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Abstract

Deformable surface models are often represented as triangular meshes in image segmentation applications. For a fast and eas-
ily regularized deformation onto the target object boundary, the vertices of the mesh are commonly moved along line segments
(typically surface normals). However, in case of high mesh curvature, these lines may intersect with the target boundary at “non-
corresponding” positions, or may not intersect at all. Consequently, certain deformations cannot be achieved. We propose omnidi-
rectional displacements for deformable surfaces (ODDS) to overcome this limitation. ODDS allow each vertex to move not only
along a line segment but within a surrounding sphere, and achieve globally optimal deformations subject to local regularization con-
straints. However, allowing a ball-shaped instead of a linear range of motion per vertex significantly increases runtime and memory.
To alleviate this drawback, we propose a hybrid approach, fastODDS, with improved runtime and reduced memory requirements.
Furthermore, fastODDS can also cope with simultaneous segmentation of multiple objects.

We show the theoretical benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively
on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation accuracy as well as local
accuracy in high curvature regions, such as the tip-shaped mandibular coronoid processes and the ridge-shaped acetabular rims of

the hip bones.
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1. Introduction

Since the pioneering work of Terzopoulos (1988), de-
formable models have been shown to be very effective for med-
ical image segmentation. The basic idea is to deform a given
(template) shape in such a way that the deformed shape pro-
vides an optimal geometric representation of the corresponding
structure in the image (Heimann and Delingette, 2011).

Among many different shape representations, polygonal
meshes are advantageous in many respects, such as flexibil-
ity and topology preservation (Montagnat et al., 2001). They
are therefore widely used in model-based segmentation. Usu-
ally, the deformable mesh “probes” the image information at
each vertex position. Given these probes, a new shape is com-
puted by displacing the vertices of the mesh, following a trade-
off between image fidelity and anatomically plausible deforma-
tion. The required amount of regularization depends on the
imaging deficiencies present in the data, such as noise, arti-
facts, partial volume effects, low or no contrast due to adja-
cent anatomical structures with similar appearance, etc. Reg-
ularization approaches range from global methods using prior
shape knowledge, such as Active Shape Models (Cootes et al.,
1995; Heimann and Meinzer, 2009), to local methods that im-
pose only local constraints upon shape deformation. While
global regularization achieves robust results, local methods al-
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low for more flexibility and thus may achieve more accurate
results (Kainmueller et al., 2007).

The details of the “image probing” play a crucial role in the
segmentation process. The image data is evaluated within a
certain “search space” to assess suitable image features. Most
commonly, unidirectional (i.e. linear, one-dimensional) search
spaces are used at each vertex of the deformable mesh. This
has a number of advantages: Feature assessment is fast within
one-dimensional subsets of the image. It is easy to select the
“best” feature, as required by many methods (Cootes et al.,
1995; Kainmueller et al., 2007), because the set of suitable fea-
tures is likely to be zero-dimensional, i.e. finite. Globally opti-
mal deformation subject to local regularization constraints can
be achieved for unidirectional search spaces (Li et al., 20006).
Normal vertex displacements implicitly restrict the deformation
of the surface in a way that reduces (but does not prevent) the
risk of generating mesh inconsistencies like self-intersections
or fold-overs.

At the same time, unidirectional search spaces cause two fun-
damental problems:

1. Restricted visibility. Unidirectional search spaces are
prone to miss features in the image data (Fig. 1a and 1b).

2. Incorrect correspondence. Unidirectional search spaces
frequently detect “wrong”, i.e. non-corresponding, fea-
tures in the image data (Fig. 1c and 1d).

If a-priori knowledge about characteristic deformations is avail-
able, one can introduce suitable global regularization in the
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Figure 1: 2D sketches of exemplary deformable meshes (dark grey, with ver-
tices as black dots) and target objects (light grey). Normal search spaces on
(a) a cube and (b) a tip-like structure detect no target boundary points or non-
corresponding target boundary points for most vertices. (b,d) Resulting unreg-
ularized deformations onto target object boundary.

segmentation process, e.g. by allowing only rigid transforma-
tions or employing Active Shape Models. This alleviates the
impact of these problems, but does not solve them. If, how-
ever, only local restrictions are imposed upon deformations,
the visibility and correspondence problems have severe im-
pact; e.g., local translations of highly curved surface regions
such as tips or ridges can hardly be achieved (cf. Fig. 1 and
Fig. 4). Here, iterative deformation together with local mesh
smoothing (Kainmueller et al., 2007), adaptive step-size con-
trol, adaptive remeshing or mesh surgery (Bucki et al., 2010)
may serve as remedies — however, even when taking these mea-
sures the deformable surface may not converge to the correct
image features, or the deformation process gets stuck because
self-intersections of the mesh need to be prevented (Park et al.,
2001). Despite these particular drawbacks of local regulariza-
tion, it is typically employed in the “late” stage of a model-
based segmentation process, when global regularization be-
comes too restrictive to reach optimal segmentation accuracy
as permitted by the underlying image data.

In this paper, we propose a general solution to the problems
of restricted visibility and incorrect correspondence on a local
level of regularization'. The basic idea is an extended search
space to allow not only unidirectional but omnidirectional dis-
placements at each mesh vertex, thus enlarging visibility and
— potentially — improving correspondence. An extended (more
precisely three-dimensional, ball-shaped) search space per ver-
tex most probably contains an infinite (two-dimensional) set of
suitable image features. Hence the type of local regularization
must be able to avoid highly inconsistent displacements of adja-
cent vertices. In particular, we allow displacements to a discrete
set of points within a sphere around each vertex, while penaliz-
ing differences of displacements on edge-connected mesh ver-

I'This work extends the authors’ paper presented at MICCAI 2010 (Kain-
mueller et al., 2010).

tices. This discrete formulation enables us to frame the segmen-
tation problem as a Markov Random Field (MRF), as explained
in Sec. 2. MRFs can be optimized efficiently (Komodakis et al.,
2008), which has made them attractive for many applications
in image processing and computer graphics (see e.g. Glocker
et al. (2008); Paulsen et al. (2010)). We denote the method of
ball-shaped search spaces combined with MRF optimization for
surface mesh deformation as omnidirectional displacements for
deformable surfaces, or ODDS.

Allowing a three-dimensional set of displacements per mesh
vertex has the drawback of significantly increased run-time
and memory requirements as compared to unidirectional search
spaces. Therefore, we also propose an extension to ODDS that
is faster and less memory-intensive — denoted as fastODDS. The
key idea for fastODDS, presented in detail in Sec. 3, is to allow
omnidirectional displacements only in regions of high curva-
ture, while restricting displacements to surface normals in “flat”
surface regions.

Sec. 4 and 5 provide an extensive evaluation of ODDS and
fastODDS on synthetic and clinical data, which shows that

1. ODDS can handle deformations of meshes with high cur-
vature where previous approaches based on normal dis-
placements fail.

2. fastODDS keep all the benefits of ODDS for highly curved
surface regions, while being twice as fast and requiring
50% less memory.

3. In contrast to ODDS, fastODDS can also be applied suc-
cessfully for simultaneous segmentation of multiple ob-
jects.

2. ODDS

For a more successful search for image features at each ver-
tex of a deformable surface mesh in terms of the visibility and
correspondence problem (see Sec.1), we propose to extend the
search space from a line segment to a ball centered at each re-
spective vertex position. We define the segmentation problem
as a trade-off between finding suitable image features within
these ball-shaped search spaces and simultaneously considering
local regularization. We find an approximately optimal solution
to the segmentation problem in a discrete setting via Markov
Random Field (MRF) energy minimization.

We denote the set of vertices v of the deformable surface
mesh as V = {v; € R3|i = 1...ny}, and the set of pairs of
adjacent (i.e. edge-connected) vertices (v,w) as E C V X V.
Each vertex v can be moved by adding a vector, or displace-
ment, s € S, where S = {s; € R®|i = 1...ng} is a discrete
set of possible displacements. We call a position v + s sam-
ple point. The set of sample points v + S defines the search
space for vertex v. Note that this definition has the effect that
the search space of a vertex equals its range of motion.

We refer to a mappingd : V — S,v — d(v) =: d, that
assigns a displacement to each vertex as displacement field. The
sampling distance 6s denotes the minimum Euclidean distance
between unequal displacements 05 := mingzglls; — sjl|.
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Figure 2: 2D sketch of omnidirectional displacements: (a) Black dots depict three vertices v, v, v3 of a deformable mesh. Ball-shaped ranges of motion S (large
grey spheres) around each vertex are discretized via sample points (yellow/gray dots). (b) Exemplary displacements sy, s2, s3 to sample points are shown as black
arrows, where equivalent displacements on different vertices are indicated by corresponding numbers. (c¢) Applying the same displacement to all vertices leads to

parallel translation.

2.1. Omnidirectional Displacements

We define S as a set of displacements that are uniformly dis-
tributed within a sphere of radius rg, i.e. Vs € § : ||s|]| < rs,
where rg is a parameter of our method. Displacements in S are
arranged as a cubic close-packed lattice (Conway et al., 1999);
see Fig. 2a for a 2D sketch. We refer to this ball-shaped set of
displacements as omnidirectional displacements. Note that in
contrast to traditional, unidirectional sets of displacements (i.e.
unidirectional displacements), omnidirectional displacements
are interpreted in world coordinates for all vertices, as opposed
to local coordinate frames per vertex (see Fig. 2b and 2c¢).

2.2. Objective Function

For each displacement s € S and vertex v € V, a scalar cost
(v, s) > 0 encodes whether sample point v + s is believed to
lie on the target object boundary within the image / : R® —
R: the stronger the belief, the lower the cost. In other words,
¢(v, s) serves as a penalty for the case that v is displaced by s.
In general, however, any ¢ : V x § — Ry is feasible as cost
function.

For each two displacements s;,s;, a scalar “distance”
W(s;, sj) = 0 serves as a penalty for the case that s; and s; occur
on adjacent vertices. The distance function ¢ : § X § — Ry
takes care of regularization. It has to satisfy y(s;,s;) = 0 &
s; = sj, but does not have to be a metric (see Sec. 2.3). In the
following, we assume that i is monotonically increasing with
the Euclidean norm of the difference of displacements, ||s; — s;ll,
and depends on nothing else. Whenever it adds to clarity, we
sloppily denote ¥(s;, s;) = ¥(lls; — sill).

We define the mesh adaptation problem as follows:

d = argmin Z o(v, cfv) + Z w(cf‘,, cfw) @))

{d,veV} vev (v.w)eE

This means we are looking for the displacement field that min-
imizes an objective function that sums up the image costs and
distance penalties for all vertices. Note that Eq. (1) contains an
implicit parameter that controls the trade-off between “image
fit” and regularization. It can be adjusted by scaling the cost or
the distance function.

Note that interpreting displacements in world coordinates (cf.
Sec. 2.1) yields distance-penalties for locally scaling (i.e. grow-
ing or shrinking) the mesh, while parallel translations are not
penalized (see Fig. 2c). We consider this beneficial as we ex-
pect our initial meshes (as well as its local features) to have ap-
proximately correct scale. Alternatively, if scaling should not
be penalized, one could interpret displacements in local coordi-
nate systems per vertex.

2.3. Optimal Displacement Field

We encode the objective function in Eq. (1) as an MREF,
with vertices being represented by MRF-nodes, mesh edges
by MRF-edges, and displacements by the possible states (also
called labels) of the nodes. Cost ¢(v, s) defines the unary po-
tential of node v in state s, and distance y/(s;, s;) defines the
binary potential of two adjacent nodes in states s;,s;. The
MRF-state with minimal sum of potentials yields the desired
displacement field. We optimize the MRF energy with a solver
that can deal with non-metric distance functions ¢ as specified
in Sec. 2.2, and is guaranteed to find an approximately optimal
solution (Komodakis et al., 2008).

2.4. Refined Regularization

The condition ¥(s1,52) = 0 & s1 = s, has the effect that
there is always a distance penalty for unequal displacements on
neighboring vertices. In other words, even the smallest distance
between displacements, i.e. the sampling distance Jg, is penal-
ized if respective displacements occur on neighboring vertices.
The sampling distance serves as a scale on which features shall
be detected in the image data; in general it is not supposed to
determine the amount of regularization imposed upon mesh de-
formation.

To this end, a “tolerated distance” with zero penalty” can be
approximated as follows: Let S={eRli=1.. .ng} be
a second cubic close-packed lattice which is coarser than S,
ie. 65 > 5. S partitions S into displacement blocks B; by
means of nearest-neighborhood to its elements §;. Formally,
B; = {s €S : § = argmingg; ||s — 3|l}. Given the displacement

2in other words, a smaller sampling distance with fixed regularization



blocks, we set up an MRF with states §; via unary poten-
tials ¢(v, §;) = minsep $(v, s), and binary potentials (5, 3,) =
Y(lIS; — §jll - 65 /65). We optimize the respective MRF energy
w.rt.d : V — § and assign to vertex v with d, = §; the displace-
ment s € B; with minimum cost, i.e. d, = argmingp (v, 5).

The sampling distance of § defines an upper bound to the Eu-
clidean norm of displacement differences that are not penalized.
More precisely, with block sampling distance d5, zero penalty
is attributed to displacements with ||s;—s;|| < d5 in case s; and s;
belong to the same block, while the minimum non-zero penalty
is attributed to displacements with ||s; — 5| < 205 in case s; and
s j belong to adjacent blocks.

3. FastODDS

ODDS are designed to allow for accurate segmentations of
highly curved structures, while methods that employ unidirec-
tional displacements are fundamentally limited here (cf. Fig. 1).
The methodological benefits of ODDS come with the drawback
of increased runtime and memory. The required number of
sample points per vertex for a ball-shaped range of motion with
radius r is in O(r?), while it is in O(r) for line segments of length
2r, with corresponding runtime and memory requirements. For
instance, ODDS on a medium-sized mesh with 8000 vertices
and 40 sample points per sphere diameter take about 2:30 min-
utes to compute on a 3.5 GHz core and require more than 4 GB
of memory (cf. Tab. 4).

Unidirectional displacements — apart from the above-
mentioned limitations — do allow for an accurate segmentation
of “flat” structures: At least, the non-visibility problem is un-
likely to occur, while the wrong-correspondence problem in
practice only affects a “bounding band” of the flat structure.
Anatomical structures of interest in medical image analysis of-
ten exhibit mainly flat or only slightly curved surface regions,
while high curvature appears on a much smaller amount of their
surface.

Therefore we propose to use omnidirectional displacements
only in (and next to) surface regions with high curvature, while
employing unidirectional displacements in flat surface regions
(see Sec. 3.2). Thus we exploit the benefits of ODDS, while
reducing runtime and memory via an overall reduced amount
of sample points. We call this approach fastODDS.

We propose to compute unidirectional and omnidirectional
displacement sequentially (see Sec. 3.4). Hence, in general,
any method for obtaining unidirectional displacements can be
chosen. In this work, we employ the graph cuts based method
of Li et al. (2006) (see Sec. 3.1), because (1) it has proven to be
powerful for accurate fine-grain segmentation of medical image
data (Seim et al., 2008; Heimann et al., 2010), and (2) it allows
for simultaneous segmentation of multiple objects (multi-object
ability). In the following, we refer to this method as GraphCuts.
Simultaneous segmentation of multiple objects is beneficial in
case of low contrast or similar appearance of adjacent objects,
e.g. for accurate segmentation of adjacent bones in joints. As
described in Sec. 3.5, the multi-object ability of GraphCuts can
be transferred to fastODDS.

3.1. Unidirectional Displacements

In contrast to ball-shaped ranges of motion, unidirectional
ranges of motion are defined per vertex of the deformable
mesh. Usually, directions normal to the deformable surface
are chosen, but any other predefined directions and gener-
ally also curves can be employed. Directions ¢, € R with
[l€,]] = 1 yield respective discretized displacement sets per ver-
tex, L, = {l; € R|i =1...ng }, with lengths ||;|]| < rz, where r,,
is a parameter of the method.

Given unidirectional (sets of) displacements L, per vertex,
we employ GraphCuts (Li et al., 2006) to compute the dis-
placement field with minimum sum of costs subject to local
constraints on the difference between the lengths of adjacent
displacements. Formally, GraphCuts compute the optimal so-
lution to

d = argmin 3 ¢(v,d,) subject to
(d,vevy V€V (2)

Yo,w)yeE: ¢t -d,—¢,-d, <c,

where ¢ € R is a regularization parameter. Here, the (signed)
length of displacements must define a total order, i.e. the set(s)
of displacements must be 1D.

3.2. Where to use Omnidirectional Displacements

When defining the surface region where omnidirectional dis-
placements shall be applied (OmniD-region), we assume that
on the boundary of the OmniD-region, surface-tangential move-
ments are not allowed, as we want to achieve a smooth transi-
tion to the region where unidirectional displacements shall be
applied (UniD-region). Consider e.g. a sharp ridge surrounded
by flat surface regions. Imagine we want to translate this ridge
in a direction roughly parallel to the flat surface regions. To
achieve a smooth overall displacement field, we need omnidi-
rectional displacements not only in the region of high curvature
(i.e. on the ridge and in a very small area around it), but within
a larger transition region around the ridge. Hence, a band of
some width around high-curvature regions has to be included
in the OmniD-region (see Fig. 3).

We propose to define the OmniD-region as follows: (1) Iden-
tify ridges on the surface;? (2) Identify the surface region that
lies within a certain geodesic distance g to those ridges. As for
the UniD-region, we define it as the complement of the OmniD-
region on the surface. Fig. 8a shows OmniD- and UniD-regions
on an exemplary anatomical structure.

The geodesic distance threshold g is a parameter of fast-
ODDS. Informally speaking, it should be large enough to allow
for the desired amount of displacement of ridge vertices with-
out too much distance penalty. Consider a deformable mesh
with mean edge length e,,. Then, g/e,, roughly estimates the
number of edges that connect a ridge to the boundary of the

3Ridges may be computed automatically on the initial segmentation (see
Appendix B), or, in case a statistical shape model is used for initial segmenta-
tion, defined a priori (automatically or manually) on the model.
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Figure 3: 2D-sketch of OmniD- and UniD-region on an exemplary tip-like mesh
(vertices depicted as dots) with ridge at rightmost vertex (blue dot). Only a
small region around the ridge exhibits high curvature, as indicated by the light
blue, dashed line. Instead, we assign vertices within a certain geodesic distance
g around the ridge to the OmniD-region; all others belong to the UniD-region.

OmniD-region. “Stretching” each of these edges by one sam-
pling distance ¢ costs no more than the minimum non-zero dis-
tance penalty per edge and can reach a translation of the ridge
up to 6 - g/e,. In case we can estimate a desired maximum
amount of displacement t € R, we may define g = e, - /5. This
way, the desired displacement of ridge vertices can be achieved
with no more than the minimum non-zero distance penalty ()
at any edge.

3.3. Objective Function

We propose to compute displacements for OmniD- and
UniD-region with ODDS and GraphCuts, respectively. If not
mentioned otherwise, we use the same notation as in Sec. 2.
Let Vi be the vertices in the UniD-region, V() the ones in the
OmniD-region, with V = Vi; U Vg and Vi NV = 0. The pairs
of adjacent vertices E are partitioned into Ep = (Vo X Vo) N E,
Ey =VyxVy)NnEand Ey = (Vo X Vy) N E. This means Ep
contains the edges in the OmniD-region, Ey the edges in the
UniD-region, and E;s the edges that bridge between V and Vy,.
We refer to the set of vertices in the UniD-region which are part
of an edge that bridges to the OmniD-region as UniD-boundary
oVy ={we Vy,vinVy : (v,w) € Eg}.

We are dealing with two sets of displacements, namely the
discretized ball-shaped range of motion S which applies to all
vertices in the OmniD-region, and discretized linear ranges of
motion L, along directions ¢, per vertex of the UniD-region. We
assume for the moment that Vv € Vy : L, C S (see Sec. 3.4).
In this context, for ease of notation, we refine the definition of
a displacement field to

eSS veVy
eL,:veVy

d:V—>S,vn—>d(v)=:dV{ 3)

Then the objective function of fastODDS is defined as follows:

d = argmin Y, ¢(v,d,) + >, w(d,, d,)

{dAVZVEV} veV (v,w)eEEQUEy

4)
subjectto Y(v,w) € Ey : &, -dy — €, - d,, < c

Note that Eq. (4) sums up Eq. (1) on the OmniD-region and
Eq. (2) on the UniD-region, and adds to that the distance penal-
ties for edges bridging between OmniD- and UniD-region.

3.4. Optimal Displacement Field

We follow the simple idea to compute unidirectional and om-
nidirectional displacements sequentially, in a way that a smooth
transition between UniD- and OmniD-region is achieved.
Therefore, we first obtain a displacement field for the UniD-
region (via GraphCuts or any other method), and second per-
form ODDS on the OmniD-region, constrained by fixed dis-
placements on the UniD-boundary as computed beforehand.

This approach partitions the objective function in Eq. (4) into
two parts that are subsequently solved. First, we compute

dly, = argmin ), ¢(v, cfv)
(d,vevy) VeV (5)

subjectto VY(v,w) € Ey : ¢, - a?‘, -4y ~ch <c

via GraphCuts. Second, we approximate

dly, = argmm( S omdy+ L wdndy)
(d, eV} \veVo (v.w)eEo
(©6)
+ X w(c?v,dwo)
(v,w)eEy

via MRF optimization. Note that in Eq. (6), d,, = dly,(w) is
fixed for all w € V.

While GraphCuts yield a globally optimal displacement
field subject to the given constraints, and MRF optimization
guarantees an approximately optimal solution within provable
bounds (Komodakis et al., 2008), our hybrid approach for solv-
ing Eq. (4) does not guarantee either of these global properties.
The optimality bounds guaranteed for MRF optimization would
determine bounds for the overall objective function in case we
minimized Eq. (4) with respect to the set of displacement fields
on the UniD-boundary for which a solution to Eq. (5) exists.
This would require solving Egs. (5) and (6) for all feasible dis-
placement fields on the UniD-boundary. Their number is in
O(c/6 - llwe Vy : v e Vp: (v,w) € Es}|). As this is roughly
3 - 1000 in our experiments (cf. Sec. 4), we did not follow this
approach for performance reasons.

Practically, to get a “good” solution on the UniD-boundary,
we perform GraphCuts on the whole surface except vertices on
or next to ridges. The overlap with the OmniD-region serves
for an extended regularization in GraphCuts optimization; the
resulting displacements are discarded afterwards. Note that
“cutting the surface open” along ridges allows for translational
movements of surface regions near ridges with GraphCuts at
least in one (surface-normal) direction. Otherwise, moving one
side of a ridge “inward” and the opposite side “outward” may
not be possible due to regularization.

As for the OmniD-region, practically, we enlarge it by
the UniD-boundary, and achieve fixed displacements for each
boundary vertex w € dVy by assigning zero cost ¢(w, s) to
s = d|y(w) and infinite cost to all other displacements s €



S, s # dl|y,(w). More precisely, as unidirectional displacements
are generally not in S, we assign zero cost to the closest dis-
placement in S, i.e. argmin g [|d|y, (W) — 5|, and infinite cost to
all others.

3.5. Multi-object FastODDS

GraphCuts can be used for simultaneous segmentation of
multiple objects (Li et al., 2006) via shared displacement di-
rections for arbitrary adjacent structures (Kainmueller et al.,
2009b). Hard constraints on the distance between adjacent sur-
faces can be enforced. To transfer this capability to fastODDS,
we use multiple surfaces that are coupled with shared displace-
ment directions in adjacent regions as input, and partition each
surface into OmniD- and UniD-region as for single-object fas-
tODDS. Then, we apply multi-object GraphCuts on the (cou-
pled) UniD-regions, and subsequent constrained ODDS on the
OmniD-region. This way, fastODDS can handle multi-object
situations in case adjacent surface regions are, at least to some
extent, flat, and hence equipped with linear range of motion

If, however, the OmniD-region overlaps with the coupled re-
gion, the resulting deformed surface in this overlap may inter-
sect with the adjacent surface. This can be prevented in case
we know beforehand that one of the adjacent surfaces does not
exhibit high curvature. In this case, the multi-object GraphCuts
result on the “flat” surface can be used to modify the cost func-
tion on the OmniD-region of the “curved” surface such that no
overlap can happen. This can be achieved by setting costs to
infinite for all sample points that lie inside the deformed “flat”
surface. However, in case both adjacent surfaces exhibit high
curvature within the coupled region, multi-object fastODDS do
not guarantee non-overlapping results.

4. Results

To evaluate ODDS, we applied it to three types of 3D data:
(1) Synthetic binary images, (2) synthetic binary images with
various amount of noise, and (3) clinical image data. To eval-
uate fastODDS, we applied it to two cohorts of clinical image
data: (1) 106 CBCTs of the mandibular bone (with the coronoid
process as an exemplary tip-like structure) to assess the differ-
ences to ODDS, and (2) 49 CTs of the hip bones (with the ac-
etabular rim as an exemplary rim-like structure in a multi-bone
environment) to assess the multi-object ability of fastODDS.

On synthetic binary images and clinical image data, we also
computed results with “pure” GraphCuts (Li et al., 2006), and
furthermore with a locally regularized method (Kainmueller
et al., 2007) (FreeForm), both employing vertex normals as dis-
placement directions, with the exception of multi-object Graph-
Cuts, where shared displacement directions are used. FreeForm
selects the minimum cost displacement for each vertex and sub-
sequently regularizes locally via a small displacement toward
the centroid of the respective adjacent vertices. In contrast
to GraphCuts- and ODDS/fastODDS, all FreeForm adaptations
were performed iteratively, with 30 steps.

We computed costs ¢(v, s) from the image I : R® — R as
proposed by Seim et al. (2008): If the image intensity /(v + )

#V  2r s lio,i1]  ny g
Cube 770 26 0.5 [0.1,1.1] - -
Ellipsoid 1797 31 0.5 [0.1,1.1] - -
Mandible 8561 15 0.4 [350,800] 6 6
Hip Bone | 14008 20 0.5 [120,720] 10 10

Table 1: Application specific parameters are the number of vertices #V of the
deformable mesh, the diameter 2r [mm] of the range of motion, the sampling
distance s [mm] of the set of displacements, the intensity window [i1, i] of the
cost function, and filterlength ny (in number of edges) and geodesic distance
g [mm] for definition of the OmniD-region.

lies within a certain window [iy, i1 ], costs are inversely propor-
tional to the directional derivative V, I(v + s), where n, de-
notes the surface normal at v. Otherwise costs are set to a con-
stant, high value cj;g,. As for the trade-off between image im-
age fit and regularization, we scale the cost function such that
a-y(0s5) < Chign < a-yY(265), where a = 6 is the average number
of edges per vertex. The thresholds iy and i; are parameters of
the strategy and are set per application (see Tab. 1). Whenever
we compare different adaptation methods on the same image
data, we use the same cost function ¢ for all methods.

For all omnidirectional displacements (ODDS and fas-
tODDS), we employ displacement blocks with sampling dis-
tance 05 = 3ds; As distance function ¥, we use (s, s2) =
[(s2—51)/65 |I® in all experiments. In all GraphCuts experiments
(“pure” as well as in UniD-regions of FastODDS), the regular-
ization parameter ¢ equals the block sampling distance 5 as set
in the respective ODDS/fastODDS experiment, i.e. ¢ = Js;

Whenever we employ unidirectional as well as omnidirec-
tional displacements for the same image data (in multiple meth-
ods), the length of the unidirectional range of motion equals the
respective sphere diameter, i.e. r, = rg. As for the sampling
distance of unidirectional displacements, we set it to half the
sampling distance of the respective omnidirectional displace-
ments, i.e. 6y, = 0.555.

Whenever we employ fastODDS, we detect ridges automati-
cally as described in Appendix B with significance 0.04 mm™!
and curvature threshold 0.1 mm~".

Table 1 lists further parameters that we set individually per
application.

4.1. Synthetic Images

We performed experiments on binary images* of a cube and a
thin ellipsoid. As initial meshes, we used triangulated cube and
tip surfaces with ideal shape, but shifted pose (see Fig. 4a). We
chose sphere diameters such that the target object boundary was
located completely within a band of respective width around the
initial mesh. The results of ODDS-, FreeForm- and GraphCuts
adaptation are shown in Fig. 4c, 4d and 4e, respectively. Fig. 4b
shows the results of adding normal displacements without any
regularization.

We added various amounts of random noise to the bi-
nary cube image and performed ODDS as before. The cube

“i.e. intensities € {0, 1}



Figure 4: Results on synthetic data. Deformable mesh (red/dark grey mesh) and target object (transparent grey surface) are shown (a) in their initial situation, and
after deformation via (b) displacements along normals without regularization, (c) FreeForm, (d) GraphCuts, and (¢) ODDS.

L

Figure 5: Performance of ODDS in the presence of noise. We added random noise with range (a) [—0.5..0.5], (b) [-2.5..2.5] and (c) [-5..5] to a binary image of a
cube. We show slices of the image data and the respective adaptation result (red/dark grey mesh). The grey transparent surface depicts the ideal target object.

was detected correctly for noise with ranges [-0.5..0.5] and
[-2.5..2.5], and failed for [-5..5]. Fig. 5 shows slices of the
noisy image data and the respective adaptation results.

4.2. Clinical Data

4.2.1. Mandible (Coronoid Process)

In a quantitative evaluation on 106 mandible Cone-Beam
CTs we compared ODDS, fastODDS, FreeForm and GraphCuts
results to gold standard surfaces obtained from manual segmen-
tations. Initial meshes were generated automatically by adapta-
tion of a statistical shape model (Kainmueller et al., 2009a). For
all omnidirectional displacements, we gave slight preference to
displacements that point further “outwards” in curvature gradi-
ent direction Vk;(v), where k; is the 1st principal curvature of
the deformable surface. We achieve this by adding to ¢(v, s) a
small cost proportional to rg — s - Vi (v)/||[Vk; (V||

For the mandible surfaces (gold standard as well as adapta-
tion results), we extracted the right coronoid processes as the
region of the mesh that lies above 1/2 of the extension of the
mandible in transversal direction, between 1/3 and 2/3 of ex-
tension in dorsoventral direction, and above 2/3 in longitudinal
direction. Extraction of the left coronoid process worked anal-
ogously. We identified the tip point as the upmost vertex in
longitudinal direction.

As error measures for the coronoid process, we assessed the
tip-to-tip distances (tip2tip), two-sided roots mean square (rms)
and Hausdorff (max) surface distances, as well as the percent-
age of two-sided surface distances above 1 mm (%>1mm). Fur-

thermore, we also assessed rms, max and %>1mm as error mea-
sures for the entire mandible surface.

Evaluation results for both coronoid process and entire
mandible are shown in Tab. 2 and Fig. 6. As measurements
are not normally distributed, we performed Wilcoxon’s signed-
rank test (Hollander and Wolfe, 1999) to assess significant dif-
ferences.

4.2.2. Hip Bones (Acetabular Rim)

In a quantitative evaluation on 49 hip CTs we compared
FastODDS and GraphCuts results to gold standard surfaces
obtained from manual segmentations. Initial meshes were
generated automatically by adaptation of a statistical shape
model (Kainmueller et al., 2009¢). In case of omnidirectional
displacements, we gave slight preference to displacements in
surface curvature gradient direction, as described before for the
mandible (cf. Sec.4.2.1).

For an unbiased, reproducible delineation of the acetabular
rim, we computed it automatically as described in Appendix
A on both gold standard segmentations and adaptation results.
As error measures for the acetabular rim, we assessed the root
mean square (rms) and Hausdorff (max) curve distances, as well
as the percentage of distance above 1 mm (%>1mm). Further-
more, we assessed the rms and max surfaces distances as well
as the %> Imm measure as error measures for the whole hip
bones.

Evaluation results for both acetabular rim and whole hip bone
are shown in Table 3 and Fig. 7. As for the mandible, er-
ror measures are not normally distributed, and hence we per-



Coronoid Process Mandible

tip2tip [mm] | rms [mm] max[mm] %>1mm [%] || rms [mm] max[mm] %>1mm [%]

FreeForm 2.58(2.36) | 0.50(0.52) 2.62(2.23) 4.06(6.97) 1.50(0.25) 8.98(1.37)  19.92(4.05)

GraphCuts 2.25(2.36) | 0.49(0.56) 2.52(2.39)  3.54(6.72) 1.05(0.20) 7.56(1.54) 13.42(2.58)

fastODDS 1.74(2.32) | 0.44(0.54) 2.11(2.26)  2.40(5.69) 1.05(0.21) 7.54(1.55) 13.13(2.54)

ODDS 1.68(2.11) | 0.41(0.39) 2.01(2.04) 2.15(4.74) 1.04(0.20) 7.52(1.50) 12.94(2.48)
GraphCuts-ODDS 0.57 0.09 0.51 1.40 0.01 0.04 0.48
p-value [%] <0.01 1.07 <0.01 <0.01 4.90 -18.70 <0.01
GraphCuts-fastODDS 0.51 0.06 0.41 1.14 0.00 0.02 0.29
p-value [%)] <0.01 5.13 <0.01 <0.01 1.46 -22.17 <0.01
fastODDS-ODDS 0.06 0.03 0.10 0.25 0.00 0.03 0.19
p-value [%)] -23.53 26.91 18.63 16.13 38.41 -41.26 <0.01

Table 2: Top to bottom: Average error measures (and standard deviation) for FreeForm, GraphCuts, fastODDS and ODDS results on 212 coronoid processes and
106 entire mandibles, followed by differences A — B of average error measures for A, B € {GraphCuts, fastODDS, ODDS}, together with significance levels of
difference (p-values) as assessed with Wilcoxon’s signed rank test. A positive p-value indicates that B has lower error than A (at the respective level of significance),
while a negative sign indicates that A has lower error than B. Significance levels below 5% are highlighted by color.
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Figure 6: Box plots6 of error measures for GraphCuts (GC), fastODDS (fO) and ODDS (O) results on coronoid processes and entire mandibles as listed in Tab. 2.
Underlaid parallel coordinate plots draw lines between errors measured for different methods (GC, fO, O) on corresponding individual cases, e.g. between the tip2tip

errors of GraphCuts- and fastODDS-result on coronoid process no. 189, etc.

[sec / GB] ODDS  fastODDS GraphCuts FreeForm
Mandible | 149/4.6 85/2.2 3/0.9 6/04
Hip Bone - 319/54 18/2.3 -

Table 4: Performance (computation time in seconds / maximum memory re-
quirement in GB) averaged for 106 mandibles and 98 hip bones.

formed Wilcoxon’s signed-rank test to assess significant differ-
ences. Additionally, Fig. 8b and 8c show the averaged direc-
tional distance maps, i.e. gold-standard to result and result to
gold-standard distances, respectively.

4.2.3. Performance

All experiments were performed on a single 3GHz core with
8GB main memory. Table 4 lists the average performance of
all methods applied to clinical data. MRF optimization (Ko-

modakis et al., 2008) took between 1 and 6 seconds in all
ODDS- and fastODDS experiments. However, computation of
the cost function ¢(v, /) was more time-consuming, accounting
for more than 90% of the runtime of ODDS and fastODDS as
stated in Tab. 4.

5. Discussion

5.1. Accuracy

Experiments on synthetic binary images show that ODDS are
able to handle parallel translations, in contrast to a globally and
a locally regularized approach (GraphCuts and FreeForm) that
employ normal displacements. Experiments on noisy synthetic
images show that ODDS are able to produce well-regularized

Swith outliers as circles and extreme outliers as dots; see Chambers (1983).



Acetabular Rim Hip Bone
rms [mm] max[mm] %>1mm[%] || rms[mm] max[mm] %>1mm [%]
GraphCuts 1.90(0.85) 5.00(2.53) 61.17(12.89) || 0.59(0.18) 6.93(2.31)  5.20(2.30)
fastODDS 1.62(0.89) 4.69(2.75) 45.20(13.37) || 0.54(0.18) 6.74(2.42)  3.80(2.07)
GraphCuts-fastODDS 0.28 0.32 15.98 0.05 0.19 1.40
p-value [%] <0.01 1.04 <0.01 <0.01 6.43 <0.01

Table 3: Top: Average error measures (and standard deviation) for GraphCuts and FastODDS results on 98 acetabular rims and 98 hip bones. Bottom: Differences
of average errors and respective levels of significance (p-values) as assessed with Wilcoxon’s signed rank test. Significance levels below 5% are highlighted by

color.
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Figure 7: Box plots of error measures for GraphCuts (GC) and fastODDS (fO) results on acetabular rims and hip bones as listed in Tab. 3.

displacement fields in the presence of noise. However, for a
very low signal-to-noise ratio, ODDS may fail to detect the tar-
get object. Experiments on clinical data show that both ODDS
and fastODDS are able to produce very accurate segmentations
of tip-like structures. On 212 mandibular coronoid processes,
ODDS and fastODDS clearly outperform the GraphCuts and
FreeForm approach. Here, normal displacements often exhibit
the “wrong-visibility” problem, see Fig. 9(a-c), which omnidi-
rectional displacements resolve.

A comparison of ODDS and fastODDS on the mandibular
coronoid processes reveals no significant differences for any er-
ror measure. However, the parallel-coordinate plots that un-
derlay the box plots in Fig. 6 show that there are at least two of
212 coronoid process cases where the ODDS error measures are
considerably smaller than the fastODDS error measures. There
are also some individual cases in which the fastODDS error
measures are smaller than the ODDS error measures, yet with
a smaller difference. We conclude that fastODDS is not guar-
anteed to produce an equally good result in the individual case,
but overall does not perform significantly different than ODDS.

As for the whole mandible surface, both fastODDS and
ODDS perform significantly better than GraphCuts and
FreeForm, except for the Hausdorff surface distance error mea-
sure. This can be attributed to regions on the initial segmen-

tation that are too far away from the target structure such that
it does not lie within either ball-shaped or linear search space
(e.g. around the teeth or the chin which often lies outside the
FoV of the CBCT scanner).

As for a comparison of ODDS and fastODDS on the whole
mandible surface, no significant differences occur for rms and
Hausdorft error measures, while, surprisingly, ODDS outper-
forms fastODDS in terms of the %>1mm error measure. As this
measure is not significantly different when comparing ODDS
and fastODDS on the (highly curved) coronoid process, we hy-
pothesize that the difference on the whole surface is caused by
a better performance of ODDS vs. GraphCuts in flat surface
regions in terms of a higher amount of very small distances
(<1 mm). This may be due to the fact that, from a “continuous”
point of view, a ball-shaped range of motion contains an infi-
nite (2D) set of target boundary points, while a unidirectional
range most probably contains a finite (OD) set. If image features
happen to be weak or not present in this finite set, GraphCuts
have no other choice than to interpolate the displacement for
the respective vertex.

Experiments on clinical data show that fastODDS are able to
produce very accurate segmentation of ridge-like structures in
a multi-object environment. On 98 acetabular rims of the hip
bones, multi-object fastODDS clearly outperform the “pure”



(a)

(b)

©

Figure 8: FastODDS on hip bones. (a) Exemplary hip bones with OmniD-region (red) and UniD-region (grey). (b,c) Comparison to GraphCuts: Differences of
directional surface distances (GraphCuts-FastODDS) from/to gold standard averaged over 49 cases. (b) Difference of distances from gold-standard to results. (c)
Difference of distances from results to gold-standard. On average, fastODDS perform better than GraphCuts in blue regions, while GraphCuts perform better than

fastODDS in red regions.

Figure 9: ODDS: Exemplary results on clinical data: Coronoid processes of the
mandible. Contours: Black: Gold standard. White: Initial mesh. Green/gray:
ODDS result. Blue/light gray: FreeForm result. ODDS work fine while
FreeForm results are inaccurate because of the visibility and correspondence
problems. (b) FreeForm can also cause the deformable mesh to get stuck due
to prevention of self-intersections.

multi-object GraphCuts approach. Here, unidirectional dis-
placements often struggle with incorrect correspondences as
well as restricted visibility, see Fig. 10a and 10b, respectively.

FastODDS also performs significantly better in terms of er-
ror measures evaluated on the whole hip bones, except for the
Hausdorft error measure, where the p-level of 6.43% is not
doubtlessly convincing. As for the mandible, this may be due
to regions on the initial segmentation that are too far away from
the target structure such that it does not lie within either ball-
shaped or linear search range.

5.2. Fairness of Comparison

As described in Sec. 4, we set the regularization parameter ¢
of GraphCuts to the displacement block sampling distance 6 as
set in the respective ODDS/fastODDS experiment. For Graph-
Cuts, differences of displacements on neighboring vertices are
“for free” up to a Euclidean norm of ¢, while being impossible
> ¢. For ODDS, differences of displacements on neighboring
vertices are “for free” or cost the minimum non-zero distance
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(b)

Figure 10: FastODDS: Exemplary results on clinical data: Acetabular rim of
the pelvis. Contours: Black: Gold standard. White: Initial mesh. Green: Fas-
tODDS result. Blue: GraphCuts result. FastODDS works nicely while Graph-
Cuts do not reach the corresponding image features that are located (a) in out-
ward direction and (b) in inward direction from the initial mesh.

penalty up to a Euclidean norm of ¢, while the penalty increases
cubically for larger differences (see Sec. 2.3).

We think this allows for a fair comparison of meth-
ods; however, to make sure that the superior accuracy of
ODDS/fastODDS is not an effect of more or less regulariza-
tion, we performed GraphCuts not only with ¢ = d5, but with ¢
ranging from the sampling distance dg up to an absurdly large
1065 = 5 mm in nine extra experiments on the hip bones. Con-
sidering segmentation accuracy, significant improvements of
fastODDS over GraphCuts as stated via colored entries in Tab. 3
hold for any of the respective GraphCuts results.

Cutting the sampling distance by half, i.e. ;, = 0.5d5, was
intended to compensate for a potential advantage of omnidirec-
tional displacements in terms of an effective denser sampling
in surface-normal direction due to additional adjacent sampling
points. It did slightly improve the <1 mm measure for Graph-
Cuts results — however, the accuracy of ODDS/fastODDS in
terms of this measure could not be reached, not even with still
smaller (nor bigger) sampling distances from 0.25 to 165. We
discussed a potential reason for this in Sec. 5.1



5.3. Performance

A comparison of ODDS and fastODDS on the mandibular
bone shows that fastODDS requires less than half the memory,
while being almost twice as fast as ODDS. In general, the gain
in performance achieved by fastODDS depends on the “curved-
ness” of the anatomical structure of interest. Hence we hypoth-
esize that the gain is even bigger for structures like the heart
or the liver, where a higher percentage of the structure exhibits
low curvature, while it may be little to none on highly folded
structures like the cerebral cortex or the intestinal mucosa.

6. Conclusion

We proposed ODDS, a method that allows omnidirectional
displacements for all vertices of a surface mesh during de-
formable model adaptation. We encode the adaptation problem
as a Markov Random Field, which allows us to approximate
globally optimal mesh deformation subject to local regulariza-
tion constraints. In an evaluation on synthetic as well as clinical
data, we showed that this approach can outperform traditional
mesh adaptation along line segments (normals) in regions with
high curvature (tips) in terms of segmentation accuracy.

To save runtime and memory as required by ODDS, we de-
veloped a hybrid approach, fastODDS. Here, we employ om-
nidirectional displacements adaptively only where high curva-
ture calls for them, and traditional unidirectional displacements
elsewhere. In an evaluation on clinical data we showed that
fastODDS achieve the same segmentation accuracy as ODDS
in regions of high curvature, while requiring only half the run-
time and memory.

An additional benefit of fastODDS is that it can be applied
for simultaneous adaptation of multiple, adjacent meshes, i.e.
multi-object segmentation. In an evaluation on clinical data we
showed that fastODDS can outperform traditional multi-object
mesh adaptation along line segments.

Future work includes an analysis of our hypothesis as to why
the percentage of very small errors on entire surfaces is higher
for ODDS than for fastODDS, as well as a more efficient com-
putation of the image cost function ¢ via parallelization and
exploitation of overlapping domains.
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%>1mm [%]
34.84(12.37)

max [mm]
3.06(0.90)

rms [mm)]
1.21(0.31)

Table A.5: Automatic acetabular rim delineation: Average root mean square
(rms) and Hausdorff (max) distance from manually defined landmarks, and per-
centage of distance above 1,mm (%>1mm), assessed on 147 hip bone surfaces.
Standard deviations in brackets.

Appendix A. Automatic Acetabular Rim Detection

The statistical shape model of the hip bones we employ for
initial segmentation contains a particular region (aka patch) that
defines the acetabulum, cf. Seim et al. (2008). Consequently,
this acetabular patch is inherent on every initial segmentation,
and is preserved during deformation with any of the fine grain
adaptation methods. The boundary of the deformed acetabu-
lar patch serves as an initial estimate of the acetabular rim. It
is represented by a set of vertices that are connected by edges
which form a closed contour. Starting from this initial estimate,
the algorithm for automatic detection of the acetabular rim pro-
ceeds as follows:

(1) Define an approximate “rim-plane” via plane-fit to the
initial acetabular rim estimate. (2) For each vertex on initial
rim estimate, sample a set of points on the hip bone surface
perpendicular to the rim within some geodesic distance. (3)
Define a cost per sample point as the distance from the approx-
imate rim-plane in outward’ direction. (4) Construct a graph:
For every pair of neighboring vertices, connect corresponding
sample points by and edge in the graph; Connect sample points
+- the corresponding one to achieve the desired amount of reg-
ularization; (5) Perform Dijkstra’s optimization to obtain the
minimum-cost rim. The result serves as automatically detected
acetabular rim.

We evaluated automatic rim delineation vs. manually defined
landmarks on 147 hip bone surfaces stemming from manual and
automatic segmentation results. Resulting error measures are
listed in Tab. A.5.

Appendix B. Automatic Ridge Detection

For ridge detection on surfaces, we utilize the ridge defini-
tion first introduced by Rothe (1915), more recently described
by Koenderink and van Doorn (1993). Intuitively a ridge of
a height function can be imagined as the way one would take
when walking up a mountain. One usually chooses the path
with the lowest slope since it is the least exhausting. We apply
this definition for ridges to the maximum principal curvature
on surfaces as height function, i.e. x = max(|«{|, |«2|), yielding
curves along sharp edges as well as sharp wrinkles of a surface.

At first sight, the above ridge definition requires computing
the fifth derivative of the surface to find the ridges. Because
computing derivatives is very sensitive to noise, we use a more
robust property of these ridges which we describe intuitively
here. Suppose we descend along a ridge for a fixed distance

7The “outward” direction of the acetabular rim plane can be determined by
means of the orientation of the acetabular patch



f, starting at a certain height 4. If, instead, we do not start at
the ridge, but on the isoline of height % a little to the right or
to the left of the ridge, and walk the same distance in direction
of steepest descent, we will end up lower. Consequently also
the integral of the heights we pass when starting on the ridge,
H, is higher than the integrals when starting beneath the ridge,
Hie: and H,jgp;, and the same holds for the average height of

the walk, h = H/f. We approximate the respective infegral
curves of the (discrete) gradient vector field of « on the triangu-
lar surface mesh (Forman, 1998) as described by Cazals et al.
(2003).

We call the walking distance f, i.e. the arc length for integra-
tion, the filterlength, specified by a number of edges n; in our
discrete setting. We call the difference of the average heights,
min{h — hyefr, h — Ryigne} [mm™"], the significance of a ridge. If
significance is low, the ridge might not be sharply peaked. We
therefore discard ridge pieces if significance does not exceed
a user given threshold. We also discard ridge pieces if their
average height / is below a user defined curvature threshold
[mm™'], because they are not necessarily strong features of the
surface. Details can be found in Weber (2008).
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