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1 Introduction

Positive results obtained in [3,7] for low index cases, hae given rise to the opinion [1, conjecture
4.7] that an arbitrary regular differential algebraic equation (DAE)

A(Dz) + Bz =¢q (1.1)

with properly stated leading term and continuous coefficients can be completely decomposed into
independent, characteristic components by means of decoupling projectors, i.e., into an explicit
ordinary differential equation (ODE) and assessments with included differentiations. A regular
DAE according to [1] is one with a well defined tractability index pu.

In this paper we will show that this conjecture turns out to be true, provided that certain subspaces
of imD have continuously differentiable basis functions. This additional smoothness is closely
related with the solvability of the DAE itself and can lead to differentiability requirements for certain
parts of the coefficients A, D and B. However, the coefficients of the DAE are not differentiated,
and we do without derivative arrays.

Fine decouplings are convenient for the further analysis of DAEs.

The concept of the tractability index has been designed for DAEs with (almost) only continuous
coefficients and is related with a number of constant rank conditions, which are essential here.
Points with rank changes have to be treated separately as critical points, as already pointed out in
[2].

For a presentation of results on DAEs with smooth coefficients and on reduction techniques using
transformations we refer to the comprehensive overview [5]. In contrast to those results the decou-
pled system is noted in the original variables here. In case of a fine decoupling, the explicit ODE
is uniquely determined, which is e.g. important for qualitative investigations of the flow.

A constant coefficient DAE is regular with tractability index y if the corresponding matrix pencil is
regular with Kronecker index p. A variable coeflicient DAE that can be reduced to strong standard
canonical form (SSCN) (cf. [6]) by scaling and a transformation of the unknown function is regular
with a tractability index that equals the nilpotency index in the SSCN ([2]).

Below we will realize a general regular DAE (1.1) to be equivalent to a DAE in standard canonical



form (SCF) (cf. [4]), supposed that the mentioned smoothness for the fine decoupling is given.
The aim of this paper is just the verification of fine decoupling. For more general discussions on
DAE concepts we refer to [5], but also to [2].

The paper is organized as follows:

Section 2 describes the necessary material from [1] and [2]. Section 3 deals with index-2 DAEs
as a case study. Fine and complete decouplings are constructed in the Sections 4 and 5, respec-
tively. Section 5 contains the SCF. The concluding remark follows as Section 6. The Appendix
contains the proof of Lemma 4.2, which gives the basic rules for the construction of fine decouplings.

Let us mention here that a linear DAE in the usual form
Ex' + Fz =q (1.2)

with continuous coefficients F,F may be rewritten as (1.1) with properly stated leading term

supposed F has constant rank and its nullspace is spanned by continuously differentiable basis
X 0

0 O) V, ¥ is nonsingular, U, Y are continuous, V

functions. Then one may decompose E = U* (

b))
0
we obtain a DAE of the form (1.1). Another possible version is, by means of the Moore-Penrose
inverse B,

is continuously differentiable. For instance, with A = U* ( ) , D=0V and B=F — AD'

E(EYEz) + (F - E(ETE))z = q.
If F itself is continuously differentiable, we may also use
EEY(Ez) + (F - EETE')z =q.

By means of those reformulations the results obtained for (1.1) apply to DAEs of the form (1.2),
too.

2 Fundamentals

We deal with equations
At)(D(t)z(t)) + B(t)z(t) = q(t), t €T, (2.1)

with continuous coefficients A(t) € L(R", R™), D(t) € L(R™,R"), B(t) € L(IR™), t€ I, TC IR
an interval, and with properly stated leading term.

The leading term in (2.1) is stated properly if the matrix functions A and D are well matched in
the sense that the decomposition

kerA(t) ® imD(t) = R", t€Z, (2.2)

is valid and both subspaces kerA and imD are C', i.e., they are spanned by C' basis functions.
Let R(t) be given by

R(t)?> = R(t), imR(t) = imD(t), kerR(t) = kerA(t).

Then, R is a continuously differentiable projector function. Additionally, we use a function D~ €
C(Z,L(IR™, IR™)) such that the conditions

D(t)D(t)"D(t) = D(t), D(t)"D(t)D(t)” = D(t)~, D(t)D(t)” = R(t), t € Z,



are satisfied. D~ is pointwise a generalized inverse of D. By this, D™ is not uniquely determined.
D™D =: P, is a continuous projector function with ker Py = kerD = ker AD.

A solution of (2.1) is a function z : Z C IR — IR™, which belongs to the function space C}, and
satisfies (2.1) pointwise. C}, is the short notation for

CH(Z,R™) := {z € C(Z,R™) : Dz € C(Z, R")}

Next, we recall from [1] the special sequence of matrix functions and subspaces to be used for index
characterization and system decoupling, namely

GO = AD, N() = k‘e‘l“G(), BO = B, Q() =1 — P(), (23)
and for 7 > 0,
Giv1 = Gi+ BiQi, Nii1:=kerGiy, (2.4)
i1 = Qir1, imQi1 = Nip1, Piyri=1—Qiyp, (2.5
Bl‘+1 = BZPZ - Gi+1D_(DP() e PZ'+1D_)IDP0 e R (26)

Here, if the argument ¢ is dropped, the given relations are meant pointwise. The matrices @Q;(t)
and P;(t) represent complementary projectors acting in IR™; G;(t) and B;(t) are m x m, and the
nullspace N;(t) is a subspace in IR™. When using (2.6) one has to take care of the existence of the
involved derivative.

Definition 2.1 ([1]) The sequence (2.3) - (2.6) is said to be admissible up to k € IN resp. the
projector functions Qq, ... ,Q are admissible if

(a) rankGi(t) =r;, t€Z,i=0,...,k,
(b) Nog@---®N;_1 Cker@;, i1=1,...,k,

(c) Q; € C(T,L(IR™)), DPy---P,D~ € CY(Z,L(IR")), i=0,... k.

Definition 2.2 FEquation (2.1) is called a regular DAE or, more precisely, a reqular DAE with
tractability index u if there is a sequence (2.8)-(2.6) that is admissible up to p € IN, and such that
Tu—1 < Ty =m.

For a regular DAE, the sequence (2.3) - (2.6) could be continued formally by G,1; = G, hence
Definition 2.2 coincides with the definition first given in [2].

Regularity of a DAE (2.1) as well as the index p are independent of the choice of the admissible
projectors. They are also invariant with respect to regular transformations of the unknown function
and refactorizations of the leading term (cf [1], [2]).

Recall that property (b) of admissible projector functions makes products PyP;--- P
PyP,---P; 1Q;, DPyP;--- P,D~, and so on, become projector functions, too. A regular DAE
(2.1) may be scaled by G,* to (cf. [2])

pu—1
P/,L—l s P(]D_(D.’B)I + G;lBPO K P'u_lili + Z Q].’B
py 7= (2.7)
+ > Y Py PiD™(DPy---P;D7)DPy--- Pi_1Qiz = G q.
i=11=1



The scaled version (2.7) of the regular DAE (2.1) shows more inherent structure. Via

= DPFy---Py1z, vo = Qoz, v; =Py P1Qiz, i =1,... ,p— 1, (2.8)
= D utwv+...+v,1, (2.9)

we obtain (cf. [1], [2] for quite long technical calculations) an equivalent, decoupled system

w' — (DPy---Py_1D™)'u+DPy---P,_1G;'BD"u = DPy---P,_1G}'q, (2.10)
Uy—1 = —}Cu_lDfu + ﬁu_lq, (2.11)
p—1 p—1
vy = =KD u+ Z Nkj(D’Uj)l + Z Mkj'Uj +Lrg, k=0,... ,u—2, (2.12)
j=k+1 j=k+2

with continuous coefficients Ky, Ny, My;, Ly described in detail in [1]. Here our special interest is
directed to the coupling coefficients Ko,... ,K;_1, i.e.,

Ko = QP+ Py 1G, {Bo+GoD (DPy---P,_1D")'D}Py--- P,_y, (2.13)
Kr = Py-- Py 1QpPes1-- Pu1G, ' {Bo+ GyD (DPy--- Py 1D ) D}Py--- P, 1(2.14)
k=1,...,u—2,

Ku-1 = Py Pu2Qu1G;'BoPy - Py_y. (2.15)
Definition 2.3 ([1]) For a regular DAE with tractability indez p, the admissible projector functions
Qo,--- ,Qu-1 provide

(i) a fine decoupling if C; =0, i=1,... ,u—1,
(ii) a complete decoupling if, additionally, Ko = 0.
Let Scanu(t) C IR™ denote the geometric locus of the solution values z(t) of the homogeneous DAE
(2.1) with ¢ =0, i.e.,
Seanu(t) == {z(t) : € C}, A(Dz)' + Bz =0}, t € T.

Introduce further Negpy := No@--- @ Ny_1. Both, Negy, and Seqapny, are independent of the choice of
admissible projectors Qo,... ,Qu—1 (cf. [1]). If admissible Qq, ... ,Qu—1 provide a fine decoupling
of the regular DAE (2.1), then the decomposition

Neanp(t) ® Scanu(t) = R™, t € T, (2.16)

holds true, and ¢4, = (I — Ko)Py- -+ P,_1 is exactly the projector function that realizes this
decomposition ([1, Theorem 4.4] and Theorem 4.3 below).

p—1
Since Nggnu(t) has constant dimension pm — > 75, Seanu(t) must have constant dimension
~
p—1 Z
d:=(1-pm+ > r.
i=0

In [1] it was conjectured that fine resp. complete decouplings do exist. Here we will show this
conjecture to become true supposed that there is some more smoothness in parts of the coefficients
A, D, B than the poor continuity we started with. We explain the situation for the case of y = 2.
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3 The known index-2 case

For an index-2 regular DAE (2.1) the general decoupled system reads in detail

u' — (DPyP,D™)u+ DPyP,G;'BD™u = DPy PGy 'q, (3.1)
vi = —KiD u+ PyQ:1G5 g, (3.2)
vg = —KoD u+QoQiD (Dv1) + QoPiGy g, (3.3)

with K1 = PyQ1G5 ' BoPy P, and
Ko = QoP.G;'(By+ GyD™ (DPyP.D™)'D)RyP;
= (QoP.G;'By — QyQ1D~ (DPyP,D™)'D)PyP;
= (QoPi1G;'By + QoQ:1D (DPyQ1D")'D)P,P;.
Computing
Q1G5 'BoPy@Q1 = Q1G5 (B1+ G1D (DPyP.D ) DPy)Q4
= QiG3'BiQ1 =@

we learn that Qq := Q1G2_1B0 = Q1G2_1B0P0 = QnglBl is a further continuous projector
function onto N; satisfying the condition Ny C ker@:. However, for admissibility we have to meet
the condition

DPyQ.G,'ByD™ € CHZ, L(IR™)). (3.4)
If this condition is given, the new sequence Qg := Qo, @1 := Q1G5 LBy P, provides
él = G1, GQ = G+ (B()PO - GlDf(DP()PlDf)’DP())Ql
= Go(I+ Q1P+ Q@1 D™ (DRPID™)DRQ1) =: G225,
Q:1Gy'BoPy = Q125 'Gy'BoPy = Q1(I — Q1P1)G5' BoPy = Q1G5 ' BoPy = Qu,
and thus Kl = Pleéz_lBopopl = plepl =0.
It should be stressed that condition (3.4) is quite natural with respect to solvability. Put ¢ = 0
and look at the equations (3.2) and (3.3). For obtaining Dv; € CY(Z,IR") and further, with

z =D u+wv+wv, Dz e CYZ,IR"), we need (3.4). Namely, (3.4) leads to DK;D u =
DPyQ,G5 ' ByPyP.D~u = DPyQ,G5 ' BoD™u € CY(Z, R").

Example 3.1 ([1, Ezample 4.2])

For the DAFE
i (t) = a(b),
zy(t) — w3(t) = ),
20(t)z1(t) + z2(t) = q3(t),
we realize immediately what the solutions in case of ¢ = 0 look like : z1(t) = x10,x2(t) = —2a(t)z10,
however, to compute z3(t) = =2/ (t)z1g if 19 # 0, the coefficient o necessarily has to be C*.
Written as (2.1) with
10 0 0 O
A=1{0 1 ,D:G)(l)g),B: 0 0 -1,
00 20 1 0



000
this DAFE is reqular with tractabiliy index 2. The projectors Qo= |0 0 0
0 01

000
, @i=(0 10
010

are admissible and yield a decoupled system with

00
Ql = Q1G2_130P0 =20 1 0 , DP()PlD_ = ( 1(1 0) .
o

Remark: Concerning the index-2 case, condition (3.4) is incorporated into the definition of index-2
tractable DAEs given in [3] at the very beginning by means of the demand for the subspaces DN,
and DSy, S; := {z € R™ : Bz € imG1}, to be spanned by C' functions. In our example these

subspaces are

0 1
DNy = span (1) , DS1 = span (—2a> .

We would like to point out that these smoothness conditions are related to an appropriate further
decomposition of the C! subspace imD. There is no general need for the original coefficients
A, D, B to be continuously differentiable.

We finish this section on the case y = 2 by noting that, given a fine decoupling sequence @, Q1,
the projector functions

Qo = QoP1G5 ' By + Qo@Q1 D~ (DPy@Q1D™)', Q1 := (I - QPy)Q1 = Q1

are proved to generate a complete decoupling ([3]).

4 Construction of fine decouplings

Given a regular DAE (2.1) with tractability index p and an admissible sequence Qo, ... ,Qu—1.
Rewrite the coupling coefficients (2.14) -(2.15) as

with

QO*
Qk*

Qu—l*

Remark: Here, Qrs, k=1, ...

Ko =
Ke =
Kuy1 =

QoPy -

Qkpk+1 '

Q/L—IG;

Qo«FPo---Py_1, (4.1)

Py--- P 1QusPo---Py1, k=1,... ,u—2, .

PPy 2Qu-1+Po-+ Py (4.3)
P, 1G,"{By+GoD (DP,---P, 1D")'D}, (4.4)

- Py 1G, ' {By + GxD™(DPy--- P, 1D™)'DPy--- Py_1}, (4.5)
k=1,...,u—2,

'By1. (4.6)

, b — 2, are slightly different from those introduced in [1, Section 3],

and do not lead to the desired results.



We will show that, by a smart choice of admissible projector functions, the coefficients Ky, k =
1,...,u —1, disappear. Since kerPy---Pr,_1 = Ny @ --- ® Ni_1 C kerQy, the coupling coeflicient
Ky, vanishes only if its factor Qg«Fy--- P, 1 does so, k = 1,... ,u — 1. So we restrict our interest
to these expressions.

Lemma 4.1
(i) Qix € C(Z,L(IR™)) is a projector function with imQs = N;, i =0,... ,u— 1.
(ii) Fori=0,...,u—1 it holds that Ny @ --- & N;_1 C kerQix.

Proof: We show that Q;«Q; = Q;- Then, the other assertions follow from the construction.
Compute

Qo+Qo = QoP1 --- Pu—1G,IlBoQ0 =QoPr--- Pu—lG,IlGqu =QoP1---P,_1Qo = Qo,
and for k=1,... ,u—2

QusQr = QrPri1 - Pu1G;'BrQy +
+QkPyt1+++ Pu-1G,'GyD ™ (DPy-+-Py_1D”)'DPy -+ Py_1Qy
= QrPry1--- Pu—1G;1Gqu +
+QkPis1 -+ Pu1Gy 'GyPy—y -+ PuD (DPy++- Py 1D™)'DPy -+ Po_1Qy
= Qr+ QxPiy1 Pum1PeD-(DPy++-Py,_1D~)DPy--- P,_1Qx D™D
= Qr— QrPiy1 Py1PPy-- P, 1D (DPy-+ P,_1QrD™)'D
= Qk;
Qu-1:+Qu-1 = Qu—lG;;lBu—l = Qu—lG,IlGuQu—l =Qu-1.

O
For any two admissible projector function sequences Qo,... ,Q,—1 and Qo, - .- ,Qu_l the corre-
sponding matrix functions are related by
G1=G1Z1, Zy:=I+QuQoP, (4.7)
i—1
Git1 = Giy1Zip1, Zipr = (I + QiQiP; + ZQjZijQi)Zia (4.8)
=0

i=1,...,u—1.
The coefficients Z;; are continuous, their detailed form does not matter here. For the proof of (4.7),
(4.8) we refer to [1].

Given the admissible projector functions Qy, . .. ,Q,_1 we now construct new ones Qq, ... ,Q,_1 in
the following way. We fix k € {1,... ,u — 1} and choose Q; :== Q;, i =0,... ,k — 1.. Then we take
a new continuous Q such that Ny @ --- @ Ny_1 =No@®--- ® Ny_1 C kerQy. DPy--- P,_1P,D™
is assumed to be continuously differentiable. Further we choose Q; := Z;lQiZi = 7Z; 1Q;, i =
E+1,...,u—1Lifk<pu—2

Thereby, we have fori =k +1,... ,u4—1

?

QiQ; = Z7'QiQ; =0, for j=0,... ,k—1,
QiQr = Z7'QiQrQr =0
QiQ; = Z7'QiZ7'Q;=Z7'QiQ; =0, forj=k+1,...,i—1,
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and, additionally, Q;P; = Z;'Q;P; = 0, so that the factors Zi,... ,Z, (cf. (4.7), (4.8)) simplify to
Zi=1,i=1,... .k,

k-1
Zrpr = T+QrPe+ Y Qi ZkiQk, (4.9)
i1 "
Zipn = (I+) QiZyQi)Zi, i=k+1,...,p—1 (4.10)
=0
Compute
k-1
Zkil =1 — QP — Z Q) Zk;Qr
=0
and, fore=k+1,... ,p—1,
i—1 i1
Z2N =27 =(1-)Q;2iQi), ZiZi=1- Q;Z;Q
j=0 =0

and, moreover,

Py---B = Py--Po1\PyPyp1---Pi=Py-- Py 1(Pe + Q)P -
= Fy--- PkZ;;ilPkHZkH - Z7 P Z; + PyPy_1 Qi Py -+ P
= Py P+ Py Py 1QpPpPyyr - P
= Py--Pi— Py P1QpPy - B,
DPy---P.D- = DPy---P.D- —DPy---P, ,QuD~ -DPy--- P,D".

|:.U‘

Since DPy---P,_1QyD~ = DPy---P,_1D~ — DPy--- P,_1P,D~ is continuously differentiable, so
are the DPy--- P,D, i.e., our new Qy,... ,Q“,l are admissible.
Lemma 4.2 For a fized k € {1,... ,p —2}, let QuPo---Py—1 =0, i =k+1,...,u—1. Let
Qi =Qjj=0,--., k=1, Q7 = Qx, kerQx 2 No®---® Ny, 1, imQy = Ny, DPy-+- P, 1QiD™ €
CY(Z, L(R™)), Q; = Z;leZj,j =k+1,...u—1. Then, Qo,...,Qu—1 are admissible and the
relations
QiPo--Pyq = 0, i=k+1,...,u—1 (4.11)
QusPo-"Pu1 = (Qps— Qr)Po-+-Pys (4.12)

become true.

Proof: It remains to show (4.12),(4.12). This is done by longer but straightforward technical
computations in the Appendix below. i

As discussed e.g. in [1], we may a priori choose ()1 onto N,_1 along S,—1:={z € R™: B,_1z2 €
imGu_1} = {z € R™ : ByPy--- P9z € imG,_1} = {z € R™ : Byz € imG_1}, since, in the
index pu case, the decomposition N, 1 & S, 1 = IR™ is valid.

However, this yields

Q,u—l = QM—IGJIBM—I (4.13)
i.e., Qufl = Qufl*, Qufl*Po e P/.L*l = 0.



Let us stress again (cf. §3) that an additional smoothness condition for the original DAE coefficient
may be attached to the condition DPy--- P,_oP,_1.D~ € C'(Z, L(IR")) ensuring admissibility.

Lemma 4.2 indicates how to proceed further. Namely, having (4.13), ie., K,_1 = 0, we put
Qu-2 = Qu—2+« and obtain K, | = 0,K,_» = 0, and so on. In each step, at least one further
coupling coefficient disappears.

Theorem 4.3 Let the DAE (2.1) be regular with tractability index u, and let its coefficients be
sufficiently smooth.

(i) Then there exists a fine decoupling sequence Qo, ... ,Qu—1 -

p—1
(ii) The solution space Scanu(t) € IR™ has constant dimension d = (1 —p)m + Y m; on I.
1=0

(#1i) The inherent regular explicit ODE (2.10) is independent of the special choice of the fine decou-
pling sequences, and so is its characteristic invariant (time-varying) subspace
imDPy--- Pu_lDi.

Proof: It remains to show (ii) and (iii).
(ii) is a consequence of the decomposition (2.16), which becomes true for fine decouplings.

(iii) Let Qo,...,Qu—1 and Qo, - - - ,Q“_l_be admissible and both provide fine decouplings. Then,
Heany = (I —Ko)Py-+- Py = (I — Ko) Py -++ P,_1 is the projector onto Scany, along Neany =
No®---®N,_1. Taking into account that D™ = PyD~, euny = eanuPo = HeanuPo we find

DPy---P, 1D~ = DlinuD~ = DIun,PyD~ = Dleyn, D~
= DPy---P,_1D7,
DPy---P,1G,' = DPFy---P,1D DG,'=DF---P, 1D DZ,G,"
DP,--- “716*;1,
DPO"'Pu—lGL_LlBD— = DPO---P,L_1C_¥IIIB(P0 + Qo)D~
DPy-+-P,1G,'GuQoD™ + DPy--- P,_1G,' BRyD~
= DPy---P,1G,'BD",

hence, all coefficients of the explicit ODE (2.10) coincide, and
’I:mDP()---PN_lD_ :’imDpo---Pu_lD_. O

Let us stress once again that, basically, we deal with continuous coefficients A, D, B in (2.1). The
additional smoothness demand in Theorem 4.3 concerns consecutive decompositions of imD into
further subspaces spanned by continuously differentiable functions. This can be connected with
special smoothness requirements to the coefficients A, D, B. Simultaneously, we have a close relation
to the solvability of the DAE. A precise definition of these smoothness requirements would be highly
technical, so that we do without it and content ourselves with the flat formulation sufficiently
smooth. However, let us mention that the coefficients A, D, B themselves are not differentiated.



5 Complete decouplings and standard canonical form

In case of regular index-1 DAESs, the projector function (g chosen in such a way that ker@Qq = S,
So:={z € R™ : Byz € imGy} provides the completely decoupled system (cf. [3])

u' — R + DPRG,{'ByD v = DPG'q, (5.1)
v9g = Qonlq (52)

since Qo = QoG ' By, and Ny ® Sy = IR™.
In [3], projectors Qg, @1 providing a complete decoupling of regular index-2 DAEs are described.
Now we are able to generalize these results.

Theorem 5.1 Given a reqular DAE with tractabilty indez p and fine decoupling projector functions
Qo,---Qu-1. Then there are admissible projector functions Qo,...Qu—1 that provide a complete
decoupling.

Proof: We choose Qg := Qu., Qi := Zi_lQl-Zi, 1 = 1,...,u — 1. Taking into consider-
ation that D~ = PyD™, QOZ,-_l = QoI — QoPy) = Qo, we derive Q;Q; = 0, for j < i,
QiP;=0,fori=1,... ,u—1, further Py---P;= Py---P,+QoPyPy---P,=Py---P,— QoPy--- P,
DPy---P,D~ = DPy---P,D~ = DPy---P;,D~, i = 1,... ,u — 1. Hence, the new projectors are
admissible. Then we check Ko = (Qos — Qo)Po -+ P,—1, K; = 0,i = 1,...,u — 1, analogously to
Lemma 4.2 (cf. Appendix). O

Each of the decoupled system equations (2.10) - (2.12) is formulated in IR™, so that (2.10) - (2.12)
is in IR™#+1) In fact, there is a lower number equation so that we can condense the whole system
to an equation in IR™. We will show that the condensed system has standard canonical form (SCF),
that is, it consists of the two parts (cf. [4])

v+ My = Ly, (5.3)
Nuw' +w = Lyg, (5.4)

where N is strictly upper triangular independent of ¢.
Let Qo,...,Qu—1 be admissible projectors providing a complete decoupling (2.10) - (2.12),
Ki=0,i=0,1,...,pu—1. Then, the projector functions DFy --- P,_1D~, DFy--- P, _2Q,_1D~,...

pu—1
..., DPyQ1 D are continuously differentiable and have rank d = (1—p)m+ > r;, m—ry_1,... ,m—

1, respectively. There are full rank continuously differentiable matrix functions WaWy—1,... , W1
(with d,mm —ry—1,... ,m —r1 rows, but all with m columns) such that Wy(imDPFy--- P,_1D™) =
R, W;(imDPy---P,_1Q;D~) = IR™ ", i=1,...,u— 1. The Moore-Penrose inverses W;,W;’,
i =1,...,u — 1, are also continuously differentiable. It holds that W,Wf = I, and Wj' W; is
the orthoprojector function onto im DPy--- P, 1@Q;D~,i = 1,... ,u — 1. Analogously, Wde =
1, W;Wd projects onto ¢m DFPy---P,_1D".

Since @y is continuous, there is a Wy € C(Z,L(IR™,IR™ ")) such that Wy(Ny) = IR™ "0,
WoW, = I, Wi Wy projects onto N.

Multiplication of equation (2.10) by Wy yields, for y = Wyu,

y' = WiWiy +WaDPy--- Py 1G;' BD" W]y =WyDPy--- P, 1G,'q.

Here, due to v = DPy -+ P, 1D u, we have u = W;Wdu = W;y.
With Ly := WyDPy -+ P, 1G,*, M := WqDP,y--- P, 1G,*BD™W] — W)W/ we arrive at (5.3),
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i.e., an explicit ODE in IR%. y and the original unknown function z are related by
y=W4DPy---P, 1x.
Next we multiply (2.11) by W,_1D and obtain, for w,_1 := W,_1Dv,_1,
wy—1 = Wu—1DL, 4. (5.5)
Due to Dv,—1 = DPy--- P,—2Q,—1D~ Duv,_1 it holds that Dv,—1 = W ‘W, _1Dv,_1 = Wi w,_1,

7 2
further v, 1 = D" Dv, 1 = D_W:_lw“,l.

Analogously, for k = 1,... ,u — 2, put w := Wi Dy, so that vy = D_W,;"wk, Duv, = W,;"wk, and
(2.12) yields

p—1 pu—1
wp =Y WpDNigOWiHw; + Wiwi) + Y WiDMy;D™Wirw; + Wi DLy,
j=k+1 j=k+2
ie.,
p—1 pu—1 .
W = Z Nkjw;- + Z Mkjwj +WiDLyq, k=1,... ,u—2. (5.6)
j=k+1 j=k+1

The coefficients N kj M kj are continuous.
Finally, equation (2.12) with k = 0, leads to

— — +
wp = W()’Uo, vy = WO wo,

n—1 pu—1
wo = ZN@jw;- + Z Moj’u}j + WoLog. (5.7)
7j=1 7j=1
Collect (5.7), (5.6) and (5.5) together to

wo 0 Nop - -/\70“—1 0 0 Mo - MOufl wo
. ! . .

w1y : w Do . : w1

S=]0 0 - S o +
. . NH—Qu—l ) : . MN*QN*1
Wy—1 0 0 0 Wy—1 o --. 0 Wy—1

24
<

WoLog
W1D£1q
+ .
Wp,—lDﬁu—lq

Finally, scaling the last system by the inverse of I — M, we obtain the system

wo 0
w1 w)
+N : = Lyq (5.8)
Wy—1 wL_l

11



where N := —(I — M)~'A is strictly block upper triangular, N'* = 0, and

Wo Lo
— WiDLy
Ly:= I - M)t ) . All coefficients are continuous. System (5.8) consists of ym —
Wy DLy
u—1

> r; equations. By these considerations the following statement is proved.
t=0

Theorem 5.2 A reqular DAE with sufficiently smooth coefficients is equivalent to a DAE in SCF.

Supposed the function ¢, the coefficient L,,, and the entries of A in (5.8) are smooth enough, the
differentiations can be carried out. By this, equation (5.8) is replaced by the simple assessment

w=g, (5.9)

where g now contains all resulting derivatives. On the other hand, transforming y = Tz in (5.3),
with T" being a fundamental solution matrix to the ODE ' + My = 0, yields the trivial ODE

2= f. (5.10)

It turns out that a regular DAE with tractability index y, the characteristic numbers rg,... , 7,1,
and sufficiently smooth coefficients, is equivalent to a DAE in so-called (cf. [8]) strangeness-free
form (5.9),(5.10), with 2(¢) € R%,w;(t) € R™ ", i =0,... ,u — 1.

We point out that both, the SCF (5.3),(5.8) and the strangeness-free form DAE (5.9),(5.10) are
given via transformations of the unknown variable while the decoupled system (2.10),(2.11),(2.12)
is given in the original setting of the DAE.

6 Concluding remark

It is shown that, under certain smoothness conditions concerning some special subspaces, each
regular DAE has both, fine and complete decouplings. Moreover, each such DAE is equivalent to
a DAE in SCF.

Basically, the DAE coefficients are only continuous. The additional smoothness attached to the
demand for the existence of admissible projector functions providing a fine decoupling is closely
related to solvability.

Roughly speaking, one can say that a solvable regular DAE is equivalent to a DAE in SCF. This
sounds very similar to results in [4], however, the understanding of solvability is quite different.
Fine decouplings are an appropriate tool for the further analysis of DAEs. Since there is an inherent
explicit ODE that is uniquely determined by the problem data, the qualitative behaviour of the
flow can be studied. Also, strong solvability statements are available (cf. [1]), in particular the
function spaces of admissible right-hand sides ¢ leading to C}, solutions can be described precisely.
If ¢ has lower regularity, the decoupled system shows clearly which components suffer from the
discontinuities etc.

7 Appendix: Proof of Lemma 4.2

Given admissible projector functions Qo, ... ,Qu—1 for the regular DAE (2.1) with index y, with
QjxPo---Py—1=0,for j=k+1,...,p0—1,and k € {2,... ,pn — 2} fixed.

12



Put Qj =@Q;,7=0,... ,k—1and let Q}, be such that Qq, ... ,Qy is admissible up to order k.
Put further @) := Z QJ =Qj, j=k+1,... ,u—1. Then Qo, - - - ,Qu 1 are admissible.
It holds that G; —G 25, 3 =0,...,u; Z; =1, j=0,...,k,

k-1
Zip1 = T+ QP+ Qi ZkiQx,
=0
QePr = —QiPy,
QZ-PZ = Oa ’L:k}+1,,/1,—1,
i1
Ziyn = (I+ ZQjZijQi)Zia i=k+1,...,p—1
=0

Further, we have for i > k + 1

PO"'Pi:PO"'Pkflkak+1“‘Pi and

DPy---P,D”" =DPy---P,D™ — DPy--- Py_1QyD~ - DPy---P,D".

Compute

Qr+Po - Pu 1 —QkPk—i—l Py G B, +GyD~(DPy--- P, 1D~)'DPy---Py_1}Py--- Py 1
= QxPry1-- PG, {BoPo Py IPkPk+1 Pyt
+GyD~(DPy-- D+ P, 1D)'DP,-- P, 1},

and with B := BoPy - Py_1PyPyi1--- Py_1 + GyD~(DPy-+- Py ---P,_1D™)'DPy-+- Py - P, _1,
taking into account that

QrZipt1 = QeI — QpPr) = Qk, (7.1)

we obtain

QrePo-- Py = QrPey1 21125 s Prra - Zy 22, \ Pu 12y 12, ' G,' B
= Qkpk—l—l(I — QrZk 11k Qr+1) Prra - -
(I = Qu-3Zy—2u-3Qu-2)Pu1(I — Qu-2Zy—1,2Qu-1)G, G,'8
= QuPret1 Puc1G'B + W1 Quy1 Povo - Puci G B + - + A 1Qun G B, (7.2)

Next we show that the terms Qu_lGljl‘,B, cor s Q1 Pryo--- Pu_lGljl% in (7.2) disappear. For this
purpose we reformualte B as follows

B = BoPy-+Py_y+GpD (DPy-- Py_1D")DPy---P,_;
+BoPy -+ Pe1QePyPo--- Puo1 + G D™ (DPy--- P,y D7) DPy--- Py 1 Q Py Po--- Py
+GyD™(DPy -+ Py 1QpPyPy--- Py 1D7)DPy - Pp_1PyPpy1--- Py
— ByPy-- Py +GyD (DPy--Py_1D )Y DPy-- P,y
+(By, + Gy D™ (DPy--- P, 1D7)'DPFy--- Py _1)Qx PPy --- Py 1

k
+3 " G;D™(DPy---P;D™)'DPy-+ Po1QpPi Py Py
j=1
+GD ™ (DPy-+- Py 1QxPyPy-+- Py, 1D )DPy-+- Py 1PyPry1- Py1. (7.3)
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Since Q'u_lG;lGj = Q,u—lpu—l T R7 = O, for ] S Mm— 1, and QM—IGEIBka = Qﬂ—le = 0, we
find immediately

Qu1G'B=Qu 1G, ' BoPy---Py1 = Qu-1.Py+ Py1 =0. (7.4)
Fori=k+1,...,u—2, it holds that
QiPiy1--- Pu—lG,II{Gk - Gi} = —QiPiyq--- Pu—lGﬁl{Bka +--+Bi_1Qi—1} =0,

QiPiy1- u 1G ' BrQr =

QiPiy1--- Py 1G GkD (DPy:-+P, 1D )'DPy-+- Pr_1Qg
—Qz i1 Pyt PiD~(DPy---P,_1D™)'DPy--- Ppr_1Qpg
=—-QiPiy1---Py_1P-Py---Py,_1D (DPy--- P,_1QrD)'D =0,

and

QiPit1--- Py Gyt Z G;D~(DPy---P;D™)DPy--- Po_1Qp Py Py --- Py
= QiPyy1 Py \PD~(DPy-++ PuD~YDPy-+- Py 1QuPePy - Poi.
This yields, fori =k +1,... ,u — 2,
QiPip1-+-Pu1G'B = Qi Piy1 -~ Pu1 +

+QiPiy1--- P, 1BD™(DPy--- BD)'DPy--- P 1 QpPuPo---Pu1
+QiPiy1 Pyt PD™(DPy -+ Py 1QyPyPo-++ Py 1D~)DPy-++ Py 1PyPyy1--- Py,

(7.5)
and because of
QiPiy1- - Py 1PD (DPy--- Py 1QpPyPy--- Py 1 D7) DPy- - Py PuPry1 -+~ Pya
_—Qz i+1° Pu1PiD~(DPy--+ PD~)DPy--- P, 1Qy PPy Py_q
we obtain from (7.5)
QiPit1-+- Py 1G'B = QinPiy1 -+ Pyy = 0. (7.6)
Now, (7.2) simplifies to
QinPo++ Py = QpPry1 -+ Pu1G'B. (7.7)

Because of QP41+ Pu_lGﬁlBka = Qx,

QkPrt1- - Pu1G,'GyD™(DFy--- P,_1D7)'DPy - - - Py_1Qy
= —QiPri1--- Py IPkPO -P,_1D~('DPy--- P,_1QxD~)D =0,

QiPri1--- Py Gyt Z G;D~(DPy---P;D™)DPy--- Po_1QpPxPy--- Pyy
= QrPri1- Pu- 1PkD (DPy -+ PyD™)DPy -+ Py_1QrPyPo -+ - Pyt
and (cf. (7.3))

QkPry1--- Py 1G,'GyD ™ (DPy -+~ Pe 1QyPyPo--- Py 1D ) DPy--- Py 1 PyPry1 - Py
= —QiPyy1- - Pu1 PyD™(DPy--- PoD™)'DPy--- Po_1QiPyPy--- Py_1,
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the relation Qg Py y1 -+ Py 1G "B = QpuPo - Puo1+QpPePo - Py1 = QpuPo -+ Puo1 —QpPo - -
Py, ie., (cf. (7. )) QM*PO P, = (Qk* Qk)Po - -+ P,—1 follows. By this, relation (4.12) in

Lemma 4.2 is verified.

Now we turn to relation (4.11). Obviously, it holds that

Qu 1*P0 Py =Qu- 1G BOPO ul—Qu 1G Boul
=Z,_ IQM 14— 1Z lG 1BOZ 1Pu1Z, 1= N IQN 1G BOP() Py

= H1Qu 1+ - - 1—0
Fori=k+1,...,u— 2 we derive

QixPo- Py—1 = QiPiy1-+ Py 1G YByPy---Py_1+GD~(DPy--+-P,_1D~)'DPy---P,_1}
_Z—lQZZZZHP Zu 27, Pu 1Zu 121G Dy
=Z7'QiPiy1 (I - Qz z+lez+1) 2 - (I Qu 3Zu 2u—3Qu—2)Pu—1-
= Qu-—2Zy—1,— 2Qu 1)G Ip;
=Z7'Qi z—l—le—i-Q - P, 1G;'D; +Ez+1Qz+113i+2"'Pu—1G;1Di
+ EM—ZQM—QPN—IG;LDi + EM—IQM—IG;LD

where

D; = B()Po---P“,1 +GZD_(DP07 Pule_)IDPO PH 1 - - - -
— BoPy-+- Pyy + BoPy - P 1QuPiPy - Pyoy + Gs(Zi — )D~(DPy-- Py 1 D) DPy - Py
—I—GZD_(DP() s Pule_),DPO .- prl + G;D~ ((DP() Pule_),DPO P 1QpP Py - - PIJ*1

+G;D~(DPy-+-Py_1Qy PPy P,_1D7)'DPy---Py_1 PPy -+ Py,

hence,
D; = BOPO---PN_l—I-GD (DPO +P,_1D~ )DPO Py

+GZ(ZZ—I)D (DPO PM 1D~ )DP() PN 1
~GiPy-++ Py 1D (DPy-++ P, 1QyD7)DPy++ Py 1PyPy--- Py

k B (7.9)
-I—(B]c + Z GjD_(DPO R PjD_)DPO v Plc—l)QlcPkPO cee Pu,1
Jj=1 _ _
+G1D7(DP0 cee Pk_lePkPO v P'u_lDi)IDPQ v Pk:—IPkPk—H cee PH—l'
Since Qu1G,'Gi = Qu1G;'GiZi = Qu1Py1---PiZ; = 0, one has Q, 1G,'D;

Qu1G, 1Bopo Pyq = QuflGlleOPO"'prQZ,:_llpquZufl = Qu1G,'ByPy---P, 1 =
Qu— 1*P0 P, 1=0.
It remains to show that Q; Py -- u_lGleDi vanishes for [ = 4,... ,u — 2 and , consequently,

QZ*PO Pp 1=0.

We have [ >4 >k + 1 and

i—1
QPi1-Pu1G,'Gi(Zi — 1) = QPryy - Pua P Qi Zin1j Qi1 = 0, (7.10)
=0
QP41+ Py 1G,'GiPy-+ Py 1 = QP41+ Py 1P - Py Py 1 =0 (7.11)
QPry1- - Pu1Gy ' BrQr = QuQk = 0, (7.12)
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k _
QiPry1- P 1G' Y, GyD™(DPy - P;D™)'DPy -+ Py 1QPrPy--- Pys (7.13)
=1 :

=@QPy1-- Py 1PBD (DPy---PyD™)DPy -+ Py_1QPyPo -+ - Py,

QP41 Pu1G,'GiD™(DPy -+ Py_1QpPp Py - - P, 1D7)'DPy--- Py 1PyPyiy - Py
=—-QPy1---P, 1P D™ (DPy---PyD™)DPy--- Py_1QyPyPo--- Py 1.

(7.14)
Inserting these expressions (7.10) - (7.14) into QP41+ P, 1G,,'D; we find finally
QiPiy1---Pi1G'D; =
= QP41 Pu1G{BoPy---Byo1 + GiD™(DPy--- By_1D™)'DPy--- P,_1}
= QIIDH_1 cee PM—IGIII{BOPO cee Pﬂ_l + GlD_(DPO cee PM—ID_),DPO cee P,u—l}
=QubPy---Py—1=0. O
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