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ABSTRACT. A capillary surface in a negative gravitational field describes the shape of the
surface of a hanging drop in a capillary tube with wetting material on the bottom. Mathe-
matical modeling leads to the volume- and obstacle-constrained minimization of a noncon-
vex nonlinear energy functional of mean curvature type which is unbounded from below.
In 1984 Huisken proved the existence and regularity of localminimizers of this energy
under the condition on gravitation being sufficiently weak.We prove convergence of a first
order finite element approximation of these minimizers. Numerical results demonstrating
the theoretic convergence order are given.

1. INTRODUCTION

By everyday experience hanging drops do not fall if they are small enough. By rescaling
this condition is equivalent to gravitation being sufficiently weak. Mathematical modeling
of this situation gives rise to the minimization of a nonlinear energy functional of mean
curvature type. We refer to this minimization as the capillarity problem and to its solution
as a capillary surface. It makes sense to consider the capillarity problem in positive and
negative gravitational fields, i.e., sitting and hanging drops in capillary tubes. Considering
positive gravitation leads to a convex energy functional, whereas negative gravitation leads
to nonconvexity of the energy. In the case of negative gravitation we need to fix the volume
of the liquid, whereas in positive gravitation this is optional. Furthermore, in modeling of
closed tubes or multiphase fluids obstacle constraints arise.

Solvability of the capillarity problem in a positive gravitational field was shown in
[Ger74], regularity of such a solution in [Ger76]. Obstacleand volume constraints were
treated in [Hui85]. In [Hui84] it was shown that there existsa local minimizer to the capil-
larity problem with fixed volume and an obstacle constraint in a negative gravitational field
for sufficiently weak gravitation.

Convergence of the approximation of a two-dimensional capillary surface in a positive
gravitational field by first order finite elements was proven in [Mit77]. The nonconvex case
of negative gravitation has not been treated so far. The inclusion of a volume constraint in
the case of positive gravitation was briefly addressed in [Mit77]. Obstacle constraints have
not been examined in this context.

In this work we will considern-dimensional capillary surfaces of fixed volume over an
obstacle in negative gravitation. We will show existence oflocal minimizers of a first order
finite element discretization of the energy functional as well as convergence of the discrete
to the continuous solution.

I would like to express my gratitude to Gerhard Huisken for initiating this work. Many thanks to Ralf Korn-
huber, Oliver Sander, and Carsten Gräser for encouragement and enriching discussions.
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Our method of proof provides the optimal order of approximation although the problem
has global properties usually considered problematic, such as nonlinearity and nonconvex-
ity. This is possible because we are only interested in the behavior of discrete solutions
locally, i.e., near the continuous ones. We are using a concept of locality specific to the
field of partial differential equations. By using Poincaré’s inequality, we will exploit the
higher order of the nonlinearity to establish regions of convexity for the problem where
we can find unique minimizers. Modifications of the convergence proof of [Mit77] will
show that these minimizers in the restricted regions converge to the continuous solution.
Using the boundedness of the continuous solution established in [Hui84] we then show that
we can thus obtain a discrete solution which lies in the interior of a region of convexity
and therefore is a local minimizer of the energy functional.The convergence result then
implies that this discrete solution converges to the continuous one in theW1,2-norm with
linear dependence on the mesh size.

After a mathematical description of the problem we will givea short overview of previ-
ous results leading to the work of this paper. In the following main part we show existence
of solutions to a finite element discretization of the capillarity problem in a negative gravi-
tational field as well as a convergence result. We will conclude this paper by giving some
numerical results illustrating the theoretic convergenceorder.

2. THE CONTINUOUS PROBLEM

A capillary surface is a surface of prescribed mean curvature with Neumann boundary
conditions. The name is derived from the typical example of the surface of a liquid rising
in a capillary tube.

The principle of energy minimization states that the surface will be in a state of minimal
potential energy. In order to obtain a mathematical expression for the energy we assume
that the surfaceSof the liquid can be expressed as the graph of a functionu : Ω →R over
the cross sectionΩ ⊆ R

n of the tube, whereΩ is a connected and bounded domain. This
parametrization of the surfaceS= graph(u) induces a metricg onSdefined by

gi j (x) = δi j +Diu(x)D ju(x) ,

where

Dku=
∂u
∂xk , k= 1, . . . ,n ,

andδi j denotes the Kronecker symbol.
The shape of the surface is then given by a minimizer of the energy functional, i.e., the

capillarity problem reads

u∈ K : J(u)≤ J(v) ∀v∈ K ,(1)

whereK is a suitable function set andJ is given by

J(v) =
∫

Ω

√

1+ |Dv|2 dx+
∫

Ω

∫ v(x)

0
H(x, t) dt dx+

∫
∂Ω

βv dHn−1 .(2)

Here the first term models the cohesive energy as proportional to the area of the surface.
The second term describes the gravitational energy, whereH ∈C0,1(Rn×R) describes the
gravitational potential. The third term is related to the adhesive energy at the boundary of
the capillary tube.
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FIGURE 1. Liquid in a capillary tube

The Euler–Lagrange equation corresponding to (1) has the form

Au+H(x,u) = 0 in Ω(3)

−
n

∑
i=1

ai(Du) µi = β on ∂Ω ,(4)

whereai(Du) = Diu√
1+|Du|2

andµ denotes the outer normal to∂Ω. Note that

Au=−
n

∑
i=1

Di
(

ai(Du)
)

is an expression for the mean curvature ofS, and that the left hand side of the boundary
condition (4) gives the cosine of the contact angle.

Following the work of Huisken [Hui84] we are concerned with the capillarity problem
over an obstacle in a gravitational field. For modeling we consider the surface of a liquid
of fixed volumeV in a capillary tube. We assume that the bottom of the tube can be
represented by an obstacle functionψ and is of a material which is perfectly wetting, i.e.,
it is completely covered by a thin film of the liquid and thus does not add to the energy
functional. This situation is depicted on the left hand sideof Figure 1. We may also
consider the liquid being in an upside down capillary tube. This is depicted on the right
hand side of Figure 1. In the latter case we will then reverse the coordinate system so that
we are again in the setting of a capillary surface over an obstacle.

The capillarity problem is given by (1) with

K =W1,∞(Ω)∩{v≥ ψ}∩
{∫

Ω
(v−ψ) dx=V

}

,(5)

and a gravitational potential of the form

H(x, t) =−κ t ,(6)
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where−κ > 0 in the case of a “sitting” liquid, and−κ < 0 in the case of a “hanging”
liquid. The focus of this work is the setting in negative gravitation, i.e. −κ < 0. Note
that in [Hui84] Huisken considered a more general gravitational potential of the form
H(x, t) = −κ t + H̃(x, t) with ∂H̃

∂t > 0. The above approximation (6) of the gravitational
field as constant is possible in many physically important cases like gravity on Earth. Gen-
eralizations of our method to other applications like centrifuges should be possible (using
suitable cut-offs) but rather technical.

We assume furthermoreβ ∈C0,1(∂Ω) with

|β| ≤ 1−a, a> 0 .(7)

To motivate the last condition, note thatβ ≥ 1 means that the liquid will be in a state
of lesser energy if it pulls back from the tube (lotus effect), andβ ≤ −1 means that the
material of the tube is perfectly wetting (just as the obstacles considered in this work). Our
model will not account for such situations.

Because of the negative quadratic term the energy functional J defined by (2) with (6)
may be neither convex nor bounded from below. This can be easily seen in the following
example.

Example. Assumeψ ≡ 0 andV = 1. Consider the mollifier functions

ηε :=
1
εn η

(x
ε

)

for ε > 0 on the unit ballΩ = B1(0)⊂ R
n for n≥ 2 (cf. [Eva98]). The standard mollifier

η is defined by

η(x) :=Cexp

(

1
|x|2−1

)

,

where the constantC > 0 is chosen such that
∫

Ω η dx= 1. Hence,ηε ∈ K, whereK is
defined by (5), andJ(ηε)→−∞ asε → 0.

Thus, we cannot generally expect the minimization problem (1) to have global minimiz-
ers. Nevertheless, we can study local minimizers which are solutions to the corresponding
variational inequality∫

Ω

Du ·D(v−u)
√

1+ |Du|2
dx−κ

∫
Ω

u (v−u) dx+
∫

∂Ω
β (v−u) dHn−1 ≥ 0 ∀v∈ K .(8)

Even in the context of positive gravitational fields, i.e.∂H
∂t > 0, we cannot expect the

existence of a bounded capillary surfaces if∂Ω has vertices (cf. [Fin79]). Thus, we will
assume that∂Ω is of classC2,α.

Various results on the well-posedness of capillarity problems can be found in the litera-
ture. Relying solely onBV-techniques Gerhardt proved in [Ger74] existence and unique-
ness of solutions to (1) without a volume or obstacle constraint in a positive gravitational
field, i.e., under the assumption∂H

∂t > 0. Using a different approach, he showed the follow-
ing global regularity result in [Ger76].

Theorem 2.1. Let ∂Ω ∈C2,α, H,β ∈C1,α and ∂H
∂t > 0. The capillarity problem(1) has a

unique solution u∈C2,ϑ(Ω), whereϑ, 0< ϑ < 1, is determined by H,β, andΩ.

The proof relies on a rather technical a priori estimate for the gradient (cf. [Hui85,
Section 2]). The proof itself is done by a method of continuity and uses standard theory of
uniformly elliptic differential equations [LU68] (cf. [GT98, Thm. 17.30]).
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Relying on Theorem 2.1 Husiken extended the theory to the capillarity problem with an
obstacle constraint in a positive gravitational field [Hui85], and to the capillarity problem
in a negative gravitational field [Hui84]. For the latter case he showed that for sufficiently
weak gravity, i.e. sufficiently smallκ > 0, the variational inequality (8) admits a solution.

Theorem 2.2. Let∂Ω be of the class C2,α, ψ ∈C2(Ω) and H, β ∈C1,α with the properties
(6) and (7). If κ > 0 is sufficiently small then:

(1) The capillarity problem in a negative gravitational field(8) admits a solution

u∈W1,∞(Ω)∩W2,2(Ω)∩W2,∞
loc (Ω)

with continuous tangential derivatives at the boundary.
(2) If n = 2 then u∈C1(Ω).
(3) If we assume that∂Ω is of class C3,α, β ∈C1,1(∂Ω), andψ satisfies

− Diψ
√

1+ |Dψ|2
µi ≥ β on ∂Ω

then

u∈W2,∞(Ω) .

3. DISCRETIZATION

In order to give a numerical approximation of capillary surfaces we will employ a first
order finite element method which is also used by Mittelmann for the case of positive
gravitational fields [Mit77]. We will extend his results to the case of a negative gravitational
field, whereJ is non-convex.

For eachh, 0 < h < h0, let Ωh =
⋃L(h)

j=1 Tj be a finite collection ofn-simplices with
disjoint interiors such that each face of a simplex is eitherthe face of another simplex
or has its vertices on∂Ω. We assume the triangulation to be shape regular in the sense
that each simplex is contained in a ball of radiush and contains a ball of radiusγh for a
fixed 0< γ < 1. Since in generalΩh 6⊂ Ω we assume that any solutionu of the capillarity
problem (8) may be extended to a domainΩ̃ ⊂ R

n with Ω ⊂ Ω̃ andΩh ⊂ Ω̃, such that the
extension is of the same class asu, coincides withu in Ω, and the extension operator is
continuous. Existence of such an operator was shown in [Neč67, Ch. 2]. For simplicity the
extension will again be denoted byu.

Let Sh denote the space of linear finite elements onΩ̃, i.e.,

Sh =
{

v∈C(Ω̃) : v|Tj is linear, j = 1, . . . ,L(h),

and piecewise linearly extended outsideΩh} .

The finite element spaceSh is spanned by the nodal basis

Λh := {λp ∈ Sh| p∈ Nh} , λp(q) = δpq ∀p,q∈ Nh ,

whereNh denotes the set of all vertices corresponding to the triangulation Ωh. For every
continuous functionv : Ω → R we define its interpolationvI ∈ Sh by

vI (x) := ∑
p∈Nh

v(p) λp(x) .(9)

For the interpolation error the following estimates hold [Cia78].
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Theorem 3.1. Let h be sufficiently small, and u∈ Wk+1,p(Ω), k ≥ 0, 1 ≤ p ≤ ∞ with
(k+1)p> n. Then there exists a constant C1 such that the linear interpolation error for
m= 0,1 can be estimated by

|u−uI |m,p,Ω ≤C1γ−mhk+1−m|u|k+1,p,Ω .

Here and below

|v|k,p,Ω =

(

∑
|α|=k

∫
Ω
|Dαv|p dx

) 1
p

‖v‖k,p,Ω = ∑
l≤k

|v|l ,p,Ω

denote the Sobolev (semi) norms fork ∈ N and 1≤ p ≤ ∞ with the usual modification
whenp= ∞. If k= 0 this index may be omitted.

In the following we will assume that the setting is such that Theorem 2.2 holds, i.e., that
there exists a solution

u∈W1,∞(Ω̃)∩W2,2(Ω̃)

to (8) whereH is given by (6) andK is defined by (5). Note that Morrey’s inequality
(cf. e.g. [Eva98]) implies forp> n that

W1,p(Ω)⊂C0,1− n
p (Ω) .

Therefore, interpolation is well defined foru∈W1,∞(Ω).
If n ≥ 4 we will furthermore assume that∂Ω, β, andψ fulfill the higher regularity

assumptions of Theorem 2.2 (3) such thatu∈W2,∞(Ω̃). Theorem 3.1 then implies for the
interpolation error

|u−uI |0,2,Ωh
≤C h2

,

where the constant depends on|u|2,2,Ω̃ for n< 4 and on|u|2,∞,Ω̃ for n≥ 4.
Let ψI denote the linear interpolation of the obstacle functionψ. Let furthermore

Vh :=V −
∫

Ωh

ψI dx+
∫

Ω
ψ dx

denote the discrete prescribed volume. We approximate the function setK by

Kh := Sh∩{vh ≥ ψI}∩
{∫

Ωh

(vh−ψI ) dx=Vh
}

.(10)

The discrete energy functional is defined by

Jh(vh) :=−κ
2

ah(vh,vh)− lh(vh)+φh(vh) ,(11)

with

ah(vh,wh) =

∫
Ωh

vh wh dx ,

lh(vh) =−
∫

∂Ωh

βI vh dsh ,

φh(vh) =
∫

Ωh

√

1+ |Dvh|2 dx ,

for vh,wh ∈ Kh. The choice of the sign ofκ depends on the direction of the gravitational
force, i.e.,κ > 0 for negative gravitation,κ < 0 for positive gravitation. Note that we can
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view ∂Ωh as a triangulation of∂Ω and thatβ ∈ C0,1(∂Ω) implies that the finite element
interpolationβI on the boundary is well-defined.

As in the continuous case, we cannot expect a solution to the global minimization prob-
lem

(12) uh ∈ Kh : Jh(uh)≤ Jh(vh) ∀vh ∈ Kh ,

to exist for generalκ > 0 because of the non-convex term− κ
2

∫
Ωh

v2
h dx. We consider

instead the corresponding variational inequality for critical points (we concentrate on local
minima)

∫
Ωh

Duh ·D(vh−uh)
√

1+ |Duh|2
dx−κah(uh,vh−uh)− lh(vh−uh)≥ 0 ∀vh ∈ Kh .(13)

In the case of positive gravitation, i.e., for the problem (12) with κ < 0 andKh = Sh,
uniqueness and existence of solutions follow by the direct method of the calculus of vari-
ations (cf., e.g., [KS80]). In [Mit77] the following convergence result for the difference of
the discrete solutionuh and the interpolationuI of the continuous solution is proven.

Theorem 3.2. Let Ω ⊂ R
2 be a bounded domain with∂Ω ∈ C2. If the continuous prob-

lem(1) without an obstacle bound and H(x, t) = κ t has a solution u∈W2,2(Ω̃)∩W1,∞(Ω̃),
then

‖uh−uI‖1,2,Ωh ≤C2h ,(14)

for all 0< h< h0, h0 sufficiently small, where the constant C2 is independent of h.

In the following we will need two lemmas proved in [Mit77] which contain general
facts about finite element functions.

Lemma 3.3. For sufficiently small h there exists a constant C3 = C3(γ) such that for any
function vh ∈ Sh

|vh|1,1,∂Ωh
≤C3h−1|vh|1,1,Bh ,(15)

where Bh =
⋃K

j=1Tj is the union of all simplices Tj having a face tj in common with∂Ωh.
Furthermore, we can estimate

∣

∣

∣

∣

∫
∂Ωh

vh dsh−
∫

∂Ω
vh ds

∣

∣

∣

∣

≤C4h2|vh|1,1,∂Ωh
.(16)

Lemma 3.4. For sufficiently small h there exists a constant C5 =C5(Ω) such that we may
estimate for vh ∈ Sh

‖vh‖1,Ω−Ωh ≤C5h2‖vh‖1,1,Ωh

and

‖vh‖1,Ωh−Ω ≤C5h2‖vh‖1,1,Ωh .

4. DISCRETIZATION OFCAPILLARY SURFACES IN A NEGATIVE GRAVITATIONAL

FIELD

Our main result is the following:

Theorem 4.1. If κ is small enough there exists an h0 such that for all0 < h < h0 there
exists a solution to the discrete capillarity problem in a negative gravitational field with an
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obstacle, i.e., a function uh ∈ Kh satisfying(13). Furthermore, the discretization error is
bounded by

‖uh−u‖1,2,Ωh ≤C h .(17)

The theorem will be proven in several steps. First we treat a simplified problem where
we omit the obstacle. We discuss the matter of existence in Theorem 4.2, and Theorem 4.4
addresses the convergence. The inclusion of the obstacle isthen addressed in Theorem 4.5.

4.1. Solvability without an Obstacle. If no obstacle is given, the continuous solutionu
is of classC2,ϑ [Hui84]. For simplicity we will begin by considering this case.

Theorem 4.2. If κ > 0 is small enough there exists a solution to the discrete capillarity
problem in a negative gravitational field without an obstacle, i.e., a function

uh ∈ K̃h := Sh∩
{∫

Ωh

v dx=V

}

satisfying(13). This function uh is a local minimizer of the energy functional Jh defined by
(11).

Before we can prove the theorem we will prove the following:

Lemma 4.3. Let M∈ R. If κ > 0 is small enough then there exists a unique solution uM

to the discrete problem

uM ∈ KM : Jh(uM)≤ Jh(v) ∀v∈ KM ,(18)

where Jh is defined by(11)and

KM := K̃h∩{|Dv|∞,Ωh ≤ M} .

Proof. Note thatKM is compact. If we can chooseκ small enough such that the energy
functionalJh is strictly convex we can apply the direct method of the calculus of variations
(cf., e.g., [KS80]).

Let v,w∈ Sh be in the set of admissible functionsKM, i.e., we assume∫
Ωh

v dx=
∫

Ωh

w dx=V, ‖Dv‖∞,Ωh,‖Dw‖∞,Ωh ≤ M .

The nonlinearityφh can be written as

φh(v) =
∫

Ωh

ψ(Dv) dx ,

ψ(x) =
√

1+ |x|2 .

φh is strongly convex, i.e., we have forω ∈ (0,1)

φh(ωv+(1−ω)w)≤ ωφh(v)+ (1−ω)φh(w)−
1
2

mω(1−ω)‖D(v−w)‖2
2,Ωh

,

where the parameterm is a lower bound on the least eigenvalue ofD2ψ(Dv). In particular
we may set

m=
1

(1+M2)
3
2

.
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This yields the estimate

Jh(ωv+(1−ω)w)−ωJh(v)− (1−ω)Jh(w)

≤ 1
2

ω(1−ω)

(

κ‖v−w‖2
2,Ωh

− 1

2(1+M2)
3
2

‖D(v−w)‖2
2,Ωh

)

.

Using Poincaré’s inequality
∥

∥

∥

∥

f − 1
|Ωh|

∫
Ωh

f dx

∥

∥

∥

∥

p,Ωh

≤C6 (p,n,Ω)‖D f‖p,Ωh ,(19)

for p= 2 and f = v−w, we see thatJh is strictly convex if we choose

κ < κ1 :=
1

2C2
6(1+M2)

3
2

.(20)

For admissible functionsv ∈ KM the bound on the gradient combined with (19) also
implies

‖v‖p,Ωh ≤C6‖Dv‖p,Ωh +
V

|Ωh|1−
1
p

≤C6|Ωh|
1
p

(

M+
V
|Ωh|

)

for any p.
Thus, the energy functional is bounded from below. Since we are considering the min-

imization on the compact setKM this is enough to ensure the existence of a unique mini-
mizer. �

Note that the restriction of the function set toKM is similar to the approach in [Hui84]
where the existence of a solution was then obtained by a fixed point argument combined
with a priori bounds.

We will now prove Theorem 4.2. Note that we will assume convergence results which
are shown in Section 4.2.

Proof of Theorem 4.2.For M ∈ R Lemma 4.3 provides the existence of a unique solution
uM to (18). If there exists añM ∈ R such that|DuM̃|< M̃, we can find anε > 0 such that
uM̃+ε = uM̃, i.e. uM̃ is a local minimizer ofJh in Kh, and hence a solution to the variational
inequality (13).

Such anM̃ exists if we have a bound on the gradient of a solution to the variational
equation (as in the continuous case [Hui84]) which can be forced to be less thañM, i.e.,
we need an estimate of the form

|DuM|∞,Ω ≤C ,

where the constant may not depend onM. Since the bound onκ will depend onM, we
need to make sure that the constantC does not depend onκ−1, either.

For the desired estimate we refer to Theorem 4.4. �

4.2. Convergence without Obstacle. In this section we will extend the convergence proof
for capillary surfaces in positive gravitational fields as stated in Theorem 3.2 and [Mit77]
to theKM-bounded solutionsuM (cf. Lemma 4.3).

Throughout the section we will use the abbreviations

W :=
√

1+ |Du|2 , and WM :=
√

1+ |DuM|2 .
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We will need a priori bounds foruM. However, we need to make sure that they do not
depend onκ−1. Following the approach of [Mit77] will not yield this independence. In-
stead, we impose the a priori bounds by force, i.e., we restrict the function setKM further
by setting

VM := KM ∩
{

‖v‖2,Ωh ≤ ‖uI‖2,Ωh +1
}

∩
{

‖v‖1,1,Ωh ≤ ‖uI‖1,1,Ωh +1
}

.

Note that this will not influence the solvability result Theorem 4.2 sinceVM is a closed
convex subset ofKM.

The solution to the corresponding minimization problem, i.e., (18) withKM replaced by
VM, will again be denoted byuM.

Theorem 4.4. Let M∈ R be large andκ > 0 small enough. Then

‖uM −uI‖1,2,Ωh ≤C h ,(21)

for all 0< h< h0, h0 sufficiently small, where uM ∈VM is a solution to(18)and uI denotes
the interpolation of the continuous solution. Furthermore, we have

|uM|1,∞,Ωh ≤C .

Note that, as indicated in the proof of Theorem 4.2, we then obtain the existence of a
local solution to the problem without the additional constraints, i.e. a solution to (13) in
the function setK̃h, by choosingM large enough such that

‖DuM‖∞,Ωh ≤C< M ,

andh small enough such that

‖uI −uM‖1,2,Ωh ≤C h< 1 .

Although the constants in Theorem 4.4 depend on the continuous solutionu, which itself
depends onκ this is not a circular argument, because we can assume thatu is bounded by
a constant for allκ smaller than someκ0 as proved in [Hui84].

Theorem 4.1 (neglecting the obstacle bound) then follows bycombining Theorem 4.2,
Theorem 4.4, and Theorem 3.1.

Proof of Theorem 4.4.We will proceed similarly to the proof of Theorem 3.2 in [Mit77].
Seteh := uI −uM and consider

A2 :=
∫

Ωh

|Deh|2
WM

dx .

Note that

A2 =

∫
Ω

Deh ·Du
W

dx−
∫

Ωh

Deh ·DuM

WM
dx

+

∫
Ωh

Deh ·D(uI −u)
WM

dx

+

∫
Ωh

Deh ·Du

(

1
WM

− 1
W

)

dx

+

∫
Ωh−Ω

Deh ·Du
W

dx−
∫

Ω−Ωh

Deh ·Du
W

dx .

We want to estimate all terms on the right hand side to obtain an inequality of the form
A2 ≤ C h2. To estimate the first two terms we will use the variational formulations of
the continuous and the discrete problem. The main difference to [Mit77] is that instead
of proving a priori estimates on the discrete solution we need to choose test functions
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fulfilling the additional bounds on the function set. This will lead to extra terms which will
turn out to be of orderh2 and thus do not alter the convergence result. For completeness
we will also carry out the estimates for the remaining terms which can also be found, e.g.
in [Mit77] and [Cia78].

To bound the first term we insert the test functionv := u−eh+θI +θh into the contin-
uous variational inequality (8), where the constantsθI andθh are defined by

θI :=
1
|Ω|

∫
Ω

uI −u dx

θh :=
1
|Ω|

(∫
Ωh−Ω

uM dx−
∫

Ω−Ωh

uM dx

)

.

The constants are chosen such thatv fulfills the volume constraint and thus is indeed an
admissible test function. The variational inequality (8) then reads

(22)
∫

Ω

Deh ·Du
W

dx≤ κa(u,eh)+ l(eh)−κa(u,θI +θh)− l(θI +θh) ,

wherea(·, ·) andl(·) are the continuous analoga toah(·, ·) andlh(·).
For the second term we insert the test functionvh := uI + θh,I + θh,h into the discrete

variational inequality (13) with the constantsθh,I andθh,h defined by

θh,I :=
1

|Ωh|

∫
Ωh

u−uI dx

θh,h :=
1

|Ωh|

(∫
Ω−Ωh

u dx−
∫

Ωh−Ω
u dx

)

.

The constants ensure thatvh fulfills the volume constraint. ForM ≥ |DuI |∞,Ω, the function
vh fulfills the constraint

|Dvh|∞,Ω ≤ M .

For theL2- and theW1,1-constraints note that Lemma 3.4 implies that|θh,h| is of orderh2.
Theorem 3.1 yields the same for|θh,I |. Thus in any Sobolev norm‖ · ‖ we can estimate

‖vh‖ ≤ ‖uI‖+C h2
.

Choosingh small enough then yieldsvh ∈VM.
The variational inequality (13) then reads

(23) −
∫

Ωh

Deh ·DuM

WM
dx≤−κah(uM,eh)− lh(eh)−κah(uM,θh,I +θh,h)− lh(θh,I +θh,h) .

Adding (22) and (23), we obtain∫
Ω

Deh ·Du
W

dx−
∫

Ωh

Deh ·DuM

WM
dx≤ κ(a(u,eh)−ah(uM,eh))+ l(eh)− lh(eh)

− (κah(uM,θh,I +θh,h)+ lh(θh,I +θh,h))

− (κa(u,θI +θh)+ l(θI +θh)) .

The terms involving the constants can be estimated by

− (κah(uM,θh,I +θh,h)+ lh(θh,I +θh,h))− (κa(u,θI +θh)+ l(θI +θh))

≤C(κ,V,β)(|θI |+ |θh|+ |θh,I |+ |θh,h|)
≤C h2

,
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since Lemma 3.4 implies that|θh| and|θh,h| are of orderh2, and Theorem 3.1 yields the
same for the other two constants.

To estimate the termκ(a(u,eh)−ah(uM,eh)) note that

a(u,eh)−ah(uM,eh) = ah(eh,eh)+

∫
Ωh

(u−uI) eh dx+
∫

Ω−Ωh

u eh dx−
∫

Ωh−Ω
u eh dx

can be approximated using Lemma 3.4 and Theorem 3.1 by

a(u,eh)−ah(uM,eh)≤ ah(eh,eh)+C h2‖eh‖2,Ωh +C h2‖eh‖1,1,Ωh .

Lemma 3.3 yields

|l(eh)− lh(eh)| ≤C(γ,β) h|eh|1,1,Bh .

The first two terms ofA2 can thus be estimated by∫
Ω

Deh ·Du
W

dx−
∫

Ωh

Deh ·DuM

WM
dx≤ κah(eh,eh)+C h2(1+ ‖eh‖1,1,Ωh + ‖eh‖2,Ωh

)

+C h |eh|1,1,Bh .(24)

We now need to estimate the remaining terms of the decomposition of A2. The third
term can be estimated using Hölder’s inequality

∣

∣

∣

∣

∫
Ωh

Deh ·D(uI −u)
WM

dx

∣

∣

∣

∣

≤
∫

Ωh

|Deh|√
WM

|D(uI −u)| dx

≤ A|uI −u|1,2,Ωh .

Using Theorem 3.1, we obtain
∣

∣

∣

∣

∫
Ωh

Deh ·D(uI −u)
WM

dx

∣

∣

∣

∣

≤C h A.(25)

To estimate the fourth term note that
∣

∣

∣

∣

1
WM

− 1
W

∣

∣

∣

∣

=

∣

∣

∣

∣

W2−W2
M

W WM (W+WM)

∣

∣

∣

∣

=

∣

∣

∣

∣

D(u−uM) ·D(u+uM)

W WM (W+WM)

∣

∣

∣

∣

≤ |D(u−uM)|
W WM

.

Hence, we can estimate using Hölder’s inequality
∣

∣

∣

∣

∫
Ωh

Deh ·Du

(

1
WM

− 1
W

)

dx

∣

∣

∣

∣

≤
∫

Ωh

|Du|
W

|D(u−uM)| |Deh|
WM

dx

≤ λ
∫

Ωh

|Deh|2+ |D(u−uI)| |Deh|
WM

dx

≤ λ



A2+A

(∫
Ωh

|D(u−uI)|2
WM

dx

)

1
2





≤ λ A
(

A+ |u−uI|1,2,Ωh

)

,

whereλ = maxΩ̃
|Du|
W < 1. Taking Theorem 3.1 into account we can furthermore estimate
∣

∣

∣

∣

∫
Ωh

Deh ·Du

(

1
WM

− 1
W

)

dx

∣

∣

∣

∣

≤ λ A(A+C h) .(26)
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SinceDeh is piecewise constant onΩh−Ω andΩ−Ωh, and the distance between∂Ω
and∂Ωh is in O(h2) we can estimate the last terms ofA2 by

∫
Ωh−Ω

Deh ·Du
W

dx−
∫

Ω−Ωh

Deh ·Du
W

dx≤ 2 λ C h2 |eh|1,1,∂Ωh

≤C h |eh|1,1,Bh,(27)

where we have used Lemma 3.3 to obtain the last inequality.
Combining (24), (25), (26), and (27) yields

A2−κah(eh,eh)≤ λA2+C(1+λ)h A+C h2(1+ ‖eh‖1,1,Ωh + ‖eh‖2,Ωh

)

+C h |eh|1,1,Bh .

(28)

uM ∈VM implies that‖eh‖1,1,Ωh and‖eh‖2,Ωh are bounded by a constant independent ofh.
Using Young’s inequality we thus obtain

1−λ
2

A2−κah(eh,eh)≤C h2+C h |eh|1,1,Bh .(29)

Note that the assumption‖DuM‖∞,Ωh ≤ M implies

‖Deh‖2
2,Ωh

≤
√

1+M2A2
.

Using Poincaré’s inequality (19) and the volume constraint we obtain

κah(eh,eh)≤ 2 κ

(

∥

∥

∥

∥

eh−
1

|Ωh|

∫
Ωh

eh dx

∥

∥

∥

∥

2

2
+

∥

∥

∥

∥

1
|Ωh|

∫
Ωh

eh dx

∥

∥

∥

∥

2

2

)

≤ 2 κ
(

C2
6‖Deh‖2

2+C h2)

≤ 2 κ
(

C2
6

√

1+M2A2+C h2
)

≤ 1−λ
4

A2+2 κ C h2

for κ small enough depending onM, i.e.,

κ ≤ κ2 :=
1−λ

8C2
6

√
1+M2

.(30)

Inserting this into (29) yields

A2 ≤C h2+C h |eh|1,1,Bh .(31)

We will now use this to show that|DuM|∞,Ωh is bounded depending onh−1. This will
then lead to a first bound on|eh|1,2,Ωh independent ofh, which we will then improve until
we obtain the desired estimate (21).

For any triangleTj Theorem 3.1 and (31) yield

∫
Tj

|DuM|2
WM

dx≤ 2

(

A2+

∫
Tj

|DuI |2
WM

dx

)

≤ 2
(

A2+C|u|21,∞,Ω|Tj |
)

≤C h+C|u|21,∞,Ω h2
.
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SinceDuM is constant on each triangleTj we additionally obtain, due to the shape regular-
ity,

∫
Tj

|DuM|2
WM

dx≥ πγ2
|DuM|Tj

|2
√

1+ |DuM|Tj |2
h2

.

Combining these implies

|DuM|Tj
|2

√

1+ |DuM|Tj
|2

≤C h−1

for all Tj and hence

|DuM|Tj
| ≤Wh|Tj

≤
|DuM|Tj |2

√

1+ |DuM|Tj
|2
+1≤C h−1

.

From this and (31) it follows that|eh|1,2,Ωh is bounded:

|eh|21,2,Ωh
=

∫
Ωh

|Deh|2
WM

√

1+ |DuM|2 dx

≤ sup
Ωh

√

1+ |DuM|2A2

≤C .

Since|Bh|= O(h) we get by Hölder’s inequality

|eh|1,1,Bh ≤ |Bh|
1
2 |eh|1,2,Bh ≤C h

1
2 .

Inserting this back into (31) yieldsA2 ≤ C h
3
2 . Repeating the arguments above we then

obtain|DuM|∞,Ωh ≤C h−
1
2 , |eh|21,2,Ωh

≤C h, and thusA2 ≤C h2. Another repetition of the
arguments yields the pointwise gradient estimate

|uM|1,∞,Ωh ≤C

and thus the estimates

|eh|1,2,Ωh ≤C h , and |eh|1,∞,Ωh ≤C .

The final estimate

‖eh‖1,2,Ωh ≤C h

then follows using Poincaré’s inequality

‖eh‖2
1,2,Ωh

≤ 2
(

‖eh‖2
2,Ωh

+ |eh|21,2,Ωh

)

≤C ‖Deh‖2
2+C h2

≤C h2
.

�
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4.3. Convergence with an Obstacle. We will now include the obstacle in our considera-
tions, i.e. we look for solutions of (13) inKh as defined in (10).

Analogously to the case without an obstacle we restrict the function set to

Vobst
M := Kh∩

{

‖Dvh‖∞,Ωh ≤ M
}

∩
{

‖vh‖2,Ωh ≤ ‖uI‖2,Ωh +1
}

∩
{

‖vh‖1,1,Ωh ≤ ‖uI‖1,1,Ωh +1
}

.

The existence of a solutionuM ∈Vobst
M for a givenM ∈R follows by the same reasoning

as in the case without an obstacle (Theorem 4.2). Thus, if we can prove a convergence
result like Theorem 4.4, we obtain a local solution to (13) since we can then chooseM
large enough such that

‖DuM‖∞,Ωh ≤C< M ,

andh small enough such that

‖uI −uM‖1,2,Ωh ≤C h< 1 .

Hence, we just need to prove the following:

Theorem 4.5. Let M∈ R be large andκ small enough. Then

‖uM −uI‖1,2,Ωh ≤C h ,(32)

for all 0 < h < h0, h0 sufficiently small, where uM ∈ Vobst
M is a solution to(18) and uI

denotes the interpolation of the solution to the continuousproblem(8). Furthermore, we
have

|uM|1,∞,Ωh ≤C .

Proof. We may essentially repeat the proof of Theorem 4.4. However,we need to choose
different test functions to insert into the discrete and thecontinuous problem since the
original ones might violate the obstacle constraint.

As a discrete test function we choose instead

vh := uI +CVh(uI −ψh) ,

where

CVh :=
θh

Vh−θh
,

θh :=
∫

Ωh

u−uI dx+
∫

Ω−Ωh

u dx−
∫

Ωh−Ω
u dx.

Note thatuI does not violate the discrete obstacle constraint.CV enforces compliance with
the volume constraint. In view of the approximating properties ofuI and Lemma 3.4, we
have|θh| ≤ C h2. Thus choosingh small enough implies|CVh| ≤ C h2 ≤ 1. Thereforevh

does not violate the obstacle constraint. Note furthermorethat

‖uI −ψh‖1,∞,Ωh ≤C ,

where the constant depends on the continuous solution and the obstacle.‖Dvh‖∞,Ωh is
then bounded. Thus, forM large enough andh small enoughvh ∈ Vobst

M . The variational
inequality forvh reads

−
∫

Ωh

DuM ·Deh

WM
dx≤−κah(uM,eh)− lh(eh)

+CVh

(∫
Ωh

DuM ·D(uI −ψh)

WM
dx−κah(uM,uI −ψh)− lh(uI −ψh)

)

,
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FIGURE 2. Discrete capillary surface for−κ =−0.1

which implies

−
∫

Ωh

DuM ·Deh

WM
dx≤−κah(uM,eh)− lh(eh)+C h2

.

As a continuous test function we choose

v := vψ +CV(vψ −ψ) ,
where

vψ := u+uM −uI +Cψ ,

Cψ := ‖ψh−ψ‖∞,Ω̃+ ‖u−uI‖∞,Ω̃ ,

CV :=
θ

V −θ
,

θ :=
∫

Ω
uI −u dx+

∫
Ωh−Ω

uM dx−
∫

Ω−Ωh

uM dx−Cψ|Ω| .

Cψ ensures thatvψ lies above the obstacle.CV enforces the continuous volume constraint.
Again |θ| ≤ C h2 and thus|CV | ≤ C h2 for h small enough. Thereforev is an admissible
test function for the continuous problem. Furthermore

‖vψ −ψ‖2,Ωh ≤C ,

‖vψ −ψ‖1,1,Ωh ≤C ,

since all parts ofvψ fulfill these bounds. The variational inequality then reads∫
Ω

Du ·Deh

W
dx≤ κa(u,eh)+ l(eh)+C h2

.

We are now in the same setting as before and can repeat the arguments of the proof of
Theorem 4.4 to obtain the assertion. �

5. NUMERICAL EXPERIMENTS

Our aim in this section is to numerically illustrate the convergence result stated in Theo-
rem 4.1. To this end we used a truncated nonsmooth Newton multigrid method [GSS09] to
solve the capillarity problem. The implementation was donein C++ using the Distributed
and Unified Numerics Environment (DUNE) [BBD+08].

We consider the discrete capillarity problem (13) for mesh sizeshk =
√

2 2−(k+1) for
k= 0, . . . ,8 on a disc of diameter 1 with the parameters−κ=−0.1,β=−0.8, a prescribed
volumeV = π, and a constant obstacle at height 0. A reference solutionuf was computed
with a mesh size ofh=

√
2 2−10. The graph ofuf can be observed in Figure 2.

The convergence result Theorem 4.1 essentially bounds the approximation error in the
W1,2(Ωh)-seminorm, and the full norm estimate comes from Poincaré’s inequality. Since
we want to observe the order of convergence we will monitor the errors|uh−uf |0,2,Ωh and
|uh−uf |1,2,Ωh as functions of the mesh size parameterh.
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FIGURE 3. Doubly logarithmic plot of theW1,2-error over the mesh size
h for −κ =−0.1
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FIGURE 4. Doubly logarithmic plot of the error in theW1,2-seminorm
over the mesh sizeh for varyingκ

The expected linear decay of the error in theW1,2-seminorm can be observed in Fig-
ure 3. For the approximation error in theL2-norm we observe quadratic decay. This
corresponds to the well-known convergence behavior of minimal surfaces [Ran77].

An essential ingredient in the proof of Theorem 4.1 is theκ-independence of the error.
We tested this by repeating the above test for varyingκ. The reference solution was com-
puted withh =

√
2 2−8 andhk is as above withk = 0, . . . ,6. In the numerical results the

discretization error indeed does not appear to depend onκ as can be observed in Figure 4.

REFERENCES

[BBD+08] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,R. Kornhuber, M. Ohlberger, and O. Sander.
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