RECOVERABLE ROBUST SHORTEST PATH PROBLEMS

CHRISTINA BUSING

ABsTRACT. In this paper we investigate two different recoverable ro-
bust models to deal with cost uncertainties in a shortest path problem.
Recoverable robustness extends the classical concept of robustness to
deal with uncertainties by incorporating limited recovery actions after
the full data are revealed. Our first model focuses on the case where the
recovery actions are quite restricted: after a simple path is fixed in the
first stage, in the second stage, after all data are revealed, any path con-
taining at most k£ new arcs may be chosen. Thus, the parameter k can
be interpreted as a mediator between robust optimization — no changes
allowed — and optimization on the fly — an arbitrary solution can be
chosen. Considering three classical scenario sets, which model uncer-
tainties in the cost function, we show that this new problem is strongly
NP-hard in all these cases and is not approximable, unless P = NP.
This is in contrast to the robust shortest path problem, where, for ex-
ample, an optimal solution can be computed efficiently for interval and
I'-scenarios. For series-parallel graphs and interval scenarios, we present
a polynomial time algorithm for this recoverable robust setting.

In our second model the recovery set, i.e., the set of paths selectable in
the second stage is not limited, but deviating from the previous choice
comes at extra cost. Thus, a path chosen in the first stage produces
renting costs modeled as an a-fraction of the scenario cost. For an arc
taken in the second stage the remaining cost needs to be paid in addition
to some extra inflation cost modeled by a S-fraction of the scenario cost,
if the arc was not reserved beforehand. The complexity status of this
problem is similar to the robust case. Yet, for I'-scenarios the problem is
again strongly NP-hard, but can be approximated with a min{2+ 3, é}
factor.
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1. INTRODUCTION

The k-Dist-RR Shortest Path Problem. One major concern in trans-
portation is the design and extension of infrastructure in such a way that
it serves the predicted future demands. For example, tracks or tunnels are
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built to connect important cities, canals are constructed to speed up the
travel time between different seas or highways are built to spread the traffic
volume. In this planning process costs for reforming the infrastructure are
assumed to be known or are estimated. However, in the construction phase
these costs may change. For example, material costs depend on the current
market price or the construction time may increase due to bad weather con-
ditions, which induces extra costs for leasing the machinery. A goal in the
planning process is to extend the infrastructure for as little cost as possible.
Assuming a risk-averse policy every extension is evaluated by its worst-case
cost.

We simplify the problem described above and consider the setup of a new
road connecting two fixed cities s and ¢. The potential roads that may be
built are modeled via the set of all simple (s,t)-paths P in a given directed
graph G = (V,;A). We call costs that are given at the beginning of the
planning process, the first-stage costs and denote them with ¢' : A — N.
The second kind of cost, which is uncertain at the planning stage, is modeled
by a set of scenarios §. Fach scenario S € S determines a cost function
¢ 1 A — N, which represents a potential realization of the market prices.
We assume that after the road is chosen, a scenario from the set S is revealed
and determines the cost in the construction phase. An (s, t)-path p generates
the first-stage cost c'(p) = > acp c!(a) and in each scenario the scenario cost
S(p) = > aep ¢®(a). Choosing a path with minimum first-stage cost and
minimum maximal scenario cost corresponds to the problem of finding an

optimal robust path.

However, in the construction phase minor changes of the previously planned
road are in general possible. For example, if in the case of building a tunnel
a layer of granite turns up, small detours through permeable rock save cost
and are realizable with little effort. Or if the ground becomes swamp land,
circumventing this area seems wise. We include this possibility of taking
small detours by allowing us to take an (s,t)-path p° as soon as a scenario
S is revealed, which uses up to k new arcs compared to the path chosen in
the first stage. We call this new problem the k-distance recoverable robust

shortest path problem and define it more formally in the following.

Definition 1 (k-Distance Recoverable Robust (k-Dist-RR) Shortest Path
Problem). Let G = (V, A) be a directed graph with a set of vertices V and a
set of arcs A, and let s and ¢ be two designated verticesin V. Let ¢! : A = N
be a first-stage cost function, & be a set of scenarios, where each scenario
S defines a scenario cost function ¢® : A — N, and k € N be a recovery
parameter. We denote by P the set of all simple (s,t)-paths in G. The
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recovery 735 of an (s,t)-path p consists of all (s,¢)-paths p’ with |p"\p| <k,
and the recovery cost crr(p) is determined by

The first-stage cost of p is given by c!(p) = > acp c!(a). First-stage cost and
recovery cost sum up to the total cost cr(p) of p, i.e., er(p) = c'(p)+crr(p).
The k-distance recoverable robust shortest path problem is to find an (s,t)-
path p* € P with minimum total cost cr(p*).

The parameter k represents the flexibility in the planning process for aban-
doning the original plan. Thus, this model can be interpreted as a mediator
between “optimization on the fly”, where for every scenario an optimal so-
lution is chosen in the second stage, and robustness, where no changes are
allowed after the solution is chosen in the first stage. The first case corre-
sponds to k = |V, the number of vertices V' of the given graph, and the

second case to k = 0.

In the motivating example, the first-stage cost modeled the estimated cost
that occurs for building roads. Depending on the quality of this estimation,
the scenario cost just consists of slight increases in these values. But also
different problem settings can easily be represented. Consider, for exam-
ple, a telecommunication network in which demand needs to be routed as
fast as possible w.r.t a given cost function ¢. Telecommunication networks
are frequently faced with failure links, i.e., a direct connection between two
servers is not available. These failures can be presented by a set of scenarios
where each scenario places a fixed number of arcs at high cost and leaves the
remaining cost at 0. The first-stage cost in this case models the routing cost
¢. In a third variant of the problem setting no first-stage cost occurs and
all costs are captured in the scenario cost. This setting emerges when the
planning process induces no extra costs but during the realization process

all cost may vary.

The Rent-RR Shortest Path Problem. A different problem arises after
the infrastructure is built. In railway optimization the holder of the tracks
is interested in selling different time slots for crossing some tracks to other
companies. Negotiations between two companies normally take place before
the actual usage of the tracks. Depending on the time difference between
usage and negotiation, the cost for using a track may not be fixed but remains
adaptable to the current market prices. The company reserving a slot gains
with this action the right to buy this time slot but is not obligated to do
so. On the other hand, the company selling the slots may claim a fraction of
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the market price for reserving the slots. We will call this fraction the rental
factor. If a company buys the slot, after it was reserved, it just pays the
remaining cost. If the company buys any other slot, it needs to pay some
extra handling fee, which we also assume to be a fraction of the market price.
In order to have a guaranteed itinerary for sending their cargo, a company
should reserve a path at the beginning. More formally, we obtain the rent

recoverable robust shortest path problem.

Definition 2 (Rent-Recoverable Robust (Rent-RR) Shortest Path Prob-
lem). Let G = (V, A) be a directed graph and let s,¢ be two vertices in V.
Furthermore, a rental factor o €]0, 1], an inflation factor f > 0, and a set of
scenarios S, where each scenario S € S determines a scenario cost function
¢®: U — N, are given. As before, P contains all simple (s,t)-paths in G. For
a path p € P the rent cost ¢3(p) in scenario S is defined by c3(p) = a-c%(p)
and the implementation cost c;(p) by

f () = min(1 = )e* @) + (@ +8) 3 (o)
aep’\p

The goal is to find a path with minimum total cost c¢(p), defined as

¢(p) = max (ca(p) + ¢ () -

For a large inflation factor, e.g., f = maxges ¢’ (A), any optimal robust
solution is an optimal solution for the Rent-RR shortest path problem. In
contrast to the k-Dist-RR shortest path problem, the recovery set for a first-
stage solution is not restricted, i.e., we can choose any path as soon as the

scenario is revealed. Furthermore, there are no first-stage cost.

Related Results. There are two major trends in dealing with uncertainty
given by a scenario set: stochastic programming and robust optimization.
The latter method is in particular appropriate when dealing with high-risk
settings or basic services like planning water and power supply networks. A
solution is called robust if it remains feasible in all settings and is optimal if

1t minimizes its maximum scenario cost.

Robustness for discrete combinatorial optimization problems was first intro-
duced by Kouvelis and Yu [13] in the middle of the 1990s. In [19] Yu and Yang
showed that the robust shortest path problem is already weakly NP-hard
if the set of scenarios consists of two scenarios. If the number of scenarios
is not bounded by a constant, the problem is even strongly NP-hard. Aissi
et al. [1] introduced a pseudo-polynomial algorithm and an FPTAS for the
first case and a lower bound on the approximation factor of 2 —¢, ¢ > 0, for
the latter case. This bound was improved by Kasperski and Zieliriski [11] to
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log(!=%) |S| for any € > 0 and a discrete scenario set S. For the special set of
I-scenarios, Bertsimas and Sim [4] showed that an optimal robust shortest
path problem can be computed by solving |A|+ 1 deterministic shortest path
problems, where A denotes the set of arcs of the considered graph.

A different robust framework minimizes the maximum regret of a given so-
lution. Such a solution is called an optimal min-max regret, relative robust
or robust solution. In the case of discrete scenario sets, the same results as
for the robust problem are obtained, i.e., it is weakly NP-hard for two sce-
narios [19], can be solved in pseudo-polynomial time for a constant number
of scenarios [1] and is not approximable with a factor better than log" =) |S]|
for any € > 0 and a discrete scenario set S [11]. For interval scenarios, the
relative robust shortest path problem is weakly NP-hard on series parallel
graphs in contrast to the robust problem, which can be solved in polynomial
time. This was shown by Kasperski and Zieliriski [10]. Montemanni and
Gambardella [15] provided an exact algorithm to solve the relative robust

shortest path problem with interval scenarios via Benders decomposition.

The drawback of robustness is the unacceptable high cost of a robust solu-
tion. Furthermore, the concept ignores the fact that in most settings mi-
nor variations of a previously determined solution are possible. The idea
to broaden the concept of robustness and to include some changes of the
solution in the revealed setting has attracted many different researchers:
Mulvey et al. [16] differentiate in their new robust model between design de-
cisions fixed in a first stage and control decisions taken after all data are
known, Ben-Tal et al. [3] introduced the concept of adjustable robustness for
linear programs, Dhamdhere et al. [7] considered demand-robustness which
was later called two-stage robustness (e.g. [9]), and Liebchen et al. [14] in-

vestigated recoverable robustness inspired by the recovery action.

The shortest path problem has been studied in terms of demand-robustness
(or later called two-stage robustness) by Dhamdhere [7]. In this setting, the
graph G = (V, A), the source vertex s and the cost ¢ : A — N are supposed
to be known. Yet, the target vertex and the inflation factor on the cost is
uncertain, i.e., every scenario S defines a target vertex ¢t° and an inflation
factor 4% > 0 for buying an arc in the second stage. The goal is to purchase
some parts of the possible path A7 C A in advance for the cost ¢(A;), and
to complete it for the given target vertex ¢+ € V to a feasible (s,t%)-path in
Ay U A5 by buying the arcs A3 for the cost (1 + 3%)c(A5) as soon as the
scenario S € § is realized. The objective is to minimize this cost over all
possible scenarios, i.e., to minimize ¢(A;)+maxges (14 3%)c(A5). Note that
the cost system of Rent-RR shortest path problems is similar to this setting,
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but we assume the inflation factor to be fixed and the cost function to vary.
Dhamdhere et al. [7] proved a 16-approximation algorithm for the demand-
robust shortest path problem. A 7.1-approximation was later introduced by
Golovin et al. [9].

Biising [6] introduced the exact subgraph recoverable robust shortest path
problem in which a subgraph is constructed to contain for every scenario a
shortest path of the original graph. The goal is to find a subgraph of mini-
mum cardinality. In the case of interval and I'-scenarios approximating the
exact subset recoverable robust shortest path problem with a factor better
than |A|('=9) is strongly NP-hard for any ¢ > 0, where A denotes the set
of arcs in the considered graph. Returning the whole graph yields an |A|-
|A]

approximation, which can be improved to an j7y-approximation algorithm

for every constant £ € N.

Our Contribution and Outline. Besides the model in [6], the k-Dist-RR
shortest path problem and the Rent-RR shortest path problem are the first
models that incorporate recovery action into a robust setting, which deals
with uncertainties in the cost function and not in the demand. Our research
focuses on the complexity status and approximation of these problems. We
consider discrete scenario sets Sp, interval scenario sets Sy and I'-scenario
sets Sr to model uncertainties in the cost functions. In a discrete scenario
set each scenario and its integer cost function are explicitly given. Interval
scenario sets consist of all scenarios that determine a cost function whose
values lie in a given cost interval defined by lower and upper cost bounds.
For some integer I', I'-scenario sets are modifications of interval scenario
sets. In contrast to interval scenarios, a I'-scenario may change at most I

cost values from the lower bound to the corresponding upper bound.

In Section 2.1 we show that the k-Dist-RR shortest path problem is strongly
NP-hard and not approximable for two scenarios, even if the first-stage costs
are set to 0, unless P = NP. In the case of interval scenarios Sy, considered
in Section 2.2, the problem without first-stage cost is solvable in polynomial
time. If the first-stage cost can be chosen arbitrarily, the k-Dist-RR shortest
path problem with S; turns out to be not approximable, unless P = NP.
For the class of series-parallel graphs we introduce a polynomial algorithm
to solve the k-Dist-RR shortest path problem with interval scenarios.

Since I'-scenarios are a special case of interval scenarios, the k-Dist-RR short-
est path problem with Sp is not approximable, unless P = NP (Section 2.3).
Furthermore, the total cost of a given path is not computable in polynomial
time for this scenario set, unless P = NP.



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 7

The results for the Rent-RR shortest path problem are closely related to
those for the robust shortest path problem. In Section 3.1 we provide for
discrete scenarios an L-reduction from the latter problem and thus obtain
that the Rent-RR shortest path problem is not approximable with a factor
better than log |Sp|, unless P = NP. The interval case is solvable in poly-
nomial time, since any shortest path w.r.t. the upper cost bounds ¢ provides
an optimal solution. However, for I'-scenarios, the problem becomes again

strongly NP-hard, in contrast to its robust version (Section 3.2).

In the last Section 3.3, we introduce an approximation algorithm based on
a robust solution. For I'-scenarios, we obtain a min(2+ 3, é)—approximation
for a rental factor a €]0,1[ and an inflation factor g > 0. If a > 0.5, we
show that the analysis is tight.

2. THE COMPLEXITY OF THE k-DIST-RR SHORTEST PATH PROBLEM

2.1. Discrete Scenarios. In this section we focus on the complexity of the
k-Dist-RR shortest path problem and start by considering discrete scenario
sets. For a given graph G = (V, A), a discrete scenario set Sp consists
of r scenarios Si,...,S,, where each scenario determines a cost function
i A—N,i=1,...,r. We will show that even for two scenarios the k-
Dist-RR shortest path problem is strongly NP-hard and not approximable,
unless P = NP. Note that the robust shortest path problem with two

scenarios can be solved in pseudo-polynomial time [1].

Theorem 3. Let G = (V, A) be a directed graph, s,t be two vertices in V,
ct © A — {0} be the first-stage cost function, {S1,S2} be two scenarios
determining two cost functions ¢ : A — {0,1} with [{a € A | ¢%(a) =
1} < 3,4 = 1,2, and k > 2 be a recovery parameter. Then solving the
corresponding k-Dist-RR shortest path problem is strongly NP-hard and not
approrimable, unless P = NP.

Proof. We show a reduction from the two vertex disjoint path problem to
the k-Dist-RR shortest path problem. Let I be an instance of the two vertex
disjoint path problem given by a directed graph G = (V, A) and two vertex
pairs {vy,u;} and {vy,us}. The task in I is to decide whether two vertex
disjoint paths, a (vi,u;)-path p; and a (ve,us)-path po, exist. The NP-
completeness of this problem follows directly from a lemma published in
1980 by Fortune et al. [8]. W.lo.g. we assume that the graph G does not
contain the arcs (v1,uy), (vi,v2) and (vi,ug) and that there are no outgoing

arcs from u; and us and no incoming arcs to vs.
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We show a reduction for &k = 2 and define an instance I’ of the k-Dist-RR
shortest path problem with two scenarios Si, 59 in the following way: Let
G’ = (V', A’) be an extension of G by six vertices s, t, v}, vh, w1 and wsy, and
ten arcs (S,’U&), (’U&,’Ul), (’U&,ul), (ulavé)a (’Ué’u2)7 (’Ué”U?)a (u2’w1)7 (u2’w2)7
(w1,t) and (wa,t) (see Figure 2.1).

Ficgure 2.1. The values on the arcs show the cost assign-
ments of the two scenarios S7 and Sy. The first-stage costs
are set to 0.

We define the two scenario cost functions ¢! and ¢*2 in such a way that any

simple (s, t)-path with total cost equal to 0 satisfies the following conditions:

(1) it contains the arcs (s,v}), (v],v1), (u1,v4), (vh,ve), (uz,w1) and
(wlat);

(2) it contains two subpaths connecting the vertex pairs {vq,u1} and
{7}27u2};

(3) it does not contain the arcs (v}, u1) and (vh,uz).

To this end, we define ¢%1(a) = 1 for a € {(v],v1), (v}, v2), (ug,ws)} and
c%1(a) = 0 for all other arcs a € A’. Note that the only path with cost 0
w.r.t. the cost function ¢! S1 =
set ¢¥2(a) = 1 for a € {(v],u1), (vh,us), (uz,wr)} and ¢>2(a) = 0 for all other

arcs a € A’ (see Figure 2.1). If a path p satisfies the conditions from above,

is the path p svjuivhuswit. Furthermore, we

then pig o) U (u2, w2) U (w2, 1) is a recovery path with cost 0 w.r.t. %2, where
Plap) denotes the subpath of p connecting the vertices a and b. The scenario
cost function sets exactly three arc costs to 1, all other costs remain at 0.
To complete the definition of the k-Dist-RR shortest path instance I’, we
set the first-stage cost to 0. The size of instance I’ is polynomial in the size
of I.

We will now prove that there are two vertex disjoint paths p; and ps in G if

and only if any optimal solution in I’ has total cost 0.
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(=): Let p; be a (vi,u;)-path and pa be a (ve, us)-path in G, and let both
paths be vertex disjoint. Then the path

p = (s,v1) U (v],01) Up1 U (u1,v5) U (v, 02) Upa U (uz,wi) U (w1,)

is a simple (s,t)-path in G’ and contains the recovery paths p> and
p52 = Pls,ug) U (U2, w2) U (wz,t) for k = 2. Thus, the total cost of p is 0.

(«<): Let p be a simple (s,t)-path with total cost equal to 0. Let us first
assume that p contains the arcs (ug,ws) and (ws,t). Since the only path
with cost 0 in S; is p' and k = 2, Dlsus] = pf;l,uﬂ. Since ¢2((v},u1)) = 1,
the recovery path in scenario So needs to connect vy directly over an arc
with uy, v9 or us. Yet, such an arc is not part of G’ due to our assumption.
Hence, p contains the arcs (ug,w;) and (wq,t).

Note that now the recovery actions in S are fixed to be used for the last two
arcs. Thus, the subpath of p connecting s and us equals the recovery path
for scenario Ss. Since the arcs (v}, u1) and (vh, us) have cost 1 in scenario Sa,
these two arcs are not contained in p. On the other hand, p needs to traverse
the arc (uy,v)), since otherwise the path p is not part of the recovery of
p and we would obtain total cost greater than 0. Due to these properties
of p, the path p connects the vertex v; with w; and vy with uo. Since p is a
simple path, these subpaths are vertex disjoint. This observation concludes
the proof.

If k > 2, we can just replace the two parallel paths connecting us with ¢ by
two parallel paths of length k. O

The k-Dist-RR shortest path instance constructed in the reduction already
covers two special cases mentioned in the introduction: first, the set of sce-
narios Sp models failure sets, i.e., some arcs are not available in the current
realization, and second, all cost are contained in the scenario cost functions,
i.e., no first-stage cost are paid. Note that these results depend on the fact
that a simple (s,?)-path needs to be fixed in the first-stage. Furthermore,
the reduction proves NP-hardness just for the case of directed graphs, since
in undirected graphs the two vertex disjoint path problem can be solved in

polynomial time [17].

Before we consider interval and I'-scenarios, we will show that the total cost
of a given (s, t)-path can be computed in polynomial time. Let p be an (s, t)-
path and let S € S be some scenario defining a cost function ¢® : A — N on
the arc set A of the given graph G = (V, A). We compute the best recovery
path p° € lef by solving a constrained shortest path (CSP-) problem. The
cost functions of this CSP-problem are the scenario cost function and a
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distance cost function

d(a) = 0 ifaep
1 otherwise.

The cost function d counts the number of arcs in a path p’ that differ from
the arcs in p, i.e., d(p’) = [p'\p| for any p’ € P. In order to compute a
path p’ € 73]; we bound this value in the CSP-instance by k. In general the
CSP-problem is weakly NP-hard and can be solved by a labeling Dijkstra
algorithm in pseudo-polynomial time O(n2L?), where L is the upper bound
on the second cost. The labeling Dijkstra algorithm has been introduced
by Aneja et al. |2]. Since in our case, the bound k is smaller than n (otherwise
the problem is trivial), this CSP-problem is solvable in polynomial time.
Thus, by computing p® for every scenario S € Sp, we obtain the total cost
of a path p by

S ( S).

cr(p) = c'(p) + max ¢

2.2. Interval Scenarios. The interval scenario set Sy is defined indirectly
for a graph G = (V, A) by lower and upper cost bounds ¢(a) and ¢(a) on
the scenario cost function for each arc a € A, 0 < ¢(a) < ¢(a). For each cost
function ¢ : A — N with ¢(a) € [c(a),¢(a)] there exists a scenario S € Sy with
¢® = ¢ and every scenario cost function ¢ : A — N obeys these bounds.
Obviously, the k-Dist-RR shortest path problem with interval scenario sets is
equivalent to the k-Dist-RR shortest path problem with one discrete scenario,
namely Spax with ¢@2x(a) = ¢(a) for all @ € A. Hence, the problem can be
reduced to finding a first-stage path p and a recovery path p’ with [p'\p| < k

minimizing ¢(p) = ¢! (p) + Smax(p').

For the special case of ¢! = 0, any shortest path w.r.t. the cost function
¢®max is an optimal solution of the corresponding k-Dist-RR instance. Yet, if
the first-stage cost function can be chosen arbitrarily, we obtain, by a slight
modification of the proof of Theorem 3, that the k-Dist-RR shortest path

problem with interval scenarios is not approximable, unless P = NP.

Corollary 4. The k-Dist-RR shortest path problem with interval scenarios
15 strongly NP-hard and not approximable, unless P = NP.

Sketch of Proof. We use the same construction and notation as in the proof
of Theorem 3. But instead of defining the two scenarios S; and So, we just
define a first-stage cost function ¢! and one scenario Spyayx. The scenario
Smax assigns the same cost values to all arcs as the scenario S7. Note that
the scenario Spax represents a set of interval scenarios Sy by setting the
upper cost bounds on every arc a € A to the value ¢ (a) and setting the



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 11

lower cost bounds to 0. Finally, ¢! assigns cost 0 to the arc (ug,w;) and
the same cost values as the scenario S5 to all other arcs. As in the proof of
Theorem 3, there are two disjoint paths p; and ps connecting the designated
vertices v1,u; and vy, ug, respectively, if and only if there is an (s, ¢)-path in
this instance with total cost 0. O

We will now consider the k-Dist-RR shortest path problem with interval
scenarios on the special class of series-parallel graphs. Then, the k-Dist-RR
shortest path problem with Sy can be solved in polynomial time. The algo-
rithm is based on the following two properties: Let G be a series composition
of G1 and (s, two series-parallel graphs. Any optimal solution in G using k
arcs as recovery consists of an optimal solution to G using ¢ arcs as recovery
and an optimal solution to G using j arcs as recovery with i + j = k. If
G is a parallel composition of G and G3, then either the optimal first-stage
path p and its recovery path p’ are both part of G; (or Gs), or p is in G;
and p’ in Gj, j # i. In the second case, p is a shortest path according to
¢! and p/ is a shortest path according to ¢ with a maximal length of k
arcs. A decomposition of a given series-parallel graph into parallel and series

compositions starting from simple arcs can be computed in linear time [18].

Theorem 5. An optimal solution of a k-Dist-RR shortest path problem
with interval scenarios can be calculated in polynomial time on series-parallel

graphs.

2.3. I'-Scenarios. The set of I'-scenarios was introduced by Bertsimas and
Sim [5] and is a modification of interval scenarios. Let c(a) and ¢(a) be lower
and upper bounds on the scenario cost with 0 < ¢(a) < ¢(a) for all a € A,
where A is the arc set of a given graph G = (V, A). A scenario S € Sr is only
allowed to have at most I' cost values deviating from the lower bound, i.e.,
{a € A | c%(a) > c(a)}| < T. In contrast to the case of discrete scenarios,
we show that it is already strongly NP-hard to compute the total cost of a
given simple path.

Theorem 6. In a k-Dist-RR shortest path problem with I'-scenarios and
k > 4 computing the total cost of a given path is a strongly NP-hard problem.

Proof. We show a reduction from the max-scenario problem. Let I be an
instance of the max-scenario problem given by a directed graph G = (V, A)
and two vertices s,t € V such that every (s, t)-path in G contains at most 4
arcs. Furthermore, let Sp be a set of I'-scenarios and let K be a threshold.

The max-scenario problem asks whether a scenario S € Sr exists such that
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minyep ¢”(p) > K. In [6] Biising showed, that this problem is strongly NP-
hard. In order to define an instance of the k-Dist-RR shortest path problem
we add one arc a; to the graph G with lower and upper cost bounds K + 1
for the scenario cost function and assign first-stage cost 0 to all arcs in the
graph. Furthermore, we set k = 4 and consider the path p = ay. Since any
(s,t)-path in G is a feasible recovery path for p, the total cost of p is greater
than or equal to K if and only if I is a yes-instance. O

Note that the decision problem whether the total cost of a given (s,t)-path
p is smaller than or equal to K is in coNP, since in that case there always
exist a scenario S € Sr such that the recovery cost and the first-stage cost
of p are greater than or equal to K + 1. Furthermore, it follows directly that
also the decision version of the k-Dist-RR shortest path problem is not in
NP: The decision version is defined as follows.

Given: agraph G = (V, A), two vertices s and ¢, a first-stage cost function
¢t A — N, lower and upper cost bounds ¢(a) and ¢(a) for every
a € A, a parameter I' € N, a recovery parameter k& € N and a
threshold K > 0.

Decide: whether there exists a simple (s,t)-path p with total cost smaller

than or equal to K.

If this decision version is in NP, there is a polynomial certificate with which
we can decide in polynomial time whether there exists a path p with total
cost smaller than or equal to K. Thus, by adding first-stage cost of K + 1
to all arcs in G and 0 to the arc a; to the constructed instance in the
proof of Theorem 6, we obtain a polynomial certificate for a no-instance
of the max-scenario problem, an NP-complete problem. This would imply
NP = coNP. It remains open whether the k-Dist-RR shortest path problem
with I'-scenarios is in coNP.

Since I'-scenarios are a special case of interval scenarios, this problem is also
strongly NP-hard, as a consequence from Corollary 4.

Corollary 7. The k-Dist-RR shortest path problem with 1I'-scenarios 1is
strongly NP-hard and not approrimable, unless P = NP.

We will now turn to the Rent-RR shortest path problem.

3. THE RENT-RR SHORTEST PATH PROBLEM AND ITS COMPLEXITY

3.1. Discrete Scenarios and Interval Scenarios. The complexity status
of the Rent-RR shortest path problem is more similar to the robust shortest
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path problem, which we will show by an L-reduction. Recall that in order
to establish an L-reduction (e.g. [12]) from an optimization problem X to
an optimization problem X’ we have to define a pair of functions f and g,
both computable in polynomial time, and two constants ,0 > 0 such that

for any instance I of X:

e f(I)isan instance of X’ with OPT(f(I)) <~y OPT(I) (Condition 1);

e for any feasible solution y' of f(I), g(I,y’) is a feasible solution of T
such that |c7(g(I,y")) — OPT(I)| < dlcyr) (y') — OPT(f(I))| (Condi-
tion 2),

where ¢ is the cost function and OPT(I) the value of an optimal solution
of the instance I. We will now introduce an L-reduction from the robust
shortest path problem to the Rent-RR shortest path problem.

Theorem 8. The robust shortest path problem with discrete scemario sets
Sp is L-reducible to a Rent-RR shortest path problem with Sp and some
rent and inflation factor o €]0,1[ and 5 > 0.

Proof. We start by defining a function f, which constructs for a given ro-
bust shortest path instance I a Rent-RR shortest path instance f(I) = I’
such that the optimal values of both instances satisfy OPT(I) = a OPT(I").
Let G = (V,A) be a directed graph, s and ¢ be two vertices and Sp =
{S1,...,5,} be a set of discrete scenarios, where each scenario S € Sp de-
fines a cost function ¢® : A — N. The goal in I is to find an (s,t)-path p
minimizing the robust cost c,op(p) := maxges, ¢’(p). In order to extend
this instance I of a robust shortest path problem to an instance of the Rent-
RR shortest path problem I’; we add r parallel (s,t)-arcs @;, i = 1,...,r,
to obtain the graph G’. Furthermore, we define a scenario set Sp, on this
graph in the following way: for every scenario S; € Sp the set S}, contains
a scenario S/ with ¢%(a) = ¢%(a) for all a € A, ¢%(@;) = 0, and ¢%(a) = M
otherwise with M = maxges,, ¢>(A), an upper bound on the maximum ro-
bust cost in instance I. We denote by P(G), P(G') the set of all (s, t)-paths
in G, G', respectively. We will now show that the optimal values of I and
I’ satisfy OPT(I) = a OPT(I'). Let p € P(G). Since in every scenario the
implementation cost is 0,

5(

Crob (P) = max ¢”(p)

SeSp

: S’ S Shrt
= 1 — =
Jax mmoc (p) + (1 —a)c” (p) + (a+ B)c” (p') = ac(p)

=0
for any rental factor o €]0, 1] and inflation factor 5 > 0. For any other path
p € P(G")\P(G), the total cost equals a- M. Hence, OPT(I) = a OPT(I").
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Finally, we define a function g such that Condition 2 is satisfied. To this
end, we fix an arbitrary (s,t)-path p! in G as representation for any (s, t)-
path p € P(G’) that is not in P(G), i.e., for any p € P(G’), g(I,p) = p' if
p ¢ P(G) and g(I,p) = pif p € P(G). We distinguish again between a path
in P(G) and a path in P(G’). If p € P(G), then
1 1 1
con(9(1.1)) — OPT(D)| = | ~c(p) — ~ OPT(I)| = ~[e(p) ~ OPT(Z').
If p e P(G")\P(G), then
1
leron(9(I,p)) — OPT(I)] < |M —OPT(I)|=|M — - oPT(I")|
1 1
= a|aM — OPT(I")| = E|C(p) — OPT(I")].
Thus, for § = é, this concludes the L-reduction. O

Corollary 9. The Rent-RR shortest path problem with discrete scenarios
Sp is weakly NP-hard for two discrete scenarios and not approxzimable with
a factor better than log(1=°) |Sp| for any € > 0, unless P = NP.

In the case of interval scenarios every scenario is dominated by Spax with
cSmax(g) = ¢(a) for every arc a € A, where ¢(a) is the upper cost bound
defined by the interval scenario set. Consequently, any shortest path in terms
of this cost function yields an optimal solution for the Rent-RR shortest path

problem.

So far, the complexity status of the robust shortest path problem and the
Rent-RR shortest path problem are the same. Yet, for I'-scenarios we will
show that the Rent-RR shortest path problem is strongly NP-hard whereas
the robust shortest path problem can be solved in polynomial time, as shown
by Bertsimas and Sim [4].

3.2. I'-Scenarios. One can easily prove with similar arguments as in the
k-Dist-RR case that the total cost for a given path is strongly NP-hard to
compute in a Rent-RR shortest path instance. But even without returning

the total cost for a given path, the problem remains NP-hard.

Theorem 10. The Rent-RR shortest path problem with Sr is strongly
NP-hard.

Proof. We reduce from the max-scenario problem with I'-scenarios which
has been shown to be strongly NP-hard in [6]. Let I be an instance of the
max-scenario problem given by a directed graph G = (V, A), two designated
vertices s and t, lower and upper cost bounds on the arcs ¢(a) and ¢(a) for
all a € A, an integer I' and a threshold K > 0. We denote by P(G) the set
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of all simple (s,t)-paths in G. The task in I is to decide whether a scenario
S € Sr exists such that minyep(q) c®(p) > K. The idea of the reduction is
as follows: we increase the cost of all (s,¢)-paths in G by a constant x and
add one further path p with fixed cost y in all scenarios to the instance. The
values of z, y, the rental factor « and the inflation factor 8 are set in such
a way that p is the optimal solution of the Rent-RR shortest path instance
if and only if I is a yes-instance.

More formally, we define 8 = 7, @ = 25115 with ¢ = maxges; ¢*(p) for

some p € P(G) and add an arc (s,t) to G in order to define a Rent-RR
shortest path instance I’. We call this extra arc also the (s,t)-path p and
denote the new graph with G’ and all simple (s, t)-paths with P(G’). Finally,

we increase the lower and upper cost bounds for any outgoing arc of s by
(1-a)
(B+a)
bounds on the extra arc to y = K 4+ x — . All other upper and lower cost

T = (K —¢)+4, for some 0 < e < %, and set the upper and lower cost

bounds remain as in the instance I. We now prove that I is a yes-instance
if and only if P is the optimal solution in I’.

Let I be a yes-instance, i.e., there exists a scenario S € Sp with
ming,ep () cS(p) > K. For every (s,t)-path p € P(G) the total cost can
be bounded below by

olp) = max min ac®(p) + (1 = a)c®(p') + (a + B)c™(p'\p)

> min{(K +z), a(K +z) + (1 + )y}
For the solution p we get

(p) < minfy, max(ay + (1+ ﬁ)pgl}(%) )<y

Due to the definition of y and x, we obtain y < K + z and thus ¢(p) < ¢(p)
for any path p € P(G')\{p}-

Let now I be a no-instance, i.e., for every scenario S € Sr there is a solution
p € P(G) with ¢%(p) < K — 1. For the already fixed path p, we obtain an
upper bound on the total cost by

op) = max min ac®(p) + (1 = a)c® (p') + (a + B)c™(p'\p)
<alc+z)+(1—a)z+(1+8)(K-1),
if

(3.1) (1+B8)y>1+8)(K —1)+ (1 -a)y.
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Furthermore, since ¢®(p) > x for all S € Sr and all p € P(G")\{p}, the total
cost of p sums to
7)) — . ’ . + 1 + S/ _

¢(p) = min{y, max yln, ay (L+B8)c” ()} =y
if
(3.2) 1-a)y<(1+p)z.
Comparing these two bounds, ¢(p) < ¢(p) if
(3.3) a@+z)+(1-a)r+(1+8)(K-1)<y.

As one can easily recalculate, the inequalities (3.1)-(3.3) are satisfied for the
chosen values of 3, a,z and y. Thus, p is the optimal solution of the Rent-
RR shortest path instance I’ with 8 = % and a = ﬁ (B if and only if the
max-scenario instance [ is a yes-instance. O

We will conclude this section by introducing an approximation algorithm
for the Rent-RR shortest path problem which is based on an approximation
algorithm for the robust shortest path problem.

3.3. Approximation Algorithm. Since an optimal solution cannot be
constructed efficiently for discrete and I'-scenarios if P # NP, we are inter-
ested in approximation algorithms. An approximation algorithm constructs
a first-stage solution p € P and gives for every first-stage solution p and
scenario S € S a recovery strategy, i.e., a rule how to compute the recovery
solution. The following theorem states how to generate an approximation
algorithm for the Rent-RR shortest path problem from a robust shortest

path solution.

Theorem 11. Let G = (V, A) be a directed graph, s and t be two vertices
iV, S be a set of scenarios and ALG be an approxzimation algorithm for
the robust shortest path problem with an approzimation factor ~. For a given

rental factor o €]0,1[ and inflation factor 8 > 0, we define algorithm ALG’
by:

First Stage: Run ALG on the robust shortest path instance (G, s,t,S) and
set the first-stage solution p” to the output of ALG.
Recovery:  For any S € S calculate an optimal solution p° for the shortest

path instance G with the cost function
(1—a)-cS(a) Vacyp
(148)-c%(a) Yadyp.

d(a) =
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Then ALG' is an approzimation algorithm with an approzimation factor
7' =min{(y + 1+ 8), 1} of the Rent-RR shortest path problem.

Proof. Let p” be a solution computed by algorithm ALG for the robust short-
est path instance (G, s,t,S) and let OPT,}, be the value of an optimal robust
solution, i.e., OPT,o, = minyep maxges ¢ (p). Furthermore, let OPT be the
value of an optimal solution of the Rent-RR shortest path instance with a
rental factor o > 0 and an inflation factor 8 > 0. We start with two lower
bounds on OPT: First

OPT = minmax min ac’(p) + (1 — a)c® (p') + (a + B)c® (p'\p)
pEP Se€S p'eP

3.4 > ami S(p) = a OPT,

(3.4) = orminmaxc (p)=a ob

and second

3.5 OPT > in ¢ ().
59 =R )

We use the first bound (3.4) to obtain an estimate of the maximum rental

cost of p”, more precisely,

(3.6) er(p") = amaxc®(p') < -y OPTyop < 7OPT.

An upper bound on the implementation cost of p” in any scenario S € Sp is

given by

(3.7) ¢ (p") < (14 B)max min ¢®(p') < (1+ 8) OPT,
SeS p'eP

using inequality (3.5). Combining estimates (3.6) and (3.7), we get
T ST ST < T ST
c(p") = maxcg(p’) + 1 (p") < cr(p”) + maxcy (p7)
< yOPT +(1 + B8)OPT < (y + 1+ B) OPT.

Thus, we have a first approximation guaranty of ALG'.

The second guaranty is based on the recovery step. Since an optimal solution
w.r.t. the cost function ¢ is chosen in the second stage, we obtain for any
peP
¢(p) = max min ac® (p) + (1 — a)c®(p') + (1 + B)c” (p'\p) < max ¢*(p).
SeSp p'eP SeSp
Due to the choice of p", this leads to
1

1
Ze(p™) < mi S(p) < = OPT.
76(1) ) < min max e (p) < -

To sum up, algorithm ALG’ is a min{y+1+ 3, I}-approximation algorithm
for the Rent-RR shortest path problem. O
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In the case of I'-scenarios, the robust shortest path problem can be solved
in polynomial time [4] and thus we obtain a min{2 + f3, é}—approximation
algorithm for the Rent-RR shortest path problem. For o > 0.5 the approxi-
mation factor is tight, as we will see in the following example: Let G = (V, A)
be a directed graph composed of an (s, t)-arc with the cost interval [0, 1], also
denoted as path p, and a path p from s to ¢ with two arcs, where a cost in-
terval of [0,0.5] is assigned to each of these arcs. For I' = 2, both paths
are optimal robust shortest paths and thus the algorithm could choose p.
This results in total cost ¢(p) = min{l,a + (1 + ) - 0.5} whereas the path
p yields the optimal total cost ¢(p) = max{a,0.5}. For a > 0.5 we obtain

c(p) = = - c(p)-

4. CONCLUSIONS

We considered two different recoverable robust shortest path problems and
investigated their complexity with respect to the most common scenario sets
in the literature. For all these sets, the k-Dist-RR shortest path problem is
strongly NP-hard and not approximable, unless P = NP. For the special
case of series-parallel graphs, we introduce a polynomial algorithm to solve
the problem with interval scenarios.

The Rent-RR shortest path problem is closely related to the robust short-
est path problem. For discrete scenarios we provided an L-reduction from
the latter problem to the Rent-RR shortest path problem and thus show
that the Rent-RR shortest path problem cannot be approximated with a

(1-¢) |Sp| for any ¢ > 0 and a discrete scenario set

factor better than log
Sp. Yet, in contrast to the robust case, the Rent-RR shortest path problem
is for I'-scenarios strongly NP-hard. On the other hand, any approxima-
tion algorithm for the robust shortest path problem can be adapted to an

approximation algorithm for the Rent-RR shortest path problem.
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