
RECOVERABLE ROBUST SHORTEST PATH PROBLEMSCHRISTINA BÜSINGAbstra
t. In this paper we investigate two di�erent re
overable ro-bust models to deal with 
ost un
ertainties in a shortest path problem.Re
overable robustness extends the 
lassi
al 
on
ept of robustness todeal with un
ertainties by in
orporating limited re
overy a
tions afterthe full data are revealed. Our �rst model fo
uses on the 
ase where there
overy a
tions are quite restri
ted: after a simple path is �xed in the�rst stage, in the se
ond stage, after all data are revealed, any path 
on-taining at most k new ar
s may be 
hosen. Thus, the parameter k 
anbe interpreted as a mediator between robust optimization � no 
hangesallowed � and optimization on the �y � an arbitrary solution 
an be
hosen. Considering three 
lassi
al s
enario sets, whi
h model un
er-tainties in the 
ost fun
tion, we show that this new problem is strongly
NP-hard in all these 
ases and is not approximable, unless P = NP.This is in 
ontrast to the robust shortest path problem, where, for ex-ample, an optimal solution 
an be 
omputed e�
iently for interval and
Γ-s
enarios. For series-parallel graphs and interval s
enarios, we presenta polynomial time algorithm for this re
overable robust setting.In our se
ond model the re
overy set, i.e., the set of paths sele
table inthe se
ond stage is not limited, but deviating from the previous 
hoi
e
omes at extra 
ost. Thus, a path 
hosen in the �rst stage produ
esrenting 
osts modeled as an α-fra
tion of the s
enario 
ost. For an ar
taken in the se
ond stage the remaining 
ost needs to be paid in additionto some extra in�ation 
ost modeled by a β-fra
tion of the s
enario 
ost,if the ar
 was not reserved beforehand. The 
omplexity status of thisproblem is similar to the robust 
ase. Yet, for Γ-s
enarios the problem isagain strongly NP-hard, but 
an be approximated with a min{2+β, 1

α
}fa
tor.Keywords: un
ertainties; robustness; re
overy; shortest path problem; NP-hardness; approximation 1. Introdu
tionThe k-Dist-RR Shortest Path Problem. One major 
on
ern in trans-portation is the design and extension of infrastru
ture in su
h a way thatit serves the predi
ted future demands. For example, tra
ks or tunnels areResear
h supported by the Resear
h Training Group �Methods for Dis
rete Stru
tures�(DFG-GRK 1408) and the Berlin Mathemati
al S
hool.1



2 CHRISTINA BÜSINGbuilt to 
onne
t important 
ities, 
anals are 
onstru
ted to speed up thetravel time between di�erent seas or highways are built to spread the tra�
volume. In this planning pro
ess 
osts for reforming the infrastru
ture areassumed to be known or are estimated. However, in the 
onstru
tion phasethese 
osts may 
hange. For example, material 
osts depend on the 
urrentmarket pri
e or the 
onstru
tion time may in
rease due to bad weather 
on-ditions, whi
h indu
es extra 
osts for leasing the ma
hinery. A goal in theplanning pro
ess is to extend the infrastru
ture for as little 
ost as possible.Assuming a risk-averse poli
y every extension is evaluated by its worst-
ase
ost.We simplify the problem des
ribed above and 
onsider the setup of a newroad 
onne
ting two �xed 
ities s and t. The potential roads that may bebuilt are modeled via the set of all simple (s, t)-paths P in a given dire
tedgraph G = (V,A). We 
all 
osts that are given at the beginning of theplanning pro
ess, the �rst-stage 
osts and denote them with c1 : A → N.The se
ond kind of 
ost, whi
h is un
ertain at the planning stage, is modeledby a set of s
enarios S. Ea
h s
enario S ∈ S determines a 
ost fun
tion
cS : A → N, whi
h represents a potential realization of the market pri
es.We assume that after the road is 
hosen, a s
enario from the set S is revealedand determines the 
ost in the 
onstru
tion phase. An (s, t)-path p generatesthe �rst-stage 
ost c1(p) = ∑

a∈p c
1(a) and in ea
h s
enario the s
enario 
ost

cS(p) =
∑

a∈p c
S(a). Choosing a path with minimum �rst-stage 
ost andminimum maximal s
enario 
ost 
orresponds to the problem of �nding anoptimal robust path.However, in the 
onstru
tion phase minor 
hanges of the previously plannedroad are in general possible. For example, if in the 
ase of building a tunnela layer of granite turns up, small detours through permeable ro
k save 
ostand are realizable with little e�ort. Or if the ground be
omes swamp land,
ir
umventing this area seems wise. We in
lude this possibility of takingsmall detours by allowing us to take an (s, t)-path pS as soon as a s
enario

S is revealed, whi
h uses up to k new ar
s 
ompared to the path 
hosen inthe �rst stage. We 
all this new problem the k-distan
e re
overable robustshortest path problem and de�ne it more formally in the following.De�nition 1 (k-Distan
e Re
overable Robust (k-Dist-RR) Shortest PathProblem). Let G = (V,A) be a dire
ted graph with a set of verti
es V and aset of ar
s A, and let s and t be two designated verti
es in V . Let c1 : A → Nbe a �rst-stage 
ost fun
tion, S be a set of s
enarios, where ea
h s
enario
S de�nes a s
enario 
ost fun
tion cS : A → N, and k ∈ N be a re
overyparameter. We denote by P the set of all simple (s, t)-paths in G. The



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 3re
overy Pk
p of an (s, t)-path p 
onsists of all (s, t)-paths p′ with |p′\p| ≤ k,and the re
overy 
ost cRR(p) is determined by

cRR(p) = max
S∈S

min
p′∈Pk

p

∑

a∈p′

cS(a).The �rst-stage 
ost of p is given by c1(p) =
∑

a∈p c
1(a). First-stage 
ost andre
overy 
ost sum up to the total 
ost cT (p) of p, i.e., cT (p) = c1(p)+cRR(p).The k-distan
e re
overable robust shortest path problem is to �nd an (s, t)-path p∗ ∈ P with minimum total 
ost cT (p∗).The parameter k represents the �exibility in the planning pro
ess for aban-doning the original plan. Thus, this model 
an be interpreted as a mediatorbetween �optimization on the �y�, where for every s
enario an optimal so-lution is 
hosen in the se
ond stage, and robustness, where no 
hanges areallowed after the solution is 
hosen in the �rst stage. The �rst 
ase 
orre-sponds to k = |V |, the number of verti
es V of the given graph, and these
ond 
ase to k = 0.In the motivating example, the �rst-stage 
ost modeled the estimated 
ostthat o

urs for building roads. Depending on the quality of this estimation,the s
enario 
ost just 
onsists of slight in
reases in these values. But alsodi�erent problem settings 
an easily be represented. Consider, for exam-ple, a tele
ommuni
ation network in whi
h demand needs to be routed asfast as possible w.r.t a given 
ost fun
tion c. Tele
ommuni
ation networksare frequently fa
ed with failure links, i.e., a dire
t 
onne
tion between twoservers is not available. These failures 
an be presented by a set of s
enarioswhere ea
h s
enario pla
es a �xed number of ar
s at high 
ost and leaves theremaining 
ost at 0. The �rst-stage 
ost in this 
ase models the routing 
ost

c. In a third variant of the problem setting no �rst-stage 
ost o

urs andall 
osts are 
aptured in the s
enario 
ost. This setting emerges when theplanning pro
ess indu
es no extra 
osts but during the realization pro
essall 
ost may vary.The Rent-RR Shortest Path Problem. A di�erent problem arises afterthe infrastru
ture is built. In railway optimization the holder of the tra
ksis interested in selling di�erent time slots for 
rossing some tra
ks to other
ompanies. Negotiations between two 
ompanies normally take pla
e beforethe a
tual usage of the tra
ks. Depending on the time di�eren
e betweenusage and negotiation, the 
ost for using a tra
k may not be �xed but remainsadaptable to the 
urrent market pri
es. The 
ompany reserving a slot gainswith this a
tion the right to buy this time slot but is not obligated to doso. On the other hand, the 
ompany selling the slots may 
laim a fra
tion of



4 CHRISTINA BÜSINGthe market pri
e for reserving the slots. We will 
all this fra
tion the rentalfa
tor. If a 
ompany buys the slot, after it was reserved, it just pays theremaining 
ost. If the 
ompany buys any other slot, it needs to pay someextra handling fee, whi
h we also assume to be a fra
tion of the market pri
e.In order to have a guaranteed itinerary for sending their 
argo, a 
ompanyshould reserve a path at the beginning. More formally, we obtain the rentre
overable robust shortest path problem.De�nition 2 (Rent-Re
overable Robust (Rent-RR) Shortest Path Prob-lem). Let G = (V,A) be a dire
ted graph and let s, t be two verti
es in V .Furthermore, a rental fa
tor α ∈]0, 1[, an in�ation fa
tor β ≥ 0, and a set ofs
enarios S, where ea
h s
enario S ∈ S determines a s
enario 
ost fun
tion
cS : U → N, are given. As before, P 
ontains all simple (s, t)-paths in G. Fora path p ∈ P the rent 
ost cSR(p) in s
enario S is de�ned by cSR(p) = α · cS(p)and the implementation 
ost cI(p) by

cSI (p) = min
p′∈P

(1− α)cS(p′) + (α+ β)
∑

a∈p′\p

cS(a).The goal is to �nd a path with minimum total 
ost c(p), de�ned as
c(p) = max

S∈S

(
cSR(p) + cSI (p)

)
.For a large in�ation fa
tor, e.g., β = maxS∈S cS(A), any optimal robustsolution is an optimal solution for the Rent-RR shortest path problem. In
ontrast to the k-Dist-RR shortest path problem, the re
overy set for a �rst-stage solution is not restri
ted, i.e., we 
an 
hoose any path as soon as thes
enario is revealed. Furthermore, there are no �rst-stage 
ost.Related Results. There are two major trends in dealing with un
ertaintygiven by a s
enario set: sto
hasti
 programming and robust optimization.The latter method is in parti
ular appropriate when dealing with high-risksettings or basi
 servi
es like planning water and power supply networks. Asolution is 
alled robust if it remains feasible in all settings and is optimal ifit minimizes its maximum s
enario 
ost.Robustness for dis
rete 
ombinatorial optimization problems was �rst intro-du
ed by Kouvelis and Yu [13℄ in the middle of the 1990s. In [19℄ Yu and Yangshowed that the robust shortest path problem is already weakly NP-hardif the set of s
enarios 
onsists of two s
enarios. If the number of s
enariosis not bounded by a 
onstant, the problem is even strongly NP-hard. Aissiet al. [1℄ introdu
ed a pseudo-polynomial algorithm and an FPTAS for the�rst 
ase and a lower bound on the approximation fa
tor of 2− ε, ε > 0, forthe latter 
ase. This bound was improved by Kasperski and Zieli«ski [11℄ to
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log(1−ε) |S| for any ε > 0 and a dis
rete s
enario set S. For the spe
ial set of
Γ-s
enarios, Bertsimas and Sim [4℄ showed that an optimal robust shortestpath problem 
an be 
omputed by solving |A|+1 deterministi
 shortest pathproblems, where A denotes the set of ar
s of the 
onsidered graph.A di�erent robust framework minimizes the maximum regret of a given so-lution. Su
h a solution is 
alled an optimal min-max regret, relative robustor robust solution. In the 
ase of dis
rete s
enario sets, the same results asfor the robust problem are obtained, i.e., it is weakly NP-hard for two s
e-narios [19℄, 
an be solved in pseudo-polynomial time for a 
onstant numberof s
enarios [1℄ and is not approximable with a fa
tor better than log(1−ε) |S|for any ε > 0 and a dis
rete s
enario set S [11℄. For interval s
enarios, therelative robust shortest path problem is weakly NP-hard on series parallelgraphs in 
ontrast to the robust problem, whi
h 
an be solved in polynomialtime. This was shown by Kasperski and Zieli«ski [10℄. Montemanni andGambardella [15℄ provided an exa
t algorithm to solve the relative robustshortest path problem with interval s
enarios via Benders de
omposition.The drawba
k of robustness is the una

eptable high 
ost of a robust solu-tion. Furthermore, the 
on
ept ignores the fa
t that in most settings mi-nor variations of a previously determined solution are possible. The ideato broaden the 
on
ept of robustness and to in
lude some 
hanges of thesolution in the revealed setting has attra
ted many di�erent resear
hers:Mulvey et al. [16℄ di�erentiate in their new robust model between design de-
isions �xed in a �rst stage and 
ontrol de
isions taken after all data areknown, Ben-Tal et al. [3℄ introdu
ed the 
on
ept of adjustable robustness forlinear programs, Dhamdhere et al. [7℄ 
onsidered demand-robustness whi
hwas later 
alled two-stage robustness (e.g. [9℄), and Lieb
hen et al. [14℄ in-vestigated re
overable robustness inspired by the re
overy a
tion.The shortest path problem has been studied in terms of demand-robustness(or later 
alled two-stage robustness) by Dhamdhere [7℄. In this setting, thegraph G = (V,A), the sour
e vertex s and the 
ost c : A → N are supposedto be known. Yet, the target vertex and the in�ation fa
tor on the 
ost isun
ertain, i.e., every s
enario S de�nes a target vertex tS and an in�ationfa
tor βS ≥ 0 for buying an ar
 in the se
ond stage. The goal is to pur
hasesome parts of the possible path A1 ⊆ A in advan
e for the 
ost c(A1), andto 
omplete it for the given target vertex tS ∈ V to a feasible (s, tS)-path in
A1 ∪ AS

2 by buying the ar
s AS
2 for the 
ost (1 + βS)c(AS

2 ) as soon as thes
enario S ∈ S is realized. The obje
tive is to minimize this 
ost over allpossible s
enarios, i.e., to minimize c(A1)+maxS∈S(1+βS)c(AS
2 ). Note thatthe 
ost system of Rent-RR shortest path problems is similar to this setting,



6 CHRISTINA BÜSINGbut we assume the in�ation fa
tor to be �xed and the 
ost fun
tion to vary.Dhamdhere et al. [7℄ proved a 16-approximation algorithm for the demand-robust shortest path problem. A 7.1-approximation was later introdu
ed byGolovin et al. [9℄.Büsing [6℄ introdu
ed the exa
t subgraph re
overable robust shortest pathproblem in whi
h a subgraph is 
onstru
ted to 
ontain for every s
enario ashortest path of the original graph. The goal is to �nd a subgraph of mini-mum 
ardinality. In the 
ase of interval and Γ-s
enarios approximating theexa
t subset re
overable robust shortest path problem with a fa
tor betterthan |A|(1−ε) is strongly NP-hard for any ε > 0, where A denotes the setof ar
s in the 
onsidered graph. Returning the whole graph yields an |A|-approximation, whi
h 
an be improved to an |A|
ℓ+1 -approximation algorithmfor every 
onstant ℓ ∈ N.Our Contribution and Outline. Besides the model in [6℄, the k-Dist-RRshortest path problem and the Rent-RR shortest path problem are the �rstmodels that in
orporate re
overy a
tion into a robust setting, whi
h dealswith un
ertainties in the 
ost fun
tion and not in the demand. Our resear
hfo
uses on the 
omplexity status and approximation of these problems. We
onsider dis
rete s
enario sets SD, interval s
enario sets SI and Γ-s
enariosets SΓ to model un
ertainties in the 
ost fun
tions. In a dis
rete s
enarioset ea
h s
enario and its integer 
ost fun
tion are expli
itly given. Intervals
enario sets 
onsist of all s
enarios that determine a 
ost fun
tion whosevalues lie in a given 
ost interval de�ned by lower and upper 
ost bounds.For some integer Γ, Γ-s
enario sets are modi�
ations of interval s
enariosets. In 
ontrast to interval s
enarios, a Γ-s
enario may 
hange at most Γ
ost values from the lower bound to the 
orresponding upper bound.In Se
tion 2.1 we show that the k-Dist-RR shortest path problem is strongly

NP-hard and not approximable for two s
enarios, even if the �rst-stage 
ostsare set to 0, unless P = NP. In the 
ase of interval s
enarios SI , 
onsideredin Se
tion 2.2, the problem without �rst-stage 
ost is solvable in polynomialtime. If the �rst-stage 
ost 
an be 
hosen arbitrarily, the k-Dist-RR shortestpath problem with SI turns out to be not approximable, unless P = NP.For the 
lass of series-parallel graphs we introdu
e a polynomial algorithmto solve the k-Dist-RR shortest path problem with interval s
enarios.Sin
e Γ-s
enarios are a spe
ial 
ase of interval s
enarios, the k-Dist-RR short-est path problem with SΓ is not approximable, unless P = NP (Se
tion 2.3).Furthermore, the total 
ost of a given path is not 
omputable in polynomialtime for this s
enario set, unless P = NP.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 7The results for the Rent-RR shortest path problem are 
losely related tothose for the robust shortest path problem. In Se
tion 3.1 we provide fordis
rete s
enarios an L-redu
tion from the latter problem and thus obtainthat the Rent-RR shortest path problem is not approximable with a fa
torbetter than log |SD|, unless P = NP. The interval 
ase is solvable in poly-nomial time, sin
e any shortest path w.r.t. the upper 
ost bounds c providesan optimal solution. However, for Γ-s
enarios, the problem be
omes againstrongly NP-hard, in 
ontrast to its robust version (Se
tion 3.2).In the last Se
tion 3.3, we introdu
e an approximation algorithm based ona robust solution. For Γ-s
enarios, we obtain a min(2+β, 1
α
)-approximationfor a rental fa
tor α ∈]0, 1[ and an in�ation fa
tor β ≥ 0. If α ≥ 0.5, weshow that the analysis is tight.2. The Complexity of the k-Dist-RR Shortest Path Problem2.1. Dis
rete S
enarios. In this se
tion we fo
us on the 
omplexity of the

k-Dist-RR shortest path problem and start by 
onsidering dis
rete s
enariosets. For a given graph G = (V,A), a dis
rete s
enario set SD 
onsistsof r s
enarios S1, . . . , Sr, where ea
h s
enario determines a 
ost fun
tion
cSi : A → N, i = 1, . . . , r. We will show that even for two s
enarios the k-Dist-RR shortest path problem is strongly NP-hard and not approximable,unless P = NP. Note that the robust shortest path problem with twos
enarios 
an be solved in pseudo-polynomial time [1℄.Theorem 3. Let G = (V,A) be a dire
ted graph, s, t be two verti
es in V ,
c1 : A → {0} be the �rst-stage 
ost fun
tion, {S1, S2} be two s
enariosdetermining two 
ost fun
tions cSi : A → {0, 1} with |{a ∈ A | cSi(a) =

1}| ≤ 3, i = 1, 2, and k ≥ 2 be a re
overy parameter. Then solving the
orresponding k-Dist-RR shortest path problem is strongly NP-hard and notapproximable, unless P = NP.Proof. We show a redu
tion from the two vertex disjoint path problem tothe k-Dist-RR shortest path problem. Let I be an instan
e of the two vertexdisjoint path problem given by a dire
ted graph G = (V,A) and two vertexpairs {v1, u1} and {v2, u2}. The task in I is to de
ide whether two vertexdisjoint paths, a (v1, u1)-path p1 and a (v2, u2)-path p2, exist. The NP-
ompleteness of this problem follows dire
tly from a lemma published in1980 by Fortune et al. [8℄. W.l.o.g. we assume that the graph G does not
ontain the ar
s (v1, u1), (v1, v2) and (v1, u2) and that there are no outgoingar
s from u1 and u2 and no in
oming ar
s to v2.



8 CHRISTINA BÜSINGWe show a redu
tion for k = 2 and de�ne an instan
e I ′ of the k-Dist-RRshortest path problem with two s
enarios S1, S2 in the following way: Let
G′ = (V ′, A′) be an extension of G by six verti
es s, t, v′1, v′2, w1 and w2, andten ar
s (s, v′1), (v′1, v1), (v′1, u1), (u1, v′2), (v′2, u2), (v′2, v2), (u2, w1), (u2, w2),
(w1, t) and (w2, t) (see Figure 2.1).
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(cS1 , cS2)Figure 2.1. The values on the ar
s show the 
ost assign-ments of the two s
enarios S1 and S2. The �rst-stage 
ostsare set to 0.We de�ne the two s
enario 
ost fun
tions cS1 and cS2 in su
h a way that anysimple (s, t)-path with total 
ost equal to 0 satis�es the following 
onditions:(1) it 
ontains the ar
s (s, v′1), (v′1, v1), (u1, v
′
2), (v′2, v2), (u2, w1) and

(w1, t);(2) it 
ontains two subpaths 
onne
ting the vertex pairs {v1, u1} and
{v2, u2};(3) it does not 
ontain the ar
s (v′1, u1) and (v′2, u2).To this end, we de�ne cS1(a) = 1 for a ∈ {(v′1, v1), (v

′
2, v2), (u2, w2)} and

cS1(a) = 0 for all other ar
s a ∈ A′. Note that the only path with 
ost 0w.r.t. the 
ost fun
tion cS1 is the path pS1 = sv′1u1v
′
2u2w1t. Furthermore, weset cS2(a) = 1 for a ∈ {(v′1, u1), (v

′
2, u2), (u2, w1)} and cS2(a) = 0 for all otherar
s a ∈ A′ (see Figure 2.1). If a path p satis�es the 
onditions from above,then p[s,u2] ∪ (u2, w2) ∪ (w2, t) is a re
overy path with 
ost 0 w.r.t. cS2 , where

p[a,b] denotes the subpath of p 
onne
ting the verti
es a and b. The s
enario
ost fun
tion sets exa
tly three ar
 
osts to 1, all other 
osts remain at 0.To 
omplete the de�nition of the k-Dist-RR shortest path instan
e I ′, weset the �rst-stage 
ost to 0. The size of instan
e I ′ is polynomial in the sizeof I.We will now prove that there are two vertex disjoint paths p1 and p2 in G ifand only if any optimal solution in I ′ has total 
ost 0.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 9(⇒): Let p1 be a (v1, u1)-path and p2 be a (v2, u2)-path in G, and let bothpaths be vertex disjoint. Then the path
p = (s, v′1) ∪ (v′1, v1) ∪ p1 ∪ (u1, v

′
2) ∪ (v′2, v2) ∪ p2 ∪ (u2, w1) ∪ (w1, t)is a simple (s, t)-path in G′ and 
ontains the re
overy paths pS1 and

pS2 = p[s,u2] ∪ (u2, w2) ∪ (w2, t) for k = 2. Thus, the total 
ost of p is 0.(⇐): Let p be a simple (s, t)-path with total 
ost equal to 0. Let us �rstassume that p 
ontains the ar
s (u2, w2) and (w2, t). Sin
e the only pathwith 
ost 0 in S1 is pS1 and k = 2, p[s,u2] = pS1

[s,u2]
. Sin
e cS2((v′1, u1)) = 1,the re
overy path in s
enario S2 needs to 
onne
t v1 dire
tly over an ar
with u1, v2 or u2. Yet, su
h an ar
 is not part of G′ due to our assumption.Hen
e, p 
ontains the ar
s (u2, w1) and (w1, t).Note that now the re
overy a
tions in S2 are �xed to be used for the last twoar
s. Thus, the subpath of p 
onne
ting s and u2 equals the re
overy pathfor s
enario S2. Sin
e the ar
s (v′1, u1) and (v′2, u2) have 
ost 1 in s
enario S2,these two ar
s are not 
ontained in p. On the other hand, p needs to traversethe ar
 (u1, v

′
2), sin
e otherwise the path pS1 is not part of the re
overy of

p and we would obtain total 
ost greater than 0. Due to these propertiesof p, the path p 
onne
ts the vertex v1 with u1 and v2 with u2. Sin
e p is asimple path, these subpaths are vertex disjoint. This observation 
on
ludesthe proof.If k > 2, we 
an just repla
e the two parallel paths 
onne
ting u2 with t bytwo parallel paths of length k. �The k-Dist-RR shortest path instan
e 
onstru
ted in the redu
tion already
overs two spe
ial 
ases mentioned in the introdu
tion: �rst, the set of s
e-narios SD models failure sets, i.e., some ar
s are not available in the 
urrentrealization, and se
ond, all 
ost are 
ontained in the s
enario 
ost fun
tions,i.e., no �rst-stage 
ost are paid. Note that these results depend on the fa
tthat a simple (s, t)-path needs to be �xed in the �rst-stage. Furthermore,the redu
tion proves NP-hardness just for the 
ase of dire
ted graphs, sin
ein undire
ted graphs the two vertex disjoint path problem 
an be solved inpolynomial time [17℄.Before we 
onsider interval and Γ-s
enarios, we will show that the total 
ostof a given (s, t)-path 
an be 
omputed in polynomial time. Let p be an (s, t)-path and let S ∈ S be some s
enario de�ning a 
ost fun
tion cS : A → N onthe ar
 set A of the given graph G = (V,A). We 
ompute the best re
overypath pS ∈ Pk
p by solving a 
onstrained shortest path (CSP-) problem. The
ost fun
tions of this CSP-problem are the s
enario 
ost fun
tion and a
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e 
ost fun
tion
d(a) =







0 if a ∈ p

1 otherwise.The 
ost fun
tion d 
ounts the number of ar
s in a path p′ that di�er fromthe ar
s in p, i.e., d(p′) = |p′\p| for any p′ ∈ P. In order to 
ompute apath p′ ∈ Pk
p we bound this value in the CSP-instan
e by k. In general theCSP-problem is weakly NP-hard and 
an be solved by a labeling Dijkstraalgorithm in pseudo-polynomial time O(n2L2), where L is the upper boundon the se
ond 
ost. The labeling Dijkstra algorithm has been introdu
edby Aneja et al. [2℄. Sin
e in our 
ase, the bound k is smaller than n (otherwisethe problem is trivial), this CSP-problem is solvable in polynomial time.Thus, by 
omputing pS for every s
enario S ∈ SD, we obtain the total 
ostof a path p by

cT (p) = c1(p) + max
S∈SD

cS(pS).2.2. Interval S
enarios. The interval s
enario set SI is de�ned indire
tlyfor a graph G = (V,A) by lower and upper 
ost bounds c(a) and c(a) onthe s
enario 
ost fun
tion for ea
h ar
 a ∈ A, 0 ≤ c(a) ≤ c(a). For ea
h 
ostfun
tion c : A → N with c(a) ∈ [c(a), c(a)] there exists a s
enario S ∈ SI with
cS = c and every s
enario 
ost fun
tion cS : A → N obeys these bounds.Obviously, the k-Dist-RR shortest path problem with interval s
enario sets isequivalent to the k-Dist-RR shortest path problem with one dis
rete s
enario,namely Smax with cSmax(a) = c(a) for all a ∈ A. Hen
e, the problem 
an beredu
ed to �nding a �rst-stage path p and a re
overy path p′ with |p′\p| ≤ kminimizing c(p) = c1(p) + cSmax(p′).For the spe
ial 
ase of c1 ≡ 0, any shortest path w.r.t. the 
ost fun
tion
cSmax is an optimal solution of the 
orresponding k-Dist-RR instan
e. Yet, ifthe �rst-stage 
ost fun
tion 
an be 
hosen arbitrarily, we obtain, by a slightmodi�
ation of the proof of Theorem 3, that the k-Dist-RR shortest pathproblem with interval s
enarios is not approximable, unless P = NP.Corollary 4. The k-Dist-RR shortest path problem with interval s
enariosis strongly NP-hard and not approximable, unless P = NP.Sket
h of Proof. We use the same 
onstru
tion and notation as in the proofof Theorem 3. But instead of de�ning the two s
enarios S1 and S2, we justde�ne a �rst-stage 
ost fun
tion c1 and one s
enario Smax. The s
enario
Smax assigns the same 
ost values to all ar
s as the s
enario S1. Note thatthe s
enario Smax represents a set of interval s
enarios SI by setting theupper 
ost bounds on every ar
 a ∈ A to the value cSmax(a) and setting the
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ost bounds to 0. Finally, c1 assigns 
ost 0 to the ar
 (u2, w1) andthe same 
ost values as the s
enario S2 to all other ar
s. As in the proof ofTheorem 3, there are two disjoint paths p1 and p2 
onne
ting the designatedverti
es v1, u1 and v2, u2, respe
tively, if and only if there is an (s, t)-path inthis instan
e with total 
ost 0. �We will now 
onsider the k-Dist-RR shortest path problem with intervals
enarios on the spe
ial 
lass of series-parallel graphs. Then, the k-Dist-RRshortest path problem with SI 
an be solved in polynomial time. The algo-rithm is based on the following two properties: Let G be a series 
ompositionof G1 and G2, two series-parallel graphs. Any optimal solution in G using kar
s as re
overy 
onsists of an optimal solution to G1 using i ar
s as re
overyand an optimal solution to G2 using j ar
s as re
overy with i + j = k. If
G is a parallel 
omposition of G1 and G2, then either the optimal �rst-stagepath p and its re
overy path p′ are both part of G1 (or G2), or p is in Giand p′ in Gj , j 6= i. In the se
ond 
ase, p is a shortest path a

ording to
c1 and p′ is a shortest path a

ording to cSmax with a maximal length of kar
s. A de
omposition of a given series-parallel graph into parallel and series
ompositions starting from simple ar
s 
an be 
omputed in linear time [18℄.Theorem 5. An optimal solution of a k-Dist-RR shortest path problemwith interval s
enarios 
an be 
al
ulated in polynomial time on series-parallelgraphs.2.3. Γ-S
enarios. The set of Γ-s
enarios was introdu
ed by Bertsimas andSim [5℄ and is a modi�
ation of interval s
enarios. Let c(a) and c(a) be lowerand upper bounds on the s
enario 
ost with 0 ≤ c(a) ≤ c(a) for all a ∈ A,where A is the ar
 set of a given graph G = (V,A). A s
enario S ∈ SΓ is onlyallowed to have at most Γ 
ost values deviating from the lower bound, i.e.,
|{a ∈ A | cS(a) > c(a)}| ≤ Γ. In 
ontrast to the 
ase of dis
rete s
enarios,we show that it is already strongly NP-hard to 
ompute the total 
ost of agiven simple path.Theorem 6. In a k-Dist-RR shortest path problem with Γ-s
enarios and
k ≥ 4 
omputing the total 
ost of a given path is a strongly NP-hard problem.Proof. We show a redu
tion from the max-s
enario problem. Let I be aninstan
e of the max-s
enario problem given by a dire
ted graph G = (V,A)and two verti
es s, t ∈ V su
h that every (s, t)-path in G 
ontains at most 4ar
s. Furthermore, let SΓ be a set of Γ-s
enarios and let K be a threshold.The max-s
enario problem asks whether a s
enario S ∈ SΓ exists su
h that
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minp∈P cS(p) ≥ K. In [6℄ Büsing showed, that this problem is strongly NP-hard. In order to de�ne an instan
e of the k-Dist-RR shortest path problemwe add one ar
 a1 to the graph G with lower and upper 
ost bounds K + 1for the s
enario 
ost fun
tion and assign �rst-stage 
ost 0 to all ar
s in thegraph. Furthermore, we set k = 4 and 
onsider the path p = a1. Sin
e any
(s, t)-path in G is a feasible re
overy path for p, the total 
ost of p is greaterthan or equal to K if and only if I is a yes-instan
e. �Note that the de
ision problem whether the total 
ost of a given (s, t)-path
p is smaller than or equal to K is in coNP, sin
e in that 
ase there alwaysexist a s
enario S ∈ SΓ su
h that the re
overy 
ost and the �rst-stage 
ostof p are greater than or equal to K+1. Furthermore, it follows dire
tly thatalso the de
ision version of the k-Dist-RR shortest path problem is not in
NP: The de
ision version is de�ned as follows.Given: a graph G = (V,A), two verti
es s and t, a �rst-stage 
ost fun
tion

c1 : A → N, lower and upper 
ost bounds c(a) and c(a) for every
a ∈ A, a parameter Γ ∈ N, a re
overy parameter k ∈ N and athreshold K ≥ 0.De
ide: whether there exists a simple (s, t)-path p with total 
ost smallerthan or equal to K.If this de
ision version is in NP, there is a polynomial 
erti�
ate with whi
hwe 
an de
ide in polynomial time whether there exists a path p with total
ost smaller than or equal to K. Thus, by adding �rst-stage 
ost of K + 1to all ar
s in G and 0 to the ar
 a1 to the 
onstru
ted instan
e in theproof of Theorem 6, we obtain a polynomial 
erti�
ate for a no-instan
eof the max-s
enario problem, an NP-
omplete problem. This would imply

NP = coNP. It remains open whether the k-Dist-RR shortest path problemwith Γ-s
enarios is in coNP.Sin
e Γ-s
enarios are a spe
ial 
ase of interval s
enarios, this problem is alsostrongly NP-hard, as a 
onsequen
e from Corollary 4.Corollary 7. The k-Dist-RR shortest path problem with Γ-s
enarios isstrongly NP-hard and not approximable, unless P = NP.We will now turn to the Rent-RR shortest path problem.3. The Rent-RR Shortest Path Problem and its Complexity3.1. Dis
rete S
enarios and Interval S
enarios. The 
omplexity statusof the Rent-RR shortest path problem is more similar to the robust shortest
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h we will show by an L-redu
tion. Re
all that in orderto establish an L-redu
tion (e.g. [12℄) from an optimization problem X toan optimization problem X ′ we have to de�ne a pair of fun
tions f and g,both 
omputable in polynomial time, and two 
onstants γ, δ > 0 su
h thatfor any instan
e I of X :
• f(I) is an instan
e of X ′ with OPT(f(I)) ≤ γOPT(I) (Condition 1);
• for any feasible solution y′ of f(I), g(I, y′) is a feasible solution of Isu
h that |cI(g(I, y′))−OPT(I)| ≤ δ|cf(I)(y

′)−OPT(f(I))| (Condi-tion 2),where cI is the 
ost fun
tion and OPT(I) the value of an optimal solutionof the instan
e I. We will now introdu
e an L-redu
tion from the robustshortest path problem to the Rent-RR shortest path problem.Theorem 8. The robust shortest path problem with dis
rete s
enario sets
SD is L-redu
ible to a Rent-RR shortest path problem with SD and somerent and in�ation fa
tor α ∈]0, 1[ and β ≥ 0.Proof. We start by de�ning a fun
tion f , whi
h 
onstru
ts for a given ro-bust shortest path instan
e I a Rent-RR shortest path instan
e f(I) = I ′su
h that the optimal values of both instan
es satisfy OPT(I) = αOPT(I ′).Let G = (V,A) be a dire
ted graph, s and t be two verti
es and SD =

{S1, . . . , Sr} be a set of dis
rete s
enarios, where ea
h s
enario S ∈ SD de-�nes a 
ost fun
tion cS : A → N. The goal in I is to �nd an (s, t)-path pminimizing the robust 
ost crob(p) := maxS∈SD
cS(p). In order to extendthis instan
e I of a robust shortest path problem to an instan
e of the Rent-RR shortest path problem I ′, we add r parallel (s, t)-ar
s ai, i = 1, . . . , r,to obtain the graph G′. Furthermore, we de�ne a s
enario set S ′

D on thisgraph in the following way: for every s
enario Si ∈ SD the set S ′
D 
ontainsa s
enario S′

i with cS
′

i(a) = cSi(a) for all a ∈ A, cS′

i(ai) = 0, and cS
′

i(a) = Motherwise with M = maxS∈SD
cS(A), an upper bound on the maximum ro-bust 
ost in instan
e I. We denote by P(G), P(G′) the set of all (s, t)-pathsin G, G′, respe
tively. We will now show that the optimal values of I and

I ′ satisfy OPT(I) = αOPT(I ′). Let p ∈ P(G). Sin
e in every s
enario theimplementation 
ost is 0,
crob(p) = max

S∈SD

cS(p)

= max
S′∈S′

D

min
p′∈P(G′)

αcS
′

(p) + (1− α)cS
′

(p′) + (α+ β)cS
′

(p′)
︸ ︷︷ ︸

=0

= αc(p)for any rental fa
tor α ∈]0, 1[ and in�ation fa
tor β ≥ 0. For any other path
p ∈ P(G′)\P(G), the total 
ost equals α ·M . Hen
e, OPT(I) = αOPT(I ′).



14 CHRISTINA BÜSINGFinally, we de�ne a fun
tion g su
h that Condition 2 is satis�ed. To thisend, we �x an arbitrary (s, t)-path p1 in G as representation for any (s, t)-path p ∈ P(G′) that is not in P(G), i.e., for any p ∈ P(G′), g(I, p) = p1 if
p /∈ P(G) and g(I, p) = p if p ∈ P(G). We distinguish again between a pathin P(G) and a path in P(G′). If p ∈ P(G), then

|crob(g(I, p)) −OPT(I)| = |
1

α
c(p)−

1

α
OPT(I ′)| =

1

α
|c(p) −OPT(I ′)|.If p ∈ P(G′)\P(G), then

|crob(g(I, p)) −OPT(I)| ≤ |M −OPT(I)| = |M −
1

α
OPT(I ′)|

=
1

α
|αM −OPT(I ′)| =

1

α
|c(p)−OPT(I ′)|.Thus, for δ = 1

α
, this 
on
ludes the L-redu
tion. �Corollary 9. The Rent-RR shortest path problem with dis
rete s
enarios

SD is weakly NP-hard for two dis
rete s
enarios and not approximable witha fa
tor better than log(1−ε) |SD| for any ε > 0, unless P = NP.In the 
ase of interval s
enarios every s
enario is dominated by Smax with
cSmax(a) = c(a) for every ar
 a ∈ A, where c(a) is the upper 
ost boundde�ned by the interval s
enario set. Consequently, any shortest path in termsof this 
ost fun
tion yields an optimal solution for the Rent-RR shortest pathproblem.So far, the 
omplexity status of the robust shortest path problem and theRent-RR shortest path problem are the same. Yet, for Γ-s
enarios we willshow that the Rent-RR shortest path problem is strongly NP-hard whereasthe robust shortest path problem 
an be solved in polynomial time, as shownby Bertsimas and Sim [4℄.3.2. Γ-S
enarios. One 
an easily prove with similar arguments as in the
k-Dist-RR 
ase that the total 
ost for a given path is strongly NP-hard to
ompute in a Rent-RR shortest path instan
e. But even without returningthe total 
ost for a given path, the problem remains NP-hard.Theorem 10. The Rent-RR shortest path problem with SΓ is strongly
NP-hard.Proof. We redu
e from the max-s
enario problem with Γ-s
enarios whi
hhas been shown to be strongly NP-hard in [6℄. Let I be an instan
e of themax-s
enario problem given by a dire
ted graph G = (V,A), two designatedverti
es s and t, lower and upper 
ost bounds on the ar
s c(a) and c(a) forall a ∈ A, an integer Γ and a threshold K ≥ 0. We denote by P(G) the set



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 15of all simple (s, t)-paths in G. The task in I is to de
ide whether a s
enario
S ∈ SΓ exists su
h that minp∈P(G) c

S(p) ≥ K. The idea of the redu
tion isas follows: we in
rease the 
ost of all (s, t)-paths in G by a 
onstant x andadd one further path p with �xed 
ost y in all s
enarios to the instan
e. Thevalues of x, y, the rental fa
tor α and the in�ation fa
tor β are set in su
ha way that p is the optimal solution of the Rent-RR shortest path instan
eif and only if I is a yes-instan
e.More formally, we de�ne β = 1
2K , α = 1

2c̃+1β with c̃ = maxS∈SΓ
cS(p̃) forsome p̃ ∈ P(G) and add an ar
 (s, t) to G in order to de�ne a Rent-RRshortest path instan
e I ′. We 
all this extra ar
 also the (s, t)-path p anddenote the new graph with G′ and all simple (s, t)-paths with P(G′). Finally,we in
rease the lower and upper 
ost bounds for any outgoing ar
 of s by

x = (1−α)
(β+α)(K − ε) + δ, for some 0 < ε < 1

2 , and set the upper and lower 
ostbounds on the extra ar
 to y = K + x − ε. All other upper and lower 
ostbounds remain as in the instan
e I. We now prove that I is a yes-instan
eif and only if p is the optimal solution in I ′.Let I be a yes-instan
e, i.e., there exists a s
enario S ∈ SΓ with
minp∈P(G) c

S(p) ≥ K. For every (s, t)-path p ∈ P(G) the total 
ost 
anbe bounded below by
c(p) = max

S∈SΓ

min
p′∈P(G′)

αcS(p) + (1− α)cS(p′) + (α+ β)cS(p′\p)

≥ min{(K + x), α(K + x) + (1 + β)y}.For the solution p we get
c(p) ≤ min{y,max

S∈SΓ

(αy + (1 + β) min
p∈P(G)

cS(p))} ≤ yDue to the de�nition of y and x, we obtain y < K + x and thus c(p) < c(p)for any path p ∈ P(G′)\{p}.Let now I be a no-instan
e, i.e., for every s
enario S ∈ SΓ there is a solution
p ∈ P(G) with cS(p) ≤ K − 1. For the already �xed path p̃, we obtain anupper bound on the total 
ost by

c(p̃) = max
S∈SΓ

min
p′∈P(G′)

αcS(p̃) + (1− α)cS(p′) + (α+ β)cS(p′\p̃)

≤ α(c̃ + x) + (1− α)x+ (1 + β)(K − 1),if(3.1) (1 + β)y > (1 + β)(K − 1) + (1− α)y.



16 CHRISTINA BÜSINGFurthermore, sin
e cS(p) ≥ x for all S ∈ SΓ and all p ∈ P(G′)\{p}, the total
ost of p sums to
c(p) = min{y,max

S∈SΓ

min
p′∈P(G′)

αy + (1 + β)cS(p′)} = yif(3.2) (1− α)y < (1 + β)x.Comparing these two bounds, c(p̃) < c(p) if(3.3) α(c̃ + x) + (1− α)x+ (1 + β)(K − 1) < y.As one 
an easily re
al
ulate, the inequalities (3.1)-(3.3) are satis�ed for the
hosen values of β, α, x and y. Thus, p is the optimal solution of the Rent-RR shortest path instan
e I ′ with β = 1
2K and α = 1

2c̃+1β if and only if themax-s
enario instan
e I is a yes-instan
e. �We will 
on
lude this se
tion by introdu
ing an approximation algorithmfor the Rent-RR shortest path problem whi
h is based on an approximationalgorithm for the robust shortest path problem.3.3. Approximation Algorithm. Sin
e an optimal solution 
annot be
onstru
ted e�
iently for dis
rete and Γ-s
enarios if P 6= NP, we are inter-ested in approximation algorithms. An approximation algorithm 
onstru
tsa �rst-stage solution p ∈ P and gives for every �rst-stage solution p ands
enario S ∈ S a re
overy strategy, i.e., a rule how to 
ompute the re
overysolution. The following theorem states how to generate an approximationalgorithm for the Rent-RR shortest path problem from a robust shortestpath solution.Theorem 11. Let G = (V,A) be a dire
ted graph, s and t be two verti
esin V , S be a set of s
enarios and ALG be an approximation algorithm forthe robust shortest path problem with an approximation fa
tor γ. For a givenrental fa
tor α ∈]0, 1[ and in�ation fa
tor β ≥ 0, we de�ne algorithm ALG′by:First Stage: Run ALG on the robust shortest path instan
e (G, s, t,S) andset the �rst-stage solution pr to the output of ALG.Re
overy: For any S ∈ S 
al
ulate an optimal solution pS for the shortestpath instan
e G with the 
ost fun
tion
c′(a) =







(1− α) · cS(a) ∀a ∈ pr

(1 + β) · cS(a) ∀a /∈ pr.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 17Then ALG′ is an approximation algorithm with an approximation fa
tor
γ′ = min{(γ + 1 + β), γ

α
} of the Rent-RR shortest path problem.Proof. Let pr be a solution 
omputed by algorithm ALG for the robust short-est path instan
e (G, s, t,S) and let OPTrob be the value of an optimal robustsolution, i.e., OPTrob = minp∈P maxS∈S cS(p). Furthermore, let OPT be thevalue of an optimal solution of the Rent-RR shortest path instan
e with arental fa
tor α > 0 and an in�ation fa
tor β ≥ 0. We start with two lowerbounds on OPT: First

OPT = min
p∈P

max
S∈S

min
p′∈P

αcS(p) + (1− α)cS(p′) + (α+ β)cS(p′\p)

≥ αmin
p∈P

max
S∈S

cS(p) = αOPTrob(3.4)and se
ond
OPT ≥ max

S∈S
min
p′∈F

cS(p′).(3.5)We use the �rst bound (3.4) to obtain an estimate of the maximum rental
ost of pr, more pre
isely,(3.6) cR(p
r) = αmax

S∈S
cS(pr) ≤ α · γOPTrob ≤ γOPT .An upper bound on the implementation 
ost of pr in any s
enario S ∈ SD isgiven by(3.7) cSI (p

r) ≤ (1 + β)max
S∈S

min
p′∈P

cS(p′) ≤ (1 + β)OPT,using inequality (3.5). Combining estimates (3.6) and (3.7), we get
c(pr) = max

S∈S
cSR(p

r) + cSI (p
r) ≤ cR(p

r) + max
S∈S

cSI (p
r)

≤ γOPT+(1 + β)OPT ≤ (γ + 1 + β)OPT .Thus, we have a �rst approximation guaranty of ALG′.The se
ond guaranty is based on the re
overy step. Sin
e an optimal solutionw.r.t. the 
ost fun
tion c′ is 
hosen in the se
ond stage, we obtain for any
p ∈ P

c(p) = max
S∈SD

min
p′∈P

αcS(p) + (1− α)cS(p′) + (1 + β)cS(p′\p) ≤ max
S∈SD

cS(p).Due to the 
hoi
e of pr, this leads to
1

γ
c(pr) ≤ min

p∈P
max
S∈S

cS(p) ≤
1

α
OPT .To sum up, algorithm ALG′ is a min{γ+1+β, γ

α
}-approximation algorithmfor the Rent-RR shortest path problem. �
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ase of Γ-s
enarios, the robust shortest path problem 
an be solvedin polynomial time [4℄ and thus we obtain a min{2 + β, 1
α
}-approximationalgorithm for the Rent-RR shortest path problem. For α ≥ 0.5 the approxi-mation fa
tor is tight, as we will see in the following example: Let G = (V,A)be a dire
ted graph 
omposed of an (s, t)-ar
 with the 
ost interval [0, 1], alsodenoted as path p̃, and a path p from s to t with two ar
s, where a 
ost in-terval of [0, 0.5] is assigned to ea
h of these ar
s. For Γ = 2, both pathsare optimal robust shortest paths and thus the algorithm 
ould 
hoose p̃.This results in total 
ost c(p̃) = min{1, α + (1 + β) · 0.5} whereas the path

p yields the optimal total 
ost c(p) = max{α, 0.5}. For α ≥ 0.5 we obtain
c(p̃) = 1

α
· c(p). 4. Con
lusionsWe 
onsidered two di�erent re
overable robust shortest path problems andinvestigated their 
omplexity with respe
t to the most 
ommon s
enario setsin the literature. For all these sets, the k-Dist-RR shortest path problem isstrongly NP-hard and not approximable, unless P = NP. For the spe
ial
ase of series-parallel graphs, we introdu
e a polynomial algorithm to solvethe problem with interval s
enarios.The Rent-RR shortest path problem is 
losely related to the robust short-est path problem. For dis
rete s
enarios we provided an L-redu
tion fromthe latter problem to the Rent-RR shortest path problem and thus showthat the Rent-RR shortest path problem 
annot be approximated with afa
tor better than log(1−ε) |SD| for any ε > 0 and a dis
rete s
enario set

SD. Yet, in 
ontrast to the robust 
ase, the Rent-RR shortest path problemis for Γ-s
enarios strongly NP-hard. On the other hand, any approxima-tion algorithm for the robust shortest path problem 
an be adapted to anapproximation algorithm for the Rent-RR shortest path problem.A
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