈p′

cS(a).The �rst-stage ost of p is given by c1(p) =
∑

a∈p c
1(a). First-stage ost andreovery ost sum up to the total ost cT (p) of p, i.e., cT (p) = c1(p)+cRR(p).The k-distane reoverable robust shortest path problem is to �nd an (s, t)-path p∗ ∈ P with minimum total ost cT (p∗).The parameter k represents the �exibility in the planning proess for aban-doning the original plan. Thus, this model an be interpreted as a mediatorbetween �optimization on the �y�, where for every senario an optimal so-lution is hosen in the seond stage, and robustness, where no hanges areallowed after the solution is hosen in the �rst stage. The �rst ase orre-sponds to k = |V |, the number of verties V of the given graph, and theseond ase to k = 0.In the motivating example, the �rst-stage ost modeled the estimated ostthat ours for building roads. Depending on the quality of this estimation,the senario ost just onsists of slight inreases in these values. But alsodi�erent problem settings an easily be represented. Consider, for exam-ple, a teleommuniation network in whih demand needs to be routed asfast as possible w.r.t a given ost funtion c. Teleommuniation networksare frequently faed with failure links, i.e., a diret onnetion between twoservers is not available. These failures an be presented by a set of senarioswhere eah senario plaes a �xed number of ars at high ost and leaves theremaining ost at 0. The �rst-stage ost in this ase models the routing ost

c. In a third variant of the problem setting no �rst-stage ost ours andall osts are aptured in the senario ost. This setting emerges when theplanning proess indues no extra osts but during the realization proessall ost may vary.The Rent-RR Shortest Path Problem. A di�erent problem arises afterthe infrastruture is built. In railway optimization the holder of the traksis interested in selling di�erent time slots for rossing some traks to otherompanies. Negotiations between two ompanies normally take plae beforethe atual usage of the traks. Depending on the time di�erene betweenusage and negotiation, the ost for using a trak may not be �xed but remainsadaptable to the urrent market pries. The ompany reserving a slot gainswith this ation the right to buy this time slot but is not obligated to doso. On the other hand, the ompany selling the slots may laim a fration of



4 CHRISTINA BÜSINGthe market prie for reserving the slots. We will all this fration the rentalfator. If a ompany buys the slot, after it was reserved, it just pays theremaining ost. If the ompany buys any other slot, it needs to pay someextra handling fee, whih we also assume to be a fration of the market prie.In order to have a guaranteed itinerary for sending their argo, a ompanyshould reserve a path at the beginning. More formally, we obtain the rentreoverable robust shortest path problem.De�nition 2 (Rent-Reoverable Robust (Rent-RR) Shortest Path Prob-lem). Let G = (V,A) be a direted graph and let s, t be two verties in V .Furthermore, a rental fator α ∈]0, 1[, an in�ation fator β ≥ 0, and a set ofsenarios S, where eah senario S ∈ S determines a senario ost funtion
cS : U → N, are given. As before, P ontains all simple (s, t)-paths in G. Fora path p ∈ P the rent ost cSR(p) in senario S is de�ned by cSR(p) = α · cS(p)and the implementation ost cI(p) by

cSI (p) = min
p′∈P

(1− α)cS(p′) + (α+ β)
∑

a∈p′\p

cS(a).The goal is to �nd a path with minimum total ost c(p), de�ned as
c(p) = max

S∈S

(
cSR(p) + cSI (p)

)
.For a large in�ation fator, e.g., β = maxS∈S cS(A), any optimal robustsolution is an optimal solution for the Rent-RR shortest path problem. Inontrast to the k-Dist-RR shortest path problem, the reovery set for a �rst-stage solution is not restrited, i.e., we an hoose any path as soon as thesenario is revealed. Furthermore, there are no �rst-stage ost.Related Results. There are two major trends in dealing with unertaintygiven by a senario set: stohasti programming and robust optimization.The latter method is in partiular appropriate when dealing with high-risksettings or basi servies like planning water and power supply networks. Asolution is alled robust if it remains feasible in all settings and is optimal ifit minimizes its maximum senario ost.Robustness for disrete ombinatorial optimization problems was �rst intro-dued by Kouvelis and Yu [13℄ in the middle of the 1990s. In [19℄ Yu and Yangshowed that the robust shortest path problem is already weakly NP-hardif the set of senarios onsists of two senarios. If the number of senariosis not bounded by a onstant, the problem is even strongly NP-hard. Aissiet al. [1℄ introdued a pseudo-polynomial algorithm and an FPTAS for the�rst ase and a lower bound on the approximation fator of 2− ε, ε > 0, forthe latter ase. This bound was improved by Kasperski and Zieli«ski [11℄ to
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log(1−ε) |S| for any ε > 0 and a disrete senario set S. For the speial set of
Γ-senarios, Bertsimas and Sim [4℄ showed that an optimal robust shortestpath problem an be omputed by solving |A|+1 deterministi shortest pathproblems, where A denotes the set of ars of the onsidered graph.A di�erent robust framework minimizes the maximum regret of a given so-lution. Suh a solution is alled an optimal min-max regret, relative robustor robust solution. In the ase of disrete senario sets, the same results asfor the robust problem are obtained, i.e., it is weakly NP-hard for two se-narios [19℄, an be solved in pseudo-polynomial time for a onstant numberof senarios [1℄ and is not approximable with a fator better than log(1−ε) |S|for any ε > 0 and a disrete senario set S [11℄. For interval senarios, therelative robust shortest path problem is weakly NP-hard on series parallelgraphs in ontrast to the robust problem, whih an be solved in polynomialtime. This was shown by Kasperski and Zieli«ski [10℄. Montemanni andGambardella [15℄ provided an exat algorithm to solve the relative robustshortest path problem with interval senarios via Benders deomposition.The drawbak of robustness is the unaeptable high ost of a robust solu-tion. Furthermore, the onept ignores the fat that in most settings mi-nor variations of a previously determined solution are possible. The ideato broaden the onept of robustness and to inlude some hanges of thesolution in the revealed setting has attrated many di�erent researhers:Mulvey et al. [16℄ di�erentiate in their new robust model between design de-isions �xed in a �rst stage and ontrol deisions taken after all data areknown, Ben-Tal et al. [3℄ introdued the onept of adjustable robustness forlinear programs, Dhamdhere et al. [7℄ onsidered demand-robustness whihwas later alled two-stage robustness (e.g. [9℄), and Liebhen et al. [14℄ in-vestigated reoverable robustness inspired by the reovery ation.The shortest path problem has been studied in terms of demand-robustness(or later alled two-stage robustness) by Dhamdhere [7℄. In this setting, thegraph G = (V,A), the soure vertex s and the ost c : A → N are supposedto be known. Yet, the target vertex and the in�ation fator on the ost isunertain, i.e., every senario S de�nes a target vertex tS and an in�ationfator βS ≥ 0 for buying an ar in the seond stage. The goal is to purhasesome parts of the possible path A1 ⊆ A in advane for the ost c(A1), andto omplete it for the given target vertex tS ∈ V to a feasible (s, tS)-path in
A1 ∪ AS

2 by buying the ars AS
2 for the ost (1 + βS)c(AS

2 ) as soon as thesenario S ∈ S is realized. The objetive is to minimize this ost over allpossible senarios, i.e., to minimize c(A1)+maxS∈S(1+βS)c(AS
2 ). Note thatthe ost system of Rent-RR shortest path problems is similar to this setting,



6 CHRISTINA BÜSINGbut we assume the in�ation fator to be �xed and the ost funtion to vary.Dhamdhere et al. [7℄ proved a 16-approximation algorithm for the demand-robust shortest path problem. A 7.1-approximation was later introdued byGolovin et al. [9℄.Büsing [6℄ introdued the exat subgraph reoverable robust shortest pathproblem in whih a subgraph is onstruted to ontain for every senario ashortest path of the original graph. The goal is to �nd a subgraph of mini-mum ardinality. In the ase of interval and Γ-senarios approximating theexat subset reoverable robust shortest path problem with a fator betterthan |A|(1−ε) is strongly NP-hard for any ε > 0, where A denotes the setof ars in the onsidered graph. Returning the whole graph yields an |A|-approximation, whih an be improved to an |A|
ℓ+1 -approximation algorithmfor every onstant ℓ ∈ N.Our Contribution and Outline. Besides the model in [6℄, the k-Dist-RRshortest path problem and the Rent-RR shortest path problem are the �rstmodels that inorporate reovery ation into a robust setting, whih dealswith unertainties in the ost funtion and not in the demand. Our researhfouses on the omplexity status and approximation of these problems. Weonsider disrete senario sets SD, interval senario sets SI and Γ-senariosets SΓ to model unertainties in the ost funtions. In a disrete senarioset eah senario and its integer ost funtion are expliitly given. Intervalsenario sets onsist of all senarios that determine a ost funtion whosevalues lie in a given ost interval de�ned by lower and upper ost bounds.For some integer Γ, Γ-senario sets are modi�ations of interval senariosets. In ontrast to interval senarios, a Γ-senario may hange at most Γost values from the lower bound to the orresponding upper bound.In Setion 2.1 we show that the k-Dist-RR shortest path problem is strongly

NP-hard and not approximable for two senarios, even if the �rst-stage ostsare set to 0, unless P = NP. In the ase of interval senarios SI , onsideredin Setion 2.2, the problem without �rst-stage ost is solvable in polynomialtime. If the �rst-stage ost an be hosen arbitrarily, the k-Dist-RR shortestpath problem with SI turns out to be not approximable, unless P = NP.For the lass of series-parallel graphs we introdue a polynomial algorithmto solve the k-Dist-RR shortest path problem with interval senarios.Sine Γ-senarios are a speial ase of interval senarios, the k-Dist-RR short-est path problem with SΓ is not approximable, unless P = NP (Setion 2.3).Furthermore, the total ost of a given path is not omputable in polynomialtime for this senario set, unless P = NP.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 7The results for the Rent-RR shortest path problem are losely related tothose for the robust shortest path problem. In Setion 3.1 we provide fordisrete senarios an L-redution from the latter problem and thus obtainthat the Rent-RR shortest path problem is not approximable with a fatorbetter than log |SD|, unless P = NP. The interval ase is solvable in poly-nomial time, sine any shortest path w.r.t. the upper ost bounds c providesan optimal solution. However, for Γ-senarios, the problem beomes againstrongly NP-hard, in ontrast to its robust version (Setion 3.2).In the last Setion 3.3, we introdue an approximation algorithm based ona robust solution. For Γ-senarios, we obtain a min(2+β, 1
α
)-approximationfor a rental fator α ∈]0, 1[ and an in�ation fator β ≥ 0. If α ≥ 0.5, weshow that the analysis is tight.2. The Complexity of the k-Dist-RR Shortest Path Problem2.1. Disrete Senarios. In this setion we fous on the omplexity of the

k-Dist-RR shortest path problem and start by onsidering disrete senariosets. For a given graph G = (V,A), a disrete senario set SD onsistsof r senarios S1, . . . , Sr, where eah senario determines a ost funtion
cSi : A → N, i = 1, . . . , r. We will show that even for two senarios the k-Dist-RR shortest path problem is strongly NP-hard and not approximable,unless P = NP. Note that the robust shortest path problem with twosenarios an be solved in pseudo-polynomial time [1℄.Theorem 3. Let G = (V,A) be a direted graph, s, t be two verties in V ,
c1 : A → {0} be the �rst-stage ost funtion, {S1, S2} be two senariosdetermining two ost funtions cSi : A → {0, 1} with |{a ∈ A | cSi(a) =

1}| ≤ 3, i = 1, 2, and k ≥ 2 be a reovery parameter. Then solving theorresponding k-Dist-RR shortest path problem is strongly NP-hard and notapproximable, unless P = NP.Proof. We show a redution from the two vertex disjoint path problem tothe k-Dist-RR shortest path problem. Let I be an instane of the two vertexdisjoint path problem given by a direted graph G = (V,A) and two vertexpairs {v1, u1} and {v2, u2}. The task in I is to deide whether two vertexdisjoint paths, a (v1, u1)-path p1 and a (v2, u2)-path p2, exist. The NP-ompleteness of this problem follows diretly from a lemma published in1980 by Fortune et al. [8℄. W.l.o.g. we assume that the graph G does notontain the ars (v1, u1), (v1, v2) and (v1, u2) and that there are no outgoingars from u1 and u2 and no inoming ars to v2.



8 CHRISTINA BÜSINGWe show a redution for k = 2 and de�ne an instane I ′ of the k-Dist-RRshortest path problem with two senarios S1, S2 in the following way: Let
G′ = (V ′, A′) be an extension of G by six verties s, t, v′1, v′2, w1 and w2, andten ars (s, v′1), (v′1, v1), (v′1, u1), (u1, v′2), (v′2, u2), (v′2, v2), (u2, w1), (u2, w2),
(w1, t) and (w2, t) (see Figure 2.1).
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(cS1 , cS2)Figure 2.1. The values on the ars show the ost assign-ments of the two senarios S1 and S2. The �rst-stage ostsare set to 0.We de�ne the two senario ost funtions cS1 and cS2 in suh a way that anysimple (s, t)-path with total ost equal to 0 satis�es the following onditions:(1) it ontains the ars (s, v′1), (v′1, v1), (u1, v
′
2), (v′2, v2), (u2, w1) and

(w1, t);(2) it ontains two subpaths onneting the vertex pairs {v1, u1} and
{v2, u2};(3) it does not ontain the ars (v′1, u1) and (v′2, u2).To this end, we de�ne cS1(a) = 1 for a ∈ {(v′1, v1), (v

′
2, v2), (u2, w2)} and

cS1(a) = 0 for all other ars a ∈ A′. Note that the only path with ost 0w.r.t. the ost funtion cS1 is the path pS1 = sv′1u1v
′
2u2w1t. Furthermore, weset cS2(a) = 1 for a ∈ {(v′1, u1), (v

′
2, u2), (u2, w1)} and cS2(a) = 0 for all otherars a ∈ A′ (see Figure 2.1). If a path p satis�es the onditions from above,then p[s,u2] ∪ (u2, w2) ∪ (w2, t) is a reovery path with ost 0 w.r.t. cS2 , where

p[a,b] denotes the subpath of p onneting the verties a and b. The senarioost funtion sets exatly three ar osts to 1, all other osts remain at 0.To omplete the de�nition of the k-Dist-RR shortest path instane I ′, weset the �rst-stage ost to 0. The size of instane I ′ is polynomial in the sizeof I.We will now prove that there are two vertex disjoint paths p1 and p2 in G ifand only if any optimal solution in I ′ has total ost 0.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 9(⇒): Let p1 be a (v1, u1)-path and p2 be a (v2, u2)-path in G, and let bothpaths be vertex disjoint. Then the path
p = (s, v′1) ∪ (v′1, v1) ∪ p1 ∪ (u1, v

′
2) ∪ (v′2, v2) ∪ p2 ∪ (u2, w1) ∪ (w1, t)is a simple (s, t)-path in G′ and ontains the reovery paths pS1 and

pS2 = p[s,u2] ∪ (u2, w2) ∪ (w2, t) for k = 2. Thus, the total ost of p is 0.(⇐): Let p be a simple (s, t)-path with total ost equal to 0. Let us �rstassume that p ontains the ars (u2, w2) and (w2, t). Sine the only pathwith ost 0 in S1 is pS1 and k = 2, p[s,u2] = pS1

[s,u2]
. Sine cS2((v′1, u1)) = 1,the reovery path in senario S2 needs to onnet v1 diretly over an arwith u1, v2 or u2. Yet, suh an ar is not part of G′ due to our assumption.Hene, p ontains the ars (u2, w1) and (w1, t).Note that now the reovery ations in S2 are �xed to be used for the last twoars. Thus, the subpath of p onneting s and u2 equals the reovery pathfor senario S2. Sine the ars (v′1, u1) and (v′2, u2) have ost 1 in senario S2,these two ars are not ontained in p. On the other hand, p needs to traversethe ar (u1, v

′
2), sine otherwise the path pS1 is not part of the reovery of

p and we would obtain total ost greater than 0. Due to these propertiesof p, the path p onnets the vertex v1 with u1 and v2 with u2. Sine p is asimple path, these subpaths are vertex disjoint. This observation onludesthe proof.If k > 2, we an just replae the two parallel paths onneting u2 with t bytwo parallel paths of length k. �The k-Dist-RR shortest path instane onstruted in the redution alreadyovers two speial ases mentioned in the introdution: �rst, the set of se-narios SD models failure sets, i.e., some ars are not available in the urrentrealization, and seond, all ost are ontained in the senario ost funtions,i.e., no �rst-stage ost are paid. Note that these results depend on the fatthat a simple (s, t)-path needs to be �xed in the �rst-stage. Furthermore,the redution proves NP-hardness just for the ase of direted graphs, sinein undireted graphs the two vertex disjoint path problem an be solved inpolynomial time [17℄.Before we onsider interval and Γ-senarios, we will show that the total ostof a given (s, t)-path an be omputed in polynomial time. Let p be an (s, t)-path and let S ∈ S be some senario de�ning a ost funtion cS : A → N onthe ar set A of the given graph G = (V,A). We ompute the best reoverypath pS ∈ Pk
p by solving a onstrained shortest path (CSP-) problem. Theost funtions of this CSP-problem are the senario ost funtion and a



10 CHRISTINA BÜSINGdistane ost funtion
d(a) =







0 if a ∈ p

1 otherwise.The ost funtion d ounts the number of ars in a path p′ that di�er fromthe ars in p, i.e., d(p′) = |p′\p| for any p′ ∈ P. In order to ompute apath p′ ∈ Pk
p we bound this value in the CSP-instane by k. In general theCSP-problem is weakly NP-hard and an be solved by a labeling Dijkstraalgorithm in pseudo-polynomial time O(n2L2), where L is the upper boundon the seond ost. The labeling Dijkstra algorithm has been introduedby Aneja et al. [2℄. Sine in our ase, the bound k is smaller than n (otherwisethe problem is trivial), this CSP-problem is solvable in polynomial time.Thus, by omputing pS for every senario S ∈ SD, we obtain the total ostof a path p by

cT (p) = c1(p) + max
S∈SD

cS(pS).2.2. Interval Senarios. The interval senario set SI is de�ned indiretlyfor a graph G = (V,A) by lower and upper ost bounds c(a) and c(a) onthe senario ost funtion for eah ar a ∈ A, 0 ≤ c(a) ≤ c(a). For eah ostfuntion c : A → N with c(a) ∈ [c(a), c(a)] there exists a senario S ∈ SI with
cS = c and every senario ost funtion cS : A → N obeys these bounds.Obviously, the k-Dist-RR shortest path problem with interval senario sets isequivalent to the k-Dist-RR shortest path problem with one disrete senario,namely Smax with cSmax(a) = c(a) for all a ∈ A. Hene, the problem an beredued to �nding a �rst-stage path p and a reovery path p′ with |p′\p| ≤ kminimizing c(p) = c1(p) + cSmax(p′).For the speial ase of c1 ≡ 0, any shortest path w.r.t. the ost funtion
cSmax is an optimal solution of the orresponding k-Dist-RR instane. Yet, ifthe �rst-stage ost funtion an be hosen arbitrarily, we obtain, by a slightmodi�ation of the proof of Theorem 3, that the k-Dist-RR shortest pathproblem with interval senarios is not approximable, unless P = NP.Corollary 4. The k-Dist-RR shortest path problem with interval senariosis strongly NP-hard and not approximable, unless P = NP.Sketh of Proof. We use the same onstrution and notation as in the proofof Theorem 3. But instead of de�ning the two senarios S1 and S2, we justde�ne a �rst-stage ost funtion c1 and one senario Smax. The senario
Smax assigns the same ost values to all ars as the senario S1. Note thatthe senario Smax represents a set of interval senarios SI by setting theupper ost bounds on every ar a ∈ A to the value cSmax(a) and setting the



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 11lower ost bounds to 0. Finally, c1 assigns ost 0 to the ar (u2, w1) andthe same ost values as the senario S2 to all other ars. As in the proof ofTheorem 3, there are two disjoint paths p1 and p2 onneting the designatedverties v1, u1 and v2, u2, respetively, if and only if there is an (s, t)-path inthis instane with total ost 0. �We will now onsider the k-Dist-RR shortest path problem with intervalsenarios on the speial lass of series-parallel graphs. Then, the k-Dist-RRshortest path problem with SI an be solved in polynomial time. The algo-rithm is based on the following two properties: Let G be a series ompositionof G1 and G2, two series-parallel graphs. Any optimal solution in G using kars as reovery onsists of an optimal solution to G1 using i ars as reoveryand an optimal solution to G2 using j ars as reovery with i + j = k. If
G is a parallel omposition of G1 and G2, then either the optimal �rst-stagepath p and its reovery path p′ are both part of G1 (or G2), or p is in Giand p′ in Gj , j 6= i. In the seond ase, p is a shortest path aording to
c1 and p′ is a shortest path aording to cSmax with a maximal length of kars. A deomposition of a given series-parallel graph into parallel and seriesompositions starting from simple ars an be omputed in linear time [18℄.Theorem 5. An optimal solution of a k-Dist-RR shortest path problemwith interval senarios an be alulated in polynomial time on series-parallelgraphs.2.3. Γ-Senarios. The set of Γ-senarios was introdued by Bertsimas andSim [5℄ and is a modi�ation of interval senarios. Let c(a) and c(a) be lowerand upper bounds on the senario ost with 0 ≤ c(a) ≤ c(a) for all a ∈ A,where A is the ar set of a given graph G = (V,A). A senario S ∈ SΓ is onlyallowed to have at most Γ ost values deviating from the lower bound, i.e.,
|{a ∈ A | cS(a) > c(a)}| ≤ Γ. In ontrast to the ase of disrete senarios,we show that it is already strongly NP-hard to ompute the total ost of agiven simple path.Theorem 6. In a k-Dist-RR shortest path problem with Γ-senarios and
k ≥ 4 omputing the total ost of a given path is a strongly NP-hard problem.Proof. We show a redution from the max-senario problem. Let I be aninstane of the max-senario problem given by a direted graph G = (V,A)and two verties s, t ∈ V suh that every (s, t)-path in G ontains at most 4ars. Furthermore, let SΓ be a set of Γ-senarios and let K be a threshold.The max-senario problem asks whether a senario S ∈ SΓ exists suh that
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minp∈P cS(p) ≥ K. In [6℄ Büsing showed, that this problem is strongly NP-hard. In order to de�ne an instane of the k-Dist-RR shortest path problemwe add one ar a1 to the graph G with lower and upper ost bounds K + 1for the senario ost funtion and assign �rst-stage ost 0 to all ars in thegraph. Furthermore, we set k = 4 and onsider the path p = a1. Sine any
(s, t)-path in G is a feasible reovery path for p, the total ost of p is greaterthan or equal to K if and only if I is a yes-instane. �Note that the deision problem whether the total ost of a given (s, t)-path
p is smaller than or equal to K is in coNP, sine in that ase there alwaysexist a senario S ∈ SΓ suh that the reovery ost and the �rst-stage ostof p are greater than or equal to K+1. Furthermore, it follows diretly thatalso the deision version of the k-Dist-RR shortest path problem is not in
NP: The deision version is de�ned as follows.Given: a graph G = (V,A), two verties s and t, a �rst-stage ost funtion

c1 : A → N, lower and upper ost bounds c(a) and c(a) for every
a ∈ A, a parameter Γ ∈ N, a reovery parameter k ∈ N and athreshold K ≥ 0.Deide: whether there exists a simple (s, t)-path p with total ost smallerthan or equal to K.If this deision version is in NP, there is a polynomial erti�ate with whihwe an deide in polynomial time whether there exists a path p with totalost smaller than or equal to K. Thus, by adding �rst-stage ost of K + 1to all ars in G and 0 to the ar a1 to the onstruted instane in theproof of Theorem 6, we obtain a polynomial erti�ate for a no-instaneof the max-senario problem, an NP-omplete problem. This would imply

NP = coNP. It remains open whether the k-Dist-RR shortest path problemwith Γ-senarios is in coNP.Sine Γ-senarios are a speial ase of interval senarios, this problem is alsostrongly NP-hard, as a onsequene from Corollary 4.Corollary 7. The k-Dist-RR shortest path problem with Γ-senarios isstrongly NP-hard and not approximable, unless P = NP.We will now turn to the Rent-RR shortest path problem.3. The Rent-RR Shortest Path Problem and its Complexity3.1. Disrete Senarios and Interval Senarios. The omplexity statusof the Rent-RR shortest path problem is more similar to the robust shortest



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 13path problem, whih we will show by an L-redution. Reall that in orderto establish an L-redution (e.g. [12℄) from an optimization problem X toan optimization problem X ′ we have to de�ne a pair of funtions f and g,both omputable in polynomial time, and two onstants γ, δ > 0 suh thatfor any instane I of X :
• f(I) is an instane of X ′ with OPT(f(I)) ≤ γOPT(I) (Condition 1);
• for any feasible solution y′ of f(I), g(I, y′) is a feasible solution of Isuh that |cI(g(I, y′))−OPT(I)| ≤ δ|cf(I)(y

′)−OPT(f(I))| (Condi-tion 2),where cI is the ost funtion and OPT(I) the value of an optimal solutionof the instane I. We will now introdue an L-redution from the robustshortest path problem to the Rent-RR shortest path problem.Theorem 8. The robust shortest path problem with disrete senario sets
SD is L-reduible to a Rent-RR shortest path problem with SD and somerent and in�ation fator α ∈]0, 1[ and β ≥ 0.Proof. We start by de�ning a funtion f , whih onstruts for a given ro-bust shortest path instane I a Rent-RR shortest path instane f(I) = I ′suh that the optimal values of both instanes satisfy OPT(I) = αOPT(I ′).Let G = (V,A) be a direted graph, s and t be two verties and SD =

{S1, . . . , Sr} be a set of disrete senarios, where eah senario S ∈ SD de-�nes a ost funtion cS : A → N. The goal in I is to �nd an (s, t)-path pminimizing the robust ost crob(p) := maxS∈SD
cS(p). In order to extendthis instane I of a robust shortest path problem to an instane of the Rent-RR shortest path problem I ′, we add r parallel (s, t)-ars ai, i = 1, . . . , r,to obtain the graph G′. Furthermore, we de�ne a senario set S ′

D on thisgraph in the following way: for every senario Si ∈ SD the set S ′
D ontainsa senario S′

i with cS
′

i(a) = cSi(a) for all a ∈ A, cS′

i(ai) = 0, and cS
′

i(a) = Motherwise with M = maxS∈SD
cS(A), an upper bound on the maximum ro-bust ost in instane I. We denote by P(G), P(G′) the set of all (s, t)-pathsin G, G′, respetively. We will now show that the optimal values of I and

I ′ satisfy OPT(I) = αOPT(I ′). Let p ∈ P(G). Sine in every senario theimplementation ost is 0,
crob(p) = max

S∈SD

cS(p)

= max
S′∈S′

D

min
p′∈P(G′)

αcS
′

(p) + (1− α)cS
′

(p′) + (α+ β)cS
′

(p′)
︸ ︷︷ ︸

=0

= αc(p)for any rental fator α ∈]0, 1[ and in�ation fator β ≥ 0. For any other path
p ∈ P(G′)\P(G), the total ost equals α ·M . Hene, OPT(I) = αOPT(I ′).



14 CHRISTINA BÜSINGFinally, we de�ne a funtion g suh that Condition 2 is satis�ed. To thisend, we �x an arbitrary (s, t)-path p1 in G as representation for any (s, t)-path p ∈ P(G′) that is not in P(G), i.e., for any p ∈ P(G′), g(I, p) = p1 if
p /∈ P(G) and g(I, p) = p if p ∈ P(G). We distinguish again between a pathin P(G) and a path in P(G′). If p ∈ P(G), then

|crob(g(I, p)) −OPT(I)| = |
1

α
c(p)−

1

α
OPT(I ′)| =

1

α
|c(p) −OPT(I ′)|.If p ∈ P(G′)\P(G), then

|crob(g(I, p)) −OPT(I)| ≤ |M −OPT(I)| = |M −
1

α
OPT(I ′)|

=
1

α
|αM −OPT(I ′)| =

1

α
|c(p)−OPT(I ′)|.Thus, for δ = 1

α
, this onludes the L-redution. �Corollary 9. The Rent-RR shortest path problem with disrete senarios

SD is weakly NP-hard for two disrete senarios and not approximable witha fator better than log(1−ε) |SD| for any ε > 0, unless P = NP.In the ase of interval senarios every senario is dominated by Smax with
cSmax(a) = c(a) for every ar a ∈ A, where c(a) is the upper ost boundde�ned by the interval senario set. Consequently, any shortest path in termsof this ost funtion yields an optimal solution for the Rent-RR shortest pathproblem.So far, the omplexity status of the robust shortest path problem and theRent-RR shortest path problem are the same. Yet, for Γ-senarios we willshow that the Rent-RR shortest path problem is strongly NP-hard whereasthe robust shortest path problem an be solved in polynomial time, as shownby Bertsimas and Sim [4℄.3.2. Γ-Senarios. One an easily prove with similar arguments as in the
k-Dist-RR ase that the total ost for a given path is strongly NP-hard toompute in a Rent-RR shortest path instane. But even without returningthe total ost for a given path, the problem remains NP-hard.Theorem 10. The Rent-RR shortest path problem with SΓ is strongly
NP-hard.Proof. We redue from the max-senario problem with Γ-senarios whihhas been shown to be strongly NP-hard in [6℄. Let I be an instane of themax-senario problem given by a direted graph G = (V,A), two designatedverties s and t, lower and upper ost bounds on the ars c(a) and c(a) forall a ∈ A, an integer Γ and a threshold K ≥ 0. We denote by P(G) the set



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 15of all simple (s, t)-paths in G. The task in I is to deide whether a senario
S ∈ SΓ exists suh that minp∈P(G) c

S(p) ≥ K. The idea of the redution isas follows: we inrease the ost of all (s, t)-paths in G by a onstant x andadd one further path p with �xed ost y in all senarios to the instane. Thevalues of x, y, the rental fator α and the in�ation fator β are set in suha way that p is the optimal solution of the Rent-RR shortest path instaneif and only if I is a yes-instane.More formally, we de�ne β = 1
2K , α = 1

2c̃+1β with c̃ = maxS∈SΓ
cS(p̃) forsome p̃ ∈ P(G) and add an ar (s, t) to G in order to de�ne a Rent-RRshortest path instane I ′. We all this extra ar also the (s, t)-path p anddenote the new graph with G′ and all simple (s, t)-paths with P(G′). Finally,we inrease the lower and upper ost bounds for any outgoing ar of s by

x = (1−α)
(β+α)(K − ε) + δ, for some 0 < ε < 1

2 , and set the upper and lower ostbounds on the extra ar to y = K + x − ε. All other upper and lower ostbounds remain as in the instane I. We now prove that I is a yes-instaneif and only if p is the optimal solution in I ′.Let I be a yes-instane, i.e., there exists a senario S ∈ SΓ with
minp∈P(G) c

S(p) ≥ K. For every (s, t)-path p ∈ P(G) the total ost anbe bounded below by
c(p) = max

S∈SΓ

min
p′∈P(G′)

αcS(p) + (1− α)cS(p′) + (α+ β)cS(p′\p)

≥ min{(K + x), α(K + x) + (1 + β)y}.For the solution p we get
c(p) ≤ min{y,max

S∈SΓ

(αy + (1 + β) min
p∈P(G)

cS(p))} ≤ yDue to the de�nition of y and x, we obtain y < K + x and thus c(p) < c(p)for any path p ∈ P(G′)\{p}.Let now I be a no-instane, i.e., for every senario S ∈ SΓ there is a solution
p ∈ P(G) with cS(p) ≤ K − 1. For the already �xed path p̃, we obtain anupper bound on the total ost by

c(p̃) = max
S∈SΓ

min
p′∈P(G′)

αcS(p̃) + (1− α)cS(p′) + (α+ β)cS(p′\p̃)

≤ α(c̃ + x) + (1− α)x+ (1 + β)(K − 1),if(3.1) (1 + β)y > (1 + β)(K − 1) + (1− α)y.



16 CHRISTINA BÜSINGFurthermore, sine cS(p) ≥ x for all S ∈ SΓ and all p ∈ P(G′)\{p}, the totalost of p sums to
c(p) = min{y,max

S∈SΓ

min
p′∈P(G′)

αy + (1 + β)cS(p′)} = yif(3.2) (1− α)y < (1 + β)x.Comparing these two bounds, c(p̃) < c(p) if(3.3) α(c̃ + x) + (1− α)x+ (1 + β)(K − 1) < y.As one an easily realulate, the inequalities (3.1)-(3.3) are satis�ed for thehosen values of β, α, x and y. Thus, p is the optimal solution of the Rent-RR shortest path instane I ′ with β = 1
2K and α = 1

2c̃+1β if and only if themax-senario instane I is a yes-instane. �We will onlude this setion by introduing an approximation algorithmfor the Rent-RR shortest path problem whih is based on an approximationalgorithm for the robust shortest path problem.3.3. Approximation Algorithm. Sine an optimal solution annot beonstruted e�iently for disrete and Γ-senarios if P 6= NP, we are inter-ested in approximation algorithms. An approximation algorithm onstrutsa �rst-stage solution p ∈ P and gives for every �rst-stage solution p andsenario S ∈ S a reovery strategy, i.e., a rule how to ompute the reoverysolution. The following theorem states how to generate an approximationalgorithm for the Rent-RR shortest path problem from a robust shortestpath solution.Theorem 11. Let G = (V,A) be a direted graph, s and t be two vertiesin V , S be a set of senarios and ALG be an approximation algorithm forthe robust shortest path problem with an approximation fator γ. For a givenrental fator α ∈]0, 1[ and in�ation fator β ≥ 0, we de�ne algorithm ALG′by:First Stage: Run ALG on the robust shortest path instane (G, s, t,S) andset the �rst-stage solution pr to the output of ALG.Reovery: For any S ∈ S alulate an optimal solution pS for the shortestpath instane G with the ost funtion
c′(a) =







(1− α) · cS(a) ∀a ∈ pr

(1 + β) · cS(a) ∀a /∈ pr.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 17Then ALG′ is an approximation algorithm with an approximation fator
γ′ = min{(γ + 1 + β), γ

α
} of the Rent-RR shortest path problem.Proof. Let pr be a solution omputed by algorithm ALG for the robust short-est path instane (G, s, t,S) and let OPTrob be the value of an optimal robustsolution, i.e., OPTrob = minp∈P maxS∈S cS(p). Furthermore, let OPT be thevalue of an optimal solution of the Rent-RR shortest path instane with arental fator α > 0 and an in�ation fator β ≥ 0. We start with two lowerbounds on OPT: First

OPT = min
p∈P

max
S∈S

min
p′∈P

αcS(p) + (1− α)cS(p′) + (α+ β)cS(p′\p)

≥ αmin
p∈P

max
S∈S

cS(p) = αOPTrob(3.4)and seond
OPT ≥ max

S∈S
min
p′∈F

cS(p′).(3.5)We use the �rst bound (3.4) to obtain an estimate of the maximum rentalost of pr, more preisely,(3.6) cR(p
r) = αmax

S∈S
cS(pr) ≤ α · γOPTrob ≤ γOPT .An upper bound on the implementation ost of pr in any senario S ∈ SD isgiven by(3.7) cSI (p

r) ≤ (1 + β)max
S∈S

min
p′∈P

cS(p′) ≤ (1 + β)OPT,using inequality (3.5). Combining estimates (3.6) and (3.7), we get
c(pr) = max

S∈S
cSR(p

r) + cSI (p
r) ≤ cR(p

r) + max
S∈S

cSI (p
r)

≤ γOPT+(1 + β)OPT ≤ (γ + 1 + β)OPT .Thus, we have a �rst approximation guaranty of ALG′.The seond guaranty is based on the reovery step. Sine an optimal solutionw.r.t. the ost funtion c′ is hosen in the seond stage, we obtain for any
p ∈ P

c(p) = max
S∈SD

min
p′∈P

αcS(p) + (1− α)cS(p′) + (1 + β)cS(p′\p) ≤ max
S∈SD

cS(p).Due to the hoie of pr, this leads to
1

γ
c(pr) ≤ min

p∈P
max
S∈S

cS(p) ≤
1

α
OPT .To sum up, algorithm ALG′ is a min{γ+1+β, γ

α
}-approximation algorithmfor the Rent-RR shortest path problem. �



18 CHRISTINA BÜSINGIn the ase of Γ-senarios, the robust shortest path problem an be solvedin polynomial time [4℄ and thus we obtain a min{2 + β, 1
α
}-approximationalgorithm for the Rent-RR shortest path problem. For α ≥ 0.5 the approxi-mation fator is tight, as we will see in the following example: Let G = (V,A)be a direted graph omposed of an (s, t)-ar with the ost interval [0, 1], alsodenoted as path p̃, and a path p from s to t with two ars, where a ost in-terval of [0, 0.5] is assigned to eah of these ars. For Γ = 2, both pathsare optimal robust shortest paths and thus the algorithm ould hoose p̃.This results in total ost c(p̃) = min{1, α + (1 + β) · 0.5} whereas the path

p yields the optimal total ost c(p) = max{α, 0.5}. For α ≥ 0.5 we obtain
c(p̃) = 1

α
· c(p). 4. ConlusionsWe onsidered two di�erent reoverable robust shortest path problems andinvestigated their omplexity with respet to the most ommon senario setsin the literature. For all these sets, the k-Dist-RR shortest path problem isstrongly NP-hard and not approximable, unless P = NP. For the speialase of series-parallel graphs, we introdue a polynomial algorithm to solvethe problem with interval senarios.The Rent-RR shortest path problem is losely related to the robust short-est path problem. For disrete senarios we provided an L-redution fromthe latter problem to the Rent-RR shortest path problem and thus showthat the Rent-RR shortest path problem annot be approximated with afator better than log(1−ε) |SD| for any ε > 0 and a disrete senario set

SD. Yet, in ontrast to the robust ase, the Rent-RR shortest path problemis for Γ-senarios strongly NP-hard. On the other hand, any approxima-tion algorithm for the robust shortest path problem an be adapted to anapproximation algorithm for the Rent-RR shortest path problem.AknowledgmentI wish to thank Martin Groÿ, Christian Liebhen, Rolf H. Möhring, MartinSkutella and Sebastian Stiller for fruitful disussions. Furthermore, I wouldlike to thank the referees for their valuable omments.Referenes[1℄ H. Aissi, C. Bazgan, and D. Vanderpooten, Approximation omplexity of min-max(regret) versions of shortest path, spanning tree, and knapsak, Algorithms � ESA2005, Leture Notes in Computer Siene, Vol. 3669, Springer, 2005, pp. 862�873.
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