NUMERICAL APPROXIMATION OF CAPILLARY SURFACESIN A
NEGATIVE GRAVITATIONAL FIELD

HANNE HARDERING

ABSTRACT. A capillary surface in a negative gravitational field déses the shape of the
surface of a hanging drop in a capillary tube with wetting eniat on the bottom. Mathe-

matical modeling leads to the volume- and obstacle-cansilaminimization of a noncon-

vex nonlinear energy functional of mean curvature type tviscunbounded from below.

In 1984 Huisken proved the existence and regularity of leealimizers of this energy

under the condition on gravitation being sufficiently weke prove convergence of a first
order finite element approximation of these minimizers. Mrioal results demonstrating
the theoretic convergence order are given.

1. INTRODUCTION

By everyday experience hanging drops do not fall if they aralsenough. By rescaling
this condition is equivalent to gravitation being suffidigrweak. Mathematical modeling
of this situation gives rise to the minimization of a nonnenergy functional of mean
curvature type. We refer to this minimization as the captifgproblem and to its solution
as a capillary surface. It makes sense to consider the aafyilproblem in positive and
negative gravitational fields, i.e., sitting and hanginggdrin capillary tubes. Considering
positive gravitation leads to a convex energy functionalereas negative gravitation leads
to nonconvexity of the energy. In the case of negative gativih we need to fix the volume
of the liquid, whereas in positive gravitation this is opté. Furthermore, in modeling of
closed tubes or multiphase fluids obstacle constraints.aris

Solvability of the capillarity problem in a positive gra&itonal field was shown in
[Ger74], regularity of such a solution in [Ger76]. Obstaatel volume constraints were
treated in [Hui85]. In [Hui84] it was shown that there exiattocal minimizer to the capil-
larity problem with fixed volume and an obstacle constrairg hegative gravitational field
for sufficiently weak gravitation.

Convergence of the approximation of a two-dimensionallzagisurface in a positive
gravitational field by first order finite elements was provefMit77]. The nonconvex case
of negative gravitation has not been treated so far. Thesmh of a volume constraint in
the case of positive gravitation was briefly addressed i{K]i Obstacle constraints have
not been examined in this context.

In this work we will considen-dimensional capillary surfaces of fixed volume over an
obstacle in negative gravitation. We will show existencloél minimizers of a first order
finite element discretization of the energy functional a#i a®convergence of the discrete
to the continuous solution.

I would like to express my gratitude to Gerhard Huisken fatiating this work. Many thanks to Ralf Korn-
huber, Oliver Sander, and Carsten Graser for encourageandrenriching discussions.
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Our method of proof provides the optimal order of approxioratlthough the problem
has global properties usually considered problematid) asaonlinearity and nonconvex-
ity. This is possible because we are only interested in ttalder of discrete solutions
locally, i.e., near the continuous ones. We are using a qurafdocality specific to the
field of partial differential equations. By using Poincan@equality, we will exploit the
higher order of the nonlinearity to establish regions ofwexity for the problem where
we can find unique minimizers. Modifications of the convergeproof of [Mit77] will
show that these minimizers in the restricted regions c@e/&y the continuous solution.
Using the boundedness of the continuous solution esta&dishHui84] we then show that
we can thus obtain a discrete solution which lies in the iatesf a region of convexity
and therefore is a local minimizer of the energy functioniie convergence result then
implies that this discrete solution converges to the cartirs one in th&v2-norm with
linear dependence on the mesh size.

After a mathematical description of the problem we will gavehort overview of previ-
ous results leading to the work of this paper. In the follayuinain part we show existence
of solutions to a finite element discretization of the capity problem in a negative gravi-
tational field as well as a convergence result. We will codelthis paper by giving some
numerical results illustrating the theoretic convergeorcker.

2. THE CONTINUOUS PROBLEM

A capillary surface is a surface of prescribed mean cureatith Neumann boundary
conditions. The name is derived from the typical exampléefdurface of a liquid rising
in a capillary tube.

The principle of energy minimization states that the swgfadl be in a state of minimal
potential energy. In order to obtain a mathematical exjpadsr the energy we assume
that the surfac& of the liquid can be expressed as the graph of a functio® — R over
the cross sectio® C R" of the tube, wher® is a connected and bounded domain. This
parametrization of the surfa&= grapHu) induces a metrig on Sdefined by

gij (x) = 3ij + Diu(x)Dju(x) ,
where
u
oxx’

andd;; denotes the Kronecker symbol.
The shape of the surface is then given by a minimizer of theggrfenctional, i.e., the
capillarity problem reads

Dyu= k=1,...,n,

1) ueK: Ju) <J(v) WekK,

whereK is a suitable function set arids given by

2) J(v):/Q,/1+|Dv|2 dx+/Q/OV(X)H(x,t) dt dx+/aQBv dHn_1 .

Here the first term models the cohesive energy as propottiorihe area of the surface.
The second term describes the gravitational energy, wher€®*(R" x R) describes the
gravitational potential. The third term is related to théesive energy at the boundary of
the capillary tube.
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FIGURE 1. Liquid in a capillary tube

The Euler—Lagrange equation corresponding to (1) has tine fo
) Au+H(x,u)=0 inQ

4) _iai(Du) k=B onoQ,

wherea (Du) = \/% andp denotes the outer normal é@. Note that

Au= — 'iiDi (a(Du))

is an expression for the mean curvatureSpand that the left hand side of the boundary
condition (4) gives the cosine of the contact angle.

Following the work of Huisken [Hui84] we are concerned witie tcapillarity problem
over an obstacle in a gravitational field. For modeling wesider the surface of a liquid
of fixed volumeV in a capillary tube. We assume that the bottom of the tube ean b
represented by an obstacle functiprand is of a material which is perfectly wetting, i.e.,
it is completely covered by a thin film of the liquid and thusedaot add to the energy
functional. This situation is depicted on the left hand sidd-igure 1. We may also
consider the liquid being in an upside down capillary tubisTis depicted on the right
hand side of Figure 1. In the latter case we will then reversecbordinate system so that
we are again in the setting of a capillary surface over anachest

The capillarity problem is given by (1) with

(5) K=wW:*(Q)n{v> w}m{/(v—w) dx:V} ,
Q

and a gravitational potential of the form

(6) H(xt) = —kt,
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where—k > 0 in the case of a “sitting” liquid, ané-k < 0 in the case of a “hanging”
liquid. The focus of this work is the setting in negative gtation, i.e. —k < 0. Note
that in [Hui84] Huisken considered a more general gravtel potential of the form
H(x,t) = —k t + H(x,t) with "H > 0. The above approximation (6) of the gravitational
field as constant is possible i |n many physically importasesdike gravity on Earth. Gen-
eralizations of our method to other applications like cémgees should be possible (using
suitable cut-offs) but rather technical.

We assume furthermofee C%1(0Q) with

(7) Bl<1—a a>0.

To motivate the last condition, note th@t> 1 means that the liquid will be in a state
of lesser energy if it pulls back from the tube (lotus effeen)d3 < —1 means that the
material of the tube is perfectly wetting (just as the oldstconsidered in this work). Our
model will not account for such situations.

Because of the negative quadratic term the energy fundtibdefined by (2) with (6)
may be neither convex nor bounded from below. This can bédyesestn in the following
example.

Example. Assumey = 0 andV = 1. Consider the mollifier functions

2l

for € > 0 on the unit balQ = B1(0) C R" for n > 2 (cf. [Eva98]). The standard mollifier

n is defined by
1
n(x) -:CeXp(|X|?_—1) ;

where the constar@ > 0 is chosen such thagf,n dx= 1. Hencen, € K, whereK is
defined by (5), and(ne) — — ase — 0.

Thus, we cannot generally expect the minimization probleng have global minimiz-
ers. Nevertheless, we can study local minimizers which @itgiens to the corresponding
variational inequality

/DUDV W /u(v—u)dx+/ B(v—u)dH-1>0 WeK.

Even in the context of positive gravitational fields, |§ > 0, we cannot expect the
existence of a bounded capillary surface8f has vertices (cf. [Fin79]). Thus, we will
assume thalQ is of classC?°.

Various results on the well-posedness of capillarity peaid can be found in the litera-
ture. Relying solely oBV-techniques Gerhardt proved in [Ger74] existence and @niqu
ness of solutions to (1) without a volume or obstacle coirdtia a positive gravitational
field, i.e., under the assumpti@f‘r > 0. Using a different approach, he showed the follow-
ing global regularity result in [Ger76].

Theorem 2.1. LetdQ € C>%, H, < C1® and %H > 0. The capillarity problen(1) has a
unique solution wE C%%(Q), whered, 0 < 9 < 1, is determined by HB, andQ.

The proof relies on a rather technical a priori estimate far gradient (cf. [Hui85,
Section 2]). The proof itself is done by a method of contiyaitd uses standard theory of
uniformly elliptic differential equations [LU68] (cf. [GI8, Thm. 17.30]).
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Relying on Theorem 2.1 Husiken extended the theory to thil@agy problem with an
obstacle constraint in a positive gravitational field [Hali8and to the capillarity problem
in a negative gravitational field [Hui84]. For the latter edse showed that for sufficiently
weak gravity, i.e. sufficiently smal > 0, the variational inequality (8) admits a solution.

Theorem 2.2. LetdQ be of the class &, ¢ € C?(Q) and H, B € C-® with the properties
(6) and (7). If k > 0is sufficiently small then:

(1) The capillarity problem in a negative gravitational fie{8) admits a solution

ueWh(Q) nW22(Q) N\WA2(Q)

loc
with continuous tangential derivatives at the boundary.
(2) If n=2then ue CY(Q).
(3) If we assume thaQ is of class &, B € C+1(9Q), andy satisfies

[
—ﬁm >B ondQ

V1+[Dyf?

then

ucW2*(Q).

3. DISCRETIZATION

In order to give a numerical approximation of capillary swds we will employ a first
order finite element method which is also used by Mittelmammntiie case of positive
gravitational fields [Mit77]. We will extend his results teet case of a negative gravitational
field, whereJ is non-convex.

For eachh, 0 < h < hg, let Qn, = UJ-Lth) T; be a finite collection oh-simplices with
disjoint interiors such that each face of a simplex is eitther face of another simplex
or has its vertices 0dQ. We assume the triangulation to be shape regular in the sense
that each simplex is contained in a ball of radiuand contains a ball of radiu for a
fixed 0< y < 1. Since in generddy, ¢ Q we assume that any solutiorof the capillarity
problem (8) may be extended to a dom@c R" with Q ¢ Q andQy, ¢ Q, such that the
extension is of the same classwascoincides withu in Q, and the extension operator is
continuous. Existence of such an operator was shown ingRl&ch. 2]. For simplicity the
extension will again be denoted by

Let S, denote the space of linear finite element<yn.e.,

S={veC(Q): vy, islinear j=1,...,L(h),
and piecewise linearly extended outsfdg} .
The finite element spac®, is spanned by the nodal basis
Ani={Ap €SI PENn},  Ap(d) =8pq VP, g€ Nn,

whereN;, denotes the set of all vertices corresponding to the trieatign Q. For every
continuous functiow : Q — R we define its interpolatiow € S, by

9) - Ap(X) .
Vi (X) pe%hv(p) p(X)

For the interpolation error the following estimates holdq3].
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Theorem 3.1. Let h be sufficiently small, and @Wk“-rp(Q), k>0, 1< p< o with
(k+1)p > n. Then there exists a constant 8uch that the linear interpolation error for
m= 0,1 can be estimated by

—mpk+1—m
Ju—Ulmpao <Ciy "h |Ulk1,p.0 -

Here and below

1

P

Vicpo = < 5 / |D“v|de>
la[=k’ Q

IVllkp.0 = Eklvll,p,a
I<

denote the Sobolev (semi) norms foe N and 1< p < « with the usual modification
whenp = co. If k=0 this index may be omitted.

In the following we will assume that the setting is such thia¢drem 2.2 holds, i.e., that
there exists a solution

ue W (Q)nw?2(Q)

to (8) whereH is given by (6) anK is defined by (5). Note that Morrey’s inequality
(cf. e.g. [Eva98]) implies fop > n that

WP(Q) c O 5(Q) .

Therefore, interpolation is well defined farc W1 (Q).

If n> 4 we will furthermore assume thaQ, B, and y fulfill the higher regularity
assumptions of Theorem 2.2 (3) such tthZﬂ”(fz). Theorem 3.1 then implies for the
interpolation error

|U—Ul|o,2,Qh <CH,

where the constant dependsiaf} ,  for n < 4 and onful, , 5 forn> 4.
Let Y denote the linear interpolation of the obstacle functjoriet furthermore

Vh::V—/ Wy dx+/ P dx
Qn Q
denote the discrete prescribed volume. We approximatautiaion seK by
(10) KhIZ&ﬂ{Vth.IJ|}ﬂ{/£_2 (Vh—l.|J|)dX=Vh}.
h
The discrete energy functional is defined by
K

(11) Jn(vh) = =7 an(Vh,Vh) —In(Vh) + @(Vh) ,
with

an(Vh, Wh) =/ Vh Wh dX,

Qn

Ih(Vh) = —/th B Vh ds,

Vh) = 1+ |Dvy|? dx,
)= [ /1 1Pw)

for vh, W € Ky, The choice of the sign af depends on the direction of the gravitational
force, i.e.,k > 0 for negative gravitatiork < O for positive gravitation. Note that we can
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view dQy, as a triangulation 0dQ and thatB € C%1(dQ) implies that the finite element
interpolationf; on the boundary is well-defined.

As in the continuous case, we cannot expect a solution toltiagminimization prob-
lem

(12) unh € Ky : Jh(uh) < Jh(Vh) YWh € Ky,

to exist for generak > 0 because of the non-convex terat [, Vi dx. We consider
instead the corresponding variational inequality foricaitpoints (we concentrate on local
minima)

Dup - D(vh—
(13) / Un - D(vh uh) dx— Kap(Un,Vh — Up) — In(Vh —Up) >0 YWh € Kp .
Qn

1+ |Duh|2

In the case of positive gravitation, i.e., for the probler)(tvith k < 0 andKp = &,
unigueness and existence of solutions follow by the direzthiod of the calculus of vari-
ations (cf., e.g., [KS80]). In [Mit77] the following convgence result for the difference of
the discrete solution, and the interpolation; of the continuous solution is proven.

Theorem 3.2. LetQ c R? be a bounded domain withQ € C?. If the continuous prob-
lem(1) without an obstacle bound and(K t) = k t has a solution & W22(Q)NW*(Q),
then

(14) luh—url|12,0, < Coh,
for all 0 < h < hg, hg sufficiently small, where the constant i€ independent of h.

In the following we will need two lemmas proved in [Mit77] wdfi contain general
facts about finite element functions.

Lemma 3.3. For sufficiently small h there exists a constagt-€Cz(y) such that for any
functiony € §,

(15) Vh|11.00, < Csh™*|Vh|118, ,

where B, = U'leTj is the union of all simplicesjThaving a facejtin common witldQp.
Furthermore, we can estimate

/ Vh dSh—/ Vh dS‘ < C4h2|Vh|1,1,th :
Filo 0Q

Lemma 3.4. For sufficiently small h there exists a constagt-€Cs(Q) such that we may
estimate forye §,

(16)

IVhll1.0-0p < Csh?||Vhl|1.1.0,
and
[Vhll1.04-0 < Csh?||Vhll1.1.04 -
4. DISCRETIZATION OF CAPILLARY SURFACES IN ANEGATIVE GRAVITATIONAL
FIELD
Our main result is the following:

Theorem 4.1. If K is small enough there exists ag such that for all0 < h < hg there
exists a solution to the discrete capillarity problem in @yatve gravitational field with an
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obstacle, i.e., a functionyue Ky, satisfying(13). Furthermore, the discretization error is
bounded by

a7 Huhqul’z,Qh <Ch.

The theorem will be proven in several steps. First we tre@nhaliied problem where
we omit the obstacle. We discuss the matter of existence@o®m 4.2, and Theorem 4.4
addresses the convergence. The inclusion of the obstabkrisddressed in Theorem 4.5.

4.1. Solvability without an Obstacle. If no obstacle is given, the continuous solution
is of classC?? [Huig4]. For simplicity we will begin by considering this se.

Theorem 4.2. If kK > 0 is small enough there exists a solution to the discrete tzajiif
problem in a negative gravitational field without an obs&dle., a function

un € Kn :Shm{/ vde}
Qn

satisfying(13). This function y is a local minimizer of the energy functiongldefined by
(12).

Before we can prove the theorem we will prove the following:

Lemma4.3. Let M e R. If kK > 0is small enough then there exists a unique solutign u
to the discrete problem

(18) Uv € Ku : Jh(UM) < Jh(V) Ve Ky,
where § is defined by11)and
Kwv = Khﬂ{|DV|m79h < M} .

Proof. Note thatKy is compact. If we can choosesmall enough such that the energy
functionally, is strictly convex we can apply the direct method of the dalswf variations
(cf., e.g., [KS80]).

Letv,w € S, be in the set of admissible functioKs, i.e., we assume

/vdx: Wdx=V,  [DV]w.ay|DW[eq, <M.
o o ’

The nonlinearityp, can be written as

v = [ W(DV) dx.

P(x) =1/1+|x2.

@ is strongly convex, i.e., we have fare (0,1)

1
(v + (1 - @)w) < (V) + (1~ w)@n(w) — Smex(1 -~ W)[D(V-w)|3q, ;
where the parametenis a lower bound on the least eigenvaluéd3fp(Dv). In particular

we may set

1
m= S E——
(1+M2)2
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This yields the estimate

Jn(v + (1= w)w) — wIn(V) — (1 — ) In(w)

1 1
<Zw(l- —W[5q —————|ID(v—w)||3 .
< 203( w) <K|V wlzq, 211 M2)3 ID(v w)||2!9h>
Using Poincaré’s inequality
1
(19) [t 1| <cspnaiDrlse,.
|Qh| Qh p-,Qh
for p=2 andf = v—w, we see thal} is strictly convex if we choose
1
(20) K <K

1 =3 .
2C2(1+M2)3

For admissible functions € Ky the bound on the gradient combined with (19) also
implies

\% 1 \%

[Vllnay < CollDVlIpay + ———5 < ColQnlP (M+ -
15 |l

|Qn|™ P
for anyp.
Thus, the energy functional is bounded from below. Since iecansidering the min-
imization on the compact s&ty this is enough to ensure the existence of a unique mini-
mizer. O

Note that the restriction of the function setKg, is similar to the approach in [Hui84]
where the existence of a solution was then obtained by a finegd prgument combined
with a priori bounds.

We will now prove Theorem 4.2. Note that we will assume cogeece results which
are shown in Section 4.2.

Proof of Theorem 4.2ForM € R Lemma 4.3 provides the existence of a unique solution
uy to (18). If there exists aM € R such thatDug| < M, we can find are > 0 such that
Uyjire = Uy, I.€. Uy; is a local minimizer ofl, in Ky, and hence a solution to the variational
inequality (13).

Such anM exists if we have a bound on the gradient of a solution to thiatianal
equation (as in the continuous case [Hui84]) which can beefbto be less thaMl, i.e.,
we need an estimate of the form

[Dum|eq <C,

where the constant may not dependMn Since the bound or will depend onM, we
need to make sure that the const@mtoes not depend a2, either.
For the desired estimate we refer to Theorem 4.4. O

4.2. Convergencewithout Obstacle. In this section we will extend the convergence proof
for capillary surfaces in positive gravitational fields &sted in Theorem 3.2 and [Mit77]
to theKu-bounded solutiongy (cf. Lemma 4.3).

Throughout the section we will use the abbreviations

W:=4/1+|Duj?2, and Wy :=1/1+|Dum|?.
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We will need a priori bounds foay. However, we need to make sure that they do not
depend ork . Following the approach of [Mit77] will not yield this indepdence. In-
stead, we impose the a priori bounds by force, i.e., we peghé function seKy further

by setting

Vi = Kv N {[Vll20, < [lull20, + 1} N { V110, < [lull110, +1} -

Note that this will not influence the solvability result Thiem 4.2 sincé/y is a closed
convex subset dfy.

The solution to the corresponding minimization problem, i(18) withKy, replaced by
Vv, will again be denoted byy.

Theorem 4.4. Let M € R be large andk > 0 small enough. Then
(21) [um —urll120, <Ch,
for all 0 < h < hg, hg sufficiently small, whereyw € W\ is a solution to(18)and y denotes
the interpolation of the continuous solution. Furthermawe have
|um| 1,00, <C.

Note that, as indicated in the proof of Theorem 4.2, we theaiolihe existence of a
local solution to the problem without the additional coasitts, i.e. a solution to (13) in
the function seKy, by choosingM large enough such that

[Dum w0 <C <M,
andh small enough such that
lu —um|120, <Ch<1.

Although the constants in Theorem 4.4 depend on the conismsalutioru, which itself
depends o this is not a circular argument, because we can assumea théounded by
a constant for alk smaller than someg as proved in [Hui84].

Theorem 4.1 (neglecting the obstacle bound) then followsdgbining Theorem 4.2,
Theorem 4.4, and Theorem 3.1.

Proof of Theorem 4.4We will proceed similarly to the proof of Theorem 3.2 in [MiJZ
Sete, := u; — uy and consider

Den|?
o [ Dok
o, Wu

Note that

Dey-Du Den - Dum
po [DaDug [ DovDu g,
Q w Qn Wi

Den-D(u —u)
———>dx
o W

1 1
Dey-Du| — — — | dx
Tla, (\le W)

De,-Du De,-Du
+/ dx—/ dx.
o-0 W -9, W

We want to estimate all terms on the right hand side to obtainaquality of the form
A2 < C . To estimate the first two terms we will use the variationahfolations of
the continuous and the discrete problem. The main differéadMit77] is that instead
of proving a priori estimates on the discrete solution wedn&echoose test functions

+
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fulfilling the additional bounds on the function set. Thidlwaad to extra terms which will
turn out to be of ordeh? and thus do not alter the convergence result. For complesene
we will also carry out the estimates for the remaining terrhictv can also be found, e.g.
in [Mit77] and [Cia78].

To bound the first term we insert the test function= u— e, + 6, + 6y into the contin-
uous variational inequality (8), where the constdiitand6;, are defined by

1
0 ::—/u—udx
| |Q| QI

Oh:i</ udef/ ude) .
|Q| Qh*Q Q*Qh

The constants are chosen such thétilfills the volume constraint and thus is indeed an
admissible test function. The variational inequality (81 reads

(22) /Q De”WDu dx < Ka(u, en) +1(en) — ka(u, 6 +8r) — (8 + ) ,

wherea(-,-) andl(-) are the continuous analogadg(-,-) andln(-).
For the second term we insert the test functin= u; + 6y + 6, into the discrete
variational inequality (13) with the constartig; and6y , defined by

6h = ——
" Q] Ja,

1
Ohh = — / udx—/ udx).
" || ( Q-Qn Oh—Q

The constants ensure thatfulfills the volume constraint. Favl > |Dui |« o, the function
v fulfills the constraint

u—u dx

|DVh|oo,Q <M.

For theL?- and thew*!-constraints note that Lemma 3.4 implies tf@t,| is of orderh?.
Theorem 3.1 yields the same fi@,|. Thus in any Sobolev nor- || we can estimate

VAl < [lur|+C K.

Choosingh small enough then yields, € V.
The variational inequality (13) then reads

De,-Du
(23) */Q % dX< —Kan(Um, en) — Ih(en) —Kan(um, Bni +6hn) —In(Bh) +6hp) -
h
Adding (22) and (23), we obtain

/QDenV\-/Du dX—/ Den-Dum dx < K (a(u,en) — an(um, en)) +1(en) — In(en)

— (Kan(um, Bn +Bnn) + 1h(Bni + 6Onh))
~ (Ka(u,8 +8r) +1(6) +6r)) .

The terms involving the constants can be estimated by
— (Kan(um, Bn1 + 6np) + (Bt + Bnn)) — (Ka(u, 6 +6r) +1(6; + 6n))
< C(K,V,B) (161] 4 [6h[ + [Bni| + [Bnn|)
<CHK,
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since Lemma 3.4 implies thé@,| and|6h | are of ordemh?, and Theorem 3.1 yields the
same for the other two constants.
To estimate the term (a(u, en) — an(um, en)) note that

a(u,en)—ah(uM,%)zah(eh,%)jt/Q (u—u|)eth+/mQ ua1dX—/

Qp—

u e, dx
Q

can be approximated using Lemma 3.4 and Theorem 3.1 by

a(u,en) — an(Um, en) < an(en,en) +C M?||en]|2.0, +C MPllenll11q; -
Lemma 3.3 yields

[I(en) —In(en)| < C(v.B) hlen|1,18, -
The first two terms of\? can thus be estimated by
De,-Du De, - Duy
dx—/ — T dx<K en)+CH(1+ +
| = gy xS Kan(enen) +C I (14 anlia, + lenlza,)

(24) +Chilen|11B, -

We now need to estimate the remaining terms of the deconiposit A%. The third
term can be estimated using Holder’s inequality

Den-D(u —u) / |Dén|
= 2 Tdx < [ =2 D(u —u)| dx
/Qh Wy —Joy, \/\/\_4\/!| ( ! )|
<Alu —Ul120, -

Using Theorem 3.1, we obtain

Den-D(u —u)
25 / — 2 dx <ChA.
(25) W <
To estimate the fourth term note that

1 1 | wW2-wg
‘WHW‘WWWFWEMB
B ‘D(uuM)~D(u+uw|)
W W (W W)
[D(u—um)|
S W
Hence, we can estimate using Holder’s inequality

1 1 [Du| [D(u—um)| |Dep|
De,-Du( — — — | dx </ —_————— dx
oo (g -w) 4=,

W W
2 _
[ IDef+D(u—u) Dy
n Wiy

<A (A2+A (/Q 7|D(LiNM”')|2 dx)%)

<ANA(A+|u—ul120,) -

whereh = max; “\3\,—“‘ < 1. Taking Theorem 3.1 into account we can furthermore estima

1 1
(26) o De,-Du <V\_4V|W) dx

<AA(A+CHh).
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SinceDe, is piecewise constant A, — Q andQ — Qp, and the distance betweéf
andaQy, is in O(h?) we can estimate the last termsAgf by

De,-Du De,-Du
dxf/ dx< 2AC I
/Qh 0 W 00 W < enl1,1,00,

(27) <Chlen|118:

where we have used Lemma 3.3 to obtain the last inequality.
Combining (24), (25), (26), and (27) yields

(28)
A% — Kan(en,en) <AA2+C(1+MhA+CH (14 |len]lLi0, + lenll20,) +C hlen11, -

um € Viv implies that]|en||1,1,0, and||en||2,q, are bounded by a constant independerit. of
Using Young'’s inequality we thus obtain

1-A
2
Note that the assumptidiDum||«.q, < M implies

IDen|l5.q, < V1+M2AZ.

Using Poincaré’s inequality (19) and the volume constramm obtain

2
1
Pk [ s
H|Qh| Qn

(29) ~ " A2 —Kan(en,en) <Ch+Chlen|11p, -

én— én dx

)

Kan(en,en) < 2K <

m Qn
< 2k (C||Den|[5+C 1P
< 2K (c§\/1+ M2AZ +C h2)

Sl%)\AZﬁLZKChZ

for k small enough depending dn, i.e.,

(30) K<kpim 2N
SR Te v ER VN

Inserting this into (29) yields

(31) A2<CH+Chleiis, -

We will now use this to show thaDuwm |« o, is bounded depending dnl. This will
then lead to a first bound dan|1 2 o, independent oh, which we will then improve until
we obtain the desired estimate (21).

For any trianglel; Theorem 3.1 and (31) yield

|Dum|? (2 Dy 2 )
dx< 2| A4+ | ——— dx
/TJ W T W

< 2(A?+ClulfwalTil)
<Ch+ClufZ.,oh?.
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SinceDuy is constant on each trianglg we additionally obtain, due to the shape regular-

ity,

|2
h? .

2 Duy T
/ [Dup | dx> 2 |Duy;
Tj W 1/1+|DUM\TJ-|2
Combining these implies

|DUM\Tj |2

——1__<cCh!
\/1+ [DumT |
for all Tj and hence
Duyr |2
[Duyr; | < Whyr, < A +1<Cht.
1+|DUM\TJ|2

From this and (31) it follows th&en|12 o, is bounded:

2 |DQ |2 2
= ——— /14 |Dupm|? dx
lenl12.0, /Qh W,V |Dum|
< supy/ 1+ |Duy|2A?

Qn
<C.

Since|By| = O(h) we get by Holder’s inequality
1 1
len|1,1,8, < |Bnl|Z |én|1,28, <ChZz.

Inserting this back into (31) yield&? < C h3. Repeating the arguments above we then
obtain|Duy |w.q, < C h~2, len|5 g, <C h and thush® < C h?. Another repetition of the
arguments yields the pointwise gradient estimate

|uM|1,e,0, <C
and thus the estimates
lenl120, <Ch, and |e|100,<C.
The final estimate
llenll1,2.0, <Ch
then follows using Poincaré’s inequality

||en|\i2,§zh < Z(HQ‘IH%,Qh + |en|i2,§zh)
<C||Den|3+CH
<CHk.
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4.3. Convergencewith an Obstacle. We will now include the obstacle in our considera-
tions, i.e. we look for solutions of (13) ik, as defined in (10).
Analogously to the case without an obstacle we restrictuhetion set to

Vi := Kn N {|DVh]w @, <M} N {[IWhl|2.0, < [[Ui]20, +1}
N {lIVhll120, < lurfli0,+1} -
The existence of a solutian, € V,\‘,’,'C’St for a givenM € R follows by the same reasoning
as in the case without an obstacle (Theorem 4.2). Thus, ifameptove a convergence

result like Theorem 4.4, we obtain a local solution to (18)ceiwe can then choodé
large enough such that

[Dum|lw,0, <C <M,
andh small enough such that
lur —umll120, <Ch<1.
Hence, we just need to prove the following:
Theorem 4.5. Let M € R be large andk small enough. Then
(32) Jum —urll120, <Ch,
for all 0 < h < hg, hg sufficiently small, wherew Vh‘,’,'f’St is a solution to(18) and y

denotes the interpolation of the solution to the continuoadlem(8). Furthermore, we
have

|um|1,00,0, <C.

Proof. We may essentially repeat the proof of Theorem 4.4. Howeweneed to choose
different test functions to insert into the discrete and ¢batinuous problem since the
original ones might violate the obstacle constraint.

As a discrete test function we choose instead

Vh 1= U +Cyn (U — W) ,
where

. 6n
C’Vh T Vh_eh 9

On ::/ u—u dx+ u dx—/ udx.
o Q-Qp Oh—0Q

Note thatu; does not violate the discrete obstacle constr&ptenforces compliance with
the volume constraint. In view of the approximating projgsrofu; and Lemma 3.4, we
have|By| <C h. Thus choosindp small enough impliegC,n| <C h < 1. Thereforev,
does not violate the obstacle constraint. Note furtherrttae

HU| - l~|-”‘IH:I_,00,QH S C s
where the constant depends on the continuous solution andtitacle. ||Dvy ||« o, iS

then bounded. Thus, favl large enough ant small enoughv, € V,\‘,’let. The variational
inequality forv, reads

Duy - De,
o Wu

+Cun </Qh W dx— Kan(um,u — Pn) — In(u UJh)) ,

dX < —Kan(um,en) —In(en)
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FIGURE 2. Discrete capillary surface ferk = —0.1

which implies
Duy - Dey
o, Wu
As a continuous test function we choose
vi=Vy+GCv(vg— V),

dx < —kan(um,en) — In(en) +C H2.

where
Vy i=u+um—U+Cy,
Cy = Wn—Yllog+lu—ullws,
0

Cvizm7

0 ::/ U —u dx+ Um dx—/ um dx—Cy|Q] .
Q Oh—-0Q Q-Qp
Cy ensures thaty lies above the obstacl€y enforces the continuous volume constraint.

Again |8 < C I? and thusGy | < C h? for h small enough. Therefoneis an admissible
test function for the continuous problem. Furthermore

Vg = Wll20, <C,
Vg —Wll110, <C,
since all parts o¥y, fulfill these bounds. The variational inequality then reads

/ Du-Den ;. Ka(u,en) +1(en) +C M.
o W

We are now in the same setting as before and can repeat theemtgiof the proof of
Theorem 4.4 to obtain the assertion. O

5. NUMERICAL EXPERIMENTS

Our aim in this section is to numerically illustrate the cergence result stated in Theo-
rem 4.1. To this end we used a truncated nonsmooth Newtomgmditnethod [GSS09] to
solve the capillarity problem. The implementation was dion@€++ using the Distributed
and Unified Numerics Environment (DUNE) [BBIDS].

We consider the discrete capillarity problem (13) for megkesh, = v/2 2~ k+1 for
k=0,...,80on adisc of diameter 1 with the parameters= —0.1,3 = —0.8, a prescribed
volumeV = 11, and a constant obstacle at height 0. A reference solutiamas computed
with a mesh size o = v/2 2710, The graph ofi; can be observed in Figure 2.

The convergence result Theorem 4.1 essentially boundgpgiveximation error in the
W2(Qp)-seminorm, and the full norm estimate comes from Poinsan&quality. Since
we want to observe the order of convergence we will monitertiiorsu, — us |o 2,0, and
|un — Ut|1,2,0, as functions of the mesh size paraméter
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error
=
o,
T

full Wh2-norm |3

—*— L2-norm

—+— w2-seminorm| |

h

.
10 . .

10 10 10" 10°

mesh size

FIGURE 3. Doubly logarithmic plot of th&v/1-2-error over the mesh size
hfor -k = —-0.1

error

— - —linear
—6—kK=8
10°F A k=6
—+—kKk=4
K=1
&—Kk=01
k=0.01
—#—k =0.001

10 ‘71 o
10 10 10
mesh size

FIGURE 4. Doubly logarithmic plot of the error in thé&/%2-seminorm
over the mesh sizle for varyingk

The expected linear decay of the error in Wé&2-seminorm can be observed in Fig-
ure 3. For the approximation error in thé-norm we observe quadratic decay. This
corresponds to the well-known convergence behavior ofmmahsurfaces [Ran77].

An essential ingredient in the proof of Theorem 4.1 iskhiadependence of the error.
We tested this by repeating the above test for varkinghe reference solution was com-
puted withh = /2 278 andhy is as above wittk = 0,...,6. In the numerical results the
discretization error indeed does not appear to dependamcan be observed in Figure 4.
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