
A note on set union knapsack problem

Ashwin Arulselvan

Institut für Mathematik, Technische Universität Berlin, Germany, arulsel@math.tu-berlin.de.

Abstract

Recently, Khuller, Moss and Naor presented a greedy algorithm for the budgeted maximum coverage
problem. In this note, we observe that this algorithm also approximates a special case of set-union knapsack
problem within a constant factor. In the special case, an element is a member of less than a constant number
of subsets. This guarantee naturally extends to densest k-subgraph problem on graphs of bounded degree.

Keywords: approximation, densest k-subgraph, set-union knapsack, greedy

1. Introduction

The Set Union Knapsack Problem (SUKP) comprises of a set of elements U = {1, . . . , n} and a set of items
S = {1, . . . ,m}. Each item, i = 1, . . . ,m, correspond to a subset of elements and we denote it by Si. Each
item has a nonnegative profit given by p : S → R+ and each element has a nonnegative weight given by
w : U → R+. For a subset A ⊆ S, we define the weighted union of set A as W (A) =

∑
e∈∪i∈ASi we and

P (A) =
∑
i∈A pi. We want to find a subset of items S∗ ⊆ S such that P (S∗) is maximized and W (S∗) ≤ B.

Goldschmidt et. al. [2] studied the problem and presented a dynamic program running in exponential time
to solve the problem exactly. In the densest k-subhypergraph problem [3], we are given a hypergraph
H(V,E) and we have to determine a set of k nodes such that the subhypergraph induced by this set has
maximum number of hyperedges. SUKP reduces to the densest k-subhypergraph problem (DkH), when we
have unit weights and unit profits, with the elements and items corresponding to the nodes and hyperedges
respectively and the budget being k. Recently [3] it has been shown that densest k-subhypergraph problem

cannot be approximated within factor of 2(logn)δ , for some δ > 0, unless 3SAT ∈ DTIME(2n
3
4 +ε

). For
the special case, where we have the item size equal to exactly 2, we have the densest k-subgraph problem
(DkH on graphs). The best known algorithm provides an approximation factor of O(min{nδ, n/k}), for
any δ < 1/3 [1].

We present a greedy algorithm for the SUKP with the additional restriction that the number of items
in which an element is present is bounded by a constant d. We will show that the algorithm provides a
(1 − e− 1

d) approximation. This factor naturally extends to densest k-subgraph problem where the input
graph has a bounded degree. To the best of our knowledge, the only known result about this case is that it
is NP -hard, even with the maximum degree d ≤ 3 [1]. The algorithm and the analysis directly follows from
the work of Khuller, Moss and Naor [4] for the budgeted maximum coverage problem (BMCP). Hence,
the novelty of the note lies in the new observations made about some existing open problems and not on

Preprint submitted to Elsevier January 17, 2012

the algorithm or its analysis. The BMCP and SUKP, despite the similarities, are significantly different
problems. SUKP in the general case is hard to approximate.

2. Algorithm and Analysis

We need a few more notations before we present the algorithm. We define de as the frequency of an
element e, i.e, the number of items in which element e is present. So, we have maxe∈U de ≤ d. For an item
i, we denote the profit of item i by pi and define W ′i =

∑
e∈Si

we
de

, where we is the weight of element e.

We consider all possible subsets of items of cardinality 2, whose weighted union is within the budget B.
We augment each of these subsets with items (not in the subset) one by one in the decreasing order of the
ratio pi

W ′i
, if its inclusion does not violate the budget B. We then choose of the best of these augmented

sets as A. Afterwards, we pick item with the highest profit as Smax. The best of A and Smax, in terms of
their profits, is returned as the solution. As a side note, we point out that the items could be considered
in the increasing order of the the ratio of sum of weights of elements in the item that are yet to be picked
to its profit and this will ensure the same guarantee on the approximation factor, but it is easier to follow
the analysis of Khuller et.al. with the one presented.

We write the greedy augmentation as a subroutine GREEDY for the sake of presenting the analysis.

GREEDY(G,U)

1: while U 6= ∅ do
2: Choose i ∈ U with the highest value pi

W ′i
3: if W (G ∪ {i}) ≤ B then
4: G = G ∪ {i}
5: end if
6: U = U\{i}
7: end while

A-SUKP(G)

1: Let Smax be the set with the highest profit
2: A = ∅
3: for all G ⊂ S such that |G| = 2,W (G) ≤ B do
4: G = GREEDY(G, S\G)
5: A = arg max{P (G), P (A)}
6: end for
7: Return arg max{P (A), P (Smax)}

We present the analysis as in [4] for the BMCP. Let OPT be the set of items picked in the optimal solution.
Let us order the items in OPT in the non-increasing order of their profits. Let Y be the first two items
in this order. Let Y ′ be the set of items added by the greedy subroutine to Y . Let r be the first iteration
in the greedy subroutine, where we consider an item in OPT but we do not add it to G as it exceeds the
budget (the IF condition fails in Step 3). Let us assume that a total of ` items are added to the solution set
G until this point, i.e., the set Y ′ has ` items. We will consider the items in the order, i = 1, . . . , `, `+ 1, in
which they are added by the greedy subroutine with `+ 1 being the first item in OPT that was considered

2

and rejected. Let ki be the iteration in the greedy subroutine where we have added item i (or rejected
item i = `+ 1) and Y ′i be the set of items added to Y so far.

The proofs of the following lemmas are only sketched as the arguments are straight from [4]

Lemma 2.1 ([4]). For each i = 1, . . . , `+ 1, we have

pi ≥
W ′i
B

P (OPT\Y)−
i−1∑
j=1

pi

 .

Proof Sketch:. For all j ∈ OPT\{Y ∪Ai−1} we have that

pj
W ′j
≤ pi
W ′i

and we also have
W (OPT\{Y ∪Ai−1}) ≤ B.

Hence, ∑
j∈OPT\{Y ∪Ai−1}

pj ≤
∑

j∈OPT\{Y ∪Ai−1}

W ′j

(
pi
W ′i

)
≤W (OPT\{Y ∪Ai−1})

(
pi
W ′i

)
≤ B

(
pi
W ′i

)
.

�

Lemma 2.2 ([4]). For each i = 1, . . . , `+ 1, we have

i∑
j=1

pi ≥

1−
i∏

j=1

(
1−

W ′j
B

)P (OPT\Y).

Proof Sketch:. We will prove it through induction. Clearly, it is true for i = 1. Let us assume it is true for
some i− 1 and we will prove it for the case i. Then,

i∑
j=1

pj =
i−1∑
j=1

pj + pi

≥
i−1∑
j=1

pj +
W ′i
B

P (OPT\Y)−
i−1∑
j=1

pj

=
(

1− W ′i
B

) i−1∑
j=1

pj +
W ′

B
P (OPT\Y)

≥

1−
i∏

j=1

(
1−

W ′j
B

)P (OPT\Y).

The first inequality follows from Lemma 2.1 and the second from the induction hypothesis. �

3

Claim 2.3 ([4]). If a1, . . . , an ∈ R+ and
∑n
i=1 ai = αA, then the function(
1−

n∏
i=1

(
1− ai

A

))
attains a minimum value of (1− (1− α

A)n).

Theorem 2.4 ([4]). The greedy algorithm is within a factor of (1− e− 1
d) from the optimal.

Proof. We define Ŵ as follows:

Ŵ =
`+1∑
i=1

W ′i =
`+1∑
i=1

∑
e∈Si

we
de
.

Multiplying by d throughout, we get

dŴ =
`+1∑
i=1

dW ′i =
`+1∑
i=1

∑
e∈Si

d
we
de
≥

`+1∑
i=1

∑
e∈Si

we ≥W (
`+1⋃
i=1

Si) ≥ B.

From Lemma 2.2, we have the following,

`+1∑
j=1

pi ≥

1−
`+1∏
j=1

(
1−

W ′j
B

)P (OPT\Y)

≥

1−
`+1∏
j=1

(
1−

W ′j

dŴ

)P (OPT\Y)

≥

(
1−

(
1− 1

d(`+ 1)

)`+1
)
P (OPT\Y)

≥ (1− e− 1
d)P (OPT\Y).

The second inequality follows from claim 2.3. Now we have∑̀
i=1

pi + P (Smax) ≥
`+1∑
i=0

pi ≥ (1− e− 1
d)P (OPT\Y).

The profit of the (` + 1)-st item that was rejected must be less than the profit of the two items in Y . So
we have p`+1 ≤ 1

2P (Y).

Now we have

P (A) ≥ P (Y) + P (Y ′)

= P (Y) +
∑̀
i=1

pi

≥ P (Y) + (1− e− 1
d)P (OPT\Y)− pl+1

≥ 1
2
P (Y) + (1− e− 1

d)P (OPT\Y)

≥ (1− e− 1
d)(P (Y) + P (OPT\Y)

= (1− e− 1
d)P (OPT).

4

The last inequality is true for all d ≥ 2. For d = 1, the SUKP is just the regular knapsack problem.

We would like to make a few remarks before we conclude. If we set up the natural independence system
for the problem (or its dual) with respect to subsets of items whose weighted union is within the budget
(whose complement exceeds some profit), the special case under consideration does not correspond to a
bounded rank quotient, making the case studied non-trivial.

We also would like to point out the fact that

lim
d→∞

∣∣∣∣(1− e− 1
d)− 1

d

∣∣∣∣ = 0.

This gives evidence to the claim that the true approximation factor is actually the constant 1
d . On the

negative side, consider a star Sd−1, with d edges. Let us replace each leaf node by a complete graph, Kd.
If we have to pick d nodes, the greedy algorithm would pick the internal node and the leaf nodes, which
induces a subgraph with exactly d edges. However, the optimal solution is d(d−1)

2 . So, we cannot achieve
a factor better than 2

(d−1) , but the tightness of the analysis is still open.

We could easily note that the greedy algorithm is mimicking a primal-dual type algorithm, so we could
hope to obtain such a factor by using a linear program for the analysis. For instance, let us consider the
following simple algorithm to obtain a 1

2d approximation factor. P1 is the natural LP relaxation for SUKP
and P2 is a relaxed version of it.

P1 : max
m∑
i=1

pixi

s.t
n∑
j=1

wjyj ≤ B

yj ≥ xi,∀j ∈ Si,∀i = 1 . . .m

xi, yj ≥ 0

P2 : max
m∑
i=1

pixi

s.t
m∑
i=1

W ′ixi ≤
B

d
(or

m∑
i=1

W (Si)xi ≤ B)

xi ≥ 0

xi and yj are the relaxed binary variables corresponding to item i and element j, indicating whether they
are picked in the solution or not. We can readily observe that every integral feasible solution to P2 is a
feasible solution to SUKP. We also have that every feasible solution to the P1 is feasible to P2, when we
scale it down by d. This is true because we are overestimating (implicitly) the weights of the elements in
P2 by a factor of at most d. We also know that the solution from the greedy algorithm for the maximum
value knapsack problem can be bounded by its dual LP value within a factor of 2. These two facts give us
a 1

2d -approximation for the special case of SUKP by just using the LP.

References

[1] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29:2001, 1999.

[2] O. Goldschmidt, D. Nehme, and G. Yu. Note: On the set-union knapsack problem. Naval Research
Logistics (NRL), 41(6):833–842, 1994.

5

[3] M. T. Hajiaghayi, K. Jain, K. Konwar, L. C. Lau, I. I. Măndoiu, A. Russell, A. Shvartsman, and V. V.
Vazirani. The minimum k-colored subgraph problem in haplotyping and DNA primer selection. In
Proc. Int. Workshop on Bioinformatics Research and Applications (IWBRA), 2006.

[4] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Inf. Process. Lett.,
70:39–45, 1999.

6

	Introduction
	Algorithm and Analysis

